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Meson masses within the model of induced nonlocal quark currents
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The model of induced quark currents being a kind of nonlocal extension of the bosonization procedure is
developed. The model is based on the hypothesis that the QCD vacuum is realized by the~anti-!self-dual
homogeneous gluon field. We study manifestations of confinement and chiral symmetry breaking due to the
vacuum field in meson spectra and weak decay constants. It is shown that the confining properties of the
vacuum field, chiral symmetry breaking, and localization of a composite field at the center of masses of quarks
can explain the distinctive features of the meson spectrum: mass splitting between pseudoscalar and vector
mesons, Regge trajectories, the asymptotic mass formulas in the heavy quark limit,MQQ̄→2mQ for quarkonia
andMQq̄→mQ for heavy-light mesons. Within the model, the chiral symmetry breaking due to the vacuum
field is a dominating factor in forming the masses and decay constants of light mesons, while confinement is
responsible for Regge trajectories, heavy quarkonia, and heavy-light mesons. With a minimal set of parameters
~quark masses, vacuum field strength, and the quark-gluon coupling constant! the model describes to within ten
percent inaccuracy the masses and weak decay constants of mesons from all qualitatively different regions of
the spectrum.@S0556-2821~96!03917-3#

PACS number~s!: 12.39.2x, 11.10.Lm, 12.38.Aw, 14.40.Gx
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I. INTRODUCTION

The underlining idea of this paper consists in the hyp
thesis that the QCD vacuum is realized by the~anti-!self-dual
homogeneous gluon field. This vacuum gluon field leads
two important physical consequences for nonperturbat
quark dynamics: Quarks are confined in the sense that
quark propagator has no poles corresponding to the f
physical particles, and the chiral symmetry is broken via
interaction of quark spin with the vacuum gluon field
This spin-field interaction produces a zero mode~the lowest
Landau level! in the spectrum of the operato
i (]m2 igtaBmn

a xn)gm , so that the quark condensate is no
zero in the massless limit

lim
mq→0

mq^q̄~x!q~x!&5” 0.

Both consequences were noticed by Leutwyler in@1#. He has
also demonstrated that the~anti-!self-dual homogeneous
gluon field is a stable configuration in contrast to the pure
chromomagnetic and chromoelectric fields@1,2#. Strong in-
dications~not a rigorous proof! that this field could minimize
the effective potential of Euclidean QCD were obtained
many authors in the beginning of the 1980s~see@3,4# and
references therein!. Although these studies do not prove th
existence of an~anti-!self-dual homogeneous gluon vacuu
field, they underline the key role of the non-Abelian natu
of gluons in forming the nonzero vacuum field. Gluo
self-interaction is the point in which QCD differs from
QED cardinally. In this manner, it has been realized that
~anti-!self-dual homogeneous field could apply to the ba
properties of QCD: quark confinement and chiral symme
breaking.

At that time the manifestations of this vacuum field
hadron phenomenology were not studied in terms
5456-2821/96/54~7!/4483~16!/$10.00
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bosonization and composite meson fields, although Flory a
proached a statement of the problem closely@4#. The field
under consideration breaks the parity, rotational, and co
symmetries of the QCD Lagrangian. This is the first diffi
culty to be overcome. An averaging of all physical ampli
tudes over the directions of the vacuum field, self-dual, an
anti-self-dual configurations restores these symmetries in
matrix elements. Mathematical realization of this idea com
from instanton physics@5#, and is reduced to the division of
the QCD functional integral into integrations over given
classical configurations and quantum fluctuations in th
background field@6#. According to this concept there are no
observable directions of the vacuum field. The second dif
culty is that a self-consistent investigation of the problem o
composite fields implies that the vacuum field has to b
taken into account both in the quark and gluon propagato
Therefore, one has to deal with the bosonization of the no
local four-fermion interaction. The bosonization of the one
gluon exchange interaction was discussed in a series of
pers@7#.

In @8# we have developed a method of bosonization su
able for nonlocal interactions and have formulated the mod
of meson-meson interactions which incorporates the ma
nonperturbative effects produced by the gluon vacuum fie
under consideration: confinement and chiral symmet
breaking. The effective quark-quark coupling is described
the model by the nonlocal four-quark interaction induced b
the one-gluon exchange in the presence of the~anti-!self-dual
homogeneous gluon vacuum field.

The main features of the model are as follows@8#.
There are the quark confinement and chiral symmet

breaking due to the vacuum field. The quark propagator, b
ing an entire analytical function in the complex momentum
plane @1#, has the standard local ultraviolet behavior in th
Euclidean region, and is modified essentially in the physica
i.e., Minkowski region.
4483 © 1996 The American Physical Society
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One-gluon exchange is decomposed into an infinite s
of current-current interaction terms, in which the quark cu
rents are nonlocal, colorless, and carry a complete se
quantum numbers including the orbital and radial ones. T
effective quark-quark interaction generates a superrenorm
izable perturbation expansion.

The bosonization of the nonlocal four-quark interactio
leads to ultraviolet finite effective meson theory. Mesons a
treated as extended nonlocal objects.

The model contains the minimal number of paramete
the quark masses, quark-gluon coupling constant, and
tension of the background gluon field.

It was shown also that the spectrum of the radial a
orbital excitations is equidistant for sufficiently large angul
momentuml or radial quantum numbern. In the heavy
quark limit the mass of quarkonium tends to be equal to
sum of the masses of constituent quarks.

In @8# the main attention was paid to the mathematic
details of obtaining the nonlocal quark currents induced
one-gluon exchange in the presence of the vacuum field
to formulation of the bosonization procedure based on th
nonlocal currents. The motivation and connection of t
model with QCD has been discussed as far as possible.
present paper concentrates on further development of
model and on application to systematic calculations of t
weak decay constants and masses of mesons from diffe
regions of the spectrum: the light mesons and their exci
states, heavy quarkonia, and heavy-light mesons. We ex
ine manifestations of the quark confinement and chiral sy
metry breaking due to the vacuum field in the spectrum
mesonlike composite fields. This mechanism of symme
breaking differs from the mechanism exploited in the sta
dard local Nambu–Jona-Lasinio~NJL! model, in which the
symmetry is broken due to the four-quark interaction@9–11#.
It should be stressed that these two mechanisms do not
tradict each other, but should be considered as mutually
ditional ones. The point is that NJL-type models elimina
the gluon degrees of freedom and cannot provide a basis
studying the physics produced by the gluon fields~both a
vacuum field and quantum fluctuations!. The pure effect of
symmetry breaking by the vacuum field is interesting in its
and should be investigated separately. The next step con
in investigating the interplay of both mechanisms. A pos
bility of this kind is discussed in the last section of the pap

The general result is that chiral symmetry breaking due
the interaction of the quark spin with the vacuum field a
fects strongly the masses and weak decay constants of
mesons, while confinement is responsible for Regge tra
tories and heavy-heavy and heavy-light mesons.

With the minimal set of parameters~quark masses,
vacuum field strength, and one quark-gluon coupling co
stant! the model describes all qualitatively different region
of the meson spectrum to within 10% inaccuracy. The re
sons driving this successful description can be easily rec
ered.

The spin-field interaction leads to a splitting between t
masses of the pseudoscalar and vector mesons (p-r,
K-K* ) and provides the smallness of the pion mass. Sim
taneously it excludes scalar mesons as the simpleqq̄ states.
Within this model the scalar states appear in the super
structure of the orbital excitations of vector mesons. T
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same interaction has a crucial influence on the weak deca
of pion and kaon. These factors are qualitative and irrespe
tive of the particular values of the model parameters.

Furthermore, the vacuum field produces three rigid a
ymptotic regimes for the spectrum of collective modes. Th
spectra of radial and orbital excitations of light mesons a
equidistant forl @1 or n@1; i.e., they have Regge charac
ter. This is due to the specific form of nonlocality of the
quark and gluon propagators determined by confining pro
erties of the vacuum gluon field. Localization of the meso
field at the center of masses of a quark system provides t
other asymptotic regimes. In the limit of an infinitely heavy
quark, the mass of quarkonium tends to be equal to the s
of the masses of constituent quarks, while the mass of
heavy-light meson approaches the mass of a heavy qua
MQQ̄→2mQ2DQQ̄ , MQq̄→mQ1DQ q̄ . The next-to-leading
termsDQQ̄ andDQ q̄ do not depend on the heavy quark mas
The same reasons provide the correct asymptotic behavio
the weak decay constant for the heavy-light pseudosca
mesons:f P;1/AmQ.

One can conclude that the~anti-!self-dual homogeneous
background gluon field determines rather definitely the b
havior of the masses and weak decay constants in all diff
ent regions of the meson spectrum, and this behavior is qu
titatively consistent with experimental data.

Technically, these results are based on a decomposition
the bilocal colorless quark currents into a series of nonloc
currents with complete set of quantum numbers: spin, is
spin, radial, and orbital numbers. The tensor structure
these nonlocal currents is represented by the irreducible t
sors of the four-dimensional Euclidean rotational group
while their radial part is determined by a specific form o
gluon propagator in the external vacuum field. The metho
of decomposition of the one-gluon exchange interaction in
a series of nonlocal current-current interactions demonstra
how the form of the gluon propagator is reflected in th
quark-meson vertices and, after all, in the meson spectrum

This decomposition provides a new point of view on th
renormalization problem: The Feynman diagrams appeari
in each order of perturbation theory are ultraviolet finite du
to the nonlocality of the meson-quark interaction.

The paper is organized as follows. In Sec. II we revie
the main points of the model with some modifications tha
relate to choosing the point of the localization of the meso
field and a description of the superfine structure of the spe
trum. These modifications reflect possibilities missed in@8#.
In Sec. III we consider the masses of light mesons and th
excitations, heavy quarkonia, and heavy-light mesons,
well as the weak decay constants. The basic approximatio
of the model and problems for further investigations are di
cussed in the last section.

II. MODEL OF INDUCED NONLOCAL
QUARK CURRENTS

A. Basic assumptions, approximations, and notation

The representation of the Euclidean generating function
for QCD, in which the gluon and ghost fields are integrate
out, serves as a starting point for many models of hadron
zation. Dyakonov and Petrov obtained this representation
the case of a nontrivial vacuum gluon field@5# ~see also@6#!:
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Z5E dsvacE DqDq̄expH E d4x(
f

NF

q̄f~x!

3~ igm¹̂m2mf !qf~x!1 (
n52

`

LnJ , ~1!

where NF is the number of flavors corresponding to th
SU(NF) flavor group and

Ln5
gn

n! E d4y1•••E d4ynj m1

a1 ~y1!••• j mn

an ~yn!

3Gm1•••mn

a1•••an ~y1 , . . . ,ynuB!,

j m
a ~y!5(

f

NF

q̄f~x!gmt
aqf~x!,

¹̂m5]m2 i t aBm
a .

The functionGm1•••mn

a1•••an is the exact~up to the quark loops!

n-point gluon Green function in the external fieldBm
a . We

will investigate the mesonic (qq̄)-collective modes and con-
sider Eq.~1! with the quark-quark interaction truncated up
the termL2:

Z5E dsvacE DqDq̄expH E d4x(
f

NF

q̄f~x!~ igm¹̂m2mf !qf~x!

1
g2

2 E E d4xd4y jm
a ~x!Gmn

ab~x,yuB! j n
b~y!J . ~2!

Representations~1! and ~2! imply that there exists some
vacuum~classical! gluon fieldBm

a (x) which minimizes the
effective action ~or effective potential! of the Euclidean
QCD. In the general case, the vacuum field depends on a
of parameters$svac%, and the measuredsvac averages all
physical amplitudes over a subset of$svac%, in respect to
which the vacuum state is degenerate~for more details see
@8# and references therein!.

The quark-gluon interactions both in Eqs.~1! and ~2! are
local, and a decomposition over degrees ofg2 generates a
renormalizable perturbation theory. It means that an app
priate regularization is implied in Eqs.~1! and~2!. This point
has to be stressed here, since our final technical aim
transformation of the interaction term in Eq.~2!, which gen-
erates a completely new superrenormalizable perturba
expansion of the functional integral~2!.

Let us identify all ingredients of these general formul
for the particular case of a homogeneous~anti-!self-dual
vacuum field:

B̂m~x!5n̂Bm~x!, Bm~x!5Bmnxn ,

n̂5nata, n25nana51.

The constant tensorBmn satisfies the conditions
e

to

set

ro-

is a

tion

as

Bmn52Bnm , BmrBrn52B2dmn ,

B̃mn5
1

2
«mnabBab56Bmn ,

whereB is the gauge-invariant tension of the vacuum field
Since the chromomagneticH and chromoelectricE fields
relate to each other likeH56 E, two spherical angles
(w,u) define the direction of the field in Euclidean space. In
the diagonal representation ofn̂5nata, an additional angle
j is needed to fix the direction of the field in color space:

n̂5t3cosj1t8sinj, 0<j,2p.

The one-loop calculations and some nonperturbative es
mations of the effective potential for the homogeneous gluo
field argue~do not prove! that the potential could have a
minimum at a nonzero value of the field tensionBÞ0 ~e.g.,
see@1–3#!. We will assume that the field under consideration
realizes a nonperturbative QCD vacuum and study the man
festations of this field in the spectrum of collective modes
Since the effective potential is invariant under Euclidean ro
tations and parity and gauge transformations, this vacuu
should be degenerate with respect to the directions of th
field in color and Euclidean space and should be the same
anti-self-dual and self-dual configurations. According to thi
argumentation, the fieldBm

a in Eq. ~2! corresponds to the
tensionB minimizing the effective potential, and the mea-
suredsvac has the form

E dsvac5
1

~4p!2
E
0

p

dusinuE
0

2p

dwE
0

2p

dj(
6

, ~3!

where the sign(6 denotes averaging over the self-dual and
anti-self-dual configurations. To simplify calculations and to
clarify the technical side of the bosonization procedure in th
presence of the background field, we will omit the integra
over j in Eq. ~3! and fix a particular vectorna5da8. In the
fundamental~matrix t8) and adjoint~matrix C8) representa-
tions of SUc(3) one gets

n̂5t85diagS 1

A3
,
1

A3
,2

2

A3D , B̂mrB̂rn52~ t8!2B2dmn ,

n̆5C85
A3
2
K, B̆mrB̆rn52

3

4
K2B2dmn ,

K5452K455K7652K675 i , K25diag~0,0,0,1,1,1,1,0!.

The rest of the elements of the matrixK are equal to zero. It
is convenient to define the mass scaleL25A3B:
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B̆mrB̆rn52
1

4
K2L4dmn ,

B̂mrB̂rn52v2L4dmn , v5diagS 13 , 13 , 23D ,
1

v
5diagS 3,3,32D .

We would like to stress that averaging over directions of t
background field in color space should be incorporated i
the formalism, and its role should be analyzed. But first
all, we would like to go as far as possible with the forma
ism, which is as simple as possible, and test how the te
nique proposed in@8# works in the meson phenomenology

B. Quark and gluon propagators

The quark propagatorSf(x,yuB) in Eq. ~2! satisfies the
equation

~ igm¹̂m2mf !Sf~x,yuB!52d~x2y!,

and can be written in the form

Sf~x,yuB!5ei ~xB̂y!/2Hf~x2yuB!ei ~xB̂y!/2,

Hf~z!5
i ¹̂m~z!gm1mf

¹̂2~z!1mf
21~sB̂!

d~z!, ~4!

H̃ f~puB!5
1

2vLE
0

1

dte~2p2/2vL2!tS 12t

11t D
a f
2/4vFa f1

1

L
pmgm

1 i t
1

L
~g f p!GFP61P7

11t2

12t2
2

i

2
~g fg!

t

12t2G ,
~5!

where

P65
1

2
~16g5!, a f5

mf

L
, ~xBy!5xmBmnyn ,

~p fg!5pm f mngn , f mn5
t8

vL2Bmn , f mr f rn52dmn .

The functionH̃ f is the Fourier-transformedHf . The upper
~lower! sign in the matrixP6 corresponds to the self-dua
~anti-self-dual! field.
he
nto
of
l-
ch-
.

l

The term (sB̂)5sabB̂ab in Eq. ~4! @the second line in
Eq. ~5!# describes the interaction of a quark spin with th
background field. One can see that this spin-field interact
leads to the singularity 1/mf for mf→0, which is a manifes-
tation of the zero mode~the lowest Landau level! of the
massless Dirac equation in the external~anti-!self-dual ho-
mogeneous field. The mathematical point is that the sp
trum of the operatorgm]m is continuous, whereas the spec
trum of the operatorgm¹̂m(x) is discrete and the lowes
eigennumber is equal to zero. Simple calculations give,
mf→0,

H̃ f~puB!52e2~p2/2vL2!F 1mf
1

1

mf
2 @pmgm1 i ~g f p!#G

3FP72
i

4
~g fg!G1const, ~6!

and

lim
«→0

lim
mf→0

mf^q̄f~x!qf~x1«!&B

52 lim
«→0

lim
mf→0

mfTrHf~«uB!

52E d4p

~2p!4
lim
mf→0

mfTrH̃ f~puB!

52
4

3p2L4. ~7!

Because of the spin-field interaction, the quark condensat
nonzero in the limit of vanishing quark mass. This indicat
that chiral symmetry is broken by the vacuum field in th
limit mf→0 ~see also@1#!. It will be clear below that just the
spin-field interaction gives rise to the splitting between t
masses of the pseudoscalar and vector mesons and provi
smallness of pion mass.

In terms of the variablez5pmgm the propagator
H̃ f(zuB) is an entire analytical function in the complexz
plane. There are no poles corresponding to the free qua
which is treated as the confinement of quarks. The followi
asymptotic behavior takes place:
H̃ f~zuB!→H mf1z

2z2
5
mf1gnpn

p2
if z→6` ~p2→`!,

OS expS z2

2vL2D D5OS expS 2p2

2vL2D D if z→6 i` ~p2→2`!.

~8!
ce

cal

-

Equation~8! shows the standard local behavior of the ferm
ion propagator in the Euclidean region (p2→`), while in the
physical region (p2→2`) we see an exponential increas
typical for nonlocal theories~for more details about the gen
eral theory of nonlocal interactions of quantized fields s
@6,12#!. Below, the absence of the poles and the exponen
increase will be referred to as the confinement properties
propagator.
-

e
-
ee
tial
of a

The functionDmn
ab(x,yuB) in representation~2! is the ex-

act gluon propagator for pure gluodynamics in the presen
of the vacuum fieldBm

a . This function is unknown, and some
approximation has to be introduced. For instance, the lo
NJL model corresponds to the choiceDmn

ab

5dabdmnd(x2y). We go beyond this approximation and re
place the functionDmn

ab(x,yuB) by the confined part
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Dmn~x,yuB!5dmnK
2ei ~xB̆y!/2D~x2yuL2!ei ~xB̆y!/2, ~9!

D~zuL2!5
1

~2p!2z2
expH 2

L2z2

4 J
of the gluon propagator

Gmn
ab~x,yuB!5Dmn

ab~x,yuB!1Rmn
ab~x,yuB!,

which is a solution of the equation~for details see@8#!

~¹̆2dmn14iB̆mn!Gnr~x,yuB!52dmrd~x2y!.

The Fourier transform of the functionD(zuL2) is an entire
analytical function in momentum space. It has local behav
in the Euclidean region, but increases exponentially in
physical region. This function describes the propagation
the confined modes of the gluon field. Other termsRmn

ab ,
which contain a contribution of the zero modes and an an
symmetric part, will be omitted.

C. Color singlet bilocal quark currents

Substituting gluon propagator~10! to the interaction term
in representation~2!, using the Fierz transformation of th
color, flavor, and Dirac matrices, and keeping only the sca
JaS, pseudoscalarJaP, vectorJaV, and axial-vectorJaA col-
orless currents, we arrive at the expression@8#

L25
g2

2 (
bJ

CJE E d4xd4yJbJ~x,y!D~x2yuL2!JbJ~y,x!,

~10!

JbJ~x,y!5q̄f~x!M f f 8
b GJei ~xB̂y!qf 8~y!, ~11!

GS51, GP5 ig5 , GV5gm , GA5g5gm ,

CS5CP5 1
9 , CV5CA5 1

18 .

Here M f f 8
b are the flavor-mixing matrices

(b50, . . . ,NF
221) corresponding to the SU(NF) flavor

group. In the case of SU~2! and SU~3! they are given by the
matricestb andlb, respectively.

Because of the phase factor exp$i(xB̂y)%, bilocal quark
currents~11! are the scalars under the local gauge transf
mations

q~x!→e2 i v̂~x!q~x!, q̄~x!→q̄~x!ei v̂~x!,

B̂m→e2 i v̂~x!B̂me
i v̂~x!1

i

g
e2 i v̂~x!]me

i v̂~x!. ~12!

Let us transform integration variablesx andy in Eq. ~10! to
the coordinate system corresponding to the center of ma
of quarksqf(x) andqf 8(y):

x→x1j f y,y→x2j f 8y, j f5
mf

mf1mf 8
, j f 85

mf 8
mf1mf 8

.

~13!

The corresponding transformation of the quark curre
looks as
ior
the
of

ti-

e
lar

or-

sses

nts

JbJ~x,y!5q̄f~x!M f f 8
b GJei ~xB̂y!qf 8~y!

→q̄f~x1j f y!M f f 8
b GJei ~xB̂y!qf 8~x2j f 8y!

5q̄f~x!M f f 8
b GJey

↔
¹ f f 8~x!/2qf 8~x!5

ds

JbJ~x,y!,

~14!

where¹J f f 8 is a linear combination of the left and right co-
variant derivatives:

¹J f f 8~x!5j f„]
Q1 iB̂~x!…2j f 8„]

W2 iB̂~x!….

These covariant derivatives indicate that the currents~14! are
nonlocal and colorless. The interaction term~10! takes the
form

L25
g2

8p2(
bJ

CJE E d4xd4y
1

y2

3expH 2
L2y2

4 J JbJ~x,y!JbJ~y,x!, ~15!

where we have made use of the representation~9!. The cur-
rents are defined by Eq.~14!. Transformation~13! turns out
to be crucial for a simultaneous description of the light-ligh
heavy-light, and heavy-heavy mesons.

D. Decomposition of bilocal currents

The idea of our next step consists in a decomposition
the bilocal currents~14! over some complete set of orthonor
malized polynomials in such a way that the relative coord
nate of two quarksy in Eq. ~15! would be integrated out.
One can see that a particular form of this set is determined
the form of the gluon propagator@exp$2L2y2/4% in Eq. ~15!#.
The propagator plays the role of a weight function in th
orthogonality condition. The physical meaning of the decom
position consists in classifying the relative motion of two
quarks in the bilocal currents over a set of radialn and an-
gular l quantum numbers. In other words, according to th
general principles of quantum mechanics the bilocal curren
have to be represented as a set of quark currents with defin
radialn and angularl quantum numbers. Thus, we are look
ing for a decomposition of the form

JbJ~x,y!5(
nl

~y2! l /2f m1•••m l
nl ~y!Jm1•••m l

bJl n ~x!, ~16!

f m1•••m l
l n ~y!5Lnl ~y2!Tm1•••m l

~ l ! ~ny!, ny5y/Ay2.

The angular part off l n is given by the irreducible tensors of
the four-dimensional rotational groupTm1•••m l

(l ) , which are

orthogonal,

E
V

dv

2p2Tm1•••m l
~ l ! ~ny!Tn1•••nk

~k! ~ny!

5
1

2l ~ l 11!
d l kdm1n1

•••dm l n l
, ~17!
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and satisfy the conditions

Tm1•••m•••n•••m l
~ l ! ~ny!5Tm1•••n•••m•••m l

~ l ! ~ny!,

Tm•••m•••m l
~ l ! ~ny!50,

Tm1•••m l
~ l ! ~ny!Tm1•••m l

~ l ! ~ny8!5
1

2l
Cl

~1!~nyny8!. ~18!

The measuredv in Eq. ~17! relates to integration over the
angles of unit vectorny , andCl

(1) in Eq. ~18! are the Gegen-
bauer’s ~ultraspherical! polynomials. The polynomials
Lnl (u) obey the condition

E
0

`

dur l ~u!Lnl ~u!Ln8l ~u!5dnn8.

The weight functionr l (u) arising from the exponential term
in Eq. ~15! looks like

r l ~u!5ul e2u;

hence,Lnl (u) are the generalized Laguerre’s polynomials
The details of the calculation of the curren

Jm1•••m l
bJl n (x) in Eq. ~16! can be found in@8#. As a result, the

interaction termL2 takes the form

L25
1

2 (
bJl n

SGJl n

L D 2E d4x@Jm1•••m l
bJl n ~x!#2,

GJl n
2 5CJg

2
~ l 11!

2l n! ~ l 1n!!
, ~19!
.
ts

Jm1•••m l
bJl n ~x!5q̄~x!Vm1•••m l

bJl n ~x!q~x!, ~20!

Vm1•••m l
bJl n ~x![Vm1•••m l

bJl n S ¹J ~x!

L
D

5MbGJH H Fnl S ¹J 2~x!

L2 DTm1•••m l
~ l ! S 1

i

¹J ~x!

L
D J J ,

~21!

Fnl ~4s!5snE
0

1

dttl 1nest. ~22!

The double curly brackets in Eq.~21! mean that the covariant
derivatives commute inside these brackets. The form fact
Fnl (s) are entire analytical functions in the complexs plane,
which is a manifestation of the gluon confinement.

The classification of the currents will be complete if w
will decomposeJa,m1•••m l

aJl n with J5V,A and l .0 into the

sum of orthogonal currentsIam1•••m l
bJl n j with different total an-

gular momentaj5l 21,l ,l 11. The indexa relates to the
matricesGa

V5ga andGa
A5g5ga in Eq. ~21!. This decompo-

sition can be arranged by the division

Ja,m1•••m l
bJl n 5 (

j5l 21

l 11

Iam1•••m l
bJl n j , ~23!

where
Iam1•••m l
bJl n j 55

1

~ l 11!2
Pam1•••m l

@dam1
Jr,rm2•••m l
bJl n #, j5l 21,

1

l 11(i51

l

@Ja,m i•••m i21m i11•••m l
bJl n 2Jm i ,a•••m i21m i11•••m l

bJl n #, j5l ,

1

l 11
Pam1•••m l FJa,m1•••m l

bJl n 2
1

l 11
dam1
Jr,rm2•••m l
bJl n G , j5l 11.

~24!
ark
he

be

is
The symbolPam1•••m l
in Eq. ~24! denotes a cyclic permuta

tion of the indices (am1•••m l ). Let sJ be defined as

sP5sS50, sV5sA51;

then, using the orthogonality of the currents with differe
j , we can rewrite interaction termL2 as

L25 (
aJl n

(
j5ul 2sJu

l 1sJ 1

2L2GJl n
2 E d4x@IjaJl n~x!#2,

where we have introduced the notation
-

nt

Ia
bJ0n15Ja

bJ0n for J5V,A, l 50,

Im1•••m l
bJl nl 5Jm1•••m l

bJl n for J5S,P,l >0.

This form is equivalent to Eq.~10!, but now the interaction
between quarks is expressed in terms of the nonlocal qu
currents, which are elementary currents of the system in t
sense of the classification over quantum numbers.

For large Euclidean momentum the verticesṼaJl n behave
as 1/(p2)11l /2. Therefore, only the ‘‘bubble’’ diagrams,
shown in Fig. 1, are divergent. These divergences can
removed by counterterms of the form22I(x)TrVS.

To avoid an unnecessary complication of notation, it
convenient to introduce the condensed indexN enumerating
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the currents with all different combinations of the quantu
numbersa, J, l , n, and j . The renormalized vacuum ampli
tudeZ takes the form

Z5E dsvacE DqDq̄expH 2E E d4xd4yq̄~x!S21~x,yuB!

3q~y!1(
N

1

2L2GN
2 E d4x@IN~x!2TrVNS#2J . ~25!

E. Bosonization

By means of the standard bosonization procedure@9,10#
applied to Eq.~25! the amplitudeZ can be represented in
terms of the composite meson fieldsFN @8#:

Z5NE )
N

DFNexpH 12E E d4xd4yFN~x!@~h2MN
2 !

3d~x2y!2hN
2 PN

R~x2y!#FN~y!1I int@F#J , ~26!

I int52
1

2E d4x1E d4x2hNhN8FN~x1!@GNN8~x1 ,x2!

2dNN8PN~x12x2!#FN8~x2!

2 (
m53

1

mE d4x1•••E d4xm

3)
k51

m

hNkFNk~xk!GN1•••Nm~x1 , . . . ,xm!,

GN1•••Nm5E dsvacTr$VN1~x1!

3S~x1 ,x2uB!•••VNm~xm!S~xm ,x1uB!%.

The meson massesMN are defined by the equations

11SGNL D 2P̃N~2MN
2 !50, ~27!

whereP̃N(2MN
2 ) is the diagonal part of the two-point func

tion G̃NN8 , which corresponds to the diagram shown in Fi
2~a!. The fieldsFN (N5$a,J,l ,n, j %) with j.0 satisfy the
on-shell condition

pmF̃N
•••m•••~p!50 if p252MN

2 ,

which excludes all extra degrees of freedom of the field,
that the numbersl and j can be treated as the O~3! orbital
momentum and total momentum, respectively@8#. The total

FIG. 1. Divergent bubble diagram.
m
-

-
g.

so

momentumj plays the role of an observable spin of the sta
with a givenN5$b,J,l ,n, j %.

The constants

hN51/AP̃N8 ~2MN
2 ! ~28!

play the role of the effective coupling constants of th
meson-quark interaction.

The quark massesmf , the scaleL ~strength of the back-
ground field!, and the quark-gluon coupling constantg are
the free parameters of the effective meson theory~26!–~28!.

In the one-loop approximation, the interactions betwee
mesons with given quantum numbersN5$b,J,l ,n, j % are
described by quark loops like the diagram in Fig. 2~b!. Be-
cause of the nonlocality of meson-quark vertices, the qua
loops are ultraviolet finite. The whole diagram is average
by integration over the measuredsvac.

Figure 3 illustrates the central idea of the method of in
duced nonlocal currents, which has been realized in this s
tion. An effective four-quark interaction is represented as a
infinite series of interactions between the nonlocal quark cu
rents characterized by the complete set of quantum numb
$b,J,l ,n, j %. The form of the currents is induced by a par
ticular form of the gluon propagator. This new representatio
of the four-quark interaction generates an expansion of a
amplitude into a series of partial amplitudes with a particula
value of the quantum numbers. Each partial amplitude
ultraviolet finite at any order of expansion over degrees
the coupling constantg. The composite meson fields in Eq
~26! are nothing else but ‘‘elementary’’ collective excita-
tions, which are classified according to the complete set
quantum numbers of the relativistic two-quark system.

It should be stressed that the model~26! satisfies all de-
mands of the general theory of nonlocal interactions of qua
tum fields@12#, which means that Eq.~26! defines a nonlo-
cal, relativistic, unitary, and ultraviolet finite quark model o
meson-meson interactions.

FIG. 2. Diagrams describing different processes in effectiv
nonlocal meson theory in the lowest~one-loop! order.

FIG. 3. The decomposition of the four-quark interaction.
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Now we would like to test how this formalism works in
the meson phenomenology.

III. MESON SPECTRUM AND WEAK DECAY CONSTANTS

Let us rewrite Eq.~27! in a more detailed form

L21GJl n
2 P̃bJl n j~2MbJl n j

2 ;mf ,mf 8;L!50. ~29!

The functionP̃bJl n j in Eq. ~29! is given by the diagonal part
of the tensor~in the momentum representation!:

Pm1•••,n1•••
bJl n j ~x2y;mf ,mf 8;L!

5E dsvacTr@Vm1•••
bJl n j~x!S~x,yuB!Vn1•••

bJl n j~y!S~y,xuB!#.

~30!

Relation~29! is the master equation for meson masses. T
function P̃ can be calculated using the representations~4!
and~5! for the quark propagator and Eq.~21! for the vertices.
The only point that requires a comment is an averaging o
the space directions of the vacuum field. Actually we have
average the tensorsfmn , fmn f ab , and so on. The generating
formula looks as

^exp~ i f mnJmn!&5
1

4pE0
2p

dwE
0

p

dusinuexp~ i f mnJmn!

5
sinA2~JmnJmn6 J̃mnJmn!

A2~JmnJmn6 J̃mnJmn!
,

wherew andu are spherical angles,Jmn is an antisymmetric
tensor,J̃mn is a dual tensor, and6 corresponds to the self-
dual and anti-self-dual vacuum field. In particular this ge
eral representation gives

^ f mn&50,

^ f mn f ab&5
1

3
~damdbn2dandbm6«abmn!. ~31!

A. Light pseudoscalar and vector mesons

First of all, let us fit the free parameters of the mode
taking the masses ofp, r, K, andK* mesons as the basic
he

ver
to

n-

l,

quantities. Below, we will sometimes use the symbol of
given meson instead of the corresponding set of quantu
numbers@for example,p instead of (3,P,0,0;0)#.

Four equations for the masses of the basic mesons can
written in the form

2P̃p~2Mp
2 ;mu ,mu ;L!5P̃r~2M r

2 ;mu ,mu ;L!, ~32!

2P̃K~2MK
2 ;ms ,mu ;L!5P̃K* ~2MK*

2 ;ms ,mu ;L!, ~33!

2P̃p~2Mp
2 ;mu ,mu ;L!5P̃K~2MK

2 ;ms ,mu ;L!, ~34!

g2529L2/P̃p~2Mp
2 ;mu ,mu ;L!. ~35!

If Mp , M r , MK , andMK* are taken to be equal to the
experimental values, then the massesmu andms of theu and
s quarks as functions ofL are defined by Eqs.~32! and~33!.
Usingmu(L) andms(L) in Eq. ~34!, we find the value of
L, which provides a simultaneous description of the stran
and nonstrange mesons. An optimal value of the couplin
constantg is calculated by means of Eq.~35!. By this way
we arrive at the values

mu5198.28 MeV, ms5412.96 MeV,

L5319.46 MeV, g59.96. ~36!

Solution ~36! is unique.
It is well known that there should be a special reaso

which provides a small pion mass and splits the masses
pseudoscalar and vector mesons. Breaking of chiral symm
try due to the four-quark interaction and two independe
coupling constants for pseudoscalar and vector mesons (gP
ÞgV instead of our parameterg) plays the role of a such
reason in the local NJL model. As has already been point
out, the interaction of quark spin with the vacuum field lead
to the singular behavior of the quark propagator in the mas
less limit and generates a nonzero quark condensate, wh
indicates breaking of chiral symmetry by the vacuum gluo
field. Now let us illustrate that in our case the same spin-fie
interaction is responsible for a small pion mass and for th
mass splitting betweenP andV mesons.

The polarization functionP̃J (l 50, n50, J5P,V) can
be represented in the form
P̃J~2M2;mf ,mf 8;L!52
L2

4p2TrvE
0

1

dt1E
0

1

dt2E
0

1

ds1E
0

1

ds2S 12s1
11s1

Dmf
2/4vL2S 12s2

11s2
Dmf 8

2
/4vL2

3FM2

L2

F1
~J!~ t1 ,t2 ,s1 ,s2!

F2
4~ t1 ,t2 ,s1 ,s2!

1
mfmf 8

L2

F2
~J!~s1 ,s2!

~12s1
2!~12s2

2!F2
2~ t1 ,t2 ,s1 ,s2!

1
2v~124v2t1t2!F3

~J!~s1 ,s2!

F2
3~ t1 ,t2 ,s1 ,s2!

G
3expH M2

2vL2F~ t1 ,t2 ,s1 ,s2!J , ~37!
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where

F5
F1~ t1 ,t2 ,s1 ,s2!

F2~ t1 ,t2 ,s1 ,s2!
, ~38!

F152v~ t11t2!@s1j1
21s2j2

2#1s1s2@114v2t1t2~j12j2!
2#,

F252v~ t11t2!~11s1s2!1~114v2t1t2!~s11s2!,

F1
~P!5~11s1s2!@A1A214v2~ t12t2!

2j1j2s1s2#,

F1
~V!5

1

3
@~32s1s2!A1A2

14v2~ t12t2!
2j1j2s1s2~123s1s2!#,

A15@124v2t1t2~j12j2!#s112v~ t11t2!j2 ,

A25@114v2t1t2~j12j2!#s212v~ t11t2!j1 ,

F2
~P!5~11s1s2!

2, F2
~V!512s1

2s2
2 , ~39!

F3
~P!52~11s1s2!, F3

~V!512s1s2 .

Equations ~37!–~39! show that the singularity
(12s1)

21(12s2)
21, arising from the spin-field interaction
@see the second line of Eq.~5!#, is accumulated in the term of
Eq. ~37! proportional to the quark masses. Other terms are
free from this singularity, although the spin-field interaction
contributes to them. This is due to the structure of the trace
of the Dirac matrices.

Let us compare behavior of pion andr-meson polariza-
tion functions in the limit

mf5mf 85mu!L.

Using the singularity of the integrand in Eq.~37! at s1→1
ands2→1, one can check that the pion polarization function
is singular in this limit and behaves as 1/mu

2

P̃p~2M2;mu ,mu ;L!52Trv
4v2L4

p2mu
2 E

0

1E
0

1 dt1dt2
F2

2~ t1 ,t2,1,1!

3expH M2

2vL2F~ t1 ,t2,1,1!J 1const.

~40!

On the contrary, ther-meson polarization is regular at
mu50 and looks like
P̃r~2M2;mu ,mu ;L!52
L2

4p2TrvE
0

1

dt1E
0

1

dt2E
0

1

ds1E
0

1

ds2S expH M2

2vL2F~ t1 ,t2 ,s1 ,s2!J FM2

L2

F1
~V!~ t1 ,t2 ,s1 ,s2!

F2
4~ t1 ,t2 ,s1 ,s2!

1
2v~124v2t1t2!F3

~V!~s1 ,s2!

F2
3~ t1 ,t2 ,s1 ,s2!

G1expH M2

2vL2F~ t1 ,t2 ,s1,1!J 2v

F2
2~ t1 ,t2 ,s1,1!

D 1O~mu!. ~41!
,
.

s

-

.
e

This difference appears owing to the factorsF2
(P) andF2

(V) in
Eq. ~39! and leads to the inequality

uP̃p~2M2;mu ,mu ;L!u@uP̃r~2M2;mu ,mu ;L!u.

This relation shows that the masses of pion andr meson,
satisfying Eq.~29!, are strongly split andM r

2@Mp
2 if the

quark mass goes to zero. A similar picture takes place
K andK* mesons, but since the strange quark mass is no
small, the effect is more smooth.

The above consideration is illustrated in Table II. Th
pion mass is much larger, and the difference in the masse
pseudoscalar and vector mesons is smaller, if the spin-fi
interaction in the quark propagator is eliminated~compare
the first and the last lines in the table!.

Thus, we can conclude that the large splitting between
masses ofP andV mesons is explained in our case by th
spin-field interaction. This splitting is the reason why Eq
~32! have an appropriate solution~36!.

It should be noted that the scalar polarization functi
P̃S differs from the pseudoscalarP̃P only by the sign before
mfmf 8 in Eq. ~37!. Because of the above-mentioned sing
larity, the term proportional tomfmf 8 is leading, andP̃S is
for
t so

e
s of
eld

the
e
s.

on

u-

positive for a wide range of parameter values. As a result
Eq. ~29! has no real solutions for the case of scalar mesons
It looks interesting that the scalar (qq̄) bound states do not
appear due to the same spin-field interaction that diminishe
the pion mass and provides a nonzero quark condensate.

Consideration of the SUF(3) singlet and the eighth octet
states shows an ideal mixing both for vector and pseudosca
lar mesons. The masses ofv and f, calculated with the
parameter values~36!, are

Mv5M r5770 MeV, Mf51034 MeV,

which is in good agreement with the experimental values
The ideal mixing of the pseudoscalar states is not the cas
that can provide an appropriate description ofh andh8 me-
sons. It is well known that the problem ofh andh8 masses
can be solved by taking into account another Euclidean
gluon configuration, the instanton vacuum field@13#. The
instantons can be incorporated into our formalism without
any principal problems, and we hope to realize this idea in
forthcoming publications.

Now let us consider the weak decays ofp andK mesons.
In the lowest approximation, amplitude of the decayP→ l n̄
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TABLE I. Parameters of the model.

mu ~MeV! md ~MeV! ms ~MeV! mc ~MeV! mb ~MeV! L ~MeV! g

198.3 198.3 413 1650 4840 319.5 9.96
e

n

.

-

st

l

e
ing
of
of
r-
it

e
e

the

of
I

s

is given by the diagram in Fig 2~c!. The weak decay constan
f P is defined by the standard formulas

AP→ l n̄ ~k,k8!5 i
GF

A2
KhPF~k2!FP~k!km l̄ ~k8!

3~12g5!gmn~k1k8!,

f P5hPF~2M2!, ~42!

where the meson-quark coupling constanthP is calculated
via Eq. ~28!, andK is the KKM matrix element correspond
ing to a given meson. For an arbitrary pseudoscalar me
the diagram in Fig. 2~c! gives the following expression for
f P :

f P5hP
1

4p2TrvE E E
0

1 dtds1ds2~11s1s2!

@2vt~11s1s2!1s11s2#
3

3S 12s1
11s1

Dmf
2/4vL2S 12s2

11s2
Dmf 8

2
/4vL2

3Fmf

s112vt@12j1~11s1
2!#

12s1
2

1mf 8

s212vt@12j2~11s2
2!#

12s2
2 G

3expH M2

2vL2C~ t,s1 ,s2!J ,
C5

s1s212vt~s1j1
21s2j2

2!

2vt~11s1s2!1s11s2
. ~43!

The singularity of the integrand of Eq.~43! at s1→1 and
s2→1 appears from the above-mentioned spin-field inter
tion in the quark propagator and plays the main role in reg
lating the value off P for the light mesons. Calculation o
pion and kaon decay constants by means of Eq.~43! with the
values of the parameters~36! gives

fp5126 MeV, f K5145 MeV.

Note that the coupling constantshp and hK depend on the
meson mass, quark masses, and parameterL @see Eq.~28!
and Table II#.

One could get a definite impression, that a simultaneo
description of the masses ofp, K, r, K* , v, andf mesons
and quite accurate values offp and f K are obtained mostly
due to the breakdown of chiral symmetry by the spin-fie
interaction@see also Eq.~7!#.

In order to clarify the status of this impression, one nee
to investigate the chiral limit of the model. Whether or n
and in what form the Goldberger-Treiman and Oake
t

-
son

ac-
u-
f

us

ld

ds
ot
s-

Reiner-Treiman relations are fulfilled in this limit? Naively,
it seems that the chiral limit corresponds to the cas
mu!L. However, the situation is much more complicated.

Just for illustration of this statement, consider the pio
mass in the limitmu!L. The integrals in Eq.~40! can be
evaluated, and we get the following asymptotic form of Eq
~29! for the pion mass:

12g2
16L6

9p2mu
2Mp

4Trvv
2FexpH Mp

2

8vL2 J
2expH Mp

2

8v~112v !L2 J G250. ~44!

For any values ofg there is a real positive or negative solu
tion Mp

2 to Eq. ~44!. The pion mass is equal to zero if the
values ofmu , g, andL satisfy the relation

mu
2

L2 5
g2

9p2Trv
v2

~112v !2
'S 2g

15p D 2.
For a fixed value ofg andmu /L→0, the solutionMp to Eq.
~44! is purely imaginary and behaves as

Mp

L
5 i

4

3
A7ln

L

mu
1OF lnln~L/mu!

Aln~L/mu!
G ,

which has no physically reasonable interpretation, but ju
indicates that the limitg5const andmu /L→0 is ill defined.

From our point of view, a correct transition to the chira
limit has to be based on a simultaneous changing ofmu ,
g, andL as functions of an actual physical parameter like th
temperature or particle density. The quark masses, coupl
constant, and the vacuum field strength as the functions
this parameter have to be extracted from consideration
QCD dynamics at nonzero temperature and density. Unfo
tunately, this is a quite complicated problem, and we leave
for further investigations.

The main result of this subsection is very simple: W
have demonstrated by explicit model calculations that th
spin-field interaction contained in the quark propagator@in
presence of the homogeneous~anti-!self-dual vacuum gluon
field# can be responsible for the observable masses of
light pseudoscalar and vector mesons~with the exception of
h, h8), and for the values of the weak decay constants
pions and kaons. All numerical results are given in Tables
and II.

B. Regge trajectories

It has been shown in our previous paper@8# that the spec-
trum of radial and orbital excitations of the light mesons i
asymptotically equidistant:
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MaJl n
2 5

8

3
lnS 52DL2n1O~ lnn! for n@l , ~45!

MaJl n
2 5

4

3
ln5L2l 1O~ lnl ! for l @n. ~46!

Technically this result is based on the exponential behav
of the quark propagator, Eq.~8!, and vertex functionFnl ,
Eq. ~22!, in the Minkowski region (p2/L2→2`) like

H̃ f~puB!→OS expH up2u
2vL2 J D ,

~47!
Fnl ~p2!→OS expH up2u

4L2 J D ,
and on the specific dependence of the coupling cons
GJl n @see Eq.~19!# on the orbital and radial quantum num
bersl andn arising from the decomposition of the biloca
quark currents over the generalized Lagguerre polynomi
which is determined in its order by the form of gluon prop
gator ~9! ~for details see Sec. II D!. In general the Regge
character of the spectrum is determined in our model by
confining properties of the vacuum field.

Numerical calculation of masses of the first orbital exc
tations ofp, K, r, andK* mesons by means of Eq.~29! with
the parameters~36! gives the masses shown in Table III. Th
superfine structure of the excited states ofr andK* mesons
coming from classification of currents over total momentu
@Eq. ~23!# is qualitatively correct. Superfine splitting of th
levels with l 51 is not very large.

C. Heavy quarkonia

Exponential behavior of the quark propagator and vertic
~47! is responsible for the following relation between th
masses of heavy quarkoniaMQQ̄ and heavy quarkmQ in the
leading approximation@8#:

TABLE II. The masses~MeV!, weak decay constants~MeV!,
and meson-quark coupling constantsh of the light mesons.M* ,
calculation without taking into account the spin-field interaction.

Meson p r K K* v f

M 140 770 496 890 770 1034
Mexpt 140 770 496 890 786 1020
f P 126 - 145 - - -
f P
expt 132 - 157 - - -
h 6.51 4.16 7.25 4.48 4.16 4.94
M* 630 864 743 970 864 1087
ior
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MQQ̄52mQ for mQ@L.

Now let us calculate the next-to-leading term in the mas
formula. In other words, we have to solve Eq.~29! with the
polarization functionP̃J defined by Eq.~37! with

mf5mf 85mQ@L, MQQ̄52mQ2DQQ̄ ~48!

in the next-to-leading approximation over 1/mQ . Since the
masses of quarks are equal to each other, we have@see Eq.
~13!#

j15j251/2,

which means that the composite quarkonium fieldFQQ̄(x) is
localized at the center of masses of two heavy quarks~in
Euclidean four-dimensional space!. It is convenient to trans-
form the variabless1 ands2 in Eq. ~37!:

r 15~s11s2!/A2, r 25~s12s2!/A2. ~49!

The term withF3
(J) in Eq. ~37! does not contribute to the

leading and next-to-leading behavior of the integral and ca
be omitted. After the transformation we arrive at the expres
sion

TABLE III. The masses~MeV! of orbital excitations ofp, K,
r, andK* mesons. The superfine structure of thel 51 excitation
of r andK* is shown@ l is the orbital momentum andj is the total
momentum~an observable spin! of a state#.

Meson l j M M exp

p 0 0 140 140
b1 1 1 1252 1235

K 0 0 496 496
K1(1270) 1 1 1263 1270

r 0 1 770 770
1 0 1238

a1 1 1 1311 1260
a2 1 2 1364 1320

K* 0 1 890 890
1 0 1274

K1~1400! 1 1 1342 1400
K2* 1 2 1388 1430
P̃J~2M2;mQ ,mQ ;L!52
mQ
2

4p2TrvE E
0

1

dt1dt2S E
0

1/A2
dr1E

2r1

r1
dr21E

1/A2

A2
dr1E

2A21r1

A22r1
dr2D FR1

~J!~ t1 ,t2 ,r 1 ,r 2!

w2
4~ t1 ,t2 ,r 1 ,r 2!

1
R2

~J!~r 1 ,r 2!

@22~r 12r 2!
2#@12~r 11r 2!

2#w2
2~ t1 ,t2 ,r 1 ,r 2!

GexpH M2

4vL2w~ t1 ,t2 ,r 1 ,r 2!J 1OS L

mQ
D ,

~50!
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where

w5
w1~ t1 ,t2 ,r 1 ,r 2!

w2~ t1 ,t2 ,r 1 ,r 2!
2
mQ
2

M2 ln
~A21r 1!

22r 2
2

~A22r 1
2!22r 2

2
, ~51!

w15A2v~ t11t2!r 11r 1
22r 2

2,

w25v~ t11t2!~21r 1
22r 2

2!1A2~114v2t1t2!r 1 ,

R1
~P!5

1

4
~21r 1

22r 2
2!@A1A21v2~ t12t2!

2~r 1
22r 2

2!#,

R1
~V!5

1

12
@~62r 1

21r 2
2!A1A21v2~ t12t2!

2~r 1
22r 2

2!

3~123r 1
213r 2

2!#,

A15r 12r 21A2v~ t11t2!, A25r 11r 21A2v~ t11t2!,

R2
~P!5~21r 1

22r 2
2!2, R2

~V!542~r 1
21r 2

2!2.

The asymptotic value of the integral overr 2 in the limit
M@L can be evaluated by the Laplace method. One c
check that the functionw has a maximum at the poin
r 250 for any values ofr 1, t1, t2:

]

]r 2
w~ t1 ,t2 ,r 1 ,r 2!ur25050,

]2

]r 2
2w~ t1 ,t2 ,r 1 ,r 2!ur250

52
mQ
2

M2

8A2r 1
~22r 1

2!2

2
4v~ t11t2!1A2r 1~12v2~ t12t2!

2!

w2~ t1 ,t2 ,r 1,0!
,0,

w~ t1 ,t2 ,r 1,0!5
r 1@r 112A2v~ t11t2!#

w2~ t1 ,t2 ,r 1,0!
2
2mQ

2

M2 ln
A21r 1

A22r 1
,

~52!

which means that the leading terms can be obtained
evaluating the Gaussian integral overr 2. Furthermore, one
can see that the largest value of the functionw(t1 ,t2 ,r 1,0) in
the intervalr 1P@0,A2# corresponds tor 150 for any t1, t2;
moreover,
an
t

by

]

]r 1
w~ t1 ,t2 ,r 1,0!ur15052

1

A2
S 4mQ

2

M2 21D ,0, ~53!

and in the leading approximation the integrand is reduced
an exponential function inr 1. Using Eqs.~52! and~53!, and
taking into account Eq.~48!, one can integrate overr 2 and
r 1 with the result

P̃J~2M2;mQ ,mQ ;L!u52
3L3

4pApDQQ̄
E E

0

1 dt1dt2

At11t2

1OS L

mQ
D . ~54!

Integrating overt1 and t2 in Eq. ~54! and substituting the
result to Eq.~29!, one can find

D
QQ̄

~J!

L
5
2~A221!

pAp
CJg

21OS L

mQ
D , ~55!

where CP51/9, CV51/18 @see Eq. ~19!#. It should be
stressed that the difference in the constants,

D
QQ̄

~P!
52D

QQ̄

~V!
, ~56!

originates from the Fierz transformation of the Dirac matr
ces in the interaction termL2 in representation~2!. Relation
~56! means that the vector quarkonium state is alwa
heavier than the pseudoscalar one.

The results of numerical calculation of the masses of d
ferent heavy quarkonia states are summarized in Tables
and V. The parametersL andg are equal to the values~36!
fitting the light meson masses, andmc51650 MeV,
mb54840 MeV. The agreement with the experimental va
ues is rather satisfactory. The superfine splitting (xc0, xc1,
xc2, and so on! is very small, since it is regulated by the
termsO(1/mQ) in Eq. ~29!. Its description is qualitatively
correct. The splitting is generated in our model by dividin
the quark currents withgm and l .0 into antisymmetric,

TABLE IV. The spectrum of charmonium.

Meson hc J/c xc0
xc1

xc2
c8 c9

n 0 0 0 0 0 1 2
l 0 0 1 1 1 0 0
j 0 1 0 1 2 1 1
M ~MeV! 3000 3161 3452 3529 3531 3817 4120
Mexpt ~MeV! 2980 3096 3415 3510 3556 3770 4040
TABLE V. The spectrum of bottomonium.

Meson Y xb0
xb1

xb2
Y8 xb0

8 xb1
8 xb2

8 Y9

n 0 0 0 0 1 1 1 1 2
l 0 1 1 1 0 1 1 1 0
j 1 0 1 2 1 0 1 2 1
M ~MeV! 9490 9767 9780 9780 10052 10212 10215 10215 10292
Mexpt ~MeV! 9460 9860 9892 9913 10230 10235 10255 10269 10355



d

54 4495MESON MASSES WITHIN THE MODEL OF INDUCED . . .
symmetric traceless, and diagonal parts@see Eq.~23!#, which
extracts the states with different total angular momen
mixed in the currentsq̄MgaTm1•••m l

(l ) Fnl q.

We conclude that the correct description of heavy quark
nia in our model is provided by the specific form of th
nonlocality of the quark and gluon propagators induced
the vacuum field, localization of the meson field at the cen
of masses of constituent quarks, and by a separation of
nonlocal currents with different total momentum. In gener
the spectrum is driven by the rigid asymptotic formulas~48!
and ~55!.

D. Heavy-light mesons

Another interesting sector of the meson spectrum
heavy-light mesons, characterized by a rich physics@14,15#.
In this subsection we will consider the masses and we
decay constants of heavy-light mesons. First of all, let
obtain the asymptotic formulas in the limit of infinitely
heavy quark. Namely, we have to investigate the behavio
the polarization functionP̃J(2M ;mQ ,mq ;L) @Eq. ~37!# and
the weak decay constantf P @Eq. ~43!# in the case
ta,

o-
e
by
ter
the
al,

is

ak
us

r of

mf5mQ@L, mf 85mq5O~L!,

j f5
mQ

mQ1mq
511O~mq /mQ!,

j f 85
mq

mQ1mq
5O~mq /mQ!. ~57!

Equations~57! indicate that in the heavy quark limit the
composite meson fieldFQ q̄(x) is localized at the point in
which the heavy quarkQ is situated.

Let us show that in the limit~57! the leading and next-to-
leading terms of the solution to Eq.~29! read

MQq̄5mQ1DQ q̄
~J! 1O~1/mQ!, ~58!

where the next-to-leading termDQ q̄
(J) does not depend on the

heavy quark massmQ . This term is a function of a light
quark massmq and coupling constantGJ00 @see Eq.~19!#.

Omitting the term withF3
(J) , which does not contribute to

the leading and next-to-leading behavior of the integral, an
taking into account conditions~57!, one can rewrite Eq.~37!
in the form
P̃J~2M2;mQ ,mq ;L!52
1

4p2TrvE E E E
0

1

dt1dt2ds1ds2S 12s2
11s2

Dmq
2/4vL2F ~124v2t1t2!Y~ t1 ,t2 ,s2!T1

~J!~s1 ,s2!s1M
2

@s1X~ t1 ,t2 ,s2!1Y~ t1 ,t2 ,s2!#
4

1
T2

~J!~s1 ,s2!mQmq

~12s1
2!~12s2

2!@s1X~ t1 ,t2 ,s2!1Y~ t1 ,t2 ,s2!#
2GexpH M2

2vL2f~ t1 ,t2 ,s1 ,s2!J 1OS L

mQ
D , ~59!
where

f5
s1Y~ t1 ,t2 ,s2!

s1X~ t1 ,t2 ,s2!1Y~ t1 ,t2 ,s2!
2

mQ
2

2M2 ln
11s1
12s1

,

X5114v2t1t212v~ t11t2!s2 ,

Y52v~ t11t2!1~114v2t1t2!s2 ,

T1
~P!511s1s2 , T1

~V!5
1

3
~32s1s2!,

T2
~P!5~11s1s2!

2, T2
~V!512s1

2s2
2 .
One can check that for anyt1, t2, and s2 the function
f(t1 ,t2 ,s1 ,s2) has a maximum ats15s1

max:

s1
max5

Y~ t1 ,t2 ,s2!

2X~ t1 ,t2 ,s2!
S 12

mQ
2

M2D 1OS L2

mQ
2 D ,

f~ t1 ,t2 ,s1
max,s2!5

Y~ t1 ,t2 ,s2!

2X~ t1 ,t2 ,s2!
S 12

mQ
2

M2D 21OS L3

mQ
3 D ,
]2

]s1
2f~ t1 ,t2 ,s1 ,s2!us15s

1
max52

2X~ t1 ,t2 ,s2!

Y~ t1 ,t2 ,s2!
S 12

mQ
2

M2D 21OS L3

mQ
3 D . ~60!

Therefore, we can write

P̃J~2M2;mQ ,mq ;L!52
1

4p2TrvE E E
0

1

dt1dt2ds2S 12s2
11s2

Dmq
2/4vL2

3expH M2

4vL2 S 12
mQ
2

M2D 2 Y~ t1t2 ,s2!

X~ t1 ,t2 ,s2!
J F ~124v2t1t2!s1

maxM2

Y3~ t1 ,t2 ,s2!

1
mQmq

~12s2
2!Y2~ t1 ,t2 ,s2!

G E
2`

`

ds1expH 2
M2X~ t1,t2,s2!

2vL2Y~ t1 ,t2 ,s2!
s1
2J 1OS L

mQ
D . ~61!
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Integrating out the variables1 in Eq. ~61!, substitutingM5mQ1DQ q̄
(J) to the resulting expression, and using Eq.~29!, we arrive

at the equation

15g2CJ

1

~2p!3/2
TrvAvE E E

0

1dt1dt2ds2@~12s2!/~11s2!#
mq
2/4vL2

@X~ t1 ,t2 ,s2!Y~ t1 ,t2 ,s2!#
3/2 FDQ q̄

~J!

L
1
X~ t1 ,t2 ,s2!

12s2
2

mq

L G
3expH @DQ q̄

~J! #2

vL2

Y~ t1t2 ,s2!

X~ t1 ,t2 ,s2!
J 1OS L

mQ
D . ~62!
t

Equation~62! describes dependence ofDQ q̄
(J) in the mass for-

mula ~58! on the coupling constantg, the light quark mass
mq , and vacuum field strengthB (L). There is a single real
solution to Eq.~62! for any positiveg, mq , andL. In par-
ticular, for the values~36! we get

DQ ū
~P!520 MeV, DQ ū

~V!5155 MeV,

DQ s̄
~P!563 MeV, DQ s̄

~V!5191 MeV.

As is seen from Eq.~62!, the difference between the pseu
doscalarDQ q̄

(P) and vectorDQ q̄
(V) is due to the constantCJ ,

which appears from the Fierz transformation of the Dir
matrices. This is the same situation as in the case of he
quarkonia@see Eq.~55!#.

Table VI demonstrates the reasonably good agreement
tween the experimental data and the masses of the he
light mesons calculated by means of Eq.~29! with the pa-
rameters~36!. The masses of heavy quarks are the same a
the description of the heavy quarkonia~see Table I!.

Now let us turn to the calculation of the weak decay co
stant for the pseudoscalar heavy-light mesons. Under co
tions ~57!, the integral overs1 in Eq. ~43! can be evaluated
by the Laplace method. The result is

f P5hP
L2

mQ
Af S DQ q̄

~P!

L
,
mq

L
D , ~63!
-

ac
avy

be-
avy-

s in

n-
ndi-

where

Af5Trv
Av

~2p!3/2
E E

0

1dtds2@~12s2!/~11s2!#
mq
2/4vL2

@s212vt#3/2@112vts2#
3/2

3FDQ q̄
~P!

L
1
mq

L

112vts2
12s2

2 GexpH @DQ q̄
~P!#2

vL2

s212vt
112vts2

J
1OS L

mQ
D , ~64!

and the differenceDQ q̄
(P) between the masses of heavy quark

and heavy-light meson is given by Eq.~62!. The procedure
for obtaining Eqs.~63! and~64! is very similar to the calcu-
lations providing Eq.~62!. To get the final formula forf P ,
the asymptotic form of the meson-quark coupling constan
hP has to be defined in the case~57!. Performing calculations
analogous to those which lead to Eq.~62!, we arrive at

hP5AmQ

L
Ah

21S DQ q̄
~P!

L
,
mq

L
D ,
Ah
25

DQ q̄
~P!

2~2p!3/2L
Trv

1

Av
E E E

0

1dt1dt2ds2@~12s2!/~11s2!#
mq
2/4vL2

@X~ t1 ,t2 ,s2!Y~ t1 ,t2 ,s2!#
3/2 FDQ q̄

~J!

L
1
X~ t1 ,t2 ,s2!

12s2
2

mq

L G
3expH @DQ q̄

~J! #2

vL2

Y~ t1 ,t2 ,s2!

X~ t1 ,t2 ,s2!
J 1OS L

mQ
D . ~65!
he

ar
One can see that Eqs.~63!–~65! give the following asymp-
totic relation in the heavy quark limit~57!:

f P5
L3/2

AmQ

Af

Ah
, ~66!

whereAf andAh do not depend on the heavy quark mass
the leading approximation overL/mQ , as is indicated in
Eqs. ~64!, and ~65!. Relation~66! agrees with the accepted
in

notion about the behavior of the weak decay constants of t
heavy-light mesons@15#. Results of the numerical calcula-
tion of the weak decay constants for different pseudoscal
mesons are given in Table VI.

IV. DISCUSSION

In conclusion, we would like to point out several prob-
lems that require more profound studying.
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We have assumed from the very beginning that the n
perturbative QCD vacuum is characterized by a nonz
background ~anti-!self-dual homogeneous field. In othe
words, the minimum of the QCD effective potential~the free
energy density! for this gluon configuration is assumed to b
at nonzero field strength. Different estimations of the effe
tive potential indicate that this situation can be realized~see
@3# and numerous references therein!. Although these estima-
tions cannot be used as a basis for a more or less rigor
proof, they underline the key role of the gluon sel
interaction in forming the effective potential for a homog
neous gluon field. Just the self-interaction of gauge boson
the distinctive feature of non-Abelian theories such as QC
Gluon-gluon coupling is manifested also in the nontrivi
form of the gluon propagator~9!. Although the background
field is quasi-Abelian, the non-Abelian nature of the gluo
field plays the crucial role for the model under consideratio

In order to clarify the basic assumption of this paper, o
needs to get a reliable nonperturbative estimation of the f
energy density or effective potential of QCD for the bac
ground field under consideration. Lattice calculations se
to be the most promising approach to this problem.

In this paper we have demonstrated how the singula
1/mf of the quark propagator affects the masses and w
decay constants of light mesons. However, more deta
consideration of chiral symmetry breaking by the bac
ground field is needed. This can be achieved by investiga
the Dirac equation in the presence of the homogene
~anti-!self-dual field.

Another source of chiral symmetry violation is the effe
tive four-quark interaction. This is the main idea of the NJ
type models. The vacuum gluon field does not remove
mechanism of the NJL type. The divergent diagram in Fig
should play the key role in studying this mechanism of sy
metry breaking. Taking this into account one can rewr
representation~25! in the form

Z5e2VE~w0uL,g,m!E dsvacE DqDq̄

3expH 2E E d4xd4yq̄~x!S21~x,yuB!q~y!

1(
N

1

2L2GN
2 E d4x@IN~x!2TrVNS#2J .

HereV is the Euclidean volume. The approximated free e
ergy densityE(w0uL,g,m) depends on the vacuum expect
tion valuew0 of the scalar nonlocal quark current (NF52 for
simplicity!. The energy density is ultraviolet finite and ca
be calculated. It is normalized asE(0uL,g,m)50. The
modified quark propagatorS(x,yuB,w0) depends onw0 and
satisfies the equation

TABLE VI. The masses and weak decay constants~MeV! of
heavy-light mesons.

Meson D D* Ds Ds* B B* Bs Bs*

M 1766 1991 1910 2142 4965 5143 5092 5292
Mexpt 1869 2010 1969 2110 5278 5324 5375 5422
f P 149 - 177 - 123 - 150 -
on-
ero
r

e
c-

ous
f-
e-
s is
D.
al

n
n.
ne
ree
k-
em

rity
eak
iled
k-
ting
ous

c-
L-
the
. 1
m-
ite

n-
a-

n

F igm¹̂m2m2GS00w0F00S 4¹W 2

L2D GS~x,yuB,w0!

52d~x2y!,

whereGS00 and F00 are given by Eqs.~19! and ~22!. The
constant vacuum expectation valuew0 is a solution to the
equation

w0
2F11SGS00

L D 2R̃~0uw0 ;L,g,m!G50,

where R̃(p2uw0 ;L,g,m) is the Fourier transform of the
function

R~x2yuw0 ;L,g,m!5E dsvacTrF00S ¹J 2~x!

L2 DS~x,yuB!

3F00S ¹J 2~y!

L2 DS~y,xuB,w0!.

These formulas are free from ultraviolet divergences. The
exist two possible phases withw0[0 andw0Þ0. The phase
with zero w0 corresponds to the case investigated in thi
paper. Another phase withw0Þ0 concerns symmetry break-
ing due to the four-quark interaction.

By means of this representation the interplay of bot
mechanisms of chiral symmetry breaking can be studie
This problem is under our consideration now, but is not ye
finished. In any case, the pure effect of symmetry breakin
by the vacuum field should be investigated separately. Th
study of the problem including both mechanisms is techn
cally difficult, and, at least, an attempt to solve all the prob
lems in one paper is unreliable. It is better to solve them on
by one.

One can expect that an additional breakdown of chira
symmetry by the four-quark interaction could diminish the
quark masses. In view of this, the large values ofu-, d-, and
s-quark masses~see Table I! should be considered as the
question for further investigations rather than the argume
against the physical effects produced by the vacuum fie
under consideration.

One can see that the coupling constantg in Table I is
rather large. A possible origin of this unpleasant featur
could be covered in the elimination of some terms of th
gluon propagator~9! ~for more details see@8#!. In other
words, some truncations in the gluon propagator were com
pensated for by the rising of the coupling constant. Thi
point also has to be investigated carefully.
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