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We present results of an ongoing study of the nature of the high temperature crossover in QCD with two
light fermion flavors. These results are obtained with the conventional staggered fermion action at the smallest
lattice spacing to date, approximately 0.1 fm. Of particular interes{Bra study of the temperature of the
crossover, an important indicator of continuum scalify,a determination of the induced baryon charge and
baryon susceptibility, used to study the dissolution of hadrons at the crosg®vere scalar susceptibility, a
signal for the appearance of soft modes, afdthe chiral order parameter, used to test models of critical
behavior associated with chiral symmetry restoration. From our new data and published res\jts 4016,
and 8, we determine the QCD magnetic equation of state from the chiral order parameter @$iagddmean
field critical exponents and compare it with the corresponding equation of state obtained fro¥)aspi®
model and mean field theory. We also present a scaling analysis of the Polyakov loop, suggesting a
temperature-dependent “constituent quark free ener§g0556-282(196)01619-0

PACS numbdps): 12.38.Gc, 11.15.Ha, 12.38.Aw, 12.38.Mh

[. INTRODUCTION The most detailed previous simulations with two flavors
of staggered fermions were carried outgt=4 (a~0.3 fm)
Lattice simulations of high temperature QCD provide, at[5], N;=6 (a~0.2 fm) [6], and N;=8 (a~0.15 fm [7].
present, our only firmly grounded theoretical insights into theResults of those simulations reaffirmed the hypothesis that
phenomenology of the transition from hadronic matter to thefor two flavors there is a rapid crossover, but no phase tran-
quark-gluon plasma, and into the nature of the plasma itselsition at nonzero quark mass. Moreover, the raiém, was
Our ultimate goals in lattice simulations at high temperaturefound to be consistent with previous measurements. Despite
include (1) establishing continuum scaling, important not the lack of surprises &i;=6 and 8, there are strong reasons
only for determining the temperature of the crossover, buto push to still smaller lattice spacing. The full flavor sym-
necessary for the validity of all dynamical fermion simula- metry in the staggered fermion scheme is restored only in the
tions, (2) establishing the mechanism for the dissolution orcontinuum limit. o models of chiral symmetry restoration
formation of hadrons at the crossové) exploring the in-  suggest that the crossover becomes a first order phase tran-
tricate critical behavior associated with the phase transitionsition as the number of flavors is increas@. If flavor
and (4) obtaining a gquantitative characterization of the symmetry breaking were to cause an effective undercounting
quark-gluon plasma, including the equation of state. Toof quark flavors, one might expect a more pronounced cross-
achieve these goals requires a combination of advances fwver, or even a genuine phase transition at smaller lattice
algorithms and computing powdr,2]. Recent improve- spacing. Moreover, strong coupling distortions in the hadron
ments in quenched lattice algorithms hold promise for dy-spectrum alN,=6 undermine credibility in a determination
namical fermion simulationis3,4]. Here we present results of of the crossover temperature or even in the plausibility of
simulations with the conventional staggered fermion actiorhaving achieved a scaling rafig./m, . For these reasons we
at the smallest lattice spacing to date. undertook a simulation ah~0.1 fm. Preliminary results
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FIG. 1. Chiral condensat@yy) vs 642 FIG. 2. Polyakov loop vs @F.

and 2 plot these quantities at fixed bare quark mass as a

enceq2,9,10. function of coupling. It is clear that despite the small errors,
The simulation with two flavors was carried out using the@t these quark masses the effect of the crossover on these

R algorithm described in[11] at two quark masses, duantities is subtle, indeed. _
am,=0.008 and 0.016 and six couplingsg®# 5.65, 5.70, The Polyakov loop measures the charig& m,) in the
5.725, 5.75, 5.80, 5.85, except that the 5.725 coupling waSnsemble free energy caused by the introduction of a static
not simulated at the higher mass. In each case the simulatidfSt auark. In particular, with our normalization
was extended to at least 2000 molecular dynamics time units.
Lattices were saved at intervals of eight time units. For the
present analysis the first 500 time units were omitted for
equilibration. Most of the results reported here are based oAs the lattice spacing shrinks, the test quark self-energy de-
an analysis of approximately 180 remaining lattices at eachrelops an ultraviolet divergence, which may overwhelm a
parameter pair. For the sake of comparison, we also presentossover signal in this quantity. Thus one might hope that
some new results foN,=6, based on a compilation of lat- by increasing the radius of the test charge, one might regu-
tices from our equation of state stufi?]. late the divergence and recover a signal at least as strong as
In addition to the standard variables, the chiral order pawas seen on a coarser lattice. Accordingly, we constructed a
rameter and the Polyakov loop, we introduce a fuzzy Polya-fuzzy Polyakov loop” variable in analogy with techniques
kov loop in an effort to regulate the ultraviolet divergenceintroduced for glueball sourcg44]. To do so, we replaced
that becomes increasingly troublesome at small lattice spa¢he conventional product of forward links,
ing. We also measure the baryon susceptibility, the induced
guark number, and the disconnected chiral susceptibility. Re-
sults are presented in Sec. Il. We show that with our choice
of masses and couplings, the crossover is more clearly de-
fined in terms of the baryon susceptibility and induced quark
number. In Sec. Ill we present a scaling analysis of thewith
Polyakov loop variable for world data ranging frd=4 to
N;=12, in terms of a constituent quark free energy. We also
present a critical scaling analysis of the dependence of
() on temperature and quark massagnetic equation of
statg, including a compilation of world data for this variable.
. S . . ' where
This analysis is carried out in the context of mean field as
well as Q4) critical behavior.

were reported at the Bielefeld and Melbourne Lattice confer

(ReP)=3exg — f(T,mg)/T]. (2.1

Ni—1
<ReP(x)>=<Tr HO Ut(x,t)>, 2.2
t=

N—1
<ReF(X)>=<Tr HO Ft(x,t)>, (2.3

Fi(x,t)=aUi+ B2 Ugapie (2.4

II. LOCATING THE CROSSOVER

The six staples associated with the lidk(x,t) are the usual
éhree-link products of the form

A. Polyakov loop, (Iw), fuzzy loop

The high temperature crossover is conventionally locate
from the inflection point in a plot of the Polyakov loop or

, . ; . oot
chiral order parameter as a function of coupling. Figures 1 Ux(XDUe(X+X, 1)Uy (X,t+1)

(2.5
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FIG. 3. Fuzzy Polyakov loop vs 67. FIG. 4. Nonsinglet baryon susceptibility vs g/ for

N;=4,6,8,12. Free lattice quark values for ed¢hare indicated by

) o horizontal lines on the right of the plot.
centered on the link fromx(t) to (x,t+1). A weighting

a=B=1/7 was determined from a rough optimization of the T4 convert these results to a temperature, we use a scale
variance. By construction the weights sum to 1 and we dg, which thep meson mass is taken to be 770 MeV, regard-
not project the matriF, onto SU3), so this observable still |ess of quark mass. Themass in lattice units is obtained in
creates a source of precisely one color triplet. turn from an empirical fit to masses in a compilation of two-
Figure 3 gives the result. Comparing with the standardjayor staggered fermion spectral simulatidii$], and in-
Polyakov loop in Fig. 2, we see that smearing indeed reducegydes an extrapolation beyond the parameter range of spec-
the relative statistical error, but apparently does not enhancg;| measurements (?>5.7) using tadpole-improved
the crossover signal. asymptotic scaling. Details are given in the Appendix. From
the baryon susceptibility we then place the crossover at
B. Baryon susceptibility T,=143-154 MeV, at the lighter quark mass and

The conventional Feynman path integral simulates thél'0=142—150 MeY, at the heavier quark mass.

grand canonical ensemble in baryon number at zero chemical
potential. The baryon susceptibility measures fluctuations in C. Induced quark number

the baryon number of the ensemble. It is defined as the de- apother confinement-sensitive observable is the induced
rivative of the baryon charge density with respect to Chem"quark number17]. This observable measures the total re-

cal potential. The susceptibility can be defined separately fogjqya| light-quark number in an ensemble containing a single
each flavor. Thus with two quark flavors, two susceptibilities;ggt quark:

can be measured: a flavor singlet and flavor nonsirigielt
Both quantities are obtained at zero chemical potential.

Qina= f Pina(r)d3r. (2.7

J J
Xs,nsz(aiﬂ> (Puxpa)- (2.6) ) ) ) )
u d The induced quark number density,y is measured in the
presence of the test quark. Operationally, the quantity mea-
The nonsinglet susceptibility is compared with results forsures the correlation between the Polyakov loop and the
lower N; [15] in Fig. 4. Also indicated is the free lattice light-quark density{17].
quark value for eachN;. A common feature is the abruptrise  This observable is subject to considerable fluctuation. We
in susceptibility at crossover, followed by an asymptotic ap-found it particularly effective to introduce the test charge
proach to the free lattice quark value. At lower values ofthrough the fuzzy Polyakov loop variable described above.
N, where the crossover has been located with traditionalhe baryon density of the dynamical quark is computed us-
methods, we find that the baryon susceptibility reaches 1/3ing a random source estimatf7]. To improve the signal
1/2 of the free quark asymptotic value at the crossover. Sincurther, we adjusted the number of random sources using an
this observable is based on a conserved charge, it is naidaptive procedure on a configuration-by-configuration basis
renormalized, and offers our most distinctive signal for theas follows: starting with a minimum of 20 random sources
crossover. Following the same rule fbl;=12 places the the variance of the total induced baryon number was esti-
crossover in theam,=0.008 series betweeng®=5.65 and mated. If the variance was greater than tolerance, another 20
5.70 and in theam,=0.016 series betweend5/=5.75 and  random sources were added to the sample, and so on, up to a
5.80. maximum of 80 for one configuration.
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FIG. 5. Induced quark number. Crosses foi,=4 at FIG. 6. Disconnected chiral susceptibility. Crosses Kgr4,

a 20025, octagpns fdﬂt:.4, 6, and 8 aamq:0.025 with fixed amq:0.0375[5]’ octagons fOl’Nt:4, aquo_oz [5]’ squares for
6/g- (i.e., fixed lattice spacing bursts forN,=12 atam,=0.008, N,=6, am,=0.0125, diamonds foN,=12, am,=0.016, and
and diamonds foN;=12 atam,=0.016. bursts forN,= 12, am,=0.008.

Results are shown in Fig. 5 and compared with the result

¥he connected susceptibility in another guise is the deriva-
from simulations at loweN;. The induced quark number is — P y g

) tive of () with respect to valence quark mass at fixed sea
expected to be exactly 1 at zero temperature, since con- uark mass and # [18], while the disconnected suscepti-
finement requires screening of the test charge by a singl ' — P

antiquark. At the crossover, this quantity rises rapidly, apLility is the configuration variance dfiy):

proaching zero in the high temperature phase. At loNgr o e

the induced quark number reaches approximately.1 at Xais= W) 2o — L) condd (2.10
crossover. Thus the induced quark number density can give

an operational definition of the crossover. Applying this rule
to the N,=12 data gives °=5.65-5.70 [=143-154
MeV,) in the am;=0.008 series and 67=5.70-5.80
(T=134-150 MeV,) in the am,=0.016 series. This cross-
over location is consistent with, but somewhat less precis
than, that found from the baryon susceptibility.

where( i) .ons IS the expectation value computed on a single
gauge configuration and), denotes averaging over all
gauge configurations in the sample.

We used the standard Gaussian random source estimator

?Or <‘//¢>conf:

D. Chiral susceptibility <@>conf:<§TS_1§>§- (2.11

Another signal for the crossover is the singlet chiral susyne must take care in using this estimator for E210

ceptibility since the square involves correlated quartic terms in the ran-
_ dom source variable. Averaging then reintroduces part of the
H i) connected susceptibility along with the disconnected suscep-
Xm="om ) (2.8) tibility. We chose to avoid the problem altogether by com-
6ig puting the estimator from five separate random sources on

each configuration and forming products in E8.10 only
which measures fluctuations in the chiral order parametefrom pairs of estimators with different random souro@or
() [5]. Here, we differentiate with respect to equated up-the smaller volumeN,=6 data we used 33 random sources
and down-quark masses. Since the derivative is the spac@er configuration. o
time integral of the correlatoy(r) yy(0)), a peak in this ~RESUMS forxgisc and xcony are compared in Figs. 6 and 7
observable occurs at a minimum in themeson screening With the resuits of Karsch and Laermanniyt=4 [5] and
mass, indicating the presence of a soft mode. Such sofgSults from a reanalysis of a set Nf=6 lattices retained
modes are expected in models of critical behay&jr Like ~ Tom an equation of state study2]. The benefits of the
the o-meson propagator, the singlet chiral susceptibility carfarger sample in thé\;=4 data are clearly evident in this

be decomposed into two contributions, quark-line connecteyariable. At the lighter quark massaf,/T=0.08) the
and quark-line disconnected: N;=4 octagons define a crossover peak at about 145

MeV,,. This peak can be sought in thg=6 data at a com-
parable quark massn,/T=0.075). The data are crude but
Xm= Xconn Xdisc- (2.9 not inconsistent with a comparable peak. The bursts plot
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FIG. 7. Connected chiral susceptibility. Same notation as in FIG. 8. Crossover temperature in units of {reneson mass vs
Fig. 6. the square of ther to p mass ratio. For staggered fermions the mass
of the lightest non-Goldstone pion is usgtB]. The vertical line

N;=12 data at the lighter quark massang,/T=0.096), locates the physical ratio.

which are not inconsistent with a peak in the range 140-16
MeV . The signal in the higher madd;=12 data(dia-
monds is inconclusive.

That the signal inygs. should be weaker at higher quark
mass is expected from models of critical behavior that place
the critical point at zero quark mass. The mass ratio
mZ/m> measures proximity to the critical point. In the A. Constituent quark free energy
N;=4 data, this ratio is less than 0.1 for the lighter quark The wide range oN, values now available makes pos-
mass @m,=0.020) data and between 0.1 and 0.2 for thesible an amusing analysis of the Polyakov loop variable,
am,=0.0375 data. For thbl;=6 data it is also between 0.1 which measures the change in the free energy of the thermal
and 0.2. For theN,=12 data, it is between 0.2 and 0.3 for ensemble due to the introduction of a point spinless test
am,=0.008 and between 0.3 and 0.4 fom;=0.016. Thus quark. This free energy difference,
we expect a weakening of the crossover signal at the quark
masses treated in our highidr data. f(T,mg)=—TIN(ReP/3), (3.1

The connected part of the susceptibility,,,is compared
in Fig. 7 with results fromN;=4 and our results from a function of the temperaturé and light quark mass,
N;=6. This quantity is far less noisy than the disconnectedncludes the lattice-regulated ultraviolet-divergent self-
contribution. The lack of a discernible peak in tNe=12  energy of the point source, proportional to the inverse lattice
results is presumably another consequence of the greater digpacing 14, and the free energy of the screening cloud of
tance from the critical point. light antiquarks, quarks, and gluons, which we might call the

“constituent quark free energy.” Computing the self-energy
to leading order in perturbation theory, we have

?ry. Except for a fewN;=4 points from Wilson fermions, the
consistency of these resulfsithin about ten percentis
quite striking.

Ill. SCALING TESTS

E. Crossover location

To summarize, the observables we have considered place f(T,mg) =27Crayyla+f(T,my), (3.2
the crossover alN,=12 in the range §°=5.65-5.70 at
am,=0.008 and in the range 5.75-5.80 @am,=0.016, whereCr=4/3 is the color Casimir factor for the triplet rep-
which we translate to 143-154 Meg\and 142-150 Mey,  resentationgy is the color fine structure constant appropri-
respectively. This determination is compared with results forate for heavy quark bound states at the same lattice scale, and
a wide variety of two-flavor simulations with both Wilson
and staggered fermions in Fig.[8,13]. Here, we plot the 1 1
temperature in units of the-meson mass vs the square of the y= _32 5 5
ratio of the to p mass. For the staggered fermion simula- Nsx 6—2%,_,c0427k,/Ns)+(Ma)
tions, we use the lightest loc&ahon-Goldstong pion. This
state is expected to be degenerate with the Goldstone pion ia the dimensionless static lattice propagator for a Debye-
the continuum limit, so progress toward the origin in thisscreened electrostatic gluon field evaluated at zero separa-
ratio measures restoration of flavor as well as chiral symmetion. Screening provides an arbitrary infrared cutoff. Al-

(3.3
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FIG. 10. Scalec{@) vs scaled temperature with mean field

FIG. 9. Constituent quark free energy as defined in text. critical exponents aT,(0)=140 MeV.

though the ultraviolet divergent contributionalis uniquely
determined in the limia—0, an infrared cutoff, here em-
bodied in the Debye madd, determines where the contri-
bution from the point quark ends and the contribution from
the screening cloud begins. Thus this approach offers n
unique definition of a “constituent quark free energy.” In-
stead, within the framework of any consistent definition, Eq.
(3.2 permits a separation of two contributions, one varying
in a known way with the lattice scale d/and the other
unknown, but scale invariantat least in the continuum

transition at zero quark mass with attendai@)ritical be-
havior. Flavor symmetry breaking in the staggered fermion
scheme preserves only an exad20subgroup, so one may
expect @2) critical behavior on coarse lattices. Away from

e critical point, where fluctuations are unimportant, spin
systems often exhibit mean field behavior. Konand Kogut
have even proposed that mean field behavior could extend up
to the critical point, as a consequence of the composite na-
ture of the scalas- model fields as they appear in QI9].
. T - : While it remains to be established whether their arguments
I|m|§). Hereln lies its pr.ed|ct|ve power: no matter what pply to QCD, we consider the mean field alternative a plau-
choice is mac_je for the infrared cutoff, a measurement %ible first approximation, since we do not know the extent of
ReP at two different values oN, can be used to predict g Ginzburg scaling region. Thus even if4D critical be-
ReP at any othem;. . . havior is ultimately found in QCD at sufficiently large vol-

For present purposes, usihg=1/aT, we choose a sim- ;e ‘it is possible that results imitate mean field behavior for
pler approximate form, lattices of the size considered in this study and at tempera-
tures and quark masses that are not sufficiently close to the
critical point.

Karsch[20] and Karsch and Laermarib] have analyzed
and adjust the dimensionless constaby eye to achieve the the crossover, starting from the Fisher scaling hypothesis for
rough scaling agreement shown in Fig. 9. For each data séf€ scaling of the critical contribution to the free energy
only values for the lightest available quark mass are used.
Although the quark mass valueg, /T are not the same from
one N; to the next in this figure, they are small

(my/T=<0.1) and the small variation would be expected t0gom this scaling behavior one derives a scaling relation for

foq(T,Mg) = — T(IN(ReP/3) + CNy), (3.4

fcrit(tah):bidfcrit(byttvbyhh)- (35)

make little differenceof the order 10 MeVY in the free en- the critcal contribution to the magnetization
ergy. The best value far appears to be about 0.4, comparedg_ _ 5 /-

with values ranging from 0.26 to 0.35 expected from the ort

lowest order perturbative self-energy with a screening mass

M=3.2T. It is curious that at the crossover, the free energy s(t,h)=h1"5y(x), (3.6

drops by about the 300 MeV expected in a constituent quark

model with deconfinement at high temperature. wherex=th~ 8 andy(x) is a scaling function. In QCD the

quark mass plays the role of the magnetic field énd), the
magnetization. Specifically, Karsch suggests ushg=

An SU(N) X SU(N) o model has often been proposed asmg/T=amgN; and t=6/g2—6/g2(0,N,), whereg,(ON,) is
the paradigm for the high temperature phase transition itthe critical gauge coupling at zero quark mass for a particular
QCD [8]. For two light flavors N=2) one appealing alter- N; [20]. This identification leads to a successful accounting
native, consistent with numerical results, is that chiral symfor the crossover location (“pseudocritical point”)
metry restoration proceeds through a second order phaeﬁa!gpc(mq)2 for N;=4 at small quark mass.

B. Critical behavior
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We extend the Karsch and Laermann analysis to a wider

range of lattice spacings and test the scaling relat®f) quark mass, which we vary in 10 MeV increments. Our ex-

directly. To anticipate the need to explore critical behaV|or,ploratory strategy is to seek the best agreement between

while S|mult§1ne0|_,|_sly _approachlng the continuum limit, We\vorld data(after the cuts listed aboyand the resulting mag-
propose an identification that avoids quantities with anoma-

. : . . . ... netic equation of statg(x), giving higher priority to data
lous dimensions, but entails a translation to physical units: with higherN, . Setting the critical exponents to their mean
field values,5=1/3 andB=1/2, and adjustind .(0) to get
the best qualitative agreement according to these preferences,
we get the result shown in Fig. 10 with the choice
t=[T—T.(0)]/T(0), (3.8  T.=140. Since theé\;=4 data appear to be outliers, it was
necessary to omit them from the fit to the mean field mag-
netic equation of state. Apart from tig=12 data at higher
guark mass, the agreement is surprisingly good.

Our higher masd\;=12 data are strikingly inconsistent
The scaling relatiort3.6) then gives a universal function  jth scaling. Indeed, as we have remarked in our analysis of
the disconnected susceptibility, treem,=0.016 data are
y()=h"1"Ym (gy(mg, T))/ T (3.10 taken at values of higher than those of the rest of the
sample included in the graph. Thus it is plausible that these

with x=th Y%, The extra factoh! is needed to compen- data are taken too far from the critical region.

sate for the quark mass factoy, . Let us apply this analysis . An alternative strategy, the one used ], is to empha-

to data for(yy) from several group$21]. We begin by size agreement among world data for the full rangeNpf
applying the following cuts 1o thé world  data: without regard to the mean field magnetic equation of state.

mg/T=amN,<0.2; h=0.5 -1=x=<1; —0.5<t=<05. Our best result is shown in Fig. 11 with the choice

The first cut keeps parameters within the range of the :spec;I:C= 150. The mean field curve, based on fitting only over the

. X —-0. <O0.
trum interpolation. The last three are an attempt to keep val-2n9¢e 0.25<x<0.25 clearly does not match the data as

s . : : well as it did withT,=140.
ues within the region dominated by the scaling part of the The corresponding exercise with(@) critical exponents

free energy. Sln(_:e we have feo priort knov_vledge of the 6=4.82 andB=0.38 is shown in Figs. 12 and 13. In this
extent of this region, these choices are arbitrary. Indeed, the . : : .

. case the magnetic equation of state is not known in closed
cut onh is probably too generous, as we shall see, but w

have set it high initially so that all of thal,=12 data are Yorm. '”Zteazdz' it was Ot?t.‘""”led from a S'mté'a;'on of a(ln)o
included. SFIn model d],bus;(ng critica ct;.-x‘fonentsTﬁn It elcr;tlca cou-
We first carry out a mean field analysis of the data. The. "9 reported by Kanaya and Kayas]. The level of agree-

mean field magnetic equation of staéx) is determined ment is comparable to that of the mean field analysis.

from the alobal minimum of the usual quartic free enerav: At the present level of precision it is not possible to dis-
9 q 9y tinguish Q4) from mean field critical behavior, let alone

from O(2) (not shown. Obviously, a host of systematic er-
F(y,x)=by*+axy’ -y, (3.1)  rors, including finite volume effects and deviations from con-
tinuum scaling enter the analysis, so refinements are cer-
wherea and b are adjustable scale parameters. The thirdainly needed before the method can serve as a definitive test
adjustable parameter is the critical temperafly@) at zero  of critical behavior.

h=mZ(mg, T=0)/m}(m,,T=0), 3.7)

s=h~Img(yp(mg, T))/ T (3.9



4592 CLAUDE BERNARD et al. 54

TABLE Il. Summary of results foN;=12, am,=0.008: non-

T T T T | T T T T | T T T T | T T

200 — — — singlet and singlet baryon susceptibility, and disconnected and con-
0(4) scaled <yy> | nected chiral susceptibility.
N, amg
E i g 38822:8822 ) 6/g° Xns/ T Xs/T? Xaise/ T? Xcon! T2
= % 6 0.0125-0.025 | |
) > B 000655-00125 5.65 0.62) 0.4(5) 54(10) 480(8)
53 L o 8 0.004 . 5.70 1.4013 1.305) 80(20) 46612
< 100 |- , 1200080016 | 5.725 1.4411) 1.54) 29(6) 4699)
g I . © | 5.75 1.5210) 1.603) 25(7) 4587)
T o 5.80 1.878) 1.84) 6.2(1.1) 435(6)
L L % "‘@;;;*Ij_ 1 5.85 - - - -
T.=140 el o iy refined enough to distinguish amond2D O(4), and mean
oLt 11 | L | Lo T B2 (O field Scaling, however.
-1.0 -0.5 0.0 0.5 1.0
th_l/éﬂ
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(ReP) and (yy). However, the baryon susceptibility and
induced quark number show an abrupt rise consistent with
what is found at loweN,. We use these signals to locate the
crossover. At the lighter quark mass it is found to be in the
range 143-154 Mey, consistent with results at lowe\; . The lattice scale is converted to physical units using
Judged in terms of the ratib, our results at higher quark a=am,/770 MeV~?! following a method similar to that of
massam,=0.016 are farther from the critical point than the Ref. [16]. The numeratoam, is found through a combina-
world data at smalleN;. Thus the expected crossover peaktion of interpolation and extrapolation from zero temperature
in the disconnected chiral susceptibility is barely discerniblespectral measurements described below. Of course, taking
in our am,=0.016 data set, but it is present in our the physical value to be 770 MeV ignores shifts in this value
am,=0.008 data. We demonstrated a rough scaling analysias the quark mass is varied. We also require masses of the
of the Polyakov loop variable in terms of a constituent quarkGoldstone pionm_ and the second local piom_,, which
free energy. Finally,(¢) shows remarkable agreement becomes degenerate with the pion in the continuum limit.
among world data with appropriate cuts over the rangdJnfortunately, the highest value ofg for which spectral
N;=6, 8, and 12 with a mean field magnetic equation ofdata are available is 5.7, but oMf=12 data span the range
state and an assumed crossover temperature of approXi-65—-5.85, requiring extrapolation. For data at lowgran
mately 140 MeVat zero quark massOur analysis is not interpolation suffices. Figure 14 indicates the parameter
range of spectral data used for interpolatj@d]. In selecting

APPENDIX: CONVERSION FROM LATTICE
TO PHYSICAL UNITS

TABLE I. Summary of results foN;=12, am,=0.008: chiral
condensate, Polyakov loop, fuzzy Polyakov loop, and induced TABLE IIl. Summary of results foN;=12,am,=0.016: chiral
baryon charge. condensate, Polyakov loop, fuzzy Polyakov loop, and induced
baryon charge.

6/g2 (y) ReP ReF Q —

6/g°® ReP ReF
5.65 0.03983) 0.00335)  0.000516) —-0.62) g (g Q
5.70 0.03115) 0.009415 0.0015%11) —0.057) 5.65 0.06722) 0.00344) 0.0005@5) -0.212)
5725  0.029(R) 0.011817) 0.0017415 —0.167) 5.70 0.059%2) 0.00469) 0.0006%8) —0.42)
5.75 0.02672) 0.016813) 0.0025%12) —0.033) 5.75 0.052%,3) 0.01368) 0.00205%9) —0.124)

5.80 0.0242410)  0.021210) 0.00359100 —0.032) 5.80 0.04913) 0.016412) 0.0022%15 —0.103)
5.85 0.0226£7) 0.025412) - - 5.85 0.0451614) 0.023613) 0.0036814) 0.01(3)
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TABLE IV. Summary of results foN;=12, am,=0.016: non- 15

singlet and singlet baryon susceptibility, and disconnected and con- _] o %I R A R ';

nected chiral susceptibility. B T X O |

| p %O |

6/92 an/T2 )(s/T2 )(disc/-r2 )(conn/T2 L Ty + © i

5.65 04815  0.94) 31(6) 4346) 1.0 — %2 —

5.70 0.5712) 0.4(5) 24(6) 427(5) a i GE ]

5.75 1.1412) 0.4(4) 26(3) 427(7) g I o & |

5.80 1.2110 1.33) 30(5) 404(4) © N @i@ o i

5.85 1.5811) 1.2(4) 8(2) 3825) 05— & + g% g

L ® 3 ]

| g b ﬁ B, i i

the world data sample, we have not attempted to correct for i = 2 = |

finite volume effects. L 1

For the interpolation we found a polynomial or spline Y | M U AT A N S
expansion convenient: 52 53 54 55 56 57 58
6/g°
— 2 — 1/2 2
m/m,=R,,(6/g°,amg) = (amy) S, (6/g°) FIG. 15. Empirical fit to ther, p, and 7, masses in the com-

2 3/2 2 pilation of available spectral data. Open symb@guare, octagon,
+aqu77(6/g )+(amq) UA(6/g%), (A1) diamond and error bars show the respective measured values. The

cross, burst, and plus show the respective empirical estimates. The

am,= Rp(6/gz,amq)=Sp(6/gz) +aqup(6/gz) 7, values at 5.5, 5.6, and 5.7 are offset for clarity.

2 2
(amy)"U,(6/g%), (A2 here by=11-2N/3 andb,=51—19N,/3 andN;=2. In

place of the bare lattice coupling, we used the tadpole-
-R 2 _ 2y 4 T 2 improved value proposed by Mackenzie and Lep@jeand

My =Ry2(6/7,aMy) = S;2(6/97) +amgT2(6/g7) generalized to two flavors by Bitaat al. [25]:

+(amg)?U »(6/g%), (A3)
6/92¢= Ber() = — 2/In(01/3) — 1.99/, (A5)
where theS, T, andU’s are natural cubic splines with three
knots, 6(°=5.3,5.5,5.7 selected to span the range of avail
able spectral data.
For theN,= 12 data over the ranged5/=[5.65,5.83, we

chose an extrapolation based on two-loop asymptotic sca

where is the plaguette variablénormalized to 3 for the
vacuum. Applying the extrapolation requires knowledge of
he plaquette over the range of extrapolation. Since zero tem-
i tierature values are unavailable over this range, we used the
Ing: plaguette values measured in our high temperature study,
using a spline interpolation formula in the same pattern as
the masses above, but with knots aj%# 5.65,5.75,5.85. At
our small lattice spacing, the temperature effect on the
plaquette is negligible for this purpose. To avoid introducing
distortions in our predicted mass values resulting from a
L B L B AL BN switch in method from the spline interpolation to the ex-
r ] trapolation procedure, we elected to use only an extrapola-

aA (6lg?)=[87%(3bog?) P2 Poex — 872 (beg?)],
(A4)

- ° Ny 1 tion, based on interpolated spectral data @&’6/5.65, the

" g i © 1 lowest value in our data set, rather than aj?6¢5.70, the
-+ 005+ s & o 8 o0 — highest parameter for which spectral data is available. One
= o 12 . must allow for a rescaling of the quark mass in the extrapo-
©

L o 4 lation. Thus to determine the starting point for extrapolation,
R SO § § . - we first solve for the scale parameter

r o 3¢
000 — ° @;@D ] s A{Ber O(6g®,amy) 1}

[od

IIII|I\}I!I\II|IIII|IIII

52 54 56 58 60 62 ~ A{Bed O(5.65amy /) ]}

6/g"
The extrapolated masses are then obtained by rescaling from
FIG. 14. Range of parameter pairs ¢&/am,) for two-flavor  the interpolation at &?=5.65:
staggered fermion thermodynamic simulatidwarious plot sym-

bols as indicatedand spectral datgsymbol “S”) used to set the
lattice scale. m,/m,=R.,,(5.65am/s), (A7)

(A6)
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am,=sR,(5.65am,/s), (A8) pirical formula for hadron masses with the measured values.
The extrapolation from @?=5.65 predicts slightly higher
am,,=SR,,(5.65am,/s). (A9) mass values at §/=5.7 than measured. The agreement is

certainly adequate for present purposes. To refine the method
The measured mass values at 5.70 can then be used agvauld require a more detailed study of finite volume effects
check of the extrapolation. In Fig. 15 we compare the em{27].
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