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Negative-parity nucleon resonance in the QCD sum rule
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The negative-parity baryons are studied by a novel approach in the QCD sum rule. It is found that the parity
of the ground-state nucleon is determined by the sign of the quark condensate. We predict the mass of the
negative-parity nucleorS0556-282(96)01719-5

PACS numbdps): 11.55.Hx, 14.20.Gk

[. INTRODUCTION Borel stability in the prediction of the negative-parity
nucleon mass and, therefore, the results are only qualitative.
The QCD sum rule, proposed by Shifman, Vainshtein, In Sec. Il, we study the relation between the positive- and
and Zakharo\ 1], connects hadron properties and QCD pa-negative-parity baryons in the sum rule. We point out that
rameters[2]. The correlation function of an interpolating the sum rule for the positive-parity baryon contains the con-
field for a hadron is expressed in two way$) the operator tribution of the negative-parity baryons. We propose a tech-
product expansiofOPBE side, in which the correlation func- nique to separate the contribution of the negative-parity
tion is calculated perturbatively at deep Euclidean momenbaryons from the sum rule in Sec. Ill. In Sec. IV, we apply
tum with the help of the operator product expansion, @)d our formulation to the negative-parity nucleon resonance,
phenomenological side, expressed in terms of a hadron speand calculate its mass. We study thdependencgEqg. (2)]
tral function in the physical region. Using the analyticity of of the sum rule in detail. We find that the sign of the quark
the correlation function the two expressions are connected inondensate determines the order of the parity doublet. In Sec.
an integral form, which is the sum rule. The time-orderedV, roles of the chiral symmetry-breaking quark condensates
correlation function is usually employed, but in this paper forare studied in the masses of the positive- and negative-parity
a technical reason we use the “old-fashioned” correlationnucleons. We study the behavior of the masses when the
function defined by guark condensates are varied. A summary is given in Sec.
VI.

H(p):if d*xeP*6(x)(0]I(x)J(0)|0), D IIl. NEGATIVE-PARITY BARYONS
IN THE QCD SUM RULE

where J(x) is a local operator which annihilates a hadron A paryon current studied in the QCD sum rule is com-
and is called an interpolation current. posed of three quark fields, and it couples to the states with
The QCD sum rule is applied to baryons by loff84].  the same quantum number as the current. In the mesonic
For the octet baryons two independent currents which concase, the parity of the meson that couples to the current is
tain no derivative are available. The general expression ofjirectly connected to the parity of the current. That is, the

the nucleon current if5] parity of the meson coincides with the parity of the bilinear
form ql'g. For instance, the current for the* meson is
INX) = eapd [Ua(X) Cdy(X) ][ y5Uc(X)]* dy,u, while the current fora; meson, which is the chiral
@ artner ofp, isd u. It may seem that the QCD sum rule
+t[Ua(x) Cy5dy(x) JUZ(x)}, @ P . 15y, yal. It may Q

for a negative-parity baryon is similarly given by the current
J_=iysJ,. as an interpolating field because multiplying
where u(x) and d(x) are field operators of up and down iys to J, changes the “parity” ofJ,, wherelJ, is the
quarks,C is the charge conjugation operator, ambc are  current for the corresponding positive-parity baryon, such as
color indicesJy (@=1,2,3,4) forms a Dirac spinor. A com- J in Eq. (2). Note that bothJ, and J_ are Dirac(four-
monly used current assumes-—1 in Eqg. (2), which is  componentspinors.

called “loffe’s current.” It is optimal for the lowest-lying Suppose that the correlation function bf is given by
nucleon [5], i.e., it couples strongly to the lowest-lying
nucleon state. Because, as we shall see later, the current for IL, (p)=p,y*I11(p?) +5(p?), (3)

baryons couples also to the negative-parity bary6éhsother

choices oft enable us to study the negative-parity baryonsthen the correlation function af_ can be written as

In this paper, we extract the mass of the negative-parity

nucleon from the sum rule with the nucleon current by H,(p)=—)/5H+(p)y5=pMy“Hl(pz)—Hz(pz). 4
choosingt so that the current strongly couples to the

negative-parity nucleon. A similar study has been done bylhe difference betweed, andJ_ appears only in the sign
the authors of Ref.6]. They, however, used the current that in front of IT,(p?). That is, the same functiorid,(p?) and
contains an operator with a derivative. They did not find all,(p?) appear inll, (p) andIl_(p). Because we construct
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the sum rules separately bk, (p) andII,(p), we do not get analytic inp? space. Instead, a sum rule can be written in the
any independent sum rule frodn . complexpg plane because the correlation functidnis ana-

In fact, the information about the negative-parity baryonslytic in the upper-half region of the compleg, plane.
is already inII,(p) since J, couples not only to the The theoretical side is given by the operator product
positive-parity baryons but also to the negative-parity bary-expansion, which is valid at high energy, i.e.,
ons[6]. It is easy to see this from IT°PH po=Q)=I1""{p,=Q) at large|Q|. Using the analy-

L — o ticity we obtain independent sum rules
(0]34[B7)(B7[J:]0)=—5(0[J-[B")}B IJ-|0>75,(5)

Q
. . . j [A°PE pg) — AP pg) IW(po)dpo=0, )
where|B~) denotes a single baryon state with negative par- 0

ity. J_ couples to the positive-parity states in the same way.

To see concretely how the information of the negative- R op oh
parity baryons is included in the correlation function fo [B"S pg) — B Po) IW(po)dpo=0, 9
IT"(p), we express the time-ordered correlation function as

a sum of contributions from zero-width poles: . . . . L
P whereW(py) is an arbitrary analytic function which is real

, _ on the real axis. Note that we use the fact that the imaginary
HT(D)EiJ’ d*xeP (0| TJ.(x)J+(0)|0) part of the correlation vanishes in negativg
We use the Borel weightV(po) = exp(— po?/M?). We take
yﬂp/‘+m _Yupt—my the lowest mass pole and approximate others as continuum
—(m)? A pZ—(m; )2’ (6)  whose behavior above a thresheffis same as the theoreti-
cal side. Then we obtain two sum rules

=2 |\

wherem. is the mass of thath resonance anil, is the

coupling strength of the current to the resonance. Note that 1 _~ (m*)?
the only difference in the positive-parity part and the Z[AOPE(M So HB (M, sg)]=(\")%exg — M2 |’
negative-parity part is the sign of the mass terms. When we ) (10)
are interested in the lowest-lying baryon with positive parity,

we regard excited states as a part of “continuum” contribu- 1 _ [ (m™)?]
tion. Then the terms from the negative-parity baryons cannot 5[A°"5M,s; ) — BOPEM,s;)]1=(\")%ex — Mz |
be directly seen. In the next section, we propose a formula- . (11)

tion for separating the negative-parity contribution from the
sum rule. where
I1l. SUM RULE FOR THE NEGATIVE-PARITY BARYON

2
AOP +y_ | S0 oP _ro
To separate the terms of negative-parity baryons from A E(M'SO)_L dpoA E(po)exp< W)
those of positive-parity baryons, we use the “old-fashioned”
correlation functior(1). In the zero-width resonance approxi-

2
mation, we write the imaginary part in the rest frapre 0 as BPEM,s;)= joso dpoB°PY Do)EXP< — %) _
2 Yot +

ImH(p0)=; ()2 2 (Po=my) The first sum rule is for the baryons with positive parity and
the second one is for negative-parity baryons. In these sum

%1 _ rules we allow the threshold to be different for each parity.
+(N\p) o(po—my) There are three remarks. First, the imaginary part of our

correlation  function is written as  J/BnII"(p,)
= YoA(Po) + B(po) () +1mIIR(py)], where T and R stand for “time-ordered” and

“retarded” functions, respectively. The real parts of time-
ordered and retarded functions are the same, but the sign of
1 negative-energy part in their imaginary part is different. It is
A(po) = _2 [()\;)25( Po— m§)+()\;)25(p0— my)], due to this difference that the time-ordered correlation func-
25 tions is nonanalytic and the retarded correlation function is

analytic in complexp, plane. Second, the retarded correla-
tion function, indeed, is analytic on the upper half in com-
plex p, plane. But we cannot construbt® sum rule, since
the integral ofA(py), which is an odd function op,, van-
One can see that the contributiorA(pg)+B(po) ishes in the sum rule€l0) and (11). At last, from (10) and
[A(po) —B(pp)] contains contributions only from the (11), we see that the terl@ causes the parity splittind® is
positive-parity(negative-parity states. not invariant under the chiral transformation. We, therefore,

We, however, can no longer construct sum rulepin  confirm that the chiral symmetry breaking gives the parity
space, since the “old-fashioned” correlation function is notsplitting of the baryon.

whereA(pg) andB(p,) are defined by

1
B(po) =52 [(\7)?0(Po=my) = (\;)28(po—my )]
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FIG. 1. Thet dependence of Borel-transformed power correc- .

tions divided by the Wilson coefficient of identity operator at the
Borel mass 1.5 GeV. The dot-dashed line is the ratio of the Wilson = FIG. 2. Masses of negative- and positive-parity nucleons in the
coefficients of(qq) and identity operator. The dashed line is for finite energy sum rule. The sum rule has realistio solution

(qo-Gq). The solid line is the(qq)?). where no dot is plotted. At=1 the N* and N~ have the same
mass. TheN™ has no solution at>1.1 andN~ has no solution at
IV. MASS OF THE NEGATIVE-PARITY NUCLEON t<0.

In this section we calculate the mass of the negative-

. _ ) nucleon by solving the three sum rule equations. Tlue-
parity nucleonN~, and see that the mass is larger than thabendence of the massesNf andN~ are plotted in Fig. 2.

i ; +
of the positive-parity nucleoh™ . At t=1, the masses df " andN~ are the same because the

Usinlg tge cgrrgnt(l%), éhe theoretical OPEt side of the 44 jimensional operatorg)q, qo-Gq) do not contribute
sum ruleg(8) and(9) up to dimension-six operators are given att=1 as long as we truncate OPE at dimension six. There is

by no solution forN™ aroundt= —1 although the convergence
2 2 of OPE would be good. This is because the coefficient of the
IMACP py) = ﬂ 59 + ﬂ 6(po) dimension-three operatoqq) is positive and large, so that
Po 2107 Pot(Po 292 Po (Po : )
™ ™ the current couples weakly to the negative-parity states. If
o 7t2-2t—5 one of the correlation functions ™" andN~ is enhanced
><<_SGG> + T,s( Po){(aa)?, (12) by the odd dimension operators, the other is suppressed, be-
™ cause the contributions from the odd dimension operators
2, (1) have different signs foN™ andN ™. Thus for the time being
7t°—2t-5 o 3(te-1 = i
oP __ 2 we chooset=0.8. We shall later study other choices tof
IMB P po) = — ——25—7—Pg #(Po){AA) + 352~ 0(P0)  zr5und 1.
_ The other input parameters are chosen as
X(qgo-Gaq).
In these expressions we neglect the up-quark and down- <%GG>:(O.36 GeV?,
guark masses. We allow to determiheo that the current 77

strongly couples to the negative-parity states and also require

that the contributions of higher dimension operators are (qg)=(-0.25 GeV®,
small in determining. In Fig. 1 are plotted thé dependen-

cies of the Borel-transformed Wilson coefficients of the op- ((@)Q: 1_25(@)2,
erators up to dimension six for the nucleon at the Borel mass

M=1.5 GeV. Around=1 andt= —1, the correction terms (qo-Gg)=(1.0 GeVi¥qq),

of OPE are small compared to the identity operator and the
coefficients of the higher-dimensional operators would be
small. In view of the convergence of OPE, suds good for

the sum rules.

In order to findt such that the currer®) couples to the These values are chosen so that the sum rule reproduces the
negative-parity state, we first apply the finite energy sunPbserved mass ¢i"= 940 MeV. We note that the vacuum
rule. It is simple to extract the hadron properties from thesaturation hypothesis that can only be justified in the large
finite energy sum rule because it contains no additional palNc limit is not appropriate for the nucleon sum rulg.
rameters such as the Borel mass. The results, however, aiRdeed, we také(qq)®)=1.25qq)?, that is, 25% enhance-
only qualitatively reliable, because they are usually contamiment of the four-quark condensate than that with the
nated by higher resonance contributions. Concretely we cor¥acuum saturation hypothesis. We also note that the
struct three independent sum rules from E(@.and (9) ratio of (qo-Gqg) to (qq), frequently defined as
choosing three weightd/(py) =1, po, and (o)2 We deter- mé={(qao-Ga)/(qq), is consistent with the standard value
mine the mass, the coupling, and the threshold of each pariu;n%=0.5— 1.0(GeVY [8,4].

m,=my=0.
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(GeV) t=0.8. This is because the contribution from the odd-
18 ; . . . dimensional operators is larger for largeiVe are interested
7., o . in the case>1 because in this region the dimension 3, 5,
7 R S e e ] and 6 operators have the opposite sign to thoset4ot .
gisf : Then the mass dfi~ could be smaller than that & *. But
§1.4 - . we find that fort= 1.05 and 1.1 theN™ sum rule has no
S13 L . solution when the QCD parameters are adjusted so as to give
2t . the mass ofN ™. The current witht>1 seems not to couple
11 . with the negative-parity nucleon.
1-°°°°?°ooo?oooo?ooooqoooo_

09 = . 25 s e 2 (GeV) V. ROLES OF THE CHIRAL SYMMETRY BREAKING

Borel Mass
As we see in Sec. lll, the difference of the masses of the
positive-parity baryon and the negative-parity baryon is
caused by the chirally odd terBiin Eq. (7). In this section,
We now calculate the mass bf” in the Borel sum rule. we study how the terms breaking the chiral symmetry deter-
We have three parameters, the mass, the coupling, and tineine the parity splitting.
threshold. Usually, one sets up a window in which the QCD In the correlation function of the nucleon E@L2) the
sum rules would be effective, and then fits the parameters schiral symmetry is broken by the vacuum expectation values
that they are stabilized with respect to the Borel mass in thef the operatorgiq,qo- Gq and a part ofiggqg. The first two
window. It is, however, known that the results are sensitiveare split into two chiral terms,
to the choice of the window, and therefore have significant

FIG. 3. Masses oN* andN~ plotted withAM=0.1 GeV.

ambiguity. Instead, we use the following method to fix the (qa)=(a.qr)+(araL). (13
parameters. If we choose three arbitrary Borel masses, we
can determine, in principle, three parameters from the corre- (qo-Ga)=(q 0-Gar)+{qro-Gq.), (19

sponding sum rules assuming that those parameters should
be independent of the Borel mass. This method should workind each term breaks the chiral symmetry. The vacuum ex-
if OPE could be summed up to all orders. In practice, how-pectation value of the four-quark operatqgqq in the
ever, we can calculate only a few terms of OPE and, thereaucleon can be written as a sum of three terms with different
fore, parameters obtained from the sum rule depend on thehiral properties:
Borel masses. In order to see sensitivity of the parameters to
the Borel mass, we select three successive Borel mass&gt?—2t—5)(qqqq) = (t>—2t+1)4(q,qr){qrq.)
each separated hyM =0.1 GeV and solve three parameters ) — o — 2
from the three sum rules. We label the obtained parameters —6(1—t) 2((a.ar)“+(drAL))-
by the center of these Borel masses. (15)

Iterating this procedure, we get the Borel mass depen-
dence of the masses dbf andN™, plotted in Fig. 3. Both  Note that we use the vacuum saturation hypothgkisand
masses are almost independent of the Borel mass. Our sutiis formula is only for the nucleon sum rule. The first term
rule gains extra stability due to the integral measure. Thés the chiral symmetric term because the term breaks the
integral measure pj in the standard sum rule ispgdpy in  chiral symmetry twice and the net chirality is preserved. In
ours, which adds @, enhancement of the continuum term, the second term the chirality is broken. With our choice of
and makes the pole contribution to the sum rule weaker. By=0.8, Eq.(15) breaks the chiral symmetry strongly since
fixing the QCD parameters so as to give thé mass~ 940 the chiral noninvariant term is dominant. If we choose
MeV we predict theN™ mass about 1550 MeV. The ob- t=—1, the term-breaking chiral symmetry vanishes. So the
servedN~ mass is 1535 MeV with the width of 150 MeV {(qqqq) term for the loffe’s current t=—1) is invariant
+ 15 MeV[9] and our prediction agrees very well. Note that under the chiral symmetry.
the N* —N~ mass difference is caused by the terms of the In order to see the effect of the chiral symmetry breaking,
odd dimension condensateéq@), (qo-Gaq)). Thus, one we vary(qq) and study its effectsqo-Gq) is assumed to
might say that QCD choos@¢' as the ground state by set- be proportional tqqq) and therefore is varied together with
ting (qq)<O. (qq). As Eq.(15) (qqqq) is reduced to the square ¢§q)

We check the dependence of the result\dh andt. We  and we vary only the terms breaking the chiral symmetry.
calculate the masses &f* and N~ with AM= 0.05, 0.2, We define the rati® of (qq) to its standard valuéqq)o,
and 0.5 GeV in the same way. Although at aroMd=1.5 R=(qq)/{qd),, and choose seven values of
GeV the mass obtained from each sum rule is different fronkR=0.3,0.5,0.8,1.0,1.2,1.5,2.0.
the others by a few percent, the masses are stabilized above In Fig. 4 are plotted the masses of nucleons with positive
M=2.5 GeV and each sum rule gives the same result. Imnd negative parity. One sees that the masses of\botand
order to study the dependence, we calculate the nucleonN™ go towards zero when the rat®dgoes to zero. Although
masses with other choices bt 0.9, 1.05, and 1.1. For each we cannot confirm that the* andN~ masses go to zero at
t we adjust the QCD parameters so that ¢ mass is R—0, they should be degenerate because the chiral
reproduced. Fot=0.9 theN™~ mass is about 1.4 GeV, and symmetry-breaking ternB vanishes. Both of the\™ and
the mass difference o™ and N~ becomes smaller for N~ masses grow for largR and become degenerate, but
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(GeV) (qq)? term (dimension six enhances the baryon masses.
2 . . . . This is related to the sign dijq)? term, that is negative for
both theN* and N~ sum rules. Thus th€qq)? term is
suppressed wheR grows and the sum rule tends to increase
s, to compensate its effect. As a result, the baryon mass
increases. On the other hand, theB term
({(qq)+{qo-Gq)) contributes with different signs tl*
and N™. For N", it tends to suppress the mass increase
around 0.3=R=<1.0, whileN™ mass is enhanced there. Thus
theN™ mass grows slowly in comparison with the® mass.

Nucleon Mass

0 0.5 1 1.5 2

R VI. SUMMARY

The interpolating current for the octet baryons couples
also to the negative-parity baryons. We separate the contri-
bution of the negative-parity baryon from the sum rule for
the positive-parity baryon. Using the particular correlation

R-dependent behaviors are different. It should be noted thz%mCtIon (1), we construct the sum rule for the negative-

i + . ) arity baryons in thep, complex plane.
ggfm?ﬁ:[a%mr of theN™ mass is different from the loffe’s We apply the formulation to the masses\of. We obtain

the Borel mass stability in a wide region for both té and
m* =[-2(2m)Xqq)]*2 (169 N masses. We find that the negatiieg)) condensate gives

a heavierN™ mass tharN™ mass. We find that the current

The reason why th&l™ and N~ masses at largR be- 12 witht=0.8 couples strongly to the negative-parity state.

come degenerate is as follows. Both masses grow with in- In order to see the roles of the chiral breaking to the parity
creasingR and the thresholds are simultaneously enhancedsplitting, we study the behavior of ti¢" andN~ masses by
The enhancement of the threshold makes the bare loop terwarying the quark condensate. The smaller the quark conden-
dominant over the others. The correlation functionsNof ~ sate we use, the smaller the masses are, andNthend
andN~ become similar since the bare loop term contributedN™ masses are degenerate when the quark condensate van-
to the correlation functions with the same sign, and thereforéshes. At a larger quark condensate the masses are also de-
the masses tend to be degenerate. Behaviors diithand  generate, since the dimension-six operator plays the domi-
N~ masses veR can be explained by realizing that the nant role there.

FIG. 4. Masses oN* and N~ at M=2.5 GeV for various
values of the quark condensakeis the ratio ofqq) to its standard
value(qq),. The solid line is the loffe’s formul&16).
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