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We study the perturbative QCD series for the hadronic width of theZ boson. We sum a class of large
‘‘ p2 terms’’ and reorganize the series so as to minimize ‘‘renormalon’’ effects. We also consider the ren
malization scheme-scale ambiguity of the perturbative results. We find that, with three nontrivial known ter
in the perturbative expansion, the treatment of thep2 terms is quite important, while renormalon effects are
less important. The measured hadronic width of theZ is often used to determine the value ofas(MZ

2). A
standard method is to use the perturbative expansion for the width truncated at orderas

3 in theMS scheme with
scalem5MZ . We estimate that the determined value ofas(MZ

2) should be increased by 0.6% compared to the
value extracted with this standard method. After this adjustment forp2 and renormalon effects, we estimate
that the uncertainty inas(MZ

2) arising from QCD theory is about 0.4%. This is, of course, much less than the
experimental uncertainty of about 5%.@S0556-2821~96!00817-X#

PACS number~s!: 12.38.Bx, 13.65.1i, 14.70.Hp
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I. INTRODUCTION

The width forZ→hadrons is conventionally described b
the ratioR of this width to the width forZ→e1e2. TheZ
boson need not be on shell: for theoretical purposes, we
considerR as a functionR(s) of the c.m. energys of the
e1e2 annihilation that produces theZ. Then, the measured
R isR(MZ

2). One way of measuring the strong couplingas is
to compare theory and experiment forR(MZ

2). The purpose
of this paper is to discuss some aspects of the theoret
evaluation ofR(s): the effect of ‘‘p2 terms’’ and ‘‘renorma-
lons’’ on the determination ofR from the calculated terms in
its perturbative expansion in powers ofas . Our goal is to
suggest ways of evaluatingR(s) as precisely as possible
from the knowledge of the first three terms in its perturbati
expansion and then to estimate the theoretical error in t
evaluation. We pose the question of whetheras(MZ

2) could
be extracted at a precision of a few parts per mill fro
R(MZ

2) in the hypothetical case that infinitely accurate da
were available and uncertainties in the electroweak part
the calculation were zero.

We will conclude that a QCD theoretical error o
as(MZ

2) of about four parts per mill is possible if one unde
stands this as a ones error estimate: the QCD error is prob
ably about this size. An estimate of the QCD theoretical er
at the 95% confidence level would be quite a lot larger b
cause it should include the possibility that certain hypot
eses, guesses really, about the behavior of the perturba
expansion are simply wrong. We will try to make clear th
nature of the required hypotheses and let the reader form
or her own judgment.

In this paper, we adopt a simplified theoretical framewo
so that we can concentrate on the QCD effects. We cons
Z→hadrons at the Born level in the electroweak interaction
We take theu, d, s, c, andb quarks to be exactly massless
We include contributions from virtual top quarks that beha
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as lnn(mt
2/MZ

2), dropping terms that behave as (MZ
2/mt

2)n as
mt→`.

Given this theoretical framework, the theoretical expre
sion forR(MZ

2) has the form

R~MZ
2!5R0$11R~MZ

2!%. ~1!

Here, R0 is the value ofR in the parton model, without
perturbative QCD corrections. The QCD corrections are co
tained inR(MZ

2)5as(MZ
2)/p1O(as

2), which is often de-
noteddQCD. We studyR(MZ

2) and try to estimate the theo-
retical uncertainty inR(MZ

2) caused by evaluating it in
perturbation theory truncated at orderas

3 . For this purpose,
we use a nominal valueās(MZ

2)50.120 of the modified
minimal subtraction scheme (MS) strong coupling evaluated
at MZ . If an experimental value forR(MZ

2) were used to
extractās(MZ

2), then the fractional theoretical uncertainty in
R(MZ

2) would translate into a fractional uncertainty of th
same size foras(MZ

2).
When we present numerical results, we choo

MZ591.188 GeV and sin2uW50.2319. We take the top
quark pole mass to be 170 GeV, as estimated in Ref.@1#
from the Collider Detector at Fermilab~CDF! and D0 results
@2#.

The scope of this paper is limited, and, in fact, we do n
attempt to evaluateR(MZ

2) at the level of precision that we
are discussing. Such an evaluation involves careful consid
ation of a large number of small effects. Among these a
electroweak effects beyond the Born level@3#, effects of non-
zero masses for the light quarks@4#, and (MZ

2/mt
2)n contri-

butions from virtual loops containing the top quark@5#. We
review the status of some of these issues in the appendix
this paper.
4566 © 1996 The American Physical Society
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II. THE RUNNING COUPLING AND TOP MASS

In this paper we denote byas(s) the running coupling in
a renormalization scheme that may or may not be theMS
scheme@6#. We denote byās(s) the running coupling as
defined by theMS scheme with five flavors of light quarks

The dependence ofas(se
t) on t is given by the renormal-

ization group equation

d

dtS p

as~se
t! D52

p2

as
2~set!

b„as~se
t!…

5b01b1

as~se
t!

p
1b2S as~se

t!

p D 21•••. ~2!

We use this equation to derive an approximation f
p/as(se

t). We find

p

as~se
t!

5
p

as~s!
~11x!1

b1

b0
ln~11x!

1
as~s!

p S b0b22b1
2

b0
2

x

11x
1

b1
2

b0
2

ln~11x!

11x D
1•••, ~3!

where

x5b0t
as~s!

p
. ~4!

Further terms in this series involve higher powers
as(s)/p times functions ofx that are proportional tox for
smallx. We do not include any more terms because the n
term involves the coefficientb3, which is unknown. If we
wanted to recover the ordinary perturbative expansion
p/as(se

t) up to orderas(s)
2, we would note thatx is pro-

portional toas and expand in powers ofx, then omit terms
beyondx2 or xas . Equation ~3! is better than the purely
perturbative expansion because it is a valid expansion
powers ofas(s) whenx is fixed at some finite value. Thus
it is useful whenb0t is as large asp/as(s).

The approximation represented by Eq.~3! is not only
simple and convenient, but also extremely accurate. O
could solve the renormalization group equation foras(se

t)
‘‘exactly’’ in the approximation thatb35b45•••50. Call
this solutionãs(se

t). Denote byas
@3#(set) the approximation

given by the first three terms in Eq.~3!. If we begin with the
boundary conditionãs(s)5as

@3#(s)50.12, then we find that
uas

@3#(set)/ãs(se
t)21u,231025 in the range23,t,`.

We shall sometimes want to examine the dependence
the results of calculations on the renormalization sche
used in the calculation~cf. Ref. @7#!. For this purpose, we
define anas in a renormalization scheme that may not be th
MS scheme by

as~s!5ās~s!1c2ās~s!21c3ās~s!31•••. ~5!

Then, one can useas(s) as the expansion parameter of th
theory. Since the perturbative formulas used are inevita
truncated at some order of perturbation theory, the resu
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depend on the coefficientsci that specify the scheme. We
will want to find out how much the results depend on th
ci . There are two purposes to this. First, the choice of reno
malization scheme represents an ambiguity of the theory, a
we want to have an estimate of the numerical importance
this ambiguity. Second, there are uncalculated higher ord
terms that are, by necessity, omitted from the calculatio
Parts of these terms serve to cancel the dependence of
results on theci . Thus, the observed size of the dependenc
of the result on theci serves as a rough indicator of the size
of the uncalculated higher order terms.

The coefficientc2 can be simply absorbed into a change
of the scale of the running coupling:

as~s!5ās~se
dt!1c38ās

3~sedt!1•••. ~6!

That is, using Eq.~3! on the right-hand side of Eq.~6! repro-
duces Eq.~5!. The term in Eq.~6! proportional toā s

3 results
in a change of the coefficientb2 in the b function that de-
scribes the running ofas . ~Recall thatb0 andb1 are scheme
independent.! Let us parametrize this change as

b25b̄21db2 , ~7!

where b̄2 is the third coefficient of theb function in the
MS scheme and other MS-type schemes. Then, the relat
betweenas and ās can be written as

as~s!

p
5

ās~se
dt!

p
1

db2

b0
S ā s~se

dt!

p D 31•••. ~8!

We shall usedt and db2 to parametrize the choice of
scheme.

By combining Eq.~3! with Eq. ~8!, we see thatas(s) can
be expanded in terms ofās(s) by using

p

as~s!
5

p

ā s~s!
~11dx!1

b1

b0
ln~11dx!

1
ās~s!

p S b0b̄22b1
2

b0
2

dx

11dx

1
b1
2

b0
2

ln~11dx!

11dx
2

db2

b0

1

11dxD 1•••. ~9!

Here,

dx5b0dt
ā s~s!

p
. ~10!

In the framework of this paper~except for the appendix!,
light quark masses do not appear inR(s) because they are
set to zero. However, the top quark mass does appear, st
ing at orderas

2 Thus, it is necessary to state carefully how
we definemt . We let m̄t(s) be the running top quark mass
within theMS scheme. At the level of perturbation theory a
which we work, we need the one-loop evolution ofm̄t(s),
which we write as
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m̄t
2~s!'m̄t

2~MZ
2!expS 2g0E

MZ
2

s dm2

m2

ās~m2!

p D
'mt

2~MZ
2!S ās~MZ

2!

ās~s! D 2g0 /b0

~11!

with

g0521. ~12!

~See, for instance, Ref.@8#.! One can, of course, use a dif
ferent scheme and define a running mass

mt
2~s!5m̄t

2~s!@11C1ās~s!1•••#. ~13!

We do so, absorbing the first coefficientC1 into a change of
scale by an amountdtm . Thus, we define

mt
2~s!'m̄t

2~s!S ās~s!

ās~se
dtm! D

2g0 /b0

. ~14!

The parameterdtm can be chosen independently from th
scaling parameterdt in the definition~8! of the coupling.

The dependence ofR(s) on the top quark mass is quite
small, so the dependence ofR(s) on dtm is also small. In
fact, we find thatR(MZ

2) varies by only 0.3 parts per mill for
24,dtm,4. In order to limit the parameter space to b
explored in our numerical examples, we, therefore, set

dtm50. ~15!

Thus, the running top mass ats5MZ
2 in our examples is

simply the MS running top massm̄t(MZ
2). We take

m̄t(MZ
2)5170.2 GeV, which corresponds to a pole mass

m̃t5170 GeV after use of

m̄t
2~MZ

2!'m̃t
2expS 2

8

3

ās~m̃t
2!

p D S ās~m̃t
2!

ās~MZ
2!

D 2g0 /b0

.

~16!
-

e

e

of

~See, for instance, Ref.@8#.! The value 170 GeV is estimated
in Ref. @1# from the CDF and D0 results@2#.

III. PERTURBATIVE EXPANSIONS

With the theoretical framework defined in Sec. I, the theo
retical expression forR(s) has the form

R~s!5R0$11R~s!%. ~17!

Here,R0 is the value ofR(s) in the parton model, without
perturbative QCD corrections. The QCD corrections are con
tained inR(s),

R~s!5R1

as~s!

p
1R2S as~s!

p D 21R3S as~s!

p D 31•••. ~18!

The value ofR(s) calculated in finite order perturbation
theory depends on the parametersdt, db2, anddtm that de-
fine the renormalization scheme. We keep these paramete
arbitrary in this analysis in order to be able to test the sens
tivity of the calculated value ofR(s) to their choice. As
already noted, the dependence ofR(s) on dtm is negligible.

The t dependence ofas(se
t) is given by the renormaliza-

tion group equation~2!. The coefficients of theb function
that appears in this equation are@9#

b05~3322Nf !/12,
~19!

b15~306238Nf !/48,

b25~77139215099Nf1325Nf
2!/34561db2 ,

where Nf55 is the number of light quark flavors used
throughout this paper.

The coefficientsR1 ,R2 ,R3 are @10–15#
R151,

R25
365

24
211 z~3!2NfF11122

2 z~3!

3 G2
1

( i~v i
21ai

2!
F37121 lnSmt~s!2

s D G1b0dt, ~20!

R35
87029

288
2
1103z~3!

4
1
275z~5!

6
2

b0
2p2

3
1NfF2

7847

216
1
262z~3!

9
2
25 z~5!

9 G1Nf
2F151162

2
19 z~3!

27 G
1

~( iv i !
2

( i~v i
21ai

2!
F55722

5 z~3!

3 G1
1

( i~v i
21ai

2!
F218.654402

31

18
lnSmt~s!2

s D1
23

12
ln2Smt~s!2

s D12g0dtmG
1b0

2~dt !21@b112b0R2,0#dt2
db2

b0
.
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Here, (v i ,ai) with i5u,d,s,c,b is the~vector, axial vector!
coupling of the quark of flavori to theZ boson, as specified
in the appendix. We useR2,0 to denoteR2 with dt50. We
recall that the mass anomalous dimension isg0521 and
that the parametersdt, db2, anddtm give the scheme depen
dence, as described in Sec. II.

The numerical values are

b0'1.92,

b1'2.42, ~21!

b2'2.831db2 ,

and @with dtm50 andmt(s)5m̄t(MZ
2)#

R151,

R2'0.7611.92dt, ~22!

R3'215.7315.35dt13.67~dt !220.52db2 .

In this paper, we will define various approximationsRA
toR. The first of these is the simple third order perturbativ
approximation:

RA~s;pert!5(
j51

3

Rj S as~s!

p D j . ~23!

As discussed in Sec. II, the renormalization scheme ambi
ity can provide an estimate, or at least a lower bound, on
theoretical uncertainty produced by truncating perturbati
theory at orderas

3 . To investigate this ambiguity, we show
in Fig. 1 a contour plot ofRA(MZ

2 ;pert) as a function of
dt and db2, with dtm50. The range shown for the scal
parameter,24,dt,4, corresponds to scalesm5@set#1/2 in
the range 0.14MZ'MZe

22,m,MZe
2'7.4MZ in Eq. ~8!.

The range shown fordb2 corresponds to schemes with
21.2'b̄224,b2,b̄214'6.8.

FIG. 1. Contour plot of the simple third order perturbative a
proximantRA(MZ

2 ;pert), Eq.~23!, vs the scheme-fixing parameter
dt anddb2, with dtm50.
-

e

gu-
the
on

e

We learn from Fig. 1 thatRA(MZ
2 ;pert) is not very sen-

sitive to db2. Accordingly, we set db250 and plot
RA(MZ

2 ;pert) vsdt in Fig. 2. We note thatRA(MZ
2 ;pert)

varies by about 2.6% between its local maximum and
local minimum. We conclude thatR(MZ

2) probably lies
within this 2.6% range. Thus, we ascribe a theoretical err
of 62.6%/2561.3% to the value ofR(MZ

2). In the remain-
der of this paper, we attempt to reduce this error by usi
more sophisticated methods than simply taking the first thr
perturbative terms inR(MZ

2).
The perturbative series forR(MZ

2) provides our starting
point. We see that the series forb(as) is nicely behaved, but
that the series forR(s) not as well behaved, with a large
value forR3 at dt5db25dtm50. In fact, this large value
can be attributed to the term2b0

2p2/3'212.1.

IV. p2 TERMS

The offendingp2 term inR3 arises, at a rather mechani
cal calculational level, because factors of ln(2s6ie)
5 ln(s)6ip occur in the calculation, leading to powers ofp
in the result. In order to see what happens at higher orders
perturbation theory, we writeR(s) as a discontinuity:

R~s!5
C

2p i
$P~2s1 i e,m2!2P~2s2 i e,m2!%. ~24!

Here,C is a normalization constant andP(Q2,m2) is the
standardZ boson self-energy function including the QCD
contribution. It is proportional to the Fourier transform of th
time-ordered product of two weak current operators. Th
current operators carry momentumqm. We define
Q252qmqm , so thatQ2.0 if the momentumqm is space-
like. The functionP depends on the renormalization scal
m2. However, the function

D~Q2!52Q2
]

]Q2P~Q2,m2! ~25!

p-
s

FIG. 2. Plot of the usual third order perturbative approxima
RA(MZ

2 ;pert) vs the scheme-fixing parameterdt with db250 and
dtm50.
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is a renormalization group invariant. The derivative he
avoids the overall renormalization inP. For this reason, it is
a standard practice to work withD(Q2). As a matter of
convenience, we work with a slightly modified function
Dmod(Q

2), that is obtained fromR(s) by Eqs.~24! and~25!
with the exception that we first replace lnn@mt(s)

2/s# by
lnn@mt(MZ

2)2/MZ
2# in Eq. ~20!. One could work with the exact

functionD(Q2) at the cost of added complexity in the con
struction that follows. However, there would be little nu
merical gain because the coefficients of the logarithms r
resenting top quark loops are small.

We may write the perturbative expansion ofD(Q2) in the
form

Dmod~Q
2!5D0$11D~Q2!%, ~26!

whereD0 is the value ofD in the parton model and where

D~Q2!5D1

as~Q
2!

p
1D2S as~Q

2!

p D 2
1D3S as~Q

2!

p D 31•••. ~27!

The first three coefficientsDn are the same as the corre
spondingRn in Eq. ~20! if one substitutesQ2 for s, except
thatD3 lacks the term2b0

2p2/3. The numerical values@with
dtm50 andmt(s)5m̄t(MZ

2)# are

D151,

D2'0.7611.92dt, ~28!

D3'23.6515.35dt13.67~dt !220.52db2 .

If we stay neardt50, this series appears to be quite nice
behaved. We believe, on the basis of general arguments~to
be discussed in the next section!, that the coefficientsDn will
eventually grow for largen. However, that growth is not
apparent in the first three terms.

The functionD(Q2) is calculated using Euclidean quan
tum field theory, in which only very weak infrared singular
ties occur near the contour of the internal momentum in
grations. On the other hand, a direct calculation ofR(s)
involves Minkowski momentum integrations over regions
which various internal particles can go on shell. Only som
delicate cancellations preventR(s) from being infinite.
Surely, D(Q2) should be better behaved thanR(s). This
observation leads to the following

Hypothesis 1.The perturbative expansion ofD(Q2) re-
mains well behaved beyond the three terms that are kno
subject only to the eventual growth of theDn dictated by the
standard renormalon and instanton ideas.

We adopt this hypothesis here, although it is criticized
Ref. @16# on the grounds that there could be other sources
large perturbative coefficients inD(s).

We are interested in the observable functionR(s). If we
accept thishypothesis 1, then instead of calculatingR(s)
directly, we should relate it to the nicely behaved functio
D(Q2). From Eqs.~24! and ~25!, we obtain
re

,
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R~s!5
1

2pE2p

p

duD~seiu!. ~29!

In the following section, we will deal with the expected larg
order behavior of theDn by following the standard practice
of using the Borel transformD̃ of D:

D~Q2!5E
0

`

dzexpS 2
pz

as~Q
2! D D̃~z!. ~30!

If we write the perturbative expansion ofD̃(z) as

D̃~z!5D̃01D̃1z1D̃2z
21•••, ~31!

then

D̃n5
Dn11

n!
. ~32!

Because of the 1/n! factor, the perturbative expansion ofD̃
in powers ofz is much nicer than that ofD̃ in powers of
as /p. In fact, one expectsD̃(z) to be analytic nearz50. As
discussed, for example, in Ref.@17#, there are singularities
expected in the complexz plane, including some on the in-
tegration contour along the positivez axis. In addition,
D̃(z) is not expected to be well behaved asz→`. Thus, the
meaning of the integration in Eq.~30! is ambiguous. In this
section, we simply leave it as such.

We can relateR(s) to D̃ by inserting Eq.~30! into Eq.
~29!:

R~s!5E
0

`

dzexpS 2
pz

as~s! DF„as~s!,z…D̃~z!, ~33!

where

F~as ,z!5
1

2pE2p

p

du exp@2zG~as ,u!#, ~34!

with

G„as~s!,u…5
p

as~se
iu!

2
p

as~s!
. ~35!

Equation~33! is the basis for the analysis in this paper. W
note that the factorp/as(s) in the exponent in Eq.~33! is
big, about 30 foras'0.12. Therefore, the integral overz is
dominated by smallz, b0z&b0as /p'0.06. Thus, we will
be primarily concerned with the expansion ofD̃(z) in pow-
ers ofz.

Before addressingD̃(z), however, we need a good ap
proximation forF(as ,z). Since smallz is important, we are
particularly interested in the smallz region. However, it is
rather easy to find an approximation forF(as ,z) that is good
for a wide range ofz, based on the smallness of its argume
as . We use the solution~3! of the renormalization group
equation~2! for p/as in order to derive an approximation for
G(as ,u). We findG(as ,u)'GA(as ,u), where
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GA~as ,u!5 ib0u1
b1

b0
ln~11y!

1
as

p S b0b22b1
2

b0
2

y

11y
1

b1
2

b0
2

ln~11y!

11y D , ~36!

where

y5 ib0u
as

p
. ~37!

Further terms in this series involve higher powers ofas /p
times functions ofy that vanish fory→0. The ordinary per-
turbative expansion ofG(s) results from expanding in pow
ers of y, which is proportional toas , then omitting terms
beyond y2 or yas . However, as(s)/p'1/30 while
uyu'1/5 atu5p. Thus,as(s)/p is a much better expansio
parameter thany. Since we do not have to expand iny, we
do not.

We now have an approximationGA(as ,u) for
G(as ,u). Our corresponding approximationFA(as ,z) for
F(as ,z) is

FA~as ,z!5
1

2pE2p

p

du exp@2zGA~as ,u!#, ~38!

with the integral computed to sufficient accuracy by nume
cal methods. In Fig. 3 we show a graph ofFA(as ,z) vs
b0z superimposed on a graph of exp(2pz/as), all with
as50.12.

How good is our approximationFA(as ,z)? The first
omitted term inG(as ,u) is, in theMS scheme,

DG~as!5S as

p D 2h~y!, ~39!

where

h~y!52
b1
3

2b0
3

ln2~11y!

~11y!2
1

b1b2

b0
2

ln~11y!

~11y!2
1

b1
3

2b0
3

y2

~11y!2

FIG. 3. Graph ofFA(as ,z) and exp(2pz/as) vs b0z with
as50.12.
-

n

ri-

2
b1b2

b0
2

y

~11y!
1

b3

2b0

y~y12!

~11y!2
. ~40!

This term contains a factor (as /p)
2'1023 for as'0.1. This

factor multipliesh(y), which cannot be evaluated because it
contains the unknown coefficientb3. However, we can see
from the structure ofh(y) that it is not large unlessb3 is
large. We can get a quantitative idea of the effect ofDG by
choosing some plausible values forb3 and then calculating
R(s) with DG included. We find that, takingb3 in the range
210,b3,10, the fractional changeR(MZ

2) induced by in-
cludingDG(as) is no larger than 231025. Since this error
is small compared to our target error of a few per mill, we
can safely neglect it.

We, thus, obtain an approximation forR that uses third
order perturbation theory but sums certain ‘‘p2’’ effects to
all orders:

RA~s;p2!5E
0

`

dzexpS 2
pz

as~s! DFA„as~s!,z…D̃A~z!,

~41!

whereFA is given in Eq.~38! andD̃A(z) is simplyD̃(z), Eq.
~31!, expanded to second order inz.

This treatment ofp2 terms is similar in spirit to those of
Pivovarov and of Le Diberder and Pich@18#. Essentially,
these authors expandD(seiu) in Eq. ~29! in perturbation
theory, use the renormalization group equation to evalua
as(se

iu) to a very good approximation, and perform theu
integral exactly. We simply embed this approach into the
Borel transform.

In Fig. 4 we plotRA(MZ
2 ;p2) vs the scheme parameter

dt with the other scheme parameters set todb250 and
dtm50. We overlay the plot ofRA(MZ

2 ;pert) from Fig. 2.
We note thatRA(MZ

2 ;p2) varies by about 0.32% between its
local maximum and its local minimum. This is a much
smaller variation than that ofRA(MZ

2 ;pert). A very optimis-
tic view would be thatR(MZ

2) probably lies within this
0.32% range, so that one would ascribe a theoretical error

FIG. 4. Plot ofp2-summed approximantRA(MZ
2 ;p2), Eq. ~41!,

~dashed line! vs the scheme-fixing parameterdt with db250 and
dtm50. We also showRA(MZ

2 ;pert) from Fig. 2~full line!.
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60.32%/2560.16% to the value ofR(MZ
2). However, this

error estimate is smaller than other error estimates that
will develop later. We, therefore, regard the flatness of t
curve for RA(MZ

2 ;p2) as being partially the result of an
accidental cancellation, and refrain from taking 0.16% as
reasonable error estimate.

We close this section by emphasizing the observation t
the straightforward perturbative expansion ofR(s) is, in
part, an expansion in powers ofb0u@as(s)/p#, with u;p,
instead of an expansion in powers of@as(s)/p#'1/30. One
can attribute the appearance of ‘‘p2’’ terms in R(s) to this
phenomenon. This observation helps to makehypothesis 1
plausible. Unfortunately, this argument is only suggestiv
since one cannot be sure that there are not ‘‘bad expans
parameters’’ lurking somewhere in the calculation o
D(Q2). In the next section, we turn to the behavior of th
perturbative coefficients inD̃(z), assuming that the evidence
for a bad expansion parameter is not, in fact, lurking ju
beyond the last calculated coefficient.

V. TRUNCATION OF THE INTEGRAL

If we do not expandD̃(z) in powers ofz, then, at this
point, we have an approximation forR of the form

R~s!'E
0

`

dzexpS 2
pz

as~s! DFA„as~s!,z…D̃~z!, ~42!

with FA given in Eq.~38!. Sinceas(s) is small, the dominant
integration region isz!1. Indeed, takingas'0.12, we have
exp(2pz/as),1023 for b0z.0.51. Thus, it is useful to write
R in the form

R~s!'E
0

zmax
dzexpS 2

pz

as~s! DFA„as~s!,z…D̃~z!1RR~s!

~43!

with b0zmax*0.5. The fundamental question of how th
‘‘sum of perturbation theory’’ is precisely defined relates t
the definition ofRR . In turn, this question is related to how
the renormalon and instanton singularities are treated an
the question of the convergence of the integral at largez.
However, our purpose here is, at once, more modest
more practical. We adopt

Hypothesis 2.It is safe to ignore the largez part of the
Borel integral when calculatingR(s) for s;MZ , even
though this part of the integral is ill defined.

We thus neglectRR and concentrate on the integral up t
zmax in Eq. ~43!. The advantage is that we can use appro
mations for D̃(z) that have singularities on the positivez
axis outside of the region of integration.

We can test the sensitivity of the computed value ofR
to zmax by replacingD̃(z) by its second order expansion
in powers ofz. Then, the ratio of the two terms in Eq.~43!
with zmax50.5 ~for s5MZ

2 , dt5dtm5db350), is
RR(s)/RA(s;p

2)'631024.
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VI. ACCOUNTING FOR RENORMALONS

We now turn to the perturbative expansion

D̃~z!5(
0

`

D̃nz
n. ~44!

The coefficientsD̃n can be expressed as an integral:

D̃n5
1

2p i ECdzz2n21D̃~z!. ~45!

The contourC encloses the pointz50 but excludes any sin-
gularities of D̃(z). Thus, the behavior of theDn at large
order n is controlled by the part of the contour that lies
nearest toz50, which, in turn, is controlled by the singu-
larities of D̃(z) that are nearest toz50. A singularity of the
form (z2z0)

2A makes a contribution toDn that is propor-
tional to z0

2nnA21. Thus, the most important determinant o
the singularity’s contribution to theD̃n at largen is its loca-
tion, z0. A small z0 produces large coefficients. The nex
most important determinant is the strength of the singulari
A. A large positive value ofA produces large coefficients.

The singularities nearest to the origin in the space of t
Borel variable z are thought to be singularities at
b0z522, 21, and 12 associated with renormalons
@17,19#. ~We are dealing with QCD perturbation theory with
five massless flavors, so the five-flavorb0 occurs here.! A
critical examination of the theory of renormalons is beyon
the scope of this section. We simply assume that certa
information about the position and strength of renormalo
singularities is known. We also assume that the firstN terms
in the perturbative expansion ofD are known. At present,
N53. Our purpose is, then, to show how to combine the
two kinds of information to produce an improved numerica
estimate for the physical quantityR(MZ

2). The improvement
concerns the size of the perturbative coefficients for lar
N. As we will see, it is problematical whether this improve
ment helps forN53.

The first ultraviolet renormalon singularity is at
b0z521. This is the singularity that is closest to the origi
~at least so far as anyone knows!. It thus controls the large
order behavior of the perturbative series. Unfortunately, t
theory of the ultraviolet renormalon singularities is not a
simple or as well developed as that for the infrared renorm
lon singularities.~See, however, Ref.@20#.! For instance, the
strength of the singularity is not known.

The first infrared renormalon singularity is atb0z512.
There are other singularities farther away from the orig
along the positive realz axis, but we need not be concerne
with them: since they lie farther fromz50, their contribu-
tion to the large order behavior of the perturbative coef
cients is weaker than that of the first singularity. It is signifi
cant that there is no infrared renormalon singularity
b0z511. The first infrared renormalon singularity has
power behavior,

D̃~z!;cF12
b0z

2 G2122b1 /b0
2

, ~46!
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wherec is a constant@17,19#. Numerically, the exponent is
2122b1 /b0

2'22.3.
We can make use of this information. Consider the fun

tion

C̃~z!5D̃~z!F12
b0z

2 G112b1 /b0
2

. ~47!

The factor multiplying D̃(z) cancels its divergence a
b0z→2. The functionC̃(z) is still singular atb0z52, since,
if we multiply a term inD̃(z) that is analytic atb0z52 by
the nonanalytic factor, we create a nonanalytic term. Ho
ever, the singularity is much weaker than it was, behav
like

C̃~z!;cF12
b0z

2 G112b1 /b0
2

. ~48!

Thus, the perturbative expansion ofC̃(z) would be better
behaved than that ofD̃(z) at large order if it were not for the
fact that the leading ultraviolet renormalon singularity
b0z521 dominates the large order behavior.

We can, however, improve the large order behavior a
ing from the leading ultraviolet renormalon by merely mo
ing it out of the way by means of a good choice of variab
Following Mueller @19#, we define a new variablez by

b0z5
b0z

~12b0z/4!2
, b0z54

A11b0z21

A11b0z11
. ~49!

This transformation maps the origin of thez plane onto the
origin of thez plane. We have chosen the normalization
z such that

z;z1O~z2! ~50!

nearz50. The map treats specially the intervalb0z,21 on
the negativez axis that contains the ultraviolet renormalo
singularities. The whole complexz plane except for this in-
terval is mapped to the interior of the diskub0zu,4 in the
z plane. The singularity-free interval21,b0z,0 in the
negativez axis is mapped onto the interval24,b0z,0 of
the negativez axis while the interval 0,b0z,` on the
positivez axis, which contains the infrared renormalon a
instanton singularities, is mapped into the interv
0,b0z,4 of the positivez axis.

We consider the function

B̃~z!5 C̃„z~z!…. ~51!

The singularity ofB̃(z) that is nearest to the origin of th
z plane is the first infrared renormalon singularity, which
at

b0z54
A321

A311
'1.1. ~52!

Thus, moving the ultraviolet renormalon singularity awa
has had a price. We have moved the infrared renorma
singularity closer to the origin. However, we have previous
c-

s

w-
ing

at

ris-
v-
le.

of

n
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e
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y
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softened the infrared renormalon singularity, so the price
not too great. The net effect should be an improvement.

The effect of singularity mapping has been investigate
recently by Altarelliet al. @16#. However, these authors did
not soften the infrared renormalon singularity. They foun
that there was no gain in this method.

In order to use the singularity softening and mapping, w
use the first three terms in the perturbative expansion
D̃(z),

D̃~z!511@0.4011.00dt#~b0z!

1@20.5010.73dt10.50~dt !2#~b0z!21•••, ~53!

to calculate the first three terms in the perturbative expansi
of B̃(z). The result is

B̃~z!511@20.7611.00dt#~b0z!

1@20.9610.07dt10.50~dt !2#~b0z!21•••. ~54!

@Here, we have displayed the coefficients numerically, wit
the choicesdb25dtm50 andmt(s)5m̄t(MZ

2).#
This perturbative series forB̃(z) is supposed to be better

behaved at large orders than was the perturbative series
D̃(z). The expected improvement is not, however, visible i
the first three terms. In fact, we started with a series that w
quite well behaved, and we have applied a rather mild im
provement program. As long as the infrared and ultraviol
renormalon singularities are as described in this section, th
program may be expected to make the perturbative coef
cients smaller at high order, but one cannot expect too mu
to happen at order two.

An example of this procedure applied to a simple mode
may be useful as an illustration of what happens at hig
order. Suppose that

D̃~z!5
z

@11b0z#
1

1

@12b0z/2#p
~55!

with p5112b1 /b0
2. Then, the perturbative expansion of

D̃(z) is

D̃~z!5111.68b0z10.44~b0z!211.21~b0z!3

20.06~b0z!410.81~b0z!520.35~b0z!61•••. ~56!

Applying the renormalon improvement procedure gives th
function B̃(z) with a perturbative expansion

B̃~z!5110.52b0z20.87~b0z!210.30~b0z!3

20.02~b0z!410.06~b0z!520.01~b0z!61•••.

~57!

The series forB̃ is clearly better behaved at high orders tha
the series forD̃. One might claim to see an improvemen
beginning with the fourth term, which corresponds to th
first uncalculated term in the case of the realD̃ and B̃ func-
tions. However, at this quite low order of expansion, th
improvement is marginal.
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The procedure for singularity softening and mapping m
be summarized as follows. We calculate the firstN terms in
the expansion ofB̃(z) according to Eqs.~47! and~51!, where
for usN53. Then, we instead of using

D̃A~z![ (
n50

2

D̃nz
n ~58!

for D̃(z) in Eq. ~43!, we use

D̃A8~z![F12
b0z

2 G2122b1 /b0
2

(
n50

2

B̃n@z~z!#n. ~59!

This gives an approximation forR(s) that we may call
RA(s;p

2, renormalons):

RA~s;p2, renormalons!

5E
0

zmax
dzexpS 2

pz

as~s! DFA„as~s!,z…

3
(n50
2 B̃n@z~z!#n

@12b0z/2#112b1 /b0
2 . ~60!

The replacement ofD̃A(z) by D̃A8(z) does not modify the
integrand much. In Fig. 5, we show the ratioD̃A8(z)/D̃A(z)
as a function ofb0z. We see that this ratio is nearly 1.0 in
the important integration regionb0z,0.2.

VII. RESULTS

We have developed an approximation toR(s) that takes
p2 contributions into account and uses information about t
leading renormalon singularities to try to improve the co
vergence of the perturbative expansion forD̃(z). In Fig. 6
we plot this approximation,RA(s;p

2, renormalons), vs the
scheme parameterdt with the other scheme parameters set
db25dtm50. We overlay the plots of the pure perturbativ

FIG. 5. Modification of the Borel integrand to account for reno
malons. We plotD̃A8(z)/D̃A(z), Eqs.~58! and~59!, vsb0z. We set
s5MZ

2 and choose the scheme-fixing parametersdt5db2

5dtm50.
ay

he
n-

to
e

function,RA(MZ
2 ;pert), and the approximation that simply

takesp2 contributions into account,RA(MZ
2 ;p2). We note

thatRA(s;p
2, renormalons) varies by about 0.8% between

its local maximum and its local minimum. This suggests that
R(MZ

2) probably lies within this 0.8% range, so that one
would ascribe a theoretical error of60.8%/2560.4% to
the value ofR(MZ

2).
We can take another approach to error estimation. We

note that the first three coefficients of (b0z)
n in Eq. ~54! are

all of order 1. That the coefficients do not appear to be grow
ing or shrinking withn is normal since the series is expected
to have a radius of convergence of about 1 in the variable
b0z. We, thus, expect that the uncalculated coefficient of
(b0z)

3 will also be of order 1. If we add a term 13(b0z)
3 to

the series in Eq.~60!, RA(MZ
2) changes by an amountdRA

that can serve as an error estimate. We find
dRA /RA(MZ

2 ;p2, renormalons)'0.2%.
We, thus, have three error estimates. From thedt depen-

dence ofRA(MZ
2 ;p2) we estimated a 0.16% error. From

consideration of the likely size of the next term inB̃(z) we
estimated a 0.2% error. From thedt dependence of
RA(MZ

2 ;p2, renormalons) we estimated a 0.4% error. We
take the largest of these values 0.4% as a reasonable estim
of the theoretical error~in the spirit of a ‘‘1s ’’ error!.

For the central value, we take the value of
RA(s;p

2, renormalons) atdt50, which is almost exactly
also the value ofRA(s;p

2) at dt50. This value is

RA~MZ
2 ;p2, renormalons!dt50

'~120.006!3RA~MZ
2 ;pert!dt50 . ~61!

That is, our best estimate forR is renormalized down by
0.6% compared to the standard MS̄ value with a scale choice
m5MZ .

One often uses a measurement ofR(MZ
2) to extract a

value of ās(MZ
2). Recall that, to a good approximation,

R(MZ
2)}ās(MZ

2). Thus, the value ofās(MZ
2) extracted from

data using the ‘‘standard’’MS expression forR ~with a scale

r- FIG. 6. Plot of approximantRA(s;p
2, renormalons), Eq.~60!,

vs the scheme-fixing parameterdt with db250 anddtm50 ~heavy
line!. We also showRA(MZ

2 ;pert) from Fig. 2 ~light line! and
RA(MZ

2 ;p2) from Fig. 4 ~dashed line!.
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choicem5MZ) would be renormalizedup by 0.6% if one
uses the ‘‘improved’’ version ofR presented here:

@ās~MZ
2!# improved'1.006@ās~MZ

2!#standard. ~62!

The fractional error to be ascribed toās(MZ
2) from uncer-

tainties in the QCD perturbation theory is just the fraction
error inRA(MZ

2 ;p2,renormalons) estimated above as 0.4%
This is one third of the 1.3% error that we would ascribe
ā s(MZ

2) extracted using the standard perturbative appro
mantRA(MZ

2 ;pert). The shift in Eq.~62! is about the same
size as the estimated theoretical error, so it is margina
significant.

We note that the experimental error for the extraction
as by this method is about 5%@21#, much larger than the
QCD theoretical error that we estimate above. There are a
sources of theoretical error not associated with QCD. A
cording to the estimates of Hebbeker, Martinez, Passar
and Quast@22#, the most important of these are a62%
uncertainty from electroweak corrections and a62% uncer-
tainty from not knowing the Higgs boson mass.
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APPENDIX: PRESENT STATUS OF PERTURBATIVE
QCD EVALUATION OF Z DECAY RATES

The decay rate of theZ boson into quark-antiquark pair
can be written in the form

GZ→hadrons5
GFMZ

3

8A2p
H(

f
~r fv f

2@~112Xf !A124Xf

1dQCD
V ~as ,Xf ,Xt!1dQED

V ~a,as ,Xf !#

1r faf
2@~124Xf !

3/21dQCD
A ~as ,Xf ,Xt!

1dQED
A ~a,as ,Xf !# !1LV1LAJ . ~A1!

Here, there is a sum over light quark flavorsf5u,d,s,c,b.
We defineXf5mf(MZ)

2/MZ
2 and Xt5mt(MZ)

2/MZ
2 ~We

use theMS definition of masses.!
The vector and axial couplings of quarkf to theZ boson

are v f5$2I f
(3)24efsin

2uWkf% and af5 2I f
(3) The elec-

troweak self-energy and vertex corrections are absorbed
the factorsr f andkf . The current status of the electrowea
contributions has been discussed in detail in Ref.@3#. The
small QED corrections in vector and axial channels have
form

dQED
V 5

3

4
ef
2 a

p
@1112Xf1O~Xf

2!#1O~a2!1O~aas!,

~A2!
al
.

to
xi-

lly

of

lso
c-
ino

r,
a-
of
E-

in
k

the

dQED
A 5

3

4
ef
2 a

p
@126Xf212Xf lnXf1O~Xf

2!#

1O~a2!1O~aas!. ~A3!

The corrections of ordera2 andaas are discussed in Ref.
@23#.

It is convenient to decompose the QCD contributions int
singlet and nonsinglet parts and further into vector (V) and
axial vector (A) contributions. The nonsinglet parts are rep
resented by the termsdQCD

V anddQCD
A and correspond to cut

Feynman graphs in which a single quark loop of flavorf
connects the two electroweak current operators. The sing
contributions correspond to graphs with the electroweak cu
rents in separate quark loops mediated by gluonic states.
the singlet contributions one does not have a single sum ov
a flavor f . These contributions are represented by the term
LV andLA.

The nonsinglet QCD contribution in the vector channel t
orderas

3 can be written in the form

dQCD
V 5

as

p
@1112Xf #1S as

p D 2F1.409231104.833Xf

1(
v

F ~2!~Xv!1G~2!~Xt!G1S as

p D 3F212.76706

1547.879Xf1(
v

F ~3!~Xv!1G~3!~Xt!G . ~A4!

In this formula,as denotes the runningMS coupling in five-
flavor theory evaluated atMZ . The transformation relation
for different number of flavors and different scales, as we
as the relation between theMS running mass and the pole
mass, can be found in Ref.@24#.

The orderas
2 and as

3 terms have been evaluated in the
limit of vanishing light quark masses and infinitely large top
mass in Refs. @10,11#. These contributions,
(as /p)11.40923(as /p)

2212.76706(as /p)
3, are the$vec-

tor, nonsinglet% part of the perturbative series analyzed in th
main body of this paper.

The terms proportional toXf represent the leading correc-
tions to the approximationXf50, as given in Ref.@4#.

The functionF (2)(Xv) arises from three-loop diagrams
containing an internal quark loop with a quark of flavo
v5u,d,s,c,b propagating in it~while the quark of flavorf
couples to the weak currents!. This function represents the
corrections to the approximationXv50. These contributions
are already small, so it suffices to approximateXf by 0 in
F (2)(Xv). In fact, numerically,@5#

F ~2!~Xv!'Xv
2$20.4748942 lnXv

1AXv@20.532410.0185lnXv#% ~A5!

is so small that the whole function could be neglected.
The functionG(2)(Xt) represents the contribution of vir-

tual top quark loops inside three-loop cut Feynman diagram
These contributions are small since the top quark is nea
decoupled from the theory. Thus, it suffices to approxima
Xf by 0 inG(2)(Xt). Numerically, one finds@5#
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G~2!~Xt!'Xt
21H 446751 2

135
lnXt

2AXt
21@0.00122610.001129lnXt#J . ~A6!

The first two terms in the right-hand side of Eq.~A6! have
also been obtained using the large mass expansion me
@25#.

At orderas
3 there can be two internal quark loops. How

ever, it suffices to consider only one loop with a nonze
light quark mass at a time, or one top quark loop with
light quark masses set to zero. Then, we can define funct
F (3)(Xv) and G(3)(Xt) analogously to F (2)(Xv) and
G(2)(Xt). ForF

(3)(Xv), the small mass expansion is obtaine
in Ref. @4#

F ~3!~Xv!'26.12623Xf . ~A7!

ForG(3)(Xt), the large mass expansion has been obtaine
Ref. @12#

G~3!~Xt!'Xt
21@20.173720.2124lnXt20.0372ln2Xt#.

~A8!

The nonsinglet contribution in the axial channel is t
same as the one in the vector channel except that the co
butions proportional toXf @4,5# are different:

dQCD
A 5

as

p
@1222Xf #1S as

p D 2F1.40923285.7136Xf

1(
v

F ~2!~Xv!1G~2!~Xt!G
1S as

p D 3F212.767061~unknown!Xf

1(
v

F ~3!~Xv!1G~3!~Xt!G . ~A9!

We now turn to the singlet contributions, which start
orderas

2 :
thod

-
ro
all
ions

d

d in

he
ntri-

at

LV/A5L2V/AS as

p D 21L3V/AS as

p D 31•••. ~A10!

At orderas
2 , there is no vector contribution,

L2V50, ~A11!

while the axial contributions fromu andd quarks and from
c ands quarks vanish in the limit of vanishing quark masses
This is because in the standard model the quarks in a we
doublet couple with the opposite sign to the weak axial cu
rent. However, the contribution from thet,b doublet is sig-
nificant because of the large mass splitting@13#:

L2A52
37

12
2 lnXt1

7

81
Xt

2110.013Xt
22

1Xb~1816 lnXt!2
Xb

Xt
S 80811

5

27
lnXtD . ~A12!

Here, the corrections proportional toXb have been calculated
in Ref. @14#.

At orderas
3 , both channels contribute. The vector contri

bution in the limit of massless light quarks is@11#

L3V520.41318S (
f
v f D 2

1@0.02703Xt
2110.00364Xt

221O~Xt
23!#v t(

f
v f .

~A13!

The sums here run over light quark flavorsf5u,d,s,c,b.
The terms proportionalXt

21,Xt
22 were computed in Ref.@12#

and turn out to be negligible.
In the axial channel, the orderas

3 singlet contribution in
the large top mass expansion reads@15,12,3#

L3A5218.654402
31

18
lnXt1

23

12
ln2Xt . ~A14!

Corrections for a nonzerob quark mass are not yet known.
However, at the level of precision of this paper, they are n
expected to be significant.
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