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Negative-parity nucleon resonance in the QCD sum rule
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The negative-parity baryons are studied by a novel approach in the QCD sum rule. It is found that the pa
of the ground-state nucleon is determined by the sign of the quark condensate. We predict the mass o
negative-parity nucleon.@S0556-2821~96!01719-5#

PACS number~s!: 11.55.Hx, 14.20.Gk
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I. INTRODUCTION

The QCD sum rule, proposed by Shifman, Vainshte
and Zakharov@1#, connects hadron properties and QCD p
rameters@2#. The correlation function of an interpolating
field for a hadron is expressed in two ways:~1! the operator
product expansion~OPE! side, in which the correlation func-
tion is calculated perturbatively at deep Euclidean mome
tum with the help of the operator product expansion, and~2!
phenomenological side, expressed in terms of a hadron s
tral function in the physical region. Using the analyticity o
the correlation function the two expressions are connecte
an integral form, which is the sum rule. The time-order
correlation function is usually employed, but in this paper f
a technical reason we use the ‘‘old-fashioned’’ correlati
function defined by

P~p!5 i E d4xeip•xu~x0!^0uJ~x!J̄~0!u0&, ~1!

where J(x) is a local operator which annihilates a hadro
and is called an interpolation current.

The QCD sum rule is applied to baryons by Ioffe@3,4#.
For the octet baryons two independent currents which c
tain no derivative are available. The general expression
the nucleon current is@5#

JN
a~x!5«abc$@ua~x!Cdb~x!#@g5uc~x!#a

1t@ua~x!Cg5db~x!#uc
a~x!%, ~2!

where u(x) and d(x) are field operators of up and dow
quarks,C is the charge conjugation operator, andabc are
color indices.JN

a (a51,2,3,4) forms a Dirac spinor. A com
monly used current assumest521 in Eq. ~2!, which is
called ‘‘Ioffe’s current.’’ It is optimal for the lowest-lying
nucleon @5#, i.e., it couples strongly to the lowest-lying
nucleon state. Because, as we shall see later, the curren
baryons couples also to the negative-parity baryons@6#, other
choices oft enable us to study the negative-parity baryon
In this paper, we extract the mass of the negative-pa
nucleon from the sum rule with the nucleon current b
choosing t so that the current strongly couples to th
negative-parity nucleon. A similar study has been done
the authors of Ref.@6#. They, however, used the current th
contains an operator with a derivative. They did not find
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Borel stability in the prediction of the negative-parity
nucleon mass and, therefore, the results are only qualitativ

In Sec. II, we study the relation between the positive- an
negative-parity baryons in the sum rule. We point out tha
the sum rule for the positive-parity baryon contains the con
tribution of the negative-parity baryons. We propose a tech
nique to separate the contribution of the negative-parit
baryons from the sum rule in Sec. III. In Sec. IV, we apply
our formulation to the negative-parity nucleon resonanc
and calculate its mass. We study thet dependence@Eq. ~2!#
of the sum rule in detail. We find that the sign of the quar
condensate determines the order of the parity doublet. In Se
V, roles of the chiral symmetry-breaking quark condensate
are studied in the masses of the positive- and negative-par
nucleons. We study the behavior of the masses when t
quark condensates are varied. A summary is given in Se
VI.

II. NEGATIVE-PARITY BARYONS
IN THE QCD SUM RULE

A baryon current studied in the QCD sum rule is com
posed of three quark fields, and it couples to the states w
the same quantum number as the current. In the meso
case, the parity of the meson that couples to the current
directly connected to the parity of the current. That is, th
parity of the meson coincides with the parity of the bilinea
form q̄Gq. For instance, the current for ther1 meson is
d̄gmu, while the current fora1

1 meson, which is the chiral
partner ofr, is d̄gmg5u. It may seem that the QCD sum rule
for a negative-parity baryon is similarly given by the curren
J2[ ig5J1 as an interpolating field because multiplying
ig5 to J1 changes the ‘‘parity’’ ofJ1 , where J1 is the
current for the corresponding positive-parity baryon, such a
JN in Eq. ~2!. Note that bothJ1 and J2 are Dirac~four-
component! spinors.

Suppose that the correlation function ofJ1 is given by

P1~p!5pmgmP1~p
2!1P2~p

2!, ~3!

then the correlation function ofJ2 can be written as

P2~p!52g5P1~p!g55pmgmP1~p
2!2P2~p

2!. ~4!

The difference betweenJ1 andJ2 appears only in the sign
in front of P2(p

2). That is, the same functionsP1(p
2) and

P2(p
2) appear inP1(p) andP2(p). Because we construct
4532 © 1996 The American Physical Society
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54 4533NEGATIVE-PARITY NUCLEON RESONANCE IN THE . . .
the sum rules separately forP1(p) andP2(p), we do not get
any independent sum rule fromJ2 .

In fact, the information about the negative-parity baryo
is already inP1(p) since J1 couples not only to the
positive-parity baryons but also to the negative-parity ba
ons @6#. It is easy to see this from

^0uJ1uB2&^B2uJ̄1u0&52g5^0uJ2uB2&^B2uJ̄2u0&g5 ,
~5!

whereuB2& denotes a single baryon state with negative p
ity. J2 couples to the positive-parity states in the same w

To see concretely how the information of the negativ
parity baryons is included in the correlation functio
P1(p), we express the time-ordered correlation function
a sum of contributions from zero-width poles:

PT~p![ i E d4xeip•x^0uTJ1~x!J̄1~0!u0&

5(
n

Fln
1

gmp
m1mn

1

p22~mn
1!2

1ln
2

gmp
m2mn

2

p22~mn
2!2G , ~6!

wheremn
6 is the mass of thenth resonance andln

6 is the
coupling strength of the current to the resonance. Note t
the only difference in the positive-parity part and th
negative-parity part is the sign of the mass terms. When
are interested in the lowest-lying baryon with positive pari
we regard excited states as a part of ‘‘continuum’’ contrib
tion. Then the terms from the negative-parity baryons can
be directly seen. In the next section, we propose a formu
tion for separating the negative-parity contribution from th
sum rule.

III. SUM RULE FOR THE NEGATIVE-PARITY BARYON

To separate the terms of negative-parity baryons fro
those of positive-parity baryons, we use the ‘‘old-fashione
correlation function~1!. In the zero-width resonance approx
mation, we write the imaginary part in the rest framepW 50 as

ImP~p0!5(
n

F ~ln
1!2

g011

2
d~p02mn

1!

1~ln
2!2

g021

2
d~p02mn

2!G
[g0A~p0!1B~p0! ~7!

whereA(p0) andB(p0) are defined by

A~p0!5
1

2(n @~ln
1!2d~p02mn

1!1~ln
2!2d~p02mn

2!#,

B~p0!5
1

2(n @~ln
1!2d~p02mn

1!2~ln
2!2d~p02mn

2!#.

One can see that the contributionA(p0)1B(p0)
@A(p0)2B(p0)# contains contributions only from the
positive-parity~negative-parity! states.

We, however, can no longer construct sum rules inp2

space, since the ‘‘old-fashioned’’ correlation function is n
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analytic inp2 space. Instead, a sum rule can be written in t
complexp0 plane because the correlation function~1! is ana-
lytic in the upper-half region of the complexp0 plane.
The theoretical side is given by the operator produ
expansion, which is valid at high energy, i.e
POPE(p05Q).PPhe(p05Q) at largeuQu. Using the analy-
ticity we obtain independent sum rules

E
0

Q

@AOPE~p0!2APhe~p0!#W~p0!dp050, ~8!

E
0

Q

@BOPE~p0!2BPhe~p0!#W~p0!dp050, ~9!

whereW(p0) is an arbitrary analytic function which is rea
on the real axis. Note that we use the fact that the imagin
part of the correlation vanishes in negativep0.

We use the Borel weightW(p0)5exp(2p0
2/M2). We take

the lowest mass pole and approximate others as continu
whose behavior above a thresholds0

6 is same as the theoreti
cal side. Then we obtain two sum rules

1

2
@ÃOPE~M ,s0

1!1B̃ OPE~M ,s0
1!#5~l1!2expF2

~m1!2

M2 G ,
~10!

1

2
@ÃOPE~M ,s0

2!2B̃ OPE~M ,s0
2!#5~l2!2expF2

~m2!2

M2 G ,
~11!

where

ÃOPE~M ,s0
1!5E

0

s0
1

dp0A
OPE~p0!expS 2

p0
2

M2D ,
B̃OPE~M ,s0

2!5E
0

s0
2

dp0B
OPE~p0!expS 2

p0
2

M2D .
The first sum rule is for the baryons with positive parity an
the second one is for negative-parity baryons. In these s
rules we allow the threshold to be different for each parit

There are three remarks. First, the imaginary part of o
correlation function is written as 1/2@ ImPT(p0)
1ImPR(p0)], where T and R stand for ‘‘time-ordered’’ and
‘‘retarded’’ functions, respectively. The real parts of time
ordered and retarded functions are the same, but the sig
negative-energy part in their imaginary part is different. It
due to this difference that the time-ordered correlation fun
tions is nonanalytic and the retarded correlation function
analytic in complexp0 plane. Second, the retarded correl
tion function, indeed, is analytic on the upper half in com
plex p0 plane. But we cannot constructPR sum rule, since
the integral ofA(p0), which is an odd function ofp0, van-
ishes in the sum rules~10! and ~11!. At last, from ~10! and
~11!, we see that the termB causes the parity splitting.B is
not invariant under the chiral transformation. We, therefo
confirm that the chiral symmetry breaking gives the par
splitting of the baryon.
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IV. MASS OF THE NEGATIVE-PARITY NUCLEON

In this section we calculate the mass of the negativ
parity nucleonN2, and see that the mass is larger than th
of the positive-parity nucleonN1.

Using the current~12!, the theoretical OPE side of the
sum rules~8! and~9! up to dimension-six operators are give
by

ImAOPE~p0!5
512t15t2

210p4 p0
5u~p0!1

512t15t2

29p2 p0u~p0!

3K as

p
GGL 1

7t222t25

12
d~p0!^q̄q&2, ~12!

ImBOPE~p0!52
7t222t25

32p2 p0
2u~p0!^q̄q&1

3~ t221!

32p2 u~p0!

3^q̄gs•Gq&.

In these expressions we neglect the up-quark and do
quark masses. We allow to determinet so that the current
strongly couples to the negative-parity states and also req
that the contributions of higher dimension operators a
small in determiningt. In Fig. 1 are plotted thet dependen-
cies of the Borel-transformed Wilson coefficients of the o
erators up to dimension six for the nucleon at the Borel m
M51.5 GeV. Aroundt51 andt521, the correction terms
of OPE are small compared to the identity operator and
coefficients of the higher-dimensional operators would
small. In view of the convergence of OPE, sucht is good for
the sum rules.

In order to findt such that the current~2! couples to the
negative-parity state, we first apply the finite energy su
rule. It is simple to extract the hadron properties from t
finite energy sum rule because it contains no additional
rameters such as the Borel mass. The results, however
only qualitatively reliable, because they are usually contam
nated by higher resonance contributions. Concretely we c
struct three independent sum rules from Eqs.~8! and ~9!
choosing three weightsW(p0)51, p0, and (p0)

2. We deter-
mine the mass, the coupling, and the threshold of each pa

FIG. 1. Thet dependence of Borel-transformed power corre
tions divided by the Wilson coefficient of identity operator at th
Borel mass 1.5 GeV. The dot-dashed line is the ratio of the Wils
coefficients of^q̄q& and identity operator. The dashed line is fo
^q̄s•Gq&. The solid line is thê (q̄q)2&.
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nucleon by solving the three sum rule equations. Thet de-
pendence of the masses ofN1 andN2 are plotted in Fig. 2.
At t51, the masses ofN1 andN2 are the same because the
odd-dimensional operators (q̄q, q̄s•Gq) do not contribute
at t51 as long as we truncate OPE at dimension six. There
no solution forN2 aroundt521 although the convergence
of OPE would be good. This is because the coefficient of th
dimension-three operator (q̄q) is positive and large, so that
the current couples weakly to the negative-parity states.
one of the correlation functions ofN1 andN2 is enhanced
by the odd dimension operators, the other is suppressed,
cause the contributions from the odd dimension operato
have different signs forN1 andN2. Thus for the time being
we chooset50.8. We shall later study other choices oft
around 1.

The other input parameters are chosen as

K as

p
GGL 5~0.36 GeV!4,

^q̄q&5~20.25 GeV!3,

^~ q̄q!2&51.25̂ q̄q&2,

^q̄s•Gq&5~1.0 GeV!2^q̄q&,

mu5md50.

These values are chosen so that the sum rule reproduces
observed mass ofN1. 940 MeV. We note that the vacuum
saturation hypothesis that can only be justified in the larg
Nc limit is not appropriate for the nucleon sum rule@7#.
Indeed, we takê(q̄q)2&51.25̂ q̄q&2, that is, 25% enhance-
ment of the four-quark condensate than that with th
vacuum saturation hypothesis. We also note that th
ratio of ^q̄s•Gq& to ^q̄q&, frequently defined as
m0

25^q̄s•Gq&/^q̄q&, is consistent with the standard value
m0
250.521.0(GeV)2 @8,4#.

c-
e
on
r

FIG. 2. Masses of negative- and positive-parity nucleons in th
finite energy sum rule. The sum rule has no~realistic! solution
where no dot is plotted. Att51 theN1 andN2 have the same
mass. TheN1 has no solution att.1.1 andN2 has no solution at
t,0.



ve

e

-

s

-

t

e

,

.

l

54 4535NEGATIVE-PARITY NUCLEON RESONANCE IN THE . . .
We now calculate the mass ofN2 in the Borel sum rule.
We have three parameters, the mass, the coupling, and
threshold. Usually, one sets up a window in which the QC
sum rules would be effective, and then fits the parameters
that they are stabilized with respect to the Borel mass in t
window. It is, however, known that the results are sensiti
to the choice of the window, and therefore have significa
ambiguity. Instead, we use the following method to fix th
parameters. If we choose three arbitrary Borel masses,
can determine, in principle, three parameters from the cor
sponding sum rules assuming that those parameters sh
be independent of the Borel mass. This method should wo
if OPE could be summed up to all orders. In practice, how
ever, we can calculate only a few terms of OPE and, the
fore, parameters obtained from the sum rule depend on
Borel masses. In order to see sensitivity of the parameters
the Borel mass, we select three successive Borel mas
each separated byDM50.1 GeV and solve three parameter
from the three sum rules. We label the obtained paramet
by the center of these Borel masses.

Iterating this procedure, we get the Borel mass depe
dence of the masses ofN1 andN2, plotted in Fig. 3. Both
masses are almost independent of the Borel mass. Our s
rule gains extra stability due to the integral measure. T
integral measuredp0

2 in the standard sum rule is 2p0dp0 in
ours, which adds ap0 enhancement of the continuum term
and makes the pole contribution to the sum rule weaker.
fixing the QCD parameters so as to give theN1 mass; 940
MeV we predict theN2 mass about 1550 MeV. The ob-
servedN2 mass is 1535 MeV with the width of 150 MeV
6 15 MeV @9# and our prediction agrees very well. Note tha
theN12N2 mass difference is caused by the terms of th
odd dimension condensates (^q̄q&, ^q̄s•Gq&). Thus, one
might say that QCD choosesN1 as the ground state by set
ting ^q̄q&,0.

We check the dependence of the results onDM andt. We
calculate the masses ofN1 andN2 with DM5 0.05, 0.2,
and 0.5 GeV in the same way. Although at aroundM51.5
GeV the mass obtained from each sum rule is different fro
the others by a few percent, the masses are stabilized ab
M52.5 GeV and each sum rule gives the same result.
order to study thet dependence, we calculate the nucleo
masses with other choices oft5 0.9, 1.05, and 1.1. For each
t we adjust the QCD parameters so that theN1 mass is
reproduced. Fort50.9 theN2 mass is about 1.4 GeV, and
the mass difference ofN1 and N2 becomes smaller for

FIG. 3. Masses ofN1 andN2 plotted withDM50.1 GeV.
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t50.8. This is because the contribution from the odd-
dimensional operators is larger for largert. We are interested
in the caset.1 because in this region the dimension 3, 5,
and 6 operators have the opposite sign to those fort,1.
Then the mass ofN2 could be smaller than that ofN1. But
we find that fort5 1.05 and 1.1 theN2 sum rule has no
solution when the QCD parameters are adjusted so as to gi
the mass ofN1. The current witht.1 seems not to couple
with the negative-parity nucleon.

V. ROLES OF THE CHIRAL SYMMETRY BREAKING

As we see in Sec. III, the difference of the masses of th
positive-parity baryon and the negative-parity baryon is
caused by the chirally odd termB in Eq. ~7!. In this section,
we study how the terms breaking the chiral symmetry deter
mine the parity splitting.

In the correlation function of the nucleon Eq.~12! the
chiral symmetry is broken by the vacuum expectation value
of the operatorsq̄q,q̄s•Gq and a part ofq̄qq̄q. The first two
are split into two chiral terms,

^q̄q&5^q̄LqR&1^q̄RqL&, ~13!

^q̄s•Gq&5^q̄Ls•GqR&1^q̄Rs•GqL&, ~14!

and each term breaks the chiral symmetry. The vacuum ex
pectation value of the four-quark operatorq̄qq̄q in the
nucleon can be written as a sum of three terms with differen
chiral properties:

~7t222t25!^q̄qq̄q&5~ t222t11!4^q̄LqR&^q̄RqL&

26~12t2! 2~^q̄LqR&21^q̄RqL&
2!.

~15!

Note that we use the vacuum saturation hypothesis@1# and
this formula is only for the nucleon sum rule. The first term
is the chiral symmetric term because the term breaks th
chiral symmetry twice and the net chirality is preserved. In
the second term the chirality is broken. With our choice of
t50.8, Eq. ~15! breaks the chiral symmetry strongly since
the chiral noninvariant term is dominant. If we choose
t521, the term-breaking chiral symmetry vanishes. So the
^q̄qq̄q& term for the Ioffe’s current (t521) is invariant
under the chiral symmetry.

In order to see the effect of the chiral symmetry breaking
we vary ^q̄q& and study its effects.̂q̄s•Gq& is assumed to
be proportional tô q̄q& and therefore is varied together with
^q̄q&. As Eq. ~15! ^q̄qq̄q& is reduced to the square of^q̄q&
and we vary only the terms breaking the chiral symmetry
We define the ratioR of ^q̄q& to its standard valuêq̄q&0,
R5^q̄q&/^q̄q&0, and choose seven values of
R50.3,0.5,0.8,1.0,1.2,1.5,2.0.

In Fig. 4 are plotted the masses of nucleons with positive
and negative parity. One sees that the masses of bothN1 and
N2 go towards zero when the ratioR goes to zero. Although
we cannot confirm that theN1 andN2 masses go to zero at
R→0, they should be degenerate because the chira
symmetry-breaking termB vanishes. Both of theN1 and
N2 masses grow for largeR and become degenerate, but
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R-dependent behaviors are different. It should be noted t
the behavior of theN1 mass is different from the Ioffe’s
formula @3#

m15@22~2p!2^q̄q&#1/3. ~16!

The reason why theN1 andN2 masses at largeR be-
come degenerate is as follows. Both masses grow with
creasingR and the thresholds are simultaneously enhanc
The enhancement of the threshold makes the bare loop t
dominant over the others. The correlation functions ofN1

andN2 become similar since the bare loop term contribut
to the correlation functions with the same sign, and theref
the masses tend to be degenerate. Behaviors of theN1 and
N2 masses vsR can be explained by realizing that th

FIG. 4. Masses ofN1 and N2 at M52.5 GeV for various
values of the quark condensate.R is the ratio of̂ q̄q& to its standard
value ^q̄q&0. The solid line is the Ioffe’s formula~16!.
hat

in-
ed.
erm

es
ore

e

^q̄q&2 term ~dimension six! enhances the baryon masse
This is related to the sign of^q̄q&2 term, that is negative for
both theN1 and N2 sum rules. Thus thêq̄q&2 term is
suppressed whenR grows and the sum rule tends to increa
s0

6 to compensate its effect. As a result, the baryon ma
increases. On the other hand, theB term
(^q̄q&1^q̄s•Gq&) contributes with different signs toN1

and N2. For N1, it tends to suppress the mass increa
around 0.3<R<1.0, whileN2 mass is enhanced there. Thu
theN1 mass grows slowly in comparison with theN2 mass.

VI. SUMMARY

The interpolating current for the octet baryons coupl
also to the negative-parity baryons. We separate the con
bution of the negative-parity baryon from the sum rule f
the positive-parity baryon. Using the particular correlatio
function ~1!, we construct the sum rule for the negative
parity baryons in thep0 complex plane.

We apply the formulation to the masses ofN2. We obtain
the Borel mass stability in a wide region for both theN1 and
N2 masses. We find that the negative^q̄q& condensate gives
a heavierN2 mass thanN1 mass. We find that the curren
12 with t.0.8 couples strongly to the negative-parity stat

In order to see the roles of the chiral breaking to the par
splitting, we study the behavior of theN1 andN2 masses by
varying the quark condensate. The smaller the quark cond
sate we use, the smaller the masses are, and theN1 and
N2 masses are degenerate when the quark condensate
ishes. At a larger quark condensate the masses are also
generate, since the dimension-six operator plays the do
nant role there.
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