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The model of induced quark currents being a kind of nonlocal extension of the bosonization procedure is
developed. The model is based on the hypothesis that the QCD vacuum is realized (aptihself-dual
homogeneous gluon field. We study manifestations of confinement and chiral symmetry breaking due to the
vacuum field in meson spectra and weak decay constants. It is shown that the confining properties of the
vacuum field, chiral symmetry breaking, and localization of a composite field at the center of masses of quarks
can explain the distinctive features of the meson spectrum: mass splitting between pseudoscalar and vector
mesons, Regge trajectories, the asymptotic mass formulas in the heavy quarklligit; 2mq for quarkonia
andMgq—mq for heavy-light mesons. Within the model, the chiral symmetry breaking due to the vacuum
field is a dominating factor in forming the masses and decay constants of light mesons, while confinement is
responsible for Regge trajectories, heavy quarkonia, and heavy-light mesons. With a minimal set of parameters
(quark masses, vacuum field strength, and the quark-gluon coupling cornistaritodel describes to within ten
percent inaccuracy the masses and weak decay constants of mesons from all qualitatively different regions of
the spectrum[S0556-282(196)03917-3

PACS numbd(s): 12.39~x, 11.10.Lm, 12.38.Aw, 14.40.Gx

I. INTRODUCTION bosonization and composite meson fields, although Flory ap-
S . o proached a statement of the problem cloddl}; The field
The underlining idea of this paper consists in the hypoynger consideration breaks the parity, rotational, and color
thesis that the QCD vacuum is realized by theti-)self-dual symmetries of the QCD Lagrangian. This is the first diffi-
homqgeneous gluon field. This vacuum gluon field Ieads_tq:u“y to be overcome. An averaging of all physical ampli-
two important physical consequences for nonperturbativg,des over the directions of the vacuum field, self-dual, and
quark dynamics: Quarks are confined in the sense that thgnti-self-dual configurations restores these symmetries in the
quark propagator has no poles corresponding to the fregatrix elements. Mathematical realization of this idea comes
physical particles, and the chiral symmetry is broken via arfrom instanton physic5], and is reduced to the division of
interaction of quark spin with the vacuum gluon field. the QCD functional integral into integrations over given
This spin-field interaction produces a zero madttes lowest  classical configurations and quantum fluctuations in the
Landau level in the spectrum of the operator background field6]. According to this concept there are no
i(9,—1gt?B% x,)v,, so that the quark condensate is non-observable directions of the vacuum field. The second diffi-

zero in the massless limit culty is that a self-consistent investigation of the problem of
composite fields implies that the vacuum field has to be

lim mq(ax)q(x))q&o. taken into account both in the quark and gluon propagators.

mg—0 Therefore, one has to deal with the bosonization of the non-

local four-fermion interaction. The bosonization of the one-

Both consequences were noticed by Leutwyldrlih He has  gluon exchange interaction was discussed in a series of pa-
also demonstrated that the@nti-)self-dual homogeneous pers[7].
gluon field is a stable configuration in contrast to the purely In [8] we have developed a method of bosonization suit-
chromomagnetic and chromoelectric fields2]. Strong in-  able for nonlocal interactions and have formulated the model
dications(not a rigorous progfthat this field could minimize of meson-meson interactions which incorporates the main
the effective potential of Euclidean QCD were obtained bynonperturbative effects produced by the gluon vacuum field
many authors in the beginning of the 1988=e[3,4] and under consideration: confinement and chiral symmetry
references therejinAlthough these studies do not prove the breaking. The effective quark-quark coupling is described in
existence of arfanti-)self-dual homogeneous gluon vacuum the model by the nonlocal four-quark interaction induced by
field, they underline the key role of the non-Abelian naturethe one-gluon exchange in the presence of #mti-)self-dual
of gluons in forming the nonzero vacuum field. Gluon homogeneous gluon vacuum field.
self-interaction is the point in which QCD differs from  The main features of the model are as follo\8$
QED cardinally. In this manner, it has been realized that the There are the quark confinement and chiral symmetry
(anti-)self-dual homogeneous field could apply to the basidreaking due to the vacuum field. The quark propagator, be-
properties of QCD: quark confinement and chiral symmetryjing an entire analytical function in the complex momentum
breaking. plane[1], has the standard local ultraviolet behavior in the

At that time the manifestations of this vacuum field in Euclidean region, and is modified essentially in the physical,
hadron phenomenology were not studied in terms of.e., Minkowski region.
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One-gluon exchange is decomposed into an infinite sunsame interaction has a crucial influence on the weak decays
of current-current interaction terms, in which the quark cur-of pion and kaon. These factors are qualitative and irrespec-
rents are nonlocal, colorless, and carry a complete set dive of the particular values of the model parameters.
quantum numbers including the orbital and radial ones. This Furthermore, the vacuum field produces three rigid as-
effective quark-quark interaction generates a superrenormaymptotic regimes for the spectrum of collective modes. The
izable perturbation expansion. spectra of radial and orbital excitations of light mesons are

The bosonization of the nonlocal four-quark interactioneduidistant for”>1 orn>1; i.e., they have Regge charac-
leads to ultraviolet finite effective meson theory. Mesons ard®- This is due to the specific form of nonlocality of the
treated as extended nonlocal objects. quark and gluon propagators_ determln_ed k_)y confining prop-

The model contains the minimal number of parameters?rt'es of the vacuum gluon field. Localization of the meson
the quark masses, quark-gluon coupling constant, and tHld at the center of masses of a quark system provides two
tension of the background gluon field. other asymptotic regimes. In the limit of an infinitely heavy

It was shown also that the spectrum of the radial andlua’k, the mass of quarkonium tends to be equal to the sum
orbital excitations is equidistant for sufficiently large angular®f the masses of constituent quarks, while the mass of a
momentum/ or radial quantum numben. In the heavy neavy-light meson approaches the mass of a heavy quark:
quark limit the mass of quarkonium tends to be equal to thd!ee—2Mo~Aqq, Mgg—=Mq+Aqq: The next-to-leading

sum of the masses of constituent quarks. termsA g andA o do not depend on the heavy quark mass.
In [8] the main attention was paid to the mathematicall N€ Same reasons provide the correct asymptotic behavior of

details of obtaining the nonlocal quark currents induced byh® weak decay constant for the heavy-light pseudoscalar
one-gluon exchange in the presence of the vacuum field arfesonsfp~1/mg. _
to formulation of the bosonization procedure based on these One can conclude that th@nti-)self-dual homogeneous
nonlocal currents. The motivation and connection of thePackground gluon field determines rather definitely the be-
model with QCD has been discussed as far as possible. THEVior of the masses and weak decay constants in all differ-
present paper concentrates on further development of tHgnt regions of the meson spectrum, and this behavior is quan-
model and on application to systematic calculations of thditatively consistent with experimental data. N
weak decay constants and masses of mesons from different T€chnically, these results are based on a decomposition of
regions of the spectrum: the light mesons and their exciteghe bilocal colorless quark currents into a series of nonlocal
states, heavy quarkonia, and heavy-light mesons. We exarflrents with complete set of quantum numbers: spin, iso-
ine manifestations of the quark confinement and chiral symSPin, radial, and orbital numbers. The tensor structure of
metry breaking due to the vacuum field in the spectrum ofhese nonlocal currents is represented by the irreducible ten-
mesonlike composite fields. This mechanism of symmetry0rs of the four-dimensional Euclidean rotational group,
breaking differs from the mechanism exploited in the stanWhile their radial part is determined by a specific form of
dard local Nambu—Jona-LasinidlJL) model, in which the ~gluon propagator in the external vacuum field. The method
symmetry is broken due to the four-quark interac{i®r11. of decomposition of the one-gluon exchange interaction into
It should be stressed that these two mechanisms do not cof-Series of nonlocal current-current interactions demonstrates
tradict each other, but should be considered as mutually adiow the form of the gluon propagator is reflected in the
ditional ones. The point is that NJL-type models eliminatequark-meson vertices and, after all, in the meson spectrum.
the gluon degrees of freedom and cannot provide a basis for This decomposition provides a new point of view on the
studying the physics produced by the gluon fielsth a  renormalization problem: The Feynman diagrams appearing
vacuum field and quantum fluctuationdhe pure effect of in €ach order of perturbation theory are ultraviolet finite due
symmetry breaking by the vacuum field is interesting in itselfto the nonlocality of the meson-quark interaction. _
and should be investigated separately. The next step consists The paper is organized as follows. In Sec. Il we review
in investigating the interplay of both mechanisms. A possi-the main points of the model with some modifications that
bility of this kind is discussed in the last section of the paperélate to choosing the point of the localization of the meson
The general result is that chiral symmetry breaking due tdi€ld and a description of the superfine structure of the spec-
the interaction of the quark spin with the vacuum field af-trum. These modifications reflect possibilities missefish
fects strongly the masses and weak decay constants of light Sec. Il we consider the masses of light mesons and their

mesons, while confinement is responsible for Regge trajec@Xcitations, heavy quarkonia, and heavy-light mesons, as
tories and heavy-heavy and heavy-light mesons. well as the weak decay constants. The basic approximations

With the minimal set of parameterégquark masses, Of the model and problems for further investigations are dis-
vacuum field strength, and one quark-gluon coupling confussed in the last section.
stan) the model describes all qualitatively different regions

of the meson spectrum to within 10% inaccuracy. The rea- Il. MODEL OF INDUCED NONLOCAL

sons driving this successful description can be easily recov- QUARK CURRENTS

ered. . . N .
The spin-field interaction leads to a splitting between the A Basic assumptions, approximations, and notation

masses of the pseudoscalar and vector mesong, ( The representation of the Euclidean generating functional
K-K*) and provides the smallness of the pion mass. Simulfor QCD, in which the gluon and ghost fields are integrated
taneously it excludes scalar mesons as the simplstates. out, serves as a starting point for many models of hadroni-
Within this model the scalar states appear in the superfinzation. Dyakonov and Petrov obtained this representation for
structure of the orbital excitations of vector mesons. Thethe case of a nontrivial vacuum gluon fig¢ll (see alsd6]):
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B,,=—B B, B =—B2%

NE =
Z:f do'vacf Dqu_exp{fd“xz qr(x) w " e -
f
: S B=2e,agBug= £ B
X (1, V,—me)ge(x) + 22 Ln}a (1) wr =3 EuvapPap™ = Buv,
n:

where N is the number of flavors corresponding to the whereB is the gauge-invariant tension of the vacuum field.
SU(Ng) flavor group and Since the chromomagnetid and chromoelectriE fields
relate to each other likiH== E, two spherical angles
g" 4 4 ey a, (¢, 6) define the direction of the field in Euclidean space. In
Ln:mJ dv;- - J dyni, (Ya) -, (Yn) the diagonal representation of=n?t?, an additional angle
¢ is needed to fix the direction of the field in color space:
XGoEU (Y1, alB),

" n=t3cog+1t8sing, 0=<é<2m.
i5)=20 A y,ta:(),
f The one-loop calculations and some nonperturbative esti-
R mations of the effective potential for the homogeneous gluon
Vuzaﬂ—itaB‘;. field argue(do not prove that the potential could have a
minimum at a nonzero value of the field tensiBs 0 (e.g.,
seg[1-3]). We will assume that the field under consideration
] o ) realizes a nonperturbative QCD vacuum and study the mani-
n-point gluon Green function in the external fief,. We  festations of this field in the spectrum of collective modes.
will investigate the mesonicg(g)-collective modes and con-  gince the effective potential is invariant under Euclidean ro-
sider Eq.(1) with the quark-quark interaction truncated up 10 tations and parity and gauge transformations, this vacuum
the termL should be degenerate with respect to the directions of the
field in color and Euclidean space and should be the same for
_ A anti-self-dual and self-dual configurations. According to this
Z:jd"vacj DgDaex fd4XZ qr(17.V.—mp)as(®)  argumentation, the fiel®, in Eq. (2) corresponds to the
tensionB minimizing the effective potential, and the mea-
suredo,c has the form

The functionGill',','_i” is the exact(up to the quark loops

Ne

2
2 d4xd4y,-;<x><;;g(x,y|B),-g(y)’_ "

1 T 2w 2w

Representationgl) and (2) imply that there exists some f do’vac:(‘]_T)Zfo dosmefo d‘PL d§2 )
vacuum (classical gluon field BE(x) which minimizes the -
effective action(or effective potential of the Euclidean
QCD. In the general case, the vacuum field depends on a sghere the sigrE. denotes averaging over the self-dual and
of parametero,,d, and the measuréo,,. averages all anti-self-dual configurations. To simplify calculations and to
physical amplitudes over a subset {f,,4, in respect to  clarify the technical side of the bosonization procedure in the
which the vacuum state is degeneréfer more details see presence of the background field, we will omit the integral
[8] and references thergin over £ in Eq. (3) and fix a particular vecton®= 6. In the

The quark-gluon interactions both in Ed4) and(2) are  fundamentalmatrix t®) and adjoint(matrix C8) representa-
local, and a decomposition over degreesgéfgenerates a tjons of SU,(3) one gets
renormalizable perturbation theory. It means that an appro-
priate regularization is implied in Eqél) and(2). This point
has to be stressed here, since our final technical aim is a 1 2 A A
transformation of the interaction term in E@), which gen- n=t8=dia4— = —> , B
erates a completely new superrenormalizable perturbation
expansion of the functional integré?).

Let us identify all ingredients of these general formulas 3
for the particular case of a homogeneofati-)self-dual ﬁ—C8=—3 _
vacuum field: 2 mp=PY 4 mye

B,(X)=0B,(X), B,(X)=B,.X,, . .
p=NB(X), - Bu(x)=By.X, Kss= — Kus= K= — Kg;=1, K2=diag0,0,0,1,1,1,1,0
n=n%2, n?=n2n?=1.
The rest of the elements of the matKkxare equal to zero. It
The constant tensd,,, satisfies the conditions is convenient to define the mass scAlg= \/3B:
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The term Qré)=aaﬁéaﬁ in Eq. (4) [the second line in

BupBpr=— ZK2A45,U«V’ Eq. (5)] describes the interaction of a quark spin with the
o 112 background field. One can see that this spin-field interaction
B,,B,,= —v?A*S,,, v=diag{§ 3 §) leads to the singularity fd; for m;— 0, which is a manifes-
3 tation of the zero modéthe lowest Landau levglof the

massless Dirac equation in the exterfahti-)self-dual ho-
mogeneous field. The mathematical point is that the spec-
_ _ o trum of the operatoty,d, is continuous, whereas the spec-
We would like to stress that averaging over directions of thetrum of the operatory,V ,(x) is discrete and the lowest

M

background field in color space should be incorporated '”t%lgennumber is equal to zero. Simple calculations give, for
the formalism, and its role should be analyzed. But first of,, —0,

all, we would like to go as far as possible with the formal—
ism, which is as simple as possible, and test how the tech- ﬁf(plB)=2e‘(pZ/2”A2>
nique proposed if8] works in the meson phenomenology.

1 1 _
E*‘H;z[p#m"'l()/fp)]

B. Quark and gluon propagators x| P — iz(yf ¥) |+ const, 6)
The quark propagato®(x,y|B) in Eq. (2) satisfies the
equation A and
iy, V,—m)Si(X,y|B)=—38(Xx—Y), .
(17T mOSOYIB)= =06 fim fim m(@ (0 (x+e))e
and can be written in the form £—0m;—0
Sf(x,y|B)=ei(Xéy)/sz(x—y|B)ei(X'§y)’2, =—lim lim m;TrH;(e|B)
e e—0 m;—0
iV, (2)y,+m;
Hi(2)= =53 —=8(2), 4) d4p _
V4(z)+m:;+(oB) :—f—4 lim m;TrH:(p|B)
oty (277) m;—0
Hi(plB)=5—~ f dre-patn 24 L f
(PIE)= T+t APuYn 4 .
1 2 i t B W )
+it—(7fp)} PitPro—Dom—5(vfy) 7|
A 1-t° 2 1-t Because of the spin-field interaction, the quark condensate is

(5) nonzero in the limit of vanishing quark mass. This indicates
that chiral symmetry is broken by the vacuum field in the
where 1 . limit m;—0 (see alsq1)). It will be clear below that just the
_- __f _ spin-field interaction gives rise to the splitting between the
P.= 2 (1xys), a= A’ (XBY)=X,Bpuny masses of the pseudoscalar and vector mesons and provides a
t8 smallness of pion mass.
PIN=Pufyrs T=7 328w Tupfpr= "0 In terms of the variable{=p,y, the propagator
. f(§|B) is an entire analytical function in the complé&x
The functionH; is the Fourier-transformeti;. The upper plane. There are no poles corresponding to the free quarks,
(lower) sign in the matrixP.. corresponds to the self-dual which is treated as the confinement of quarks. The following
(anti-self-dual field. asymptotic behavior takes place:

mi+¢ Mmi+y,p, .
_fgz = fpz if {—+o (p2ooe),

Hi(gB)— 2 L
O(exp{m>)=o(ex;1(sz2>) if {—*io (p?——x).

®

Equation(8) shows the standard local behavior of the ferm-  The functlonDab(x y|B) in representationi2) is the ex-
ion propagator in the Euclidean regiop’(—=), while inthe  act gluon propagator for pure gluodynamics in the presence
physical region > —) we see an exponential increase of the vacuum field?, . This function is unknown, and some
typical for nonlocal theorie¢for more details about the gen- approximation has to be introduced. For instance, the local
eral theory of nonlocal interactions of quantized fields sec?\I ab

JL  model corresponds to the choiceD},

[6,12]). Below, the absence of the poles and the exponential sab : L
increase will be referred to as the confinement properties of & 0 Ourd(X—Y)- Wa% go beyond this approximation and re-
propagator. place the functiorD (X, y|B) by the confined part
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D,.,(x.Y[B)= 3, K2 ®2D (x—y|A?)e B2, (9) IPAx,y) =M, T Bg, (y)
1 A?7? Lgi(x+ Ey)MPE el (xBy) _
2 _ _ f 1Y) Mg ds(X—§&pry)
D(z|A )——(Zw)zzzexp[ T } d
PN S
of the gluon propagator =q(x)M}; eV v i1 02g,, (x) = 3%(x,y),
G25(x,y|B)=D5(x,y|B) + R (x.y[B), 14
which is a solution of the equatioffor details se¢8]) whereVy;. is a linear combination of the left and right co-

5 . variant derivatives:
(V258,,+4iB,,)G,,(XY|B)=—5,,0(x—Yy).

Vit (X)=§(9+iB(X)) — & (9—1B(X)).
The Fourier transform of the functioR (z|A?) is an entire
analytical function in momentum space. It has local behavioiThese covariant derivatives indicate that the curr€isare
in the Euclidean region, but increases exponentially in thenonlocal and colorless. The interaction teftr0) takes the
physical region. This function describes the propagation oform
the confined modes of the gluon field. Other terRﬁ, )
which contain a contribution of the zero modes and an anti- L= g S ¢ J’ f dixdt 1
symmetric part, will be omitted. 2785y Y xAyyz

2,,2
C. Color singlet hilocal quark currents % exp{ _ A%y ]JbJ(X y)JbJ(y X) (15)

Substituting gluon propagat@t0) to the interaction term 4
in representation{2), using the Fierz transformation of the
color, flavor, and Dirac matrices, and keeping only the scal
J3S, pseudoscalad®®, vectorJ?V, and axial-vectod®” col-
orless currents, we arrive at the expresgi®h

where we have made use of the representd®nThe cur-
Afents are defined by E@14). Transformation13) turns out

to be crucial for a simultaneous description of the light-light,

heavy-light, and heavy-heavy mesons.

2
Lzz%% CJJ J d*xd*yJ*I(x,y)D(x—y|A%) Iy, x), D. Decomposition of bilocal currents
(10 The idea of our next step consists in a decomposition of
. the bilocal current$14) over some complete set of orthonor-
IPAx,y) =qr(x)M2, T B g, (), (11)  malized polynomials in such a way that the relative coordi-
nate of two quarks/ in Eq. (15 would be integrated out.
I'S=1, TP=iys, I'V= Vi A= Y5V One can see that a particular form of this set is determined by
the form of the gluon propagatpexp{—A2y?/4} in Eq. (15)].
Cs=Cp=3%, Cy=Cr=3%. The propagator plays the role of a weight function in the
orthogonality condition. The physical meaning of the decom-
Here MY, are the flavor-mixing matrices position consists in classifying the relative motion of two

(b=0,...N2—1) corresponding to the SBI) flavor quarks in the bilocal currents over a set of radiand an-

group. In the case of S@) and SU3) they are given by the gular/ quantum numbers. In other Wc_)rds, accprding to the
matrices7® and\°, respectively. general principles of quantum mechanics the bilocal currents

Because of the phase factor @(pABy)} bilocal quark have to be represented as a set of quark currents with definite
currents(11) are the scalars under the local gauge transforfadialn and angular” quantum numbers. Thus, we are look-

mations ing for a decomposition of the form
q(x)—e"*Mq(x), q(x)—aq(x)e'“™, Jb‘](x,y):; (Y2 P L N, (), (16)
- A i .
—iw(X) io(X) 1 _ a—io(X) i w(X)
B,—e B.e + 3 e d,e“. (12 f,/LT...M/(Y):Ln/(yz)TL/l)»--ﬂ/(”y)v ny=y/\/7.

Let us transform integration variablgsandy in Eq.(10) to  The angular part of " is given by the irreducible tensors of

the coordinate system corresponding to the center of mass@$e four-dimensional rotational QVOUFL/)...M . which are
of quarksg;(x) andqs/(y): 1R

orthogonal,
v Eoy, Em i, = d
X=X+ &y, y—=Xx=§&py, &= y o €= . ! (k)
mf+mf, mf‘f'ngié) fS)ﬁTﬂl"'”/(ny)Tvl"'Vk(ny)
The corresponding transformation of the quark currents _ 1 /K
looks as 27 (/+l)5 5;L1V1 5M/v/- 17
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and satisfy the conditions

()
T,u1~~~,u~~~V~~~ (ny) Tﬂl"'V"'M"'lL/(ny)’
() _
T'u,..,u...,u/(ny)_oi
TV TV 71 c 18)
pp ATy u/(ny) 27~/ (nyny). (

The measur@w in Eq. (17) relates to integration over the

angles of unit vecton,, andC!) in Eq. (18) are the Gegen-
bauer's (ultrasphericgl polynomials. The polynomials
L,,(u) obey the condition

fomdUp/(u)Ln/(U)Ln//(U)Z Snn -

The weight functiorp (u) arising from the exponential term
in Eq. (15) looks like

puy=u’e"";

hence L, (u) are the generalized Laguerre’s polynomials.
the currents gular momentg=/—1,,/+1. The indexa relates to the

The details of the calculation of
jfff,“_ﬂ/(x) in Eq. (16) can be found i 8]. As a result, the

interaction ternL, takes the form

BURDANOV, EFIMOV, NEDELKO, AND SOLUNIN

oy, 0=a00VeXT . (x)d(x), (20

V(x)
bJ/n bJ/n
Vig o 0=V (T)

swers| e | T (270

(21)

1
Fn (4s)=s" f . dtt” Tnest, (22)

The double curly brackets in E€R1) mean that the covariant
derivatives commute inside these brackets. The form factors
F./(s) are entire analytical functions in the compleplane,
which is a manifestation of the gluon confinement.

The classification of the currents will be complete if we
will decompose75." ., with J=V,A and />0 into the

sum of orthogonal currentéjjfr.”:_ with different total an-
1My

matricesI" Y=y, andT"2= ysv, in Eq. (21). This decompo-
sition can be arranged by the division

1 GJ/n)ZJ /41
_= ' dx[ 27" (x)13, Y ' /nj
257\ A farerbes .72,#?...”/=j:;_1 whg gy (23
G3,,=C 7—(/“) 19
3n=Cog? nl(/+n)’ 19 here
( Vv
n =/
mpamm#/[ Bapy Tpppy w1 1=/~ 1,
J/ _ J/ ¥ Z
Zg#lm - /—l—lE [jb :“in"'#. it /_jzivg'”ﬂi—lﬂiu”'ﬂ/]’ =7 (24
1
J/n _ J/n i g
(/+1 Pany---n| Jovig -1, /+1 ““1‘7bpﬂz | A=OFL

The symbotP,,, ...,
tion of the indices &uq- - - p,). Let sy be defined as

Sp=585=0, Sy=5Sa=1;

then, using the orthogonality of the currents with different

j, we can rewrite interaction terin, as

/+s;

L:
2 a;nj ;slz-/\

where we have introduced the notation

S f d*X[ 72 "(x) 71,

in Eq. (24) denotes a cyclic permuta-

00— P00 for J=V,A, /=0,

IbJ/”/ jby” ., for J=S,P./=0.

This form is equivalent to Eq.10), but now the interaction
between quarks is expressed in terms of the nonlocal quark
currents, which are elementary currents of the system in the
sense of the classification over quantum numbers.

For large Euclidean momentum the vertia&9” " behave
as 1/p%)*"72. Therefore, only the “bubble” diagrams,
shown in Fig. 1, are divergent. These divergences can be
removed by counterterms of the form2Z(x)TrvVS.

To avoid an unnecessary complication of notation, it is
convenient to introduce the condensed indéenumerating



54 MESON MASSES WITHIN THE MODEL OF INDUCED ...

"
/.\

FIG. 1. Divergent bubble diagram.

the currents with all different combinations of the quantum
numbersa, J, 7/, n, andj. The renormalized vacuum ampli-

tude Z takes the form
zzf dovacf Dqu_EXp[—f fd‘*xd“yax)s*(x,yls)
1
><q(y)+% Weﬁf d“x[IN(x)—TrVNS]Z]. (25

E. Bosonization

By means of the standard bosonization proced@r&Q]

applied to Eq.(25) the amplitudeZ can be represented in

terms of the composite meson fields, [8]:
1 2
Z=NJ 1;; D®d ex EJ f d*xd*y® \(x)[ (00— M3)

><5<x—y>—hva§Ax—y>]wy>+lim[cb]}, (26)

1
== 5 | 4% | @@ k)
— S T(X1 = X2) | P pr(X2)

1
_mz:a Ej d4X1' .. f d4xm

m

Xkljl M @ (K0T (X1 Xi),

FN1~ NG T f deacTr{VNl(Xl)
X S(X1,%2|B) - - - Vyr (Xm) S(Xm,X1|B)}.

The meson masséd ,, are defined by the equations

G\ %~ )
1+ T) Im(—M)=0, (27)

whe@ﬁj\,(— M32) is the diagonal part of the two-point func- > - < -
tion I'y;\» , Which corresponds to the diagram shown in Fig.
2(a). The fields® ,, (N={a,J,7,n,j}) with j>0 satisfy the

on-shell condition
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FIG. 2. Diagrams describing different processes in effective
nonlocal meson theory in the lowegmne-loop order.

momentumj plays the role of an observable spin of the state
with a givenN={b,J,/,n,j}.
The constants

hy= I —M3) (28)

play the role of the effective coupling constants of the
meson-quark interaction.

The quark masses;, the scaleA (strength of the back-
ground field, and the quark-gluon coupling constaptare
the free parameters of the effective meson thé@6y—(28).

In the one-loop approximation, the interactions between
mesons with given quantum numbeté={b,J,/,n,j} are
described by quark loops like the diagram in Figh)2 Be-
cause of the nonlocality of meson-quark vertices, the quark
loops are ultraviolet finite. The whole diagram is averaged
by integration over the measuder, ;..

Figure 3 illustrates the central idea of the method of in-
duced nonlocal currents, which has been realized in this sec-
tion. An effective four-quark interaction is represented as an
infinite series of interactions between the nonlocal quark cur-
rents characterized by the complete set of quantum numbers
{b,J,7,n,j}. The form of the currents is induced by a par-
ticular form of the gluon propagator. This new representation
of the four-quark interaction generates an expansion of any
amplitude into a series of partial amplitudes with a particular
value of the quantum numbers. Each partial amplitude is
ultraviolet finite at any order of expansion over degrees of
the coupling constany. The composite meson fields in Eq.
(26) are nothing else but “elementary” collective excita-
tions, which are classified according to the complete set of
guantum numbers of the relativistic two-quark system.

It should be stressed that the mod26) satisfies all de-
mands of the general theory of nonlocal interactions of quan-
tum fields[12], which means that Eq26) defines a nonlo-
cal, relativistic, unitary, and ultraviolet finite quark model of
meson-meson interactions.

aJing

T >.<

aJlny

Gluon propagator in the vacuum field

Local quark current > Nonlocal quark currents

which excludes all extra degrees of freedom of the field, so

that the numberg” andj can be treated as the(®) orbital
momentum and total momentum, respectivigdy. The total

FIG. 3. The decomposition of the four-quark interaction.
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Now we would like to test how this formalism works in quantities. Below, we will sometimes use the symbol of a
the meson phenomenology. given meson instead of the corresponding set of quantum
numbergfor example,s instead of (32,0,0;0)].
Four equations for the masses of the basic mesons can be
l1l. MESON SPECTRUM AND WEAK DECAY CONSTANTS written in the form

Let us rewrite Eq(27) in a more detailed form zﬁﬂ(_ Mi-;mu ,my ;A):ﬁp(— Mz;mu my;A), (32

A2+G§/nﬁm/nj(_ Mb s njiMe.mesA)=0.  (29) ~ , - )
_ 211 (—Micsmg,my; A) =TI« (—My;mg,my;A), (33
The functionlly;,,; in Eq.(29) is given by the diagonal part
of the tensor(in the momentum representatjon Zﬁﬂ(— M2 :mym, ;A)=ﬁK(— MZ:m,myiA), (34
M, L (x=y;mg,me;A)

g%=—9AYIL,(—M2;m,,m,;A). (35

~ [ ot Vim0 sy 1BV ) Sty .
! ' If M, M,, M, and My are taken to be equal to the

(30 experimental values, then the massgsandms of theu and
Relation(29) is the master equation for meson masses. Thé quarks as functions ok are defined by Eqs32) and(33).
function II can be calculated using the representatighs USIng My(A) andmgy(A) in Eq. (34), we find the value of
and(5) for the quark propagator and E@Q1) for the vertices. A, Which provides a simultaneous description of the strange
The only point that requires a comment is an averaging ovefnd nonstrange mesons. An optimal value of the coupling
the space directions of the vacuum field. Actually we have tFonstantg is calculated by means of E(35). By this way
average the tensofs,,,, f,,,f,s, and so on. The generating We arrive at the values
formula looks as

m,=198.28 MeV, m¢=412.96 MeV,

1 27 T
<eXF’(ifWJw)>:EJO d(pJO dé@sindexp(if ,,J,,,)

A=319.46 MeV, g=9.96. (36)
sin\/Z(JWJWiJWJW) Solution (36) is unique.
- \/2 J 3 +3 3 J It is well known that there should be a special reason
™ Jundpiv) which provides a small pion mass and splits the masses of

pseudoscalar and vector mesons. Breaking of chiral symme-
try due to the four-quark interaction and two independent
coupling constants for pseudoscalar and vector mesgps (
#(gy instead of our parameteay) plays the role of a such
reason in the local NJL model. As has already been pointed
(f)=0, out, the interaction of quark spin with the vacuum field leads
to the singular behavior of the quark propagator in the mass-
1 less limit and generates a nonzero quark condensate, which
(fufap)= 5(5%53; OarOsuT Eapuv)- (8D indicates breaking of chiral symmetry by the vacuum gluon
field. Now let us illustrate that in our case the same spin-field
) interaction is responsible for a small pion mass and for the
A. Light pseudoscalar and vector mesons mass splitting betweeR andV mesons.
First of all, let us fit the free parameters of the model, The polarization functiodl; (=0, n=0, J=P,V) can
taking the masses af, p, K, andK* mesons as the basic be represented in the form

whereg and ¢ are spherical angled,,, is an antisymmetric
tensor,J,,, is a dual tensor, and: corresponds to the self-
dual and anti-self-dual vacuum field. In particular this gen-
eral representation gives

_ , A2 1 1 1 1 1-s, mZ/ay A2 1-s, m?, l4v A
HJ(_M ,mf,mfr,A):_mTrvfodtlfodtzfodslfodSZ 1+Sl 1+SZ
X{Mz FO(t1,t5,5,,8,) mymy F(s1,8,) +2v(1—4v2t1t2>F<;><s1,s2>
A% Di(t3,t5,5,,5) A? (1-89)(1—s2)D2(1y,15,5;,5,) ®3(ty,t5,51,5,)

M2
Xexpl’ m(p(tlatzysl!SZ)]! (37)
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where [see the second line of E€p)], is accumulated in the term of

Eq. (37) proportional to the quark masses. Other terms are
_ D4(t1,15,51,Sp) (38) free from this singularity, although the spin-field interaction
Dy(t1,t5,51,S) " contributes to them. This is due to the structure of the trace

of the Dirac matrices.

D1 =20(t;+1,)[$162+ 5,851+ 5,5,[ 1+ 4v 2t to(£1— £5)?], Let us compare behavior of pion apdmeson polariza-
tion functions in the limit

D,=20(t;+1,)(1+5;S,) +(1+ 402t t,)(S,+Sy),

= P = <A.
FiP = (14580 [AAr+4v2(t1— 1) 261 £,8:S5], My =my =m,<A

1 Using the singularity of the integrand in E(B7) ats;—1
F(1V):§[(3_5152)A1A2 ands,— 1, one can check that the pion polarization function
is singular in this limit and behaves as1f/
+40%(t—15)%61£,515(1-35;5,) ],

. 4p°A% (11 dtdt
Ar=[1— 4023ty (&— &) ]s1+20(t + 1) &y, I(—MZm,,m,;A)=—Tr, v ffq) 12
0oJo

i, 2(t1,t2, 1,
Ao=[1+4v%t1tp(é1— €2 ]S+ 20t Hp) én, ’
X ——d(t,,15,,1,2) ¢ + L.
FP=(1+s15,)% FY'=1-sis3, (39) eXp[szz (tz.tz, 1.1+ cons
(40)

FP'=2(1+s;s,), FY'=1-ss,.

Equations (37)—(39) show that the singularity On the contrary, thep-meson polarization is regular at
(1—s;) " }1-s,) "%, arising from the spin-field interaction m,=0 and looks like

|
i 2. A AZ ld 1d 1d 1d M? @ M2 FM(ty,t5,51,5))
p(—l\/l ;my,my; )__WT“L tlJ’O tzfo Slfo Sy| ex 2uAZ (t1,t2,51,87) Pm

20(1—4v2t,t,)FY(sy,8,) M
N 1t2 3 1,92 +ex 2(D(t1|t218111)

+0(my). (41

v
D3(ty,t5,51,52) 2vA d5(ty,t5,51,1)

This difference appears owing to the factﬁg) andF(zv) in  positive for a wide range of parameter values. As a result,

Eg. (39 and leads to the inequality Ed. (29) has no real solutions for the case of scalar mesons.
It looks interesting that the scalaqq) bound states do not
|ﬁ (—MZm,,m 'A)|>|ﬁ (=MZm,,m,;A)| appear due to the same spin-field interaction that diminishes
T 1 u? u:? p 3 u:? u:?

the pion mass and provides a nonzero quark condensate.
Consideration of the SE{3) singlet and the eighth octet

e . 2 2 states shows an ideal mixing both for vector and pseudosca-
satisfying Eq.(29), are strongly split andv,>M- if the lar mesons. The masses af and ¢, calculated with the

guark mass goes to zero. A similar picture takes place fof)arameter values6), are
K andK* mesons, but since the strange quark mass is not so '
small, the effect is more smooth.

The above consideration is illustrated in Table Il. The M,=M,=770 MeV, M,=1034 MeV,
pion mass is much larger, and the difference in the masses of

pseudoscalar and vector mesons is smaller, if the spin-fielgihich is in good agreement with the experimental values.
interaction in the quark propagator is eliminat@bmpare  The ideal mixing of the pseudoscalar states is not the case
the first and the last lines in the tahle that can provide an appropriate descriptioryoénd »' me-
Thus, we can conclude that the large splitting between thgons. It is well known that the problem ef and ' masses
masses of andV mesons is explained in our case by thecan be solved by taking into account another Euclidean
spin-field interaction. This splitting is the reason why Eqs.g|u0n configuration, the instanton vacuum fidlt3]. The
(32) have an appropriate solutidB86). instantons can be incorporated into our formalism without
_ It should be noted that the scalar polarization functionany principal problems, and we hope to realize this idea in
I differs from the pseudoscaldl, only by the sign before  forthcoming publications.
mimg, in Eq. (37). Because of the above-mentioned singu-  Now let us consider the weak decaysmandK mesons.
larity, the term proportional tonmy. is leading, andlgis  In the lowest approximation, amplitude of the deday:|v

This relation shows that the masses of pion antheson,
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TABLE |. Parameters of the model.

m, (MeV) my (MeV) m; (MeV)

m. (MeV)

my, (MeV) A (MeV) g

198.3 198.3 413

1650 4840 319.5 9.96

is given by the diagram in Fig(2). The weak decay constant Reiner-Treiman relations are fulfilled in this limit? Naively,

fp is defined by the standard formulas

. Gr —
Ap_ 5tk k) =i —ZIChpF(kZ)CDP(k)kMI(k’)

2

X (1= ys) yuv(k+k'),
fp=hpF(—M?), (42

where the meson-quark coupling constant is calculated

via Eq. (28), and K is the KKM matrix element correspond-
ing to a given meson. For an arbitrary pseudoscalar meson

the diagram in Fig. @) gives the following expression for
fp:

‘¢ —h 1 - fffl dtds ds,(1+5:Sy)
P PW rv O[2Ut(1+slsz)+sl+82]3

m?, l4v A2

2 2
1— s mg/4v A

X
1+s;

1-5s,
1+52

S1+20t[1— & (1+52)]
f 1-s?

Sp+20t[1— &x(1+85)]
" 1-s5

M2
Xexp{ m‘l’(t,sbsz)],

518+ 20t (8185 + 5585)
- 20t(1+5152)+51+52 '

(43

The singularity of the integrand of Eq43) at s;—1 and

it seems that the chiral limit corresponds to the case
m,<<A. However, the situation is much more complicated.
Just for illustration of this statement, consider the pion
mass in the limitm,<<A. The integrals in Eq(40) can be
evaluated, and we get the following asymptotic form of Eq.

(29) for the pion mass:
MZ
exl{ 80/\2]
M2

2
8v(1+2v)A2H =0

e 16A° T2
J— —_— r
¥ om?mim?

o

For any values ofj there is a real positive or negative solu-
tion Mi to Eq. (44). The pion mass is equal to zero if the
values ofm,, g, and A satisfy the relation

B ng 02 2g |2
972 W (1+20)2 \157)

(44)

>m| c3|\>

For a fixed value o§ andm,/A—0, the solutiorM  to Eq.
(44) is purely imaginary and behaves as

M, 4 /7| A+O InIn(A/m,)
—_— == n— e
A3 my VIn(A/my)
which has no physically reasonable interpretation, but just
indicates that the limig=const andn,/A—0 is ill defined.
From our point of view, a correct transition to the chiral
limit has to be based on a simultaneous changingngf
g, andA as functions of an actual physical parameter like the

temperature or particle density. The guark masses, coupling
constant, and the vacuum field strength as the functions of

s,— 1 appears from the above-mentioned spin-field interacthis parameter have to be extracted from consideration of
tion in the quark propagator and plays the main role in reguQCD dynamics at nonzero temperature and density. Unfor-
lating the value offp for the light mesons. Calculation of tunately, this is a quite complicated problem, and we leave it

pion and kaon decay constants by means of(E8). with the
values of the paramete(86) gives

f,=126 MeV, fc=145 MeV.

Note that the coupling constanits, and hy depend on the
meson mass, quark masses, and parametgsee Eq.(28)
and Table I].

for further investigations.

The main result of this subsection is very simple: We
have demonstrated by explicit model calculations that the
spin-field interaction contained in the quark propagator
presence of the homogenediasti-)self-dual vacuum gluon
field] can be responsible for the observable masses of the
light pseudoscalar and vector mesd@ngth the exception of
7, n'), and for the values of the weak decay constants of

One could get a definite impression, that a simultaneougjons and kaons. All numerical results are given in Tables |

description of the masses af, K, p, K*, o, and¢ mesons
and quite accurate values bf andfy are obtained mostly

due to the breakdown of chiral symmetry by the spin-field

interaction[see also Eq(7)].

In order to clarify the status of this impression, one needs

and Il.

B. Regge trajectories

It has been shown in our previous pap&} that the spec-

to investigate the chiral limit of the model. Whether or nottrum of radial and orbital excitations of the light mesons is
and in what form the Goldberger-Treiman and Oakes-asymptotically equidistant:
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TABLE Il. The masse{MeV), weak decay constantd/eV), TABLE Ill. The masseqdMeV) of orbital excitations ofmr, K,
and meson-quark coupling constaftsof the light mesonsM*, p, andK* mesons. The superfine structure of the-1 excitation

calculation without taking into account the spin-field interaction. of p andK* is shown[/ is the orbital momentum anidis the total
momentum(an observable spjrof a staté.

Meson T p K K* ® 1)
Meson / i M M €xP
M 140 770 496 890 770 1034
M expt 140 770 496 890 786 1020 = 0 0 140 140
fp 126 - 145 - - - by 1 1 1252 1235
expt _ _ _ _
;P ;:’;i 4.16 #5275 4.48 4.16 4.94 K 0 0 496 496
) ’ ' . ) : K4(1270) 1 1 1263 1270
M* 630 864 743 970 864 1087
p 0 1 770 770
1 0 1238
) a, 1 1 1311 1260
M2,,,.= 3In( )A n+O(Inn) for n>/, (45 a, 1 5 1364 1320
: K* 0 1 890 890
2 = = 2
M2, .= In5A /+0(In/) for />n. (46) 1 0 1974
K1(1400 1 1 1342 1400
Technically this result is based on the exponential behavio x 1 2 1388 1430
of the quark propagator, E@8), and vertex functiorf,,,
Eq. (22), in the Minkowski region p2/A2—> «) like
2vA
) |p?| (47) Now let us calculate the next-to-leading term in the mass
F. (p%)—0O| ex an2 ] formula. In other words, we have to solve Eg9) with the

polarization functionll; defined by Eq(37) with
and on the specific dependence of the coupling constant
Gim [see Eq.(1_9)_] on the orbital and rad_igl quantum num- mi=mp =mg>A, Mgg=2mMg—Agqg (48)
bers/ andn arising from the decomposition of the bilocal
quark currents over the generalized Lagguerre polynomials
which is determined in its order by the form of gluon propa-
gator (9) (for details see Sec. 11D In general the Regge rrig;s]ses of quarks are equal to each other, we [wae Eq.
character of the spectrum is determined in our model by thé
confining properties of the vacuum field. Ei=E,=112

Numerical calculation of masses of the first orbital exci- 1me2
tations of, K, p, andK* mesons by means of ER9) with
the parameter&36) gives the masses shown in Table lll. The which means that the composite quarkonium filgo(x) is
superfine structure of the excited statepandK* mesons localized at the center of masses of two heavy qudirks
coming from classification of currents over total momentumEuclidean four-dimensional spacét is convenient to trans-
[Eq. (23)] is qualitatively correct. Superfine splitting of the form the variables; ands, in Eq. (37):

levels with/'=1 is not very large.
r=(s1+5)\2, 1o=(s1-5)/V2. (49

ih the next-to-leading approximation ovemid. Since the

C. Heavy quarkonia

Exponential behavior of the quark propagator and verticeShe term withF$? in Eq. (37) does not contribute to the
(47) is responsible for the following relation between the leading and next-to-leading behavior of the integral and can
masses of heavy quarkorlidgg and heavy quarkng in the  be omitted. After the transformation we arrive at the expres-
leading approximatiof8]: sion

2

~ ) Mg 1 V2— rl
HJ(_M ,mQ,mQ,A):_WTrUJ' fo dtldtz f dl’lf dl’2 J’l/ drlf 2+r
V2 \ 1

R(J)(rl,rz) M?2
+
[2— (1181 (11 1) 862t o) | P auaz ¢tz r2)

@a(t1,t,r1,15)

A
m_Q 1

+0

(50
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where TABLE IV. The spectrum of charmonium.
@1ty ta,r1,re) My (V2+ry)2—r3 1 Meson e M Xe, Xe, Xe, ¥ W
= I,
T ety M2 (V2—-r%)2—r2 Gh 0 0 0 0 0 1 2
/7 0 0 1 1 1 0 0
e1=\2v(ty+tp)r +r2—r2, ] 0 1 0 1 2 1 1

M (MeV) 3000 3161 3452 3529 3531 3817 4120

M®Pt(MeV) 2980 3096 3415 3510 3556 3770 4040
o= 0(ti 1) (24 12— 12) + V2(1+ dv2tytp)r s, (Mev)

1 2
RIP == (2+r2—12)[AiA+v2(t—tp)2(r2—r3)], g __ 1 [4mg
17 17 M2)lA1A2 17 )= m(p(tl,tz,rl,O)hl:o——ﬁ wz L <0, (53
V)= 1(6—r24r2 T p2(te—t)2(r2— 2 and in the leading approximation the integrand is reduced to
Ri"=15 (6=ritra)AsAatoi(t =) "(r1=r3) an exponential function in;. Using Egs.(52) and(53), and

taking into account Eq(48), one can integrate over and

2 2
X(1-3r;+3r3)], r, with the result

Ap=T1— T+ \20(t3+1y),  Ag=r1+1+\20(ty+1y), ~ 5 3A°3 1dt,dt,
R
T\ T
R =(2+r2-r5)? RY'=4-(r{+r)?2. o0 1
A
The asymptotic value of the integral oves in the limit +0 m_Q) (54

M> A can be evaluated by the Laplace method. One can
check that the functionp has a maximum at the point Integrating overt; andt, in Eq. (54) and substituting the

r,=0 for any values of ;, tq, t5: result to Eq.(29), one can find
)
J ASs 2(\2-1) A
—o(ty,ty,rq,r -0=0, —_QQ_“\WVE T~ 2 N
&FZ(P( 1,82:11 2)|r2 0 A - Cyg +O(mQ), (55
2 where Cp=1/9, C,=1/18 [see Eq.(19)]. It should be
(975"0("1"[2’“”2)|Q=0 stressed that the difference in the constants,
2 (P)_ 5 (V)
_ Mo 8y2ry Boo= 2800 (56
M? (2-rf)? o _ _ _ _
originates from the Fierz transformation of the Dirac matri-
Ay (t;+t,) +V2r (1—v2(t;—ty)?) ces in the interaction terrn, in representatiori2). Relation
- @o(t1,15,71,0) 0, (56) means that the vector quarkonium state is always

heavier than the pseudoscalar one.
2 The results of numerical calculation of the masses of dif-
rl[r1+2\/§v(tl+t2)] _2mQ I\/Eﬂl ferent heavy quarkonia states are summarized in Tables IV
®a(t1,t2,1r1,0) M* 21, and V. The parameters andg are equal to the valug86)
(52) fitting the light meson masses, anoh.=1650 MeV,
m,=4840 MeV. The agreement with the experimental val-
which means that the leading terms can be obtained byes is rather satisfactory. The superfine splittingo( xc1.,
evaluating the Gaussian integral ower Furthermore, one y.,, and so ohis very small, since it is regulated by the
can see that the largest value of the functg, ,t;,r;,0) in - terms O(1/mg) in Eq. (29). Its description is qualitatively
the intervalr, € [0,4/2] corresponds to,=0 for anyty, t,; correct. The splitting is generated in our model by dividing
moreover, the quark currents withy, and />0 into antisymmetric,

(P(tl !tZ rrlvo) =

TABLE V. The spectrum of bottomonium.

Meson Y Xbo Xb, Xb, Y’ Xb, Xb, Xb, Y’
n 0 0 0 0 1 1 1 1 2
/ 0 1 1 1 0 1 1 1 0
j 1 0 1 2 1 0 1 2 1
M (MeV) 9490 9767 9780 9780 10052 10212 10215 10215 10292

MeXPt (MeV) 9460 9860 9892 9913 10230 10235 10255 10269 10355




54 MESON MASSES WITHIN THE MODEL OF INDUCED ... 4495

symmetric traceless, and diagonal pastse Eq(23)], which m=mo>A, mp=my=0(A),
extracts the states with different total angular momenta,

. . — () m
mixed in the currentgM VaTﬂl...#/Fn<Q-. £ = QR _ 1+0(mg/mg),
We conclude that the correct description of heavy quarko- Mg+ Mg
nia in our model is provided by the specific form of the
nonlocality of the quark and gluon propagators induced by = —0o(m./m 5
the vacuum field, localization of the meson field at the center & mQ+ My (Mq/Mg)- ®7

of masses of constituent quarks, and by a separation of th te 5 di h he h ki h
nonlocal currents with different total momentum. In general,EAuations(57) indicate that in the heavy quark limit the

the spectrum is driven by the rigid asymptotic formulds8 ‘composite meson fieldqg(x) is localized at the point in
and(SpS). y g ymp 448) which the heavy quark) is situated.

Let us show that in the limi(57) the leading and next-to-
leading terms of the solution to ER9) read

D. Heavy-light mesons M og=mo +A(J)4'_ O(l/mQ), (59)

Another interesting sector of the meson spectrum is
heavy-light mesons, characterized by a rich phygles15.  where the next-to-leading term(J) does not depend on the
In this subsection we will consider the masses and weakeavy quark massng. This term is a function of a light
decay constants of heavy-light mesons. First of all, let ugjuark massn, and coupling constar® o, [see Eq(19)].
obtain the asymptotic formulas in the limit of infinitely Omitting the term W|tH:(J> which does not contribute to
heavy quark. Namely, we have to investigate the behavior ofhe |eading and next-to- Ieadlng behavior of the integral, and
the polarization functiotl;(—M;mg,mq;A) [Eq.(37)]and  taking into account condition&7), one can rewrite E¢(37)
the weak decay constahf [Eq. (43)] in the case in the form

(=, A 1 T jffjld dt,ds,d i mign? (1-4v%t5t5) Y(ty,t,5) T (51,5,)5:M
o= Mg, Mg; )__m fo 0 hdl05ds, 1+s, [S1X(t1,t2,50) + Y(ty,t5,52)]*
T (S1,S2) MMy M2 A
t1,t5,51,S,) { + O — |, 59
(1 31)(1 52)[51X(t1,t2152)+Y(t1,t2,32)] 2UA2¢(1 2:51:52) Mg 59
|
where One can check that for any, t,, and s, the function
SlY(tl,tz,Sz) mQ 1+Sl ¢(tlat2151152) has a maX|mUm egl_ maX
T siX(ty,12,59) T Y(ty,tp,S;)  2M?2 = sy’
x=1+4l)2t1t2+20(t1+t2)52, max Y(tl!tZlSZ) mQ A2
1 oyt 1o el w2z TOl —=
Y:2U(t1+t2)+(1+402t1t2)32, Zx(tlitZ!SZ) M Q
1
T =1+s;5,, T(lv):§(3_5152), . 5
max Y(ty,t2,52) ma A
(P) 2 (V) P(t1,t2,8) ) =57 | 1— 2| tO| =],
TP =(1+s;8,)%, TY)=1-¢%s3. 2X(t1,t2,S) M 5
|
9 2X(ty,t5,S,) m3)\? A8
3S§¢(t1,tz S1,82) |5, - smax= T N5y | 1T M2 +0 m_% : (60)
Therefore, we can write
_ , 1 1 —s, maja A2
I;(—M ;mQ,mq;A)=—mTrUJ J’ fodtldtzdsz its,
ex M?2 1_m_é 2Y(tyt,,5,) | [(1—40%tt,)sT¥M?2
4UA2 Mz x(tl,tz,SZ) YS(tl,tz,Sz)

MQMg
(1 SZ)Y (t11t2182)

* sz(tl,t2,52) 2 A
f dslem[_—ZUAzY(tl,tz,sz) si;+0O m_Q . (61
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Integrating out the variable, in Eq. (61), substitutingV = mq+ Agé—to the resulting expression, and using E2f), we arrive
at the equation

1= g2C,— Tr o f f fldtldtzdszm—sz)/(1+s2>]m5’4vA2 AGy X(tyta,s2) Mg
9 mR! VY o Xt th,s)Y(t 1,512 | A 1-2 A
[AG6) Y(tyts,s)) A
X — .
exp{ vA? X(ty,t,,S,) +0 Mg (62)

Equation(62) describes dependencezbgé—in the mass for- where
mula (58) on the coupling constarg, the light quark mass
mg, and vacuum field strengtd (A). There is a single real

solution to Eq.(62) for any positiveg, my, andA. In par- NG 1dtdsz[(1—sz)/(1+32)]m§/4vA2
ticular, for the valueg36) we get Ai=Tr, (277)3/2J fo [S,+ 20174 1+ 20ts, ]2
(P _ V) _
AGu=20 MeV, Ay =155 MeV, AGe my 1+20ts, p{mgg 2 5,4+ 20t ]
AG2=63 MeV, AY2=191 MeV. A A 1-s vA® 1+2vts,
As is seen from Eq(62), the difference between the pseu- A
d (P) v +O| —/, (64)
oscalarA,4-and vectorAg-is due to the constart;, Mg

which appears from the Fierz transformation of the Dirac
matrices. This is the same situation as in the case of heavy

quarkonia[see Eq(55)]. and the difference\g%—between the masses of heavy quark
Table VI demqnstrates the reasonably good agreement bgy,q heavy-light meson is given by E@2). The procedure
tween the experimental data and the masses of the heavy;, obtaining Eqs(63) and (64) is very similar to the calcu-
light mesons calculated by means of Eg9) with the pa- lations providing Eq(62). To get the final formula foff 5,
rameterg36). The masses of heavy quarks are the same as e asymptotic form of the meson-quark coupling constant

the description of the heavy quarkorigee Table)l ) . . .
Now let us turn to the calculation of the weak decay con—hP has to be defined in _the casi#). Performing c_alculatlons
ﬁnalogous to those which lead to EG2), we arrive at

stant for the pseudoscalar heavy-light mesons. Under cond
tions (57), the integral oves; in Eq. (43) can be evaluated
by the Laplace method. The result is

A(Flm
A2 (AP _+/Me —1(ﬂ_q
fp=hP—Af<Ai,T“, (63) he A A R )

A= Yoy Tr ifffldtldtzdsz[(l—sz)/(usz)]m§/4vA2
h22m) Ay o [X(t1,65,5)Y(ty,t5,50) P72

J
A&TJF X(ts,t2,82) Mg
A 1-s; A

+ o( A) . (65)
Mg

J
y [Aﬁgé 2 Y(t1,15,5))
UA2 X(tl,t2,32)

One can see that Eq&63)—(65) give the following asymp- notion about the behavior of the weak decay constants of the

totic relation in the heavy quark limi{&7): heavy-light meson$15]. Results of the numerical calcula-
tion of the weak decay constants for different pseudoscalar
. A32 A 66 mesons are given in Table VI.
. IV. DISCUSSION
where A; and A, do not depend on the heavy quark mass in

the leading approximation ovek/mg, as is indicated in In conclusion, we would like to point out several prob-
Egs. (64), and (65). Relation(66) agrees with the accepted lems that require more profound studying.
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TABLE VI. The masses and weak decay constaiMgV) of v

heavy-light mesons.

1Y,V ,—mM—GgyopoF oo

Meson D D* Dy D} B B Bs B} =—8(x—y),
M 1766 1991 1910 2142 4965 5143 5092 5292 )
Me®P 1869 2010 1969 2110 5278 5324 5375 5422 WhereGgy and Fop are given by Eqs(19) and (22). The
fo 149 - 177 - 123 - 150 - constant vacuum expectation valgg is a solution to the
equation
L 2 GSOO 2""‘
We have assumed from the very beginning that the non- ool 1+ N R(0|¢g;A,g,m)|=0,
perturbative QCD vacuum is characterized by a nonzero

background (anti-)self-dual homogeneous field. In other ~ ) )

words, the minimum of the QCD effective potentitie free ~ Where R(p[¢qo;A,g,m) is the Fourier transform of the
energy densityfor this gluon configuration is assumed to be function

at nonzero field strength. Different estimations of the effec- 52(x)

tive potential indicate that this situation can be realigsee R(x—y|cp0;A,g,m)=f deachFoo( T) S(x,y|B)

[3] and numerous references thejeillithough these estima-

tions cannot be used as a basis for a more or less rigorous

proof, they underline the key role of the gluon self- X Fog
interaction in forming the effective potential for a homoge-

neous gluon field. Just the self-interaction of gauge bosons is

the distinctive feature of non-Abelian theories such as QCDThese formulas are free from ultraviolet divergences. There
Gluon-gluon coupling is manifested also in the nontrivial exist two possible phases withy=0 and¢y# 0. The phase
form of the gluon propagatd®). Although the background with zero ¢4 corresponds to the case investigated in this
field is quasi-Abelian, the non-Abelian nature of the gluonpaper. Another phase withy# 0 concerns symmetry break-
field plays the crucial role for the model under considerationing due to the four-quark interaction.

In order to clarify the basic assumption of this paper, one By means of this representation the interplay of both
needs to get a reliable nonperturbative estimation of the fremechanisms of chiral symmetry breaking can be studied.
energy density or effective potential of QCD for the back-This problem is under our consideration now, but is not yet
ground field under consideration. Lattice calculations seenfinished. In any case, the pure effect of symmetry breaking
to be the most promising approach to this problem. by the vacuum field should be investigated separately. The

In this paper we have demonstrated how the singularitystudy of the problem including both mechanisms is techni-
1/m; of the quark propagator affects the masses and weagally difficult, and, at least, an attempt to solve all the prob-
decay constants of light mesons. However, more detailetems in one paper is unreliable. It is better to solve them one
consideration of chiral symmetry breaking by the back-by one.
ground field is needed. This can be achieved by investigating One can expect that an additional breakdown of chiral
the Dirac equation in the presence of the homogeneousymmetry by the four-quark interaction could diminish the
(anti-)self-dual field. qguark masses. In view of this, the large valuesigfd-, and

Another source of chiral symmetry violation is the effec- s-quark massegsee Table )l should be considered as the
tive four-quark interaction. This is the main idea of the NJL-question for further investigations rather than the argument
type models. The vacuum gluon field does not remove thagainst the physical effects produced by the vacuum field
mechanism of the NJL type. The divergent diagram in Fig. lunder consideration.
should play the key role in studying this mechanism of sym- One can see that the coupling constgnin Table | is
metry breaking. Taking this into account one can rewriterather large. A possible origin of this unpleasant feature
representationi25) in the form could be covered in the elimination of some terms of the

Z:e_QEWO‘A,g,m)f deacJ DqDq gluon propagator(9) _(for more details se¢8]). In other
words, some truncations in the gluon propagator were com-
pensated for by the rising of the coupling constant. This

><exp{ _J J' d*xdyq(x)S~(x,y|B)q(y) point also has to be investigated carefully.

Va(y)
A S(y,X|B, o).
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