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We study the perturbative QCD series for the hadronic width ofZhgoson. We sum a class of large
“ 72 terms” and reorganize the series so as to minimize “renormalon” effects. We also consider the renor-
malization scheme-scale ambiguity of the perturbative results. We find that, with three nontrivial known terms
in the perturbative expansion, the treatment of #tfeterms is quite important, while renormalon effects are
less important. The measured hadronic width of thés often used to determine the value m;(M%). A
standard method is to use the perturbative expansion for the width truncated a@'rdelneM_S scheme with
scalew=M;. We estimate that the determined valueng(M%) should be increased by 0.6% compared to the
value extracted with this standard method. After this adjustmemr?oand renormalon effects, we estimate
that the uncertainty imzs(M%) arising from QCD theory is about 0.4%. This is, of course, much less than the
experimental uncertainty of about 5¢50556-282196)00817-X

PACS numbeps): 12.38.Bx, 13.65t+i, 14.70.Hp

. INTRODUCTION as If(m/M2), dropping terms that behave all$/m?)" as
my— .,

The width forZ— hadrons is conventionally described by tGiven this theoretical framework, the theoretical expres-
the ratioR of this width to the width forZz—e*e™. TheZ  gjon for R(M2) has the form
boson need not be on shell: for theoretical purposes, we can
considerR as a functionR(s) of the c.m. energys of the
e"e” annihilation that produces th#. Then, the measured R(M2)=Ry{1+R(M3)}. (6N
Ris R(M %). One way of measuring the strong couplimgis
to compare theory and experiment R(Mﬁ). The purpose
of this paper is to discuss some aspects of the theoreticglere, R, is the value ofR in the parton model, without
evaluation ofR(s): the effect of “° terms” and “renorma-  perturbative QCD corrections. The QCD corrections are con-
lons” on the determination dR from the calculated terms in tained in R(Mg):as(Mg)/qﬁu O(aﬁ), which is often de-

its perturbative expansion in powers @f. Our goal is t0  poted Soco- We studyR(M2) and try to estimate the theo-

suggest ways of evaluating(s) as precisely as possible retica| uncertainty inR(M2) caused by evaluating it in
from the knowledge of the first three terms in its perturbative,

. . . . -perturbation theory truncated at ordef. For this purpose,
expansion and then to estimate the theoretical error in thlg y i burp

evaluation. We pose the question of Whethg(Mé) could W_e _use a nommal ValuaS(MZ)_o'lzo of t_he modified
be extracted at a precision of a few parts per mill fromMinimal subtraction schemé/S) strong coupling evaluated

H 2
R(M2) in the hypothetical case that infinitely accurate data®t Mz-_If an experimental value foR(Mz) were used to
tractas(M37), then the fractional theoretical uncertainty in

were available and uncertainties in the electroweak part ofX

the calculation were zero. R(M3) would translate into a fractional uncertainty of the
We will conclude that a QCD theoretical error on same size forg(M3).

ag(M2) of about four parts per mill is possible if one under- When we present numerical results, we choose

stands this as a one error estimate: the QCD error is prob- Mz=91.188 GeV and sfi#,y=0.2319. We take the top

ably about this size. An estimate of the QCD theoretical errofuark pole mass to be 170 GeV, as estimated in Réf.

at the 95% confidence level would be quite a lot larger befrom the Collider Detector at Fermilal®DF) and DO results

cause it should include the possibility that certain hypoth{2].

eses, guesses really, about the behavior of the perturbative The scope of this paper is limited, and, in fact, we do not

expansion are simply wrong. We will try to make clear theattempt to evaluat®(M3) at the level of precision that we

nature of the required hypotheses and let the reader form hiare discussing. Such an evaluation involves careful consider-

or her own judgment. ation of a large number of small effects. Among these are
In this paper, we adopt a simplified theoretical frameworkelectroweak effects beyond the Born le{/@), effects of non-

so that we can concentrate on the QCD effects. We consideiero masses for the light quark], and (M2/m?)" contri-

Z—hadrons at the Born level in the electroweak interactionsbutions from virtual loops containing the top qudf. We

We take theu, d, s, ¢, andb quarks to be exactly massless. review the status of some of these issues in the appendix to

We include contributions from virtual top quarks that behavethis paper.
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Il. THE RUNNING COUPLING AND TOP MASS depend on the coefficients that specify the scheme. We
will want to find out how much the results depend on the
o C;i . There are two purposes to this. First, the choice of renor-
a renormalization scheme that may or may not b‘?m malization scheme represents an ambiguity of the theory, and
scheme[6]. We denote byag(s) the running coupling as e want to have an estimate of the numerical importance of
defined by theMS scheme with five flavors of light quarks. thjs ambiguity. Second, there are uncalculated higher order
The dependence afy(s€) ont is given by the renormal-  terms that are, by necessity, omitted from the calculation.

In this paper we denote hy(s) the running coupling in

ization group equation Parts of these terms serve to cancel the dependence of the

q ) results on thee; . Thus, the observed size of the dependence
_( 77 ): __7 Blay(se)) of the result on the; serves as a rough indicator of the size
dtl ag(s€) as(sé)” e of the uncalculated higher order terms.

(s€) (s6))2 The coefficientc, can be simply absorbed into a change

_ A\SC) o [ Ds . of the scale of the running coupling:
Bot B1 ' 2( - ) +0 (2
ag(s)=ag(s€”) +ciad(se) + - - - (6)

We use this equation to derive an approximation for

wlag(s€). We find That is, using Eq(3) on the right-hand side of E@6) repro-

- - B duces Eq(5). The term in Eq(6) proportional toa? results
—sd ——(1+x)+ —lln(1+x) in a change of the coefficie8, in the 8 function that de-
as(S€)  as(s) Bo scribes the running of. (Recall thatB, and3; are scheme
. as(s)/ Boﬂz—ﬁi X ,35 In(1+x) independent.Let us parametrize this change as

7\ B3 1+x B2 1+x

B2= B2+ B2, (7)
+.. (3) .
where B, is the third coefficient of thes function in the
where MS scheme and other MS-type schemes. Then, the relation
betweena and ag can be written as

x=p tas(s) @)
=B, _ o o

4 as(s) _as(se”) 9B, as(se™) ®
Further terms in this series involve higher powers of m m Bo\

ag(s)/ 7 times functions ofx that are proportional ta for ) )
smallx. We do not include any more terms because the nexVe shall usest and 68, to parametrize the choice of
term involves the coefficien8s, which is unknown. If we Scheme. ,

wanted to recover the ordinary perturbative expansion of BY combining Eq(3) with Eq. (8), we see that(s) can
7l ag(s€) up to orderay(s)?, we would note thak is pro- be expanded in terms af(s) by using

portional toas and expand in powers of, then omit terms

beyondx? or Xag. E_quation(S) is'bc.etter tha_n the purgly _ ™ :_77 (1+6%)+ &In(1+5x)
perturbative expansion because it is a valid expansion in as(s) agy(s) Bo
powers ofag(s) whenx is fixed at some finite value. Thus, L S
it is useful whengt is as large asr/ a(s). as(S)/ BoBa— BT X
The approximation represented by E®) is not only + - \ B2 1+ 8x
simple and convenient, but also extremely accurate. One
could solve the renormalization group equation &Q(s€) ,8% In(1+6x) 68, 1
“exactly” in the approximation thaj8;=3,=---=0. Call +,33 Trox B 1+ ox +oen (9

this solutionay(s€). Denote byal*!(sé) the approximation

given by the first three terms in E(B). If we begin with the

boundary conditiorzg(s) = aL*!(s)=0.12, then we find that

|al3(sé)/ay(sé)—1|<2%x 107 in the range—3<t<o.
We shall sometimes want to examine the dependence of Ox= By ot

the results of calculations on the renormalization scheme

used in the calculatioiicf. Ref. [7]). For this purpose, we

define ana; in a renormalization scheme that may not be the  In the framework of this papeiexcept for the appendix
MS scheme by light quark masses do not appearR{s) because they are

set to zero. However, the top quark mass does appear, start-
as(S)=ay(S) + Cpag(S) 2+ Caag(s)3+ - - . (5 ing at ordera? Thus, it is necessary to state carefully how
we definem,. We letm(s) be the running top quark mass
Then, one can use(s) as the expansion parameter of the within the MS scheme. At the level of perturbation theory at
theory. Since the perturbative formulas used are inevitablyvhich we work, we need the one-loop evolution raf(s),
truncated at some order of perturbation theory, the resultehich we write as

ere,

ay(s)

(10
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(See, for instance, R€fi8].) The value 170 GeV is estimated

s du® ag(pu?)
in Ref.[1] from the CDF and DO resul{L].

T2 T2 12
mg(s) mt(Mz)exi{z?’ojMZF -

ag(M3)) 2ro'fo
Nmt(MZ)( ag(s) ) (1) IIl. PERTURBATIVE EXPANSIONS
with With the theoretical framework defined in Sec. I, the theo-
retical expression foR(s) has the form
Yo=—1. (12

R(s)=Ro{1+R(s)}. (17

(See, for instance, Ref8].) One can, of course, use a dif-
ferent scheme and define a running mass Here, R, is the value ofR(s) in the parton model, without

perturbative QCD corrections. The QCD corrections are con-

m2(s)=mZ(s)[ 1+ Cyarg(S)+ - - ]. (13) tained inR(s),

We do so, absorbing the first coefficiedi into a change of s(S)
scale by an amoundt,,,. Thus, we define R(s)=R1 +R,

2 3
as(s)) +R3( ag(s)
ar T

(18

(14) The value of R(s) calculated in finite order perturbation

theory depends on the parametéts 58,, and 6t,, that de-

fine the renormalization scheme. We keep these parameters

arbitrary in this analysis in order to be able to test the sensi-

tivity of the calculated value ofR(s) to their choice. As

already noted, the dependencelofs) on 6t,, is negligible.
Thet dependence af(s¢€) is given by the renormaliza-

tion group equatior(2). The coefficients of theg8 function

that appears in this equation 4@

ay(s) |2l
mi(s)~ mt(s)( (Seﬁtm))

The parametet,, can be chosen independently from the
scaling parameteft in the definition(8) of the coupling.

The dependence dR(s) on the top quark mass is quite
small, so the dependence Bf(s) on ét,, is also small. In
fact, we find thatR(M%) varies by only 0.3 parts per mill for
—4<6t,,<4. In order to limit the parameter space to be
explored in our numerical examples, we, therefore, set

tm=0. (15 Bo=(33—2N;)/12,
(19
Thus, the running top mass st M% in our examples is
simply the MS running top massﬁ(M%). We take B1=(306-38Ny)/48,
ﬁ(M%)z 170.2 GeV, which corresponds to a pole mass of
m,=170 GeV after use of Bo=(77139- 15099N; + 325N?)/3456+ 53,
=2 =2\ \ 2yg/
m2(M2)~2ex _§ as(mp) E(mt) voifo where N¢=5 is the number of light quark flavors used
oz 3 7 ag(M3) throughout this paper.
(16 The coefficientsk,,R,,R; are[10-15
|
R]_:l,
235 iaoN 11 2¢(3) 1 [37 | m(s)? st -
2= TR NI~ TS rra TN s TR 20

87029 1103{(3) 275¢(5) Bm2 { 7847 262((3) 255(5)} 2{151 19g(3)}
+ +Ny| — + +

Re=7%gg "2 "7 6 3 216 9 9 1162~ ~ 27
(Zivi)? [55 5¢(3) [ ( t(S)) 23 z(mt(s)z)
+Ei(v?+a?)l7_2_ 2 +2i(v?+a?)l 18.65440- 8| <t + 2908t

+B§(&)2+[31+230R2d&—%
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ot FIG. 2. Plot of the usual third order perturbative approximant
RA(ME;pert) vs the scheme-fixing paramet#rwith 68,=0 and
FIG. 1. Contour plot of the simple third order perturbative ap- tyn=0.
proximantRA(M§ ;pert), Eq.(23), vs the scheme-fixing parameters
ot and 685, with 6t,,=0. We learn from Fig. 1 thaR (M2 ;pert) is not very sen-
sitive to 68,. Accordingly, we setéB,=0 and plot
Here, @;,a;) with i=u,d,s,c,b is the (vector, axial vector Ra(M2;pert) vsét in Fig. 2. We note thafRx(M2;pert)
coupling of the quark of flavor to theZ boson, as specified yaries by about 2.6% between its local maximum and its
in the appendix. We usR to denoteR, with 6t=0. We  |ocal minimum. We conclude thaR(M2) probably lies
recall that the mass anomalous dimensionyés=—1 and  \yithin this 2.6% range. Thus, we ascribe a theoretical error
that the paramete, 58,, andét, give the scheme depen- ot +  gog/2= +1.3% to the value oR(M2). In the remain-
dence, as despnbed in Sec. II. der of this paper, we attempt to reduce this error by using
The numerical values are more sophisticated methods than simply taking the first three

Bo~1.92, perturbative terms ifR(M3).
The perturbative series de(Mi) provides our starting
B1~2.42, (22) point. We see that the series i6(«ay) is nicely behaved, but
that the series fofR(s) not as well behaved, with a large
B,~2.83+ 68,, value forR5 at 6t=68,=6t,,=0. In fact, this large value

o can be attributed to the term g372/3~ —12.1.
and[with 8t,,=0 andm(s)=m(M32)]

R.i=1, IV. w2 TERMS

The offending=? term in R4 arises, at a rather mechani-
cal calculational level, because factors of -hsttie)
=In(s)*is occur in the calculation, leading to powers of
in the result. In order to see what happens at higher orders of
perturbation theory, we writ®(s) as a discontinuity:

R,~0.76+1.925t, (22)
Rg~—15.73+5.355t + 3.6 7 6t)2— 0.5253, .

In this paper, we will define various approximatioRg,
to R. The first of these is the simple third order perturbative
approximation: C . )
R(s)= ﬁ{ﬂ(—s-ﬂE,MZ)—H(—S—IG,MZ)}. (24)

ag(s) I

(23

3
RA(s;perﬁ=2 Rj(

=1 Here, C is a normalization constant aid(Q? u?) is the
As discussed in Sec. Il, the renormalization scheme ambigLP—tamj.ard.Z bospn self-energy function ".‘C'“ding the QCD
ity can provide an estimate, or at least a lower bound, on th Omf'blét'onalt IS %ropiort]:otnal to thekFouner ttransfortm of t_lr_]ﬁ
theoretical uncertainty produced by truncating perturbatio Ime-ordered product of two wea currfn operadorf_s. €
theory at ordera'j. To investigate this ambiguity, we show cuzrient Moperators c?rry 'momentuntq ' Vxe. efine
in Fig. 1 a contour plot ofR,(M3;pert) as a function of Q"=—9"q,, so thatQ">0 if the momentung’” is space-

. ' like. The functionIl depends on the renormalization scale

S8t and 685, with 6t,,=0. The range shown for the scale > However. the function
parameter— 4< 5t<4, corresponds to scalgs=[sé]¥2in  * ’
the range 0.141,~M,e 2<u<M,e?~7.4M, in Eq. (8).
The range shown for5B, corresponds to schemes with

D(Q¥)= — Q%5 T1(Q? 1?) (25
— 1.2~ B,— 4< B,< B, +4~B.8. 9Q2 H



4570 DAVISON E. SOPER AND LEVAN R. SURGULADZE 54

is a renormalization group invariant. The derivative here 1 (= A
avoids the overall renormalization Ih. For this reason, it is R(s)= EJ doD(se’). (29)
a standard practice to work witB(Q?). As a matter of o
convenience, we work with a slightly modified function
Dmod Q2), that is obtained fronR(s) by Egs.(24) and(25)
with the exception that we first replacelm(s)?/s] by
InTm(M2)?/M2] in Eq. (20). One could work with the exact
function D(Q?) at the cost of added complexity in the con- " 7z \
struction that follows. However, there would be little nu- D(Q2):f dzexp( —_T) D(2). (30)
merical gain because the coefficients of the logarithms rep- 0 as(Q%)
resenting top quark loops are small. -

We may write the perturbative expansion®{Q?) inthe  If we write the perturbative expansion f(z) as
form

' In the following section, we will deal with the expected large
order behavior of théD,, by following the standard practice
of using the Borel transforr®® of D:

5(2):50+512+ :5222+ tey (31)
Dimod Q%) =Do{1+D(Q%)}, (26)
then
whereDy, is the value oD in the parton model and where
~  Duis
2 INW Dy= (32
n!
D(QZ):D]_ aS(ﬂ_Q )+D2 aS(7TQ ))

o3 Because of the b/ factor, the perturbative expansion B
+D3( as(Q )) +.o.. (27) in powers ofz is much nicer than that oD in powers of
™ ag/ . In fact, one expect®(z) to be analytic neaz=0. As

_ - discussed, for example, in RdflL7], there are singularities
The first three coefficient®, are the same as the corre- gxpected in the complex plane, including some on the in-

spondingR,, in Eq. (20) ig one substitute®” for s, except tegration contour along the positive axis. In addition,
that D5 lacks the term- Bg7r=/3. The numerical valudsvith D(2) is not expected to be well behavedzs «. Thus, the

8ty,=0 andmy(s)=my(M2)] are meaning of the integration in E430) is ambiguous. In this
section, we simply leave it as such.
D=1, We can relateR(s) to D by inserting Eq.(30) into Eq.
(29):
D,~0.76+1.925t, (28)
] A ~
Dy~ —3.65+5.355 +3.67 0t)2— 0.5253,. R(s)= fo dzexF’( - @) Flas(s).2)D(2),  (39)

If we stay neardt=0, this series appears to be quite nicely where
behaved. We believe, on the basis of general arguménts
be discussed in the next sectjpthat the coefficient®,, will 1 (=
eventually grow for largen. However, that growth is not Flas,z)= EJ déexd —zG(as,0)], (34)
apparent in the first three terms. 7

The functionD(Q?) is calculated using Euclidean quan- _ .

) . . g ; . with

tum field theory, in which only very weak infrared singulari-
ties occur near the contour of the internal momentum inte- - -
grations. On the other hand, a direct calculationR{E) G(ay(s),l)=——5 — ——. (35)
involves Minkowski momentum integrations over regions in as(s€’)  ag(s)
which various internal particles can go on shell. Only some . . i L
delicate cancellations preverR(s) from being infinite. Equation(33) is the basis for the analysis in this paper. We

Surely, D(Q?) should be better behaved tha&{(s). This note that the factorr/a¢(s) in the exponent in Eq(33) is
observation leads to the following big, about 30 forag~0.12. Therefore, the integral overis

Hypothesis 1The perturbative expansion @(Q?) re- dominated by smalt, Byz= Boas/m~0.06. Thus, we will
mains well behaved beyond the three terms that are knowm€ primarily concerned with the expansion®(z) in pow-
subject only to the eventual growth of ti#®, dictated by the ~ €rs ofz. -
standard renormalon and instanton ideas. Before addressin@(z), however, we need a good ap-

We adopt this hypothesis here, although it is criticized inproximation forF(«s,z). Since smalk is important, we are
Ref.[16] on the grounds that there could be other sources gparticularly interested in the smatl region. However, it is
large perturbative coefficients iB(s). rather easy to find an approximation e« ,z) that is good

We are interested in the observable functR(s). If we  for a wide range of, based on the smallness of its argument
accept thishypothesis Lthen instead of calculatin@(s) as. We use the solutiort3) of the renormalization group
directly, we should relate it to the nicely behaved functionequation(2) for /g in order to derive an approximation for
D(Q?). From Eqs.(24) and(25), we obtain G(as,0). We find G(asg, 8) ~Ga(as, ), where
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L\ ]
0.0 —
| exp(—7mz/a) V
-0.21 -
.o.sl - '1.6 - 15
Boz
FIG. 3. Graph ofFa(as,z) and exptnzag) vs Bgz with
as=0.12.

GA(aS,0)=i,800+ ﬁIn(l‘l‘y)
Bo

2 2
— In(1+
Lo BoBo By Binty))
™ Bo 1+y By 1l+y
where
. Qg
y=1Bob—. (37

Further terms in this series involve higher powersoQf =
times functions ofy that vanish fory—0. The ordinary per-
turbative expansion d&(s) results from expanding in pow-
ers ofy, which is proportional toxg, then omitting terms
beyond y? or yas. However, ag(s)/7m~1/30 while
|y|~1/5 atf@= . Thus,a(s)/ 7 is a much better expansion
parameter thay. Since we do not have to expandynwe
do not.

We now have an approximationGa(ag,0) for
G(asg,0). Our corresponding approximatidfa(ag,z) for
F(as,2) is

FA(aS,z)zifw dfexd —zGa(asg,0)], (38
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0.039F .

0.037F 3

FIG. 4. Plot ofr%-summed approximar® (M3 ; 2), Eq. (41),
(dashed lingvs the scheme-fixing parametét with 68,=0 and
St,=0. We also showR (M2 ;pert) from Fig. 2(full line).

_,31,32 y iﬁy(y+2)
B2 (1+y) 2B, (1+y)?"

(40

This term contains a facton{/m)?~10" 3 for ag~0.1. This
factor multipliesh(y), which cannot be evaluated because it
contains the unknown coefficieft;. However, we can see
from the structure oh(y) that it is not large unlesg, is
large. We can get a quantitative idea of the effecA@ by
choosing some plausible values 85 and then calculating
R(s) with AG included. We find that, takin@s in the range
—10< B3< 10, the fractional changR(M%) induced by in-
cluding AG(«y) is no larger than X 10™°. Since this error
is small compared to our target error of a few per mill, we
can safely neglect it.

We, thus, obtain an approximation f& that uses third

order perturbation theory but sums certaim?” effects to
all orders:
RA(S;72) dezex;{ Tz )F (as(S),2)Da(2)
L 77 = - N a 1 L
A 0 as(s) Al&tg A
(41

whereF, is given in Eq.(38) andﬁA(z) is simplyﬁ(z), Eq.
(31), expanded to second orderin
This treatment ofr? terms is similar in spirit to those of

with the integral computed to sufficient accuracy by numeri-Pivovarov and of Le Diberder and Pidi8]. Essentially,

cal methods. In Fig. 3 we show a graph Bi(as,2) Vs
Boz superimposed on a graph of expfzag), all with
as=0.12,

How good is our approximatiorFa(as,2)? The first
omitted term inG(as, 0) is, in theMS scheme,

ag 2
AG(as>=(;) h(y), (39)

where

Bl InP(1+y) BBy In(l+y) BT Y
283 (1+y)2 * BZ (1+y)? 283 (1+y)?

h(y)=

these authors expanB®(s€?) in Eq. (29) in perturbation
theory, use the renormalization group equation to evaluate
ay(s€?) to a very good approximation, and perform the
integral exactly. We simply embed this approach into the
Borel transform.

In Fig. 4 we pIotRA(Mﬁ;wz) vs the scheme parameter
ot with the other scheme parameters setdi8,=0 and
St,,=0. We overlay the plot ofRA(M3;pert) from Fig. 2.

We note thatR ,(M2; 7r?) varies by about 0.32% between its
local maximum and its local minimum. This is a much
smaller variation than that G'EA(M§ ;pert). A very optimis-

tic view would be thatR(M%) probably lies within this
0.32% range, so that one would ascribe a theoretical error of
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+0.32%/2= = 0.16% to the value oR(M32). However, this VI. ACCOUNTING FOR RENORMALONS
error estimate is smaller than other error estimates that we e now turn to the perturbative expansion
will develop later. We, therefore, regard the flatness of the
curve for Ra(M2;7%) as being partially the result of an _ =
accidental cancellation, and refrain from taking 0.16% as a D(2)=2, Dyz". (49
reasonable error estimate. 0
We close this section by emphasizing the observation that -
the straightforward perturbative expansion Bfs) is, in  The coefficientsD,, can be expressed as an integral:
part, an expansion in powers g§6[ as(s)/ 7], with 6~ ,
instead of an expansion in powers|afy(s)/ 7]~ 1/30. One ~ 1 1=
can attribute the appearance ofr®” terms in R(s) to this D=5+ f Cdzz D(2). (45
phenomenon. This observation helps to makpothesis 1
p_Iau5|bIe. Unfortunately, this argument is only Sugges“‘“?’l’he contoutC encloses the poirg=0 but excludes any sin-
since one cannot be sure that there are not “bad expansion =~ ~ .
parameters” lurking somewhere in the calculation ofgular|t|e§ of D(z). Thus, the behavior of th®, at Iargg
D(Q?). In the next section, we turn to the behavior of theorder n is Controllgd by the part of the contour tha_lt lies
. - .~ . . nearest taz=0, which, in turn, is controlled by the singu-
perturbative coefficients ifP(z), assuming that the evidence =~ ~ ) .
for a bad expansion parameter is not, in fact, lurking just2rties OfD(f)Athat are nearest =0. A singularity of the
beyond the last calculated coefficient. form (z—2,) " makes a contribution t®, that is propor-
tional to z, "n”~*. Thus, the most important determinant of
the singularity’s contribution to th®,, at largen is its loca-
V. TRUNCATION OF THE INTEGRAL tion, zg. A small zy produces large coefficients. The next
~ ) ) most important determinant is the strength of the singularity,
If we do not expandD(z) in powers ofz, then, at this A A Jarge positive value oA produces large coefficients.
point, we have an approximation f@& of the form The singularities nearest to the origin in the space of the
Borel variable z are thought to be singularities at
" w7 _ Boz=—2, —1, and +2 associated with renormalons
R(s)%f dzexp( — _) Fa(as(s),2)D(z), (42) [17,19. (We are dealing with QCD perturbation theory with
0 ay(s) five massless flavors, so the five-flaygg occurs herg. A
critical examination of the theory of renormalons is beyond
the scope of this section. We simply assume that certain
information about the position and strength of renormalon
singularities is known. We also assume that the firderms
in the perturbative expansion @ are known. At present,
N=3. Our purpose is, then, to show how to combine these
two kinds of information to produce an improved numerical
Zmax 7 _ estimate for the physical quantiYy(Mg). The improvement
R(S)MJ dzex;{ - —)FA(aS(S),Z)D(Z)+RR(s) concerns the size of the perturbative coefficients for large
0 as(s) N. As we will see, it is problematical whether this improve-
(43 ment helps folN=23.
The first ultraviolet renormalon singularity is at

with Byzma=0.5. The fundamental question of how the Boz=—1. This is the singularity that is closest to the origin
“sum of perturbation theory” is precisely defined relates to (8t least so far as anyone know# thus controls the large
the definition ofRg. In turn, this question is related to how order behavior of the perturbative series. Unfortunately, the
the renormalon and instanton singularities are treated and #§€ory of the ultraviolet renormalon singularities is not as
the question of the convergence of the integral at large simple or as well developed as that for the infrared renorma-

with F 5 given in Eq.(38). Sinceay(s) is small, the dominant
integration region iz<<1. Indeed, takingrs~0.12, we have
exp(—nzla) <102 for Byz>0.51. Thus, it is useful to write
R in the form

more practical. We adopt strength of the singularity is not known.

Hypothesis 21t is safe to ignore the large part of the The first infrared renormalon singularity is ghz=+2.
Borel integral when calculatingR(s) for s~M,, even There are other singularities farther away from the origin
though this part of the integral is ill defined. along the positive reat axis, but we need not be concerned

We thus neglecRg and concentrate on the integral up to with them: since they lie farth_er from=0, their cqntribu- _
Zmax IN EQ. (43). The advantage is that we can use approxi-ion to the large order behavior of the perturbative coeffi-
mations forﬁ(z) that have singularities on the positive cients is weaker than that of the first singularity. It is signifi-
axis outside of the region of integration cant that there is no infrared renormalon singularity at

We can test the sensitivity of the computed valueRof Boz=+1. The first infrared renormalon singularity has a

t0 Zmax DY replacingﬁ(z) by its second order expansion power behavior,
in powers ofz. Then, the ratio of the two terms in E(3)
with  z,,=0.5 (for s=M2, st=6t,,=5B,=0), is
Rr(S)/RA(S; ) ~6X 104,

~1-28, 162

Boz , (46

1— —

5(z)~c 5
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wherec is a constanf17,19. Numerically, the exponent is softened the infrared renormalon singularity, so the price is

—1-2B,/B5~—2.3. not too great. The net effect should be an improvement.
We can make use of this information. Consider the func- The effect of singularity mapping has been investigated
tion recently by Altarelliet al. [16]. However, these authors did
not soften the infrared renormalon singularity. They found
- ~ Boz 1+281 165 that there was no gain in this method.
C(2)=D(2)|1-—- (47) In order to use the singularity softening and mapping, we

use the first three terms in the perturbative expansion of

The factor multiplying 73(2) cancels its divergence as D(2).
Boz— 2. The functionC(z) is still singular atg,z=2, since,

if we multiply a term inD(z) that is analytic aiBy,z=2 by D(2)=1+[0.40+ 1.00t](Bo2)

the nonanalytic factor, we create a nonanalytic term. How- +[—0.50+0.735t+0.506t)?]( Boz) %+ - - -, (53
ever, the singularity is much weaker than it was, behaving
like to calculate the first three terms in the perturbative expansion
5 of B({). The result is
- BOZ 1+28, /BO
C@)~c 1= (489 B(y)=1+[—0.76+ 1.005](Bo?)

~ _ 2 24 ...
Thus, the perturbative expansion 6fz) would be better +[—0.96+0.075t+0.5Q51)"](Bof) "+ -~ (54)

behaved than that d5(z) at large order if it were not for the
fact that the leading ultraviolet renormalon singularity at : _ 2
Boz=—1 dominates the large order behavior. theTc;]h0|ces5ﬁt2) Otm=0 an?c‘_?t(s). mt(MZ)']d be b

We can, however, improve the large order behavior aris- | S Perturbative series fd§({) is supposed to be better

ing from the leading ultraviolet renormalon by merely mov- behaved at large orders than was the perturbative series for

ing it out of the way by means of a good choice of variable.P(2). The expected improvement is not, however, visible in

[Here, we have displayed the coefficients numerically, with

Following Mueller[19], we define a new variablg by the first three terms. In fact, we started with a series that was
quite well behaved, and we have applied a rather mild im-

Bol \/T,B()z—l provement program. As long as the !nfrargd gnd ultraviole_t

Boz= 1= Bolid)? Bol=4 . (49 renormalon singularities are as described in this section, this

(1= PBod Vit Boz+1 program may be expected to make the perturbative coeffi-

cients smaller at high order, but one cannot expect too much
to happen at order two.
An example of this procedure applied to a simple model

This transformation maps the origin of tlaeplane onto the
origin of the ¢ plane. We have chosen the normalization of

£ such that may be useful as an illustration of what happens at high
(~7+0(2?) (50) order. Suppose that
= i i — ~ z 1
nearz=0. The map treats specially the interygjz<—1 on D(z)= (55)

the negativez axis that contains the ultraviolet renormalon [1+,6'oz]Jr [1—Bz/2]°

singularities. The whole complex plane except for this in-

terval is mapped to the interior of the di§gyZ|<4 in the  with p=1+2ﬂ1/,8§. Then, the perturbative expansion of
¢ plane. The singularity-free intervat 1<8,z<<0 in the D(z) is

negativez axis is mapped onto the interval4<<g8,{<0 of

the negative{ axis while the interval & 8yz<% on the  D(z)=1+1.6880z+ 0.44 Byz)2+1.21 Boz)*

positive z axis, which contains the infrared renormalon and

instanton  singularities, is mapped into the interval —0.06B92)*+0.81(Bp2)°>—0.35 Bg2)°+ - - -. (56)
0<By¢<4 of the positive/ axis. ) . .
We consider the function Applying the renormalon improvement procedure gives the
_ _ function B(¢) with a perturbative expansion
B(0)=C((0)). 6D , ,
~ B({)=1+0.5280{—0.87 Bo{)*+0.30 Bo?)
The singularity of3({) that is nearest to the origin of the 4 5 6
{ plane is the first infrared renormalon singularity, which is ~0.02504)"+0.06 5of)” = 0.04 Bo) "+ - -+
at (57
B V3-1 _ The series fo%;is clearly better behaved at high orders than
'805_4\/§+1~1'1' (52 the series forD. One might claim to see an improvement

beginning with the fourth term, which corresponds to the
Thus, moving the ultraviolet renormalon singularity away first uncalculated term in the case of the réaand BB func-
has had a price. We have moved the infrared renormalotions. However, at this quite low order of expansion, the
singularity closer to the origin. However, we have previouslyimprovement is marginal.
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0.039F ]

.98F

()/Da2)

0.037F ]

FIG. 6. Plot of approximanR(s; 72, renormalons), Eq60),
vs the scheme-fixing parametér with §8,=0 andét,,=0 (heavy
line). We also showR,(M2;pert) from Fig. 2(light line) and
Ra(M2;7?) from Fig. 4 (dashed ling

FIG. 5. Modification of the Borel integrand to account for renor-
malons. We ploD,,(z)/Da(z), Egs.(58) and(59), vs Byz. We set
s= M% and choose the scheme-fixing parametefs= 458,
=6t,=0.

2
The procedure for singularity softening and mapping ma)funCt'O” Ra(MZ;pert), and the approxm;atugn that simply
be summarized as follows. We calculate the fiisterms in ~ takesm? contributions into accountR (M7 ;7%). We note

the expansion oB(¢) according to Eqs47) and(51), where  thatRa(s; w7, renormalons) varies by about 0.8% between
for usN=3. Then, we instead of using its local maximum and its local minimum. This suggests that

R(M%) probably lies within this 0.8% range, so that one
2 would ascribe a theoretical error of 0.8%/2=+0.4% to
Da(2)= E (58)  the value ofR(M3).
N We can take another approach to error estimation. We
note that the first three coefficients g8{¢)" in Eq. (54) are
all of order 1. That the coefficients do not appear to be grow-
C1-28, 1B 2 ing or shrinking withn is normal since the series is expected
1'Po A . .
2 (D] (59 to have a radius of convergence of about 1 in the_v_arlable
n=0 Bol. We, thus, expect that the uncalculated coefficient of
(Bol)® will also be of order 1. If we add a termXl(B,¢)3 to
This gives an approximation foR(s) that we may call the series in Eq(60), RA(Mi) changes by an amoudiR 5

for 5(2) in Eq. (43), we use

1 Pe

Da(2)=|1-

Ra(s;m?, renormalons): that can serve as an error estimate. We find
) ORAIRA(M3Z; 72, renormalonsy0.2%.
Ra(s;7%, renormalons We, thus, have three error estimates. Fromdhelepen-
Zmax dence OfRA(M%;’ITZ) we estimated a 0.16% error. From
= fo dZQXF{ (s )) Falas(s),2) consideration of the likely size of the next term ) we
s estimated a 0.2% error. From thét dependence of
Z_Oﬁn[é«(z)]n 'R,A(M%HTZ, renormalons) we estimated a 0.4% error. We
YWy (60)  take the largest of these values 0.4% as a reasonable estimate
[1-Boz/2] 1o of the theoretical errotin the spirit of a “1 ¢” error).

For the central value, we take the value of
The replacement 0Da(2) by Da(2) does not modify the Ra(s; 72, renormalons) att=0, which is almost exactly
integrand much. In Fig. 5, we show the rai, (z)/Da(z)  also the value ofRa(s;7%) at st=0. This value is
as a function ofByz. We see that this ratio is nearly 1.0 in
the important integration regiofigz<<0.2. Ra(M2; 72, renormalongy_,
(1 2.
VIl RESULTS ~(1—0.008 X RA(MZ;perd) s—g. (61

We have developed an approximationTgs) that takes That is, our best estimate foR is renormalized down by
2 contributions into account and uses information about thd-6% compared to the standardSMalue with a scale choice
leading renormalon singularities to try to improve the con-#= Mz.
vergence of the perturbative expansion 1¢z). In Fig. 6 One often uses a measurementR(M?) to extract a
we plot this approximationR (s; 7%, renormalons), vs the value of as(M ). Recall that, to a 9000‘ approximation,
scheme parametet with the other scheme parameters set toR(M2)x ag(M3). Thus, the value ofrs(M3) extracted from
8B,= 6t,=0. We overlay the plots of the pure perturbative data using the * ‘standardMS expression foR (with a scale
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choice u=M3) would be renormalizedip by 0.6% if one A 3 ,a )
uses the “improved” version ofR presented here: QED™ 7 € ;[1—6Xf—12XfIan+O(Xf)]

[a_s( M %)]improved% 1-006:a_s( M %)]standard (62) + O( a2) + O( a’afs) ' (A3)

The corrections of order?® and wa, are discussed in Ref.
[23].

It is convenient to decompose the QCD contributions into
singlet and nonsinglet parts and further into vectd) @and

The fractional error to be ascribed a(Mg) from uncer-
tainties in the QCD perturbation theory is just the fractional
error in RA(Mﬁ;wz,renormalons) estimated above as 0.4%.
This is one third of the 1.3% error that we would ascribe to

— . . ~axial vector contributions. The nonsinglet parts are rep-
aS(M%) extracted using the standard perturbative approxi- &) g'et p P

> o " resented by the term&%CD and 5800 and correspond to cut

mantR(Mz;pert). The shift in Eq(62) is about the same oynman graphs in which a single quark loop of flavor
size as the estimated theoretical error, so it is marginally.,nnects the two electroweak current operators. The singlet
significant . . contributions correspond to graphs with the electroweak cur-
We note that the experimental error for the extraction Ofrents in separate quark loops mediated by gluonic states. In
as by this method is about 54@1], much larger than the ¢ ginglet contributions one does not have a single sum over

QCD theoretical error that we estimate above. There are als fjayor . These contributions are represented by the terms
sources of theoretical error not associated with QCD. AC-rV and A

cording to the estimates of Hebbeker, Martinez, Passarino The nonsinglet QCD contribution in the vector channel to
i 0,

and Quasf{22], the most important of these are22% ordera? can be written in the form

uncertainty from electroweak corrections anct 2% uncer-

tainty from not knowing the Higgs boson mass.

v ag Ag 2
dco= —[1+12X]+| —| | 1.40923- 104.83%;
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In this formula, s denotes the runninilS coupling in five-
flavor theory evaluated d#1,. The transformation relation
for different number of flavors and different scales, as well

The decay rate of th& boson into quark-antiquark pair as the relation between tHdS running mass and the pole

APPENDIX: PRESENT STATUS OF PERTURBATIVE
QCD EVALUATION OF Z DECAY RATES

can be written in the form mass, can be found in RgR4].

The ordera? and o terms have been evaluated in the

GFM§ limit of vanishing light quark masses and infinitely large top
FZHhadrons:T D (prv[(1+2Xe)V1—4X; mass in Refs. [10,11. These contributions,
8y2m [ 1 (@ 7) +1.40923¢, /)2~ 12.76 706 /)3, are thefvec-
+ oY Xe X+ oY e X tor,_nonsmgle}t part of the perturbative series analyzed in the
qel @ Xy Xu) + Sgepl s Xy main body of this paper.
+pfa$[(1—4xf)3/2+ 5gco( as, Xi, Xp) The terms proportional tX; represent the leading correc-
tions to the approximatioX; =0, as given in Ref[4].

+53ED(a,as,Xf)])+£v+£A . (A1) The functionF'“/(X,) arises from three-loop diagrams

containing an internal quark loop with a quark of flavor
v=u,d,s,c,b propagating in it(while the quark of flavorf
Here, there is a sum over light quark flavdrs u,d,s,c,b. couples to the weak currentsThis function represents the
We define szmf(MZ)2/M§ and X;= mt(Mz)Z/M§ (We  corrections to the approximatiok, =0. These contributions
use theMsS definition of masses. are already small, so it suffices to approximateby 0 in
The vect?r)and axial couplings of quaﬂ(«)) theZ boson  FP(X,). In fact, numerically[5]
are vi={211¥—4esirfak} and a;= 211> The elec- ; 2
troweak self-energy and vertex corrections are absorbed in FE(X,) =X {~0.474894- InX,
the factorsp; andk;. The current status of the electroweak + \/X—[—0.5324+ 0.0185IX,]}  (A5)
contributions has been discussed in detail in R&f. The v v
small QED corrections in vector and axial channels have thgs so small that the whole function could be neglected.
form The functionG)(X,) represents the contribution of vir-
3 tual top quark loops inside three-loop cut Feynman diagrams.
v _° o« 2 2 These contributions are small since the top quark is nearly
Oqep= 7€ 112X+ O(X{) ]+ O(a”) + Olaary), decoupled from the theory. Thus, it suffices to approximate
(A2)  X; by 0in G@(X,). Numerically, one find$5]
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3
GA(X)~X; +--.. (A0

2 o
s e VIA_ pVIA| Ds
675" 135" L=l (77

2
04
VIA S
+£3 (_
a

At order o2, there is no vector contribution,

— VX 10.001226-0.0011291X,]{ . (A6)
L£y=0, (A11)

The first two terms in the right-hand side of H#\6) have \ypile the axial contributions fromn andd quarks and from

also been obtained using the large mass expansion meth@dyngs quarks vanish in the limit of vanishing quark masses.

[25]. This is because in the standard model the quarks in a weak
At order a3 there can be two internal quark loops. How- doublet couple with the opposite sign to the weak axial cur-

ever, it suffices to consider only one loop with a nonzerorent. However, the contribution from theb doublet is sig-

light quark mass at a time, or one top quark loop with allnificant because of the large mass splittjdg]:

light quark masses set to zero. Then, we can define functions

FO®(X,) and G®)(X, analogously to F()(X,) and Lh=— 3—7—InXt+ 1x;l+ 0.013; 2

G@)(X,). ForF®)(X,), the small mass expansion is obtained 12 81

n et 4] +Xp(18+6 InX,) X 80+ 5| x) (A12)

nX;)— < | == + ==InX,|.
FO(X,)~—6.1262%;. (A7) b v |81 27t
For GG)(X,), the large mass expansion has been obtained ihlere, the corrections proportional Xg have been calculated
At order 2, both channels contribute. The vector contri-

GO (X)~X; 1 —0.1737-0.2124IrK;— 0.0372IrtX,]. bution in the limit of massless light quarks[i&1]

(A8)

e
The nonsinglet contribution in the axial channel is the L= 0'4131962 vt
same as the one in the vector channel except that the contri-
butions proportional tX; [4,5] are different:

2

+[0.0270%; 1 +0.0036%, 2+ O(X; 3 v, vy.
f

2
— 5o s
dqeo= —[1=22X¢]+| —

1.40923- 85.7136; (A13)

The sums here run over light quark flavdrs u,d,s,c,b.
+3 F@x,)+ G(Z)(Xt)} The terms proportionaX; *,X; 2 were computed in Ref12]
v and turn out to be negligible.

)3 In the axial channel, the order> singlet contribution in
+ = [—12.7670&(unknowr)Xf the large top mass expansion reats,12,3
o
L£A=—18.65440- 31|nx + 23|n2x (A14)
+> F<3)(Xv)+G(3>(Xt)}. (A9) s ' 1877 127 7

Corrections for a nonzerb guark mass are not yet known.
We now turn to the singlet contributions, which start at However, at the level of precision of this paper, they are not

orderag: expected to be significant.
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