
tions

or
the
ture
od
it of

PHYSICAL REVIEW D 1 OCTOBER 1996VOLUME 54, NUMBER 7

0556-28
t decays and chiral perturbation theory

Gilberto Colangelo
Institut für Theoretische Physik, Universita¨t Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Markus Finkemeier
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Res Urech
Institut für Theoretische Teilchenphysik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

~Received 8 April 1996!

In a small window of phase space, chiral perturbation theory can be used to make standard model predic
for t decays into two and three pions. Fort→2pnt , we give the analytical result for the relevant form factor
FV up to two loops, then calculate the differential spectrum and compare with available data. F
t→3pnt , we have calculated the hadronic matrix element to one loop. We discuss the decomposition of
three pion states into partition states and we give detailed predictions for the decay in terms of struc
functions. We also compare with low energy predictions of meson dominance models. Overall, we find go
agreement, but also some interesting discrepancies, which might have consequences beyond the lim
validity of chiral perturbation theory.@S0556-2821~96!00119-1#
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I. INTRODUCTION

Semileptonic decays of the heavyt lepton into at neu-
trino and a hadronic system offer a unique laboratory
study the standard model and especially, low energy QCD
variety of multimeson final states with invariant masses fro
the production threshold up to thet mass of about 1.8 GeV
can be studied. These final states can also be produced u
hadronic initial states~such as pion-nucleon or nucleon
nucleon collisions!. The production int decays, however, is
advantageous in that the initial state is simple, clean, a
well understood. Whereas some of the final states~e.g., two
or four pions! can also be produced using an electromagne
current, i.e., electron-positron annihilation, other states~e.g.,
three pions in anI51 state! can only be produced through
the weak current. And in the case of the states which can
produced both int decays and in electron-positron annihila
tion, such as the two and four pion final states,t days now
compete well in statistics with electromagnetic production

For inclusive semileptonict decays, thet mass of about
1.8 GeV is large enough to allow the application of pertu
bative QCD and, in fact, offers a unique possibility to me
sure the strong coupling constantas(m) at the low scale
m5M t @1#. In the case of exclusive semileptonic decay
calculations based on a systematic use of the QCD Lagra
ian are not available up to now. In these decays, the pr
testing the hadronic current carries a momentumQ which is
mainly in the intermediate energy region, the most difficu
one for the study of strong interactions. In this region the
retical predictions have been obtained by using some kind
phenomenological models or approximate methods, such
quark models@2,3#, vector-meson dominance@4–10#, tree-
level calculations from effective Lagrangians@11#, or unita-
rization of current algebra results@12#.

A small fraction of these decays, however, happens w
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very low Q2, below the mass of the lightest resonance. I
this region the only active fields are the pseudoscalar meso
and one can use an effective Lagrangian to describe th
interactions. This effective theory, called chiral perturbatio
theory ~CHPT!, is a systematic method to calculate QCD
matrix elements at low energy by means of an expansion
powers of the external hadronic momenta@13–15#.

The limits of applicability of CHPT do not allow one to
give predictions for integrated decay rates, which would in
volveQ2 up toM t

2 . Furthermore,t decays into more than a
single pion are dominated by resonant intermediate state
such as ther(770) in the two pion channel and the
a1(1260) in the three pion channel. And so, there are on
relatively few events with smallQ2. For these reasons, in the
past, CHPT has been considered as not very interesting
t decays.

However, with the present high luminosity machines suc
as the CERNe1e2 collider LEP and Cornell Electron Stor-
age Ring~CESR!, and even more so with futureb- and per-
hapst-charm factories,t physics has turned into an era of
precision measurements, exploring very small branching r
tios and studying details of differential distributions. Thus
the smallQ2 regime which is interesting for CHPT is now
becoming accessible.

We would like to mention that there is another small cor
ner of phase space where a different systematic expansion
the hadronic current becomes possible. Heavy meson chi
perturbation theory@16# can be applied tot decays into a
vector meson and a pion~such ast→rpnt , t→K*pnt), if
the momentum of the pion is small in the vector meson re
frame @17#. A complete calculation which includes vector
meson decay and interference effects between differe
vector-meson amplitudes, however, is still missing in thi
approach.

Another reason why CHPT is relevant tot decays is the
4403 © 1996 The American Physical Society
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fact that it can be used to test phenomenological models
fix some of their parameters. Indeed, theO(p2) prediction of
CHPT in the limit of vanishing quark masses has been u
to normalize vector-meson dominance models in@4–10#. In
the present paper we will extend the CHPT prediction
higher order inp2, and it will be a severe test for models
they correctly reproduce these higher orders.

The expansion parameter of CHPT isQ2/(4pFp)
2, with

4pFp51.2 GeV, so we are interested inAQ2 below 500–
600 MeV. Hadronic final states with a single pion or kao
can be predicted directly fromFp andFK @18#, and so there
is nothing interesting CHPT could teach us here. Final sta
with two and three pions allow for a reasonably large regi
of Q2 between threshold and the limit of applicability o
CHPT. Already with four pions this region has almost di
appeared. Moreover, the phase space for ann pion hadronic
state, withQ2 close to thresholdQ2→(nMp)

2, opens pro-
portional to

~AQ22nMp!~3n25!/2 ~1!

~see Sec. III A below!. The exponent is 1/2 for two pions
2 for three pions, and 7/2 for four pions. So, in the case
four pions, the small interesting region for CHPT is eve
more suppressed by the phase space. As for final states
kaons, the threshold for a pion-kaon state isMp

1MK5634 MeV. Furthermore, theK* (892) resonance is
very close@19#.

Therefore, we find reasonable to try a CHPT calculati
only for the 2p and 3p final states and these are the ones w
will discuss in this paper. The two pion state is determin
by only one form factor, namely, the vector-pion form facto
This can be measured in a few other processes,
e1e2→2p or pe scattering.t decays can provide an inter
esting cross-check measurement, and we will investig
whethert decays may become competitive in statistics. T
three pion state, however, can only be produced int decay,
and has a very rich and interesting substructure, which
will study in detail.

Our paper is organized as follows: A brief review of ch
ral perturbation theory is given in Sec. II. In Sec. III, w
discuss the general structure of the phase space, the had
matrix element for two and three pions, and the different
decay rate. In this section we also discuss general prope
of the three pion final state, regarding isospin invariance,
classification in terms of partition states, and the definition
structure functions. We then calculate the hadronic ma
elements in CHPT in Sec. IV. Section V is dedicated to o
numerical results, and in Sec. VI we state our conclusions
Appendix we summarize our main conventions, display t
decomposition of the three pion form factors into partitio
states, and collect the main formulas regarding the definit
of the structure functions.

II. CHIRAL PERTURBATION THEORY

The relevant matrix elements fort decays into pions are
of the form

^p i1~p1! . . .p
i n~pn!outuIm

k ~0!u0&, ~2!
or
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where Im
k 5Vm

k 5 1
2q̄tkgmq when n is even, andIm

k 5Am
k

51
2q̄tkgmg5q whenn is odd. By now, a standard method to

calculate such matrix elements in QCD at low energy
CHPT. In this framework one uses an effective Lagrangia
that respects the chiral symmetry properties of QCD, an
that has the pions as the only ‘‘active’’ fields. Of course, th
Lagrangian is expected to be valid only up to energies whi
are well below the threshold for the production of heavie
hadronic states. For more details about this method we re
the reader to the fundamental paper by Gasser and Leutwy
@14# and to a number of excellent reviews which are pre
ently available in the literature@15#. Here, we simply sketch
the basic ideas and introduce the relevant notation.

We consider the effective Lagrangian relative to two fla
vors in the isospin limitm̂5mu5md . This Lagrangian con-
tains an infinite number of terms; however, it can be ex
panded in powers of derivatives and quark masses. O
power of the quark mass will be counted as two powers
derivatives.1 One will then have

Leff5L21\L41\2L61•••. ~3!

The leading order Lagrangian starts atO(p2) and is the non-
linears-model Lagrangian in the presence of external field
which we represent here in matrix form,am5am

k tk,
vm5vm

k tk:

L25
F2

4
^DmUDmU

†1M2~U1U†!&,

DmU5]mU2 i ~vm1am!U1 iU ~vm2am!,

Mp
25M2@11O~m̂!#,

M252Bm̂,

Fp5F@11O~m̂!#. ~4!

B is proportional to the quark condensate^0uūuu0& and the
unitary 232 matrixU contains the pion fields:

U5s1 i
f

F
, s21

f2

F2 51,

f5S p0 A2p1

A2p2 2p0 D . ~5!

The external fieldsvm
k and am

k , which we have introduced,
have to be treated as external sources for thequark currents
Vm
k and Am

k , respectively; in other words, the currents
coupled tovm

k andam
k in the effective Lagrangian are the low

energy representation of the quark currents. In this fram
work these currents are expanded in powers of derivativ
and quark masses, and are nonlinear in the pion fields, e
the axial vector current

1This means we are applying the ‘‘standard’’ CHPT counting rule
For a different counting rule, leading to a different ordering in th
effective Lagrangian~the so-called ‘‘generalized’’ CHPT!, see Ref.
@20#.
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Am
k 5

iF 2

4
^tk~U†DmU2UDmU

†!&1O~p3!

5@2F]mfk1O~f3!#1O~p3!. ~6!

Despite the fact that this Lagrangian is nonrenormal
able, one can use it to calculate matrix elements with
standard perturbation theory. As we have emphasized in
~4!, the expansion parameter is\. This automatically pro-
duces an expansion of the matrix elements in powers of m
menta and quark masses. As for the matrix elements in qu
tion, tree diagrams fromL2 generate leading orde
contributions@4–10#, while one-loop diagrams yield terms a
next-to-leading order. The occurring divergences in the lo
contributions~in d54 dimensions! can be absorbed by in-
troducing the effective Lagrangian atO(p4) @14#:

L45
1

4
l 1^D

mUDmU
†&21

1

4
l 2^DmUDnU

†&^DmUDnU†&

1
1

16
l 3M

4^U1U†&21
i

2
l 4M

2^am~DmU2DmU†!&

1 l 5^FR
mnUFLmnU

†&

1
i

2
l 6^FR

mnDmUDnU
†1FL

mnDmU
†DnU&1•••,

FR,L
mn 5]m~vn6an!2]n~vm6am!2 i @vm6am,vm6am#,

~7!

where we omitted terms which contain external fields on
Since we disregard singlet vector and axial vector curre
~i.e., ^vm&5^am&50), there is no contribution from the
anomaly atO(p4) @14#.

The coupling constantsl i are split in a divergent and a
finite piece and are scale independent by definition:

l i5g il1 l i
r~m!,

l5
md24

16p2 H 1

d24
2
1

2
@ ln4p1G8~1!11#J ,

m
d

dm
l i5g i

md24

16p2 1m
d

dm
l i
r~m!1O~d24!50. ~8!

The finite parts have been determined phenomenologic
for the first time by Gasser and Leutwyler@14#. We adopt
their notation and use instead of thel i

r(m), the finite and
scale-independent quantitiesl̄ i :

l̄ i5S g i

32p2D 21

l i
r~m!2 ln

M2

m2 . ~9!

The up to date values for the relevantl̄ i and the correspond-
ing g i are listed in Table I. For completeness we give t
expressions for the pion decay constant and the pion mas
to and includingO(p4):
iz-
the
Eq.

o-
es-
r
t
op

ly.
nts

ally

he
s up

Fp5FF11
M2

16p2F2 l̄ 41O~M4!G ,
Mp

25M2F12
M2

32p2F2 l̄ 31O~M4!G . ~10!

The mass splitting Mp6
2

2Mp0
2 is proportional to

(mu2md)
2 and thus may be neglected. In the numerica

evaluation, we will useMp5139.57 MeV and2 Fp593.1
MeV.

If one wants to go beyond the next-to-leading order, on
has to calculate two-loop diagrams withL2, and one-loop
diagrams with one vertex fromL4. Again, these diagrams
will be divergent, but this is not a problem since at the sam
order one has contributions from tree diagrams with theL6
Lagrangian~which has been constructed in the case of thre
lights flavors@22#!. By defining appropriately the new cou
pling constants occurring in this Lagrangian, one is able
remove the divergences at the next-to-next-to-leading ord
and get finite matrix elements. In order to have numeric
predictions at this level one has to find a way to pin down o
at least to estimate the finite parts of the new low energ
constants. At the moment this has not been done yet in
systematic way: in Sec. IV A, when calculating the matri
element of thet decay into two pions to two loops, we will
show how in a specific case one can try to circumvent th
problem.

III. PHASE SPACE, MATRIX ELEMENTS,
AND STRUCTURE FUNCTIONS

A. Phase space considerations

The two pion phase space is given by

F2p5
M t

2

128p3E dQ2

M t
2 S 12

Q2

M t
2D S 12

4Mp
2

Q2 D 1/2 ~11!

~the reader is referred to Appendix A for our conventions!,
where the integral is from threshold 4Mp

2 up toM t
2 . Close to

the two pion threshold, this implies

2This means that we are neglectingO(a) corrections to the decay
width G(p→mnm) from whichFp is extracted; for more details see
Ref. @23#.

TABLE I. The set ofl̄ i and correspondingg i which we need for
the calculation of the matrix elements in question. The values a
taken from@21# for i51,2, and from@14# for all the others. The
g i determine the relation between thel̄ i and thel i

r(m).

i l̄ i g i

1 21.761.0 1/3
2 6.160.5 2/3
3 2.962.4 21/2
4 4.360.9 2
6 16.561.1 21/3
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dF2p

dQ2 →
1

128p3

1

Mp
1/2S 12

4Mp
2

M t
2 D ~AQ222Mp!1/2. ~12!

The three pion phase space is

F3p5
M t

2

2048p5E
9Mp

2

M t
2 dQ2

M t
2 S 12

Q2

M t
2D 1

Q2E
4Mp

2

~AQ22Mp!2ds1
s1

3@~s12Q22Mp
2 !224Q2Mp

2 #1/2@s1~s124Mp
2 !#1/2.

~13!

Close to thresholdQ2→9Mp
2 , this can be approximated by

dF3p

dQ2 →
1

21033/2p4 S 12
9Mp

2

M t
2 D ~AQ223Mp!2. ~14!

By induction we can show@24# that the phase space for an
n pion hadronic state, withQ2 close to threshold,
Q2→(nMp)

2, opens proportional to

dFnp

dQ2 }~AQ22nMp!~3n25!/2. ~15!

Forn52, the exponent is 1/2, forn53 it is 2, recovering the
above results.

It is clear that, in general, the more pions there are, t
slower the phase space opens at threshold. Therefore,
four and more pions, it is not only the high invariant had
ronic mass, but also the behavior of the phase space
threshold which prevents the application of CHPT.

B. Two pion differential decay rate

The hadronic matrix element of the decay into two pion
is characterized by a single form factor,FV(Q

2),

Hm5^p2~p1!p
0~p2!uVm2Amu0&5A2~p12p2!

mFV~Q2!.
~16!

Only uFV(Q
2)u can be measured, and it can be obtained

measuring the differential distribution inQ2 using

dG2p

Ge
~Q2!5

cos2uc
2

dQ2

M t
2 S 12

Q2

M t
2D 2S 11

2Q2

M t
2 D

3S 12
4Mp

2

Q2 D 3/2uFV~Q2!u2. ~17!

Here, we have normalized to the electronic branching ratio
the t:

Ge5
GF
2M t

5

192p3 . ~18!

C. Structure functions and the three pion
differential decay rate

1. Form factors and isospin relations

The most general form of the hadronic matrix elemen
for the t decays into the 2p2p1 and 2p0p2 final states,
compatible with the requirements of Lorentz, isospin an
he
for
-
at

s

by

of

ts

d

G-parity invariance and Bose symmetry are given in terms o
three functionsF, G, andH which have to satisfy the prop-
erty

F~s2 ,s1 ,s3!51F~s1 ,s2 ,s3!,

G~s2 ,s1 ,s3!51G~s1 ,s2 ,s3!,

H~s2 ,s1 ,s3!52H~s1 ,s2 ,s3!. ~19!

The matrix elements are then given by

^p0~p1!p
0~p2!p

2~p3!uAm
2~0!u0&

5G~s1 ,s2 ,s3!~p11p2!m1H~s1 ,s2 ,s3!~p12p2!m

1F~s1 ,s2 ,s3!p3m ,

^p2~p1!p
2~p2!p

1~p3!uAm
2~0!u0&

5G~1 !~s1 ,s2 ,s3!~p11p2!m1H ~1 !~s1 ,s2 ,s3!

3~p12p2!m1F ~1 !~s1 ,s2 ,s3!p3m . ~20!

The form factors for 2p2p1 and 2p0p2 are related by
isospin symmetry

F ~1 !~s1 ,s2 ,s3!5@G~s2 ,s3 ,s1!1G~s3 ,s1 ,s2!

2H~s2 ,s3 ,s1!1H~s3 ,s1 ,s2!#,

G~1 !~s1 ,s2 ,s3!5 1
2 @F~s2 ,s3 ,s1!1F~s3 ,s1 ,s2!

1G~s2 ,s3 ,s1!1G~s3 ,s1 ,s2!

1H~s2 ,s3 ,s1!2H~s3 ,s1 ,s2!#,

H ~1 !~s1 ,s2 ,s3!5 1
2 @F~s2 ,s3 ,s1!2F~s3 ,s1 ,s2!

2G~s2 ,s3 ,s1!1G~s3 ,s1 ,s2!

2H~s2 ,s3 ,s1!2H~s3 ,s1 ,s2!#. ~21!

Alternatively, one can use a decomposition of the matri
element into only two functions,F1(s1 ,s2 ,s3) and
FS(s1 ,s2 ,s3), with FS even under the exchange ofs1 and
s2, andF1 of mixed behavior:

^p0~p1!p
0~p2!p

2~p3!uAm
2~0!u0&

5@F1~s1 ,s2 ,s3!~p12p3!
n

1F1~s2 ,s1 ,s3!~p22p3!
n]Tmn1FSQm ,

^p2~p1!p
2~p2!p

1~p3!uAm
2~0!u0&

5@F1
~1 !~s1 ,s2 ,s3!~p12p3!

n

1F1
~1 !~s2 ,s1 ,s3!~p22p3!

n]Tmn

1FS
~1 !Qm , ~22!

where
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Tmn5gmn2
QmQn

Q2 ,

Qm5~p11p21p3!m ,

Q25s11s21s323Mp
2 . ~23!

The decomposition intoF1 and FS has the advantage tha
these form factors correspond to a definite overall spin~viz.,
F1 corresponds to spin 1 andFS to spin 0!, and therefore, the
structure functions~see Sec. IV B! are usually expressed
through F1 and FS . If F, G, and H are known, we can
calculateF1, FS through

F1~Q
2,s1 ,s2!5

2F~s1 ,s2 ,s3!1G~s1 ,s2 ,s3!

3

1H~s1 ,s2 ,s3!,

FS~Q
2,s1 ,s2!5aF~s1 ,s2 ,s3!1~12a!G~s1 ,s2 ,s3!

2bH~s1 ,s2 ,s3!,

a5
s11s222Mp

2

2Q2 ,

b5
s12s2
2Q2 . ~24!

A completely analogous relation holds for the form factors
the all charged matrix element.

Let us emphasize two facts regarding the two char
modes. First, the two matrix elements for the final sta
2p2p1 and 2p0p2 are not independent. If one knows th
matrix element for one of the two states, the other one can
calculated using isospin symmetry. Second, however, isos
symmetry doesnot require that the form factors and deca
rates are equal for the two modes. This fact can be seen if
decompose the three pion states in terms of partitions@25#.

2. Classification in terms of partitions

In Ref. @25#, Pais introduced a classification ofN pion
states with overall isospinI50 or 1 in terms of correlation
quantum numbers@N1N2N3#. The three integer quantum
numbersNi are partitions of the total number of pionsN

N1>N2>N3>0,

N11N21N35N. ~25!

Each state@N1N2N3# is characterized by its symmetry prop
erty under the exchange of some of the momen
p1 , . . . ,pN . Such a state is easily constructed with the he
of a Young tableau: each Young diagram must have th
rows with N1 , N2, andN3 cells in the first, second, and
third row, respectively. The cells must then be filled wi
numbers going from 1 toN, with the only rule that all the
numbers in the rows~columns! must be organized in increas
ing order from left to right~top to bottom!. The rule to con-
struct a pion state from a tableau is very simple: one has
symmetrize with respect to the exchange of the mome
t

of

ge
tes
e
be
pin
y
we

-
ta
lp
ree

th

-

to
nta

with the indices which are in a row, and antisymmetrize with
respect to the momenta with the indices which are in a co
umn. The order of these operations of symmetrization o
antisymmetrization is not important, but must be fixed onc
and for all.

Remarkably, all the states belonging to the same cla
defined by the partition@N1N2N3# share some common
properties about isospin and charge distributions:~1! the
overall isospinI is uniquely determined and it isI50 if
N12N3 andN22N3 are both even, andI51 otherwise;~2!
the states in a class@N1N2N3# are composed byN3 sub-
systems of three pions withI50 andN22N3 subsystems of
two pions with I51, andN12N2 remaining single pions
@trivially, 3N312(N22N3)1(N12N2)5N#; ~3! theN pion
states which we are describing contain all possible charg
distributions ~e.g., for N52 and zero total charge, they
would contain bothp1p2 andp0p0 states!. The probability
of a state to contain a given charge distribution is a ‘‘clas
property,’’ i.e., is uniquely determined by the partition
@N1N2N3# to which it belongs.

For a more detailed account of the properties of theseN
pion states we refer the reader to the original article by Pa
@25#. We now concentrate on the case of our interestN53.

In this case we have three possible partitions:@300#,
@210#, and@111#. The @111# corresponds top1p0p2 in an
overall I50 state~e.g., from the decayv→3p). The re-
maining two partitions,@210# and @300#, haveI51 and so
they can occur int→3pnt .

These two partitions differ in their branching ratios into
the two charge distribution states. The@210# decays equally
into 2p2p1 and 2p0p2:

@210#:
B~2p2p1!

B~2p0p2!
51 ~26!

whereas the@300# state prefers the all charged mode

@300#:
B~2p2p1!

B~2p0p2!
54. ~27!

Equations~26! and~27! immediately lead to the inequalities
obtained in Ref.@26#:

1

5
<

B~2p0p2!

B„ all~3p!2
…

<
1

2
,

1

2
<

B~2p2p1!

B„ all~3p!2
…

<
4

5
.

Experimentally, the branching ratios of thet into the two
states are equal within the errors, so that certainly th
@210# strongly dominates and a possible small admixture o
the@300# state~which, as we will show below, is required by
CHPT!, has not yet been established. Note that if the deca
occurs only via a decay chaint→a1nt , a1→rp, and
r→pp, as in vector meson dominance models, there is on
the @210# state~because of ther resonance, there is one two
pion subsystem withI51, i.e.,N22N351), and both decay
charge modes are produced with equal rates.

If one has an analytic expression for the form factors i
each of the two charge modes, one can easily construct t
matrix element of a given partition state, by following the
rules which we described above. The complete decompo
tion of each of the form factorsF, G, andH into the three
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partition states~two states for the partition@210# and one for
@300#) is described in Appendix B. Here, we give in a
obvious notation the decomposition only ofF1, since it is the
most important form factor in the numerical analysis:

F15@F1
@300#1F1

@210##,

F1
~1 !5@2F1

@300#2F1
@210##, ~28!

where with F1
@210# we have indicated the sum of the two

states belonging to the@210# class. From this decomposition
the branching ratios given in Eqs.~26! and ~27! follow, and
sinceF1

VMD52F1
(1) VMD , it is clear that the@300# partition

is absent in the vector meson dominance~VMD ! model.

3. Structure functions and differential decay rate

The differential decay rate for a general hadronic decay
determined by

dG~t→3pnt!5
GF
2

4M t
cos2uCLmnH

mndPS~4!, ~29!

where the hadronic and leptonic tensors are

Lmn :5Lm~Ln!†, Hmn :5Hm~Hn!†, ~30!

where Hm5^hadronic final stateuAm
2(0)u0&. The decay is

most easily analyzed in the hadronic rest frame, and we c
write

LmnH
mn5(

X
LXWX . ~31!

In general,Hmn can be characterized by 16 independent re
functions. In our case of a three pion final states, there
restrictions due toG parity and Bose symmetry, which leave
nine independent structure functionsWX . These hadronic
structure functionsWX depend on the kinematics only
through the hadronic invariantss1, s2, andQ

2. The angular
dependence is contained fully in the corresponding lepto
LX . For details, see Appendix C below and@27,28#.

There are four structure functionsWA , WC , WD , and
WE , which arise from the spin-1 part of the hadronic curren
i.e., they depend onF1(Q

2,s1 ,s2). A single structure func-
tionWSA arises from the spin-0 part and depends onFS , and
four functionsWSB, WSC, WSD , andWSE are due to inter-
ference between spin-1 and spin-0 amplitudes.

The structure functions can be measured by observing
gular distributions and taking moments^m& with respect to
products of trigonometric functions of these angles.

In the numerical evaluation in Sec. V B we will plots1,
s2 integrated structure functionswX :

wA,C,SA,SB,SC~Q
2!5E ds1ds2WA,C,SA,SB,SC~Q

2,s1 ,s2!,

wD,E,SD,SE~Q
2!5E ds1ds2sign~s12s2!

3WD,E,SD,SE~Q
2,s1 ,s2!. ~32!
n

is

an

al
are

nic

t;

an-

Without the energy-ordering sign(s12s2), the relevantwX
would vanish due to Bose symmetry.

The integrated decay rate is determined byWA andWSA
only, the other functions give vanishing contributions afte
integration over the angles. We have

dG5
GF
2

2M t
cos2uC

1

~4p!5
dQ2

Q2

M t
22Q2

Q2

3H 12wSA~Q
2!1

1

6 S 11
2Q2

M t
2 DwA~Q2!J . ~33!

IV. CALCULATION OF THE HADRONIC
MATRIX ELEMENTS

A. Two pion decay

The hadronic matrix element which is relevant for thet
decay into two pions is

^p i~p1!p
l~p2!outuVm

k ~0!u0&5 i e i lk~p12p2!mFV~s!,
~34!

wheres5Q25(p11p2)
2, andVm

k 5 1
2q̄gmtkq. In the frame-

work of CHPT,FV(s) was calculated by Gasser and Leut-
wyler @14# to one loop, and by Gasser and Meissner@29# up
to two loops, by using a three-times subtracted dispersiv
representation. The function to be integrated inside the di
persive integral is a particular combination of the vecto
form factor and theI51, P-wavepp scattering amplitude
at the tree- and one-loop level. In Ref.@29# the dispersive
integral was calculated numerically. Here, we are able t
give a compact analytic expression of this integral3:

FV~s!511
1

6
^r 2&V

ps1cV
ps21 f V

US s

Mp
2 D , ~35!

f V
U~x!5

Mp
2

16p2Fp
2 H x9 @11 24p2s2J̄~x!#2

x2

60J
1S Mp

2

16p2Fp
2 D 2H F l̄ 22 l̄ 11

l̄ 6
2

1
6l̄ 4
x Gx227

3@11 24p2s2J̄~x!#2
x2

30
l̄ 41

3191

6480
x21

223

216
x2

16

9

2
p2x

540
~37x115 !1

4p2

27
~ 7x22151x199 !J̄~x!

1
2p2

9x
~x3230x2178x2128 !K̄1~x!

18p2S x22 13

3
x22D K̄4~x!J , ~36!

where we have used the functions

3The integrals one has to calculate here are similar to the ones t
occur in thepp scattering amplitude to two loops, see Refs
@30,31#.
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J̄~x!5
1

16p2@F~x!12#,

K̄1~x!5
1

16p2

F2~x!

s2 ,

K̄4~x!5
1

16p2

F~x!

xs2 1
1

32p2

1

xs2 FF2~x!

s2 1p2G
1

1

48p2

1

xs4 H 1

xs4 @F3~x!1p2s2F~x!#2p2J
1

1

192
2

1

32p2 , ~37!

with

F~x!5s ln
s21

s11
,

s5A124/x. ~38!

The functionsK̄ i(x) were recently introduced by Knech
et al. @30#, and such asJ̄(x) are analytic everywhere apar
from a branch cut from 4 tò , and go to zero asx→0.

All the constants which occur inf V
U(s/Mp

2 ) are known
~see Sec. II!. The subtraction constantŝr 2&V

p and cV
p are

calculable in CHPT and can be expressed in terms of the
energy constantsl i

r(m), chiral logs, and the new low energ
constants which appear inL6. With this representation of the
subtraction constants given by CHPT, one automatically s
isfies the relevant Ward identities, up to the order at wh
one is working. We do not give this explicit representatio
here because up to now there is no information on the
merical value of the newL6 low energy constants. In the
future, with more accurate data on various low energy p
cesses, and more two-loop calculation available, one co
try to pin down at least some of them, but this will require
considerable amount of work and it is beyond the scope
our analysis.

We adopt in the following the notation of Gasser an
Meissner@29# and write

^r 2&V
p5

1

16p2Fp
2 F ~ l̄ 621!1

Mp
2

16p2Fp
2 f̄ 1G1O~Mp

4 !,

cV
p5

1

16p2Fp
2 F 1

60Mp
2 1

1

16p2Fp
2 f̄ 2G1O~Mp

2 !. ~39!

f̄ 1 and f̄ 2 contain all the contributions at the two-loop leve
In @32# the pion charge radius squared^r 2&V

p has been deter-
mined from experimental data by means of a simple mo
for FV which contains^r 2&V

p as the only free parameter
Those authors obtain the result^r 2&V

p50.43160.010 fm2, in-
cluding the systematic error as a constraint in the normali
tion of the data. We repeat the fit with the expression~35!
leaving ^r 2&V

p and cV
p as free parameters. Furthermore, w

include a theoretical error, leading to
t
t

low
y

at-
ich
n
nu-

ro-
uld
a
of

d

l.

del
.

za-

e

^r 2&V
p50.43160.02060.016 fm2,

cV
p53.260.560.9 GeV24, ~40!

where the first and second errors indicate the statistical a
theoretical uncertainties, respectively. We reproduce the ce
tral value of the radius squared given in@32# with a larger
statistical error, because we fit two parameters simult
neously: If we keepcV

p fixed, the statistical error in̂r 2&V
p

reduces by a factor of 2. The central value ofcV
p is rather

close to the value obtained by resonance saturatio
cV

p54.1 GeV24 @29#.
However, we observe that for both parameters the the

retical uncertainties are of the same order of magnitude
the statistical errors. Unless one has a way to keep the
theoretical uncertainties under control, we do not see ho
^r 2&V

p can be determined with the accuracy indicated in@32#.
Note that we are not able to fix the low energy constantl̄ 6
from our fit, since we do not have independent informatio
on f̄ 1. In the numerical evaluation, we will use the values in
Eq. ~40!.

B. Three pion decays

As we have seen in Sec. III C 1, it is sufficient to discus
only one of the two matrix elements, the other one can b
calculated via the isospin relations~21!. So, we will consider
only the one with two neutral pions.

First of all, a general consideration: this matrix elemen
contains a pole term inQ2 due to the direct coupling of the
axial vector current to the pion. So, the matrix element ca
be written, in general, as

^p0~p1!p
0~p2!p

2~p3!uAm
2~0!u0&

5 iA2Fp

App~s3 ,s1 ,s2!

Mp
22Q2 Qm1Ḡ~s1 ,s2 ,s3!~p11p2!m

1H~s1 ,s2 ,s3!~p12p2!m1F̄~s1 ,s2 ,s3!p3m , ~41!

whereApp(s,t,u) is thepp scattering amplitude as defined,
e.g., in Ref.@14#. Note that the separation between the pol
term and the barred form factorsF̄ and Ḡ is not unique;
however, one can split them such that the coefficient of th
pole is exactly thepp scattering amplitude, and therefore,
define in this wayF̄ andḠ.

The calculation of the form factors is done by expandin
them in powers of momenta and quark masses:

R5 i
A2
Fp

SR~0!1
R~2!

Fp
2 1••• D , R5F̄,Ḡ,H,

App5App
~2!1App

~4!1•••, ~42!

where the superscript (n) indicates a contribution of order
pn. ~We remark here that a tree diagram from the Lagrangia
Ln gives a contribution of orderpn to scattering amplitudes
but of orderpn22 to form factors.!

At the tree levelH50 for the simple reason that its anti-
symmetry under exchange ofs1 and s2 cannot be satisfied
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TABLE II. Integrated branching ratios forAQ2<Qmax predicted with CHPT at a given orderO(pn) and
from vector meson dominance models~VMD !, see text.

Mode Qmax @MeV# O(p2) O(p4) O(p6) VMD

400 4.2231024 6.6631024 7.3431024 7.4031024

t→2pnt 500 1.5731023 2.9231023 3.4531023 3.7231023

600 3.4031023 7.5731023 9.7331023 1.2031022

500 2.0031027 4.1931027 4.1931027

t→3pnt 600 4.3131026 1.0731025 1.2331025

700 2.2131025 6.5531025 9.5131025
y

a-

r

s

-

with a constant. As forF̄ (0) and Ḡ(0), a constant satisfies
their symmetry properties~19!, and we find

F̄ ~0!521,

Ḡ~0!51. ~43!

At the one-loop level we have the results

F̄ ~2!5
1

3
Mp

2 @ J̄~ ŝ1!1 J̄~ ŝ2!#2
1

12
~s12s2!@ J̄~ ŝ1!2 J̄~ ŝ2!#

2
1

2
s3J̄~ ŝ3!1

1

96p2 F22l̄ 1~s322Mp
2 !

1 l̄ 2~s11s21s324Mp
2 !26l̄ 4Mp

2

2 l̄ 6~s11s212s324Mp
2 !

2
1

2
~s11s225s3!1

8

3
Mp

2 G ,
Ḡ~2!52

1

6
Mp

2 @ J̄~ ŝ1!1 J̄~ ŝ2!#2
1

12
~s12s2!@ J̄~ ŝ1!2 J̄~ ŝ2!#

1
1

2
s3J̄~ ŝ3!1

1

96p2 F2l̄ 1~s322Mp
2 !

2 l̄ 2~s11s22s324Mp
2 !16l̄ 4Mp

2

1 l̄ 6~s11s222Mp
2 !

1
1

2
~s11s227s3!2

10

3
Mp

2 G ,
H ~2!52

1

6
~s12s2!@ J̄~ ŝ1!1 J̄~ ŝ2!#2

1

6
~s11s225Mp

2 !

3@ J̄~ ŝ1!2 J̄~ ŝ2!#1
1

96p2 F22l̄ 2~s12s2!

1
5

3
~s12s2!G , ~44!

whereŝi5si /Mp
2 , and thel̄ i are listed in Table I.

As for App , its expansion is now known up to the two
loop level@31#. Here, we need only the first two terms of th
expansion which are known since a long time@33,14#:
-
e

Fp
2App

~2! ~s,t,u!5s2Mp
2 ,

Fp
4App

~4! ~s,t,u!5
1

12
@~ t2u!222Mp

2s14Mp
4 #@ J̄~ t̂ !1 J̄~ û!#

2
1

12
~ t2u!~s12Mp

2 !@ J̄~ t̂ !2 J̄~ û!#

1
1

2
~s22Mp

4 !J̄~ ŝ!1
1

96p2 H 2l̄ 1~s22Mp
2 !2

1 l̄ 2@~ t2u!21s2#23l̄ 3Mp
4

112l̄ 4Mp
2 ~s2Mp

2 !2
5

6
~ t2u!22

7

2
s2

2
1

3
Mp

2 ~4s213Mp
2 !J . ~45!

The form factorsF and G as defined in Eq.~20! can be
easily reconstructed fromApp and the corresponding barred
functions at each given order, via the simple relation

R5 i
A2
Fp

SR~0!1
R~2!

Fp
2 1••• D ,

R~n22!5
Fp
nApp

~n!

Mp
22Q2 1R̄~n22!, R5F,G. ~46!

One could wonder whether it is possible to experimentall
disentangle the contribution ofApp to some of these form
factors. We are convinced that this is not the case. The re
son being thatApp contributes only toFS , which is very
difficult to measure, and that there are, in addition, othe
contributions toFS .

V. NUMERICAL RESULTS FOR THE BRANCHING
RATIOS AND THE STRUCTURE FUNCTIONS

A. Two pion decay

At first, let us discuss integrated branching ratio
B2p(Qmax):

B2p~Qmax!5BeE
4Mp

2

Qmax
2

dQ2
dG2p

GedQ
2 ~Q2!. ~47!

The results from CHPT are given in Table II. From the con
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vergence of the expansion inp2 we conclude that the CHPT
expansion truncated at this order works fine up
Qmax5500 MeV.

We also compare with the prediction from a VMD mode
viz., from the model 1 of@5#, which has been implemented in
TAUOLA @34#. This VMD model parametrizesFV in terms of
a coherent superposition of ar and ar8 Breit-Wigner, with
an overall normalization fixed by matching to theO(p2)
chiral prediction. It gives a good parametrization o
e1e2→2p annihilations in the range covered by thet mass.
We find that in the range up to 500 or 600 MeV, where w
trust CHPT, the predictions of CHPT and from the VMD
model agree well.

In Fig. 1 we plot the two pion-invariant mass spectrum
normalized to the electronic branching ratio of thet. We
plot the predictions from CHPT, together with the pre
diction from the VMD model in@5# and preliminary data
from CLEO @35#. Note that we used a simplified approac
to fix the overall normalization of the data in@35#. We
multiplied the spectrum from@35# with a normalization fac-
tor N and determinedN by fitting the data to the VMD
prediction of@5#. Of course, the normalization should instea
be taken from the data. In fact, we suggest a careful reana
sis of the low energy part of the spectrum and its absolu
normalization in order to compare it with the CHPT predic
tion.

It is of some interest to understand how sensitiv
t→2pnt decays are to the pion charge radius^r 2&V

p , which
is defined from the expansion ofFV(Q

2) in terms ofQ2

FV~Q2!511 1
6 ^r 2&V

pQ21cV
pQ41 f V

U~Q2!1O~Q6!,
~48!

wheref V
U(Q2) is given in Eq.~36! and is very small numeri-

cally. According to the previous results, we consider th
expansion valid up toQmax5500 MeV. Furthermore, we ne-
glect theoretical uncertainties due to higher order correctio
and assume thatcV

p is known exactly. For a discussion o
these points see Sec. IV A.

FIG. 1. Differential decay rate fort→2pnt : Predictions by
CHPT at O(p2) ~dashed!, at O(p4) ~dashed-dotted!, at O(p6)
~solid!, and from a vector-meson dominance model~dotted!, com-
pared with experimental data from CLEO~dots with error bars!.
to
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Given a numberN of eventst→2pnt with hadronic-
invariant mass squaredQ2 in the interval 4Mp

2
•••Qmax

2 , the
precision with whicĥ r 2&V

p can be measured is~see@36#!

sp5
1

AN
F E 1

f S ] f ~x;p!

]p D 2dxG21/2

5
1

AN
7.37 fm2,

~49!

where

f ~Q2,^r 2&V
p!:5

1

R
r~Q2! ~50!

with

r~Q2!5
1

Ge

dG2p~Q2!

dQ2 ,

R5E
4Mp

2

Qmax
2

dQ2r~Q2!. ~51!

So, givenNt decayingt ’s and a detection efficiencyh,
we have

N5NthB~t→2pnt ,Q
2<0.25 GeV2!, ~52!

where the branching ratio B(t→2pnt ,Q
2<0.25

GeV2)53.631023 according to Table II.
Based on this, we now give rough order of magnitud

estimates for the possible statistical accuracy of present a
future experiments. We assume an efficiency ofh530%.
CESR has at present about 53106 t ’s, thus the possible
statistical accuracy is of the order ofs^r2&V

p50.1 fm2. A b

factory might have 53107 t ’s per year. Assuming three
years of running time, this leads with the assumptions me
tioned above to a possible statistical accuracy of the order
s^r2&V

p50.02 fm2.

These numbers have to be compared to the accura
evaluated from pe scattering. With the assumptions
we made above, the present result is^r 2&V

p50.431
60.010 fm2 @32#. So, it seems difficult fort decays to be-
come competitive withpe scattering for the determination of
^r 2&V

p . Nevertheless,t decays can provide an interesting
cross-check.

B. Three pion decay

The numerical results for the integrated branching rat
with Q2<Qmax

2 for CHPT atO(p2) andO(p4) are given in
Table II. The series expansion of CHPT does not seem
behave very well. Even forQmax5500 MeV, the integrated
one-loop contribution is already around 45% of the tree-lev
result. This means that to have a CHPT prediction with
reasonably small theoretical uncertainty for such a quanti
one should stop atQmax well below 500 MeV, and this
would be very difficult to test experimentally, because of th
strong phase space suppression of this region. On the ot
hand, we observe that there is a fair agreement with t
VMD model numbers up toQmax5600 MeV, which is better
than what happens in the two pion case. This can be und
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stood in terms of the fact that in the two pion case, t
r(770) resonance is very close, whereas in the three p
case, the nearest three pion resonance thea1(1260) is much
farther away. Whether the VMD model is a good represe
tation of the experimental data even at such a low ene
though, has still to be verified.

Beyond the integrated decay rates, this decay mode h
very rich structure, which, in principle, could be investigate
in detail experimentally. In fact, in@28# it has been shown
that it is possible to extract all three form factors from
measurement of all angular distributions. One could th
compare the measured form factors to the analytic formu
of CHPT. This extraction is, however, very difficult in prac
tice, and moreover, the phase space suppresses conside
the region where the comparison makes sense. For these
sons we find it more useful to show directly the curves f
the integrated structure functionswX in Figs. 2–7. We have
chosen six out of the nine structure functions which a
present, mainly because the missing three are too difficul
be measured and not particularly interesting. Note that,
accordance with our definitions in Eqs.~29! and ~A6!, the
Cabibbo angle cos2uC is factored out from hadronic matrix
element, and so the structure functionswX do not include this
factor.

In Fig. 2 we plotwA(Q
2) for the 2p2p1 final state.

It turns out thatwA(Q
2) and wC(Q

2) for both charge
states 2p2p1 and 2p0p2 are all very similar, so the four
plots cannot be distinguished from each other. The equa
of the structure functions for the two charge modes sugge
that wA and wC are dominated by the@210# partition.
We have explicitly verified that this is the case: for examp
at Q2515Mp

2 , the @210# partition contributes 6.73
31022 GeV24 to wA for both modes, whereas the@300#
partition contributes 2.2131024 GeV24 for the 2p2p1

and, according to Eq.~26!, one quarter of this for the
2p0p2 mode. The interference of the two partitions is com
pletely negligible.

The reason whywA;wC at low energy is that

WC5WA22x3
2uF12F2u25WA28x3

2uHu2. ~53!

FIG. 2. Integrated structure functionwA(Q
2) for 2p2p1:

CHPT prediction atO(p2) ~dashed!, atO(p4) ~solid!, and from a
vector meson dominance model~dotted!. The four functionswA and
wC for both modes 2p2p1 and 2p0p2 all look identical within
the resolution of this diagram.
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SinceH is zero at the tree level, the difference vanishes
leading order. Moreover, this difference starts as the squa
of a quantity ofO(p2). Using the language of the sixties we
can say that the vanishing of this difference near threshold
a low energy theorem~LET!, and that it receives corrections
only at next-to-next-to-leading order. We also notice thatH
is a function antisymmetric under exchange ofs1 ands2, so
that its modulus squared has a zero along the lines15s2. At
low energy, where the distance between this line and t
boundaries of integration is not large~in units ofMp

2 ), the
presence of the zero produces an additional suppression
the integral. The similarity of these two functions nea
threshold was already found in Refs.@27,28# in the frame-
work of a VMD model. Here, however, we can give a de
tailed algebraic account of why this happens. For all the
arguments we believe that this fact should be verified expe
mentally even at energies well above those where one wo
trust a one-loop CHPT calculation.

In Figs. 3 and 4 we plotwD(Q
2) andwE(Q

2). These are
much smaller thanwA near threshold, and certainly more
difficult to be measured. However, they seem rather intere
ing from a theoretical point of view. First of all, for both of
them, theO(p2) contribution vanishes. Second, theO(p4)
predictions from CHPT differ strongly for the two charge
modes. According to the discussion in Sec. III C 2, this fa
suggests that near threshold these two structure functions
strongly influenced by the partition@300#. Using the decom-

FIG. 3. Integrated structure functionwD(Q
2). CHPT atO(p4)

for 2p2p1 ~solid! and for 2p0p2 ~dashed-dotted!, and form the
VMD model ~dotted, identical prediction for both charge modes!.

FIG. 4. Integrated structure functionwE(Q
2). CHPT atO(p4)

for 2p2p1 ~solid! and for 2p0p2 ~dashed-dotted!, and from the
VMD model ~dotted, identical prediction for both charge modes!.
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position of the form factors given in Eq.~28!, we have veri-
fied that this is exactly what happens. As can be seen
Table III the change of sign in the interference contributio
is responsible for the change of sign of the whole integra
structure functions in the two different charge modes. As
as we know, up to now there are no data for these struc
functions so close to threshold: so this is a real prediction
CHPT. Moreover, this change of sign is absent in all t
models of which we are aware of and which have been u
to describe this decay channel. It is then important to a
how reliable this prediction is and up to what energy it c
be trusted. These questions are especially difficult to ans
here because we have only a leading-order calculation@since
theO(p2) contribution vanishes#. The only thing we can do
is to check how sensitive the prediction is to the values
use for the low energy constants. We concentrate here on
@300# state, since it is the one responsible for the new effe

Fp
3

iA2
F1

@300#5
1

72p2 @ l̄ 11 l̄ 223#SQ2

3
2s11Mp

2 D
1
4

9
J̄~s1!~Mp

22s1!2
2

9
J̄~s2!~s22Mp

2 !

2
2

9
J̄~s3!~s32Mp

2 !. ~54!

First of all, we notice that this partition has no contributio
from the tree level. This is not the case for the@210# parti-
tion, which starts as

Fp

iA2
F1

@210#5
2

3
1O~p2!. ~55!

This explains why the interference contribution is much bi
ger than the one from the@300# partition alone. Then we
may easily see from the definition of these two structu
functions given in Appendix C that thewD is mainly sensi-
tive to the real part ofF1

@300# , whilst wE to the imaginary
part. This means that only the numbers forwD may depend
on the combination of low energy constants which occurs
F1

@300# . The value used for the combinationl̄ 11 l̄ 223 in the
numerical calculations is 1.4, resulting from the central v
ues given in Table I. The uncertainty on this number can
estimated from the same Table I to be61.1. So the possi-

TABLE III. Splitting of the integrated structure functionswE

andwD into the contributions of the partitions@300#, @210#, and
their interference, atQ2515Mp

2 .

@300# @210# Interf. Total

(2p2p1) 8.6331022 1.02 21.56 20.450
103wD

(2p0p2) 2.1631022 1.02 0.779 1.82

(2p2p1) 4.6231024 0.206 2.08 2.29
103wE

(2p0p2) 1.1631024 0.206 21.04 20.837
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bility that the real value of this combination be twice as
much, or very close to zero, cannot be excluded. We ha
checked that by changing the value ofl̄ 11 l̄ 223 by 61.4
changeswD in the 2p2p1 mode by 64.431024, at
Q2515Mp

2 . As expected,wE remains practically un-
changed. Even in the worst case forwD , however, there
remains a sizable difference between the two charge mod
The effect of higher orders in the chiral expansion and th
related questions of how far in energy one can trust th
prediction will remain unanswered until one calculates th
form factors at two loops, which is beyond the scope of ou
analysis. We may just argue that since there are no low-lyin
resonances contributing to this particular three pion stat
one of the possible sources of large higher order correctio
is excluded.

All in all, we can say that CHPT predicts a sign difference
in the two structure functionswD andwE for the two charge
modes near threshold. This prediction will have interestin
consequences in the next subsection, where we compare
with VMD models and available data.

In Fig. 5 we plotwSA(Q
2) for the 2p2p1 state. The

corresponding curves for the 2p0p2 state in Fig. 6 have a
very similar shape but a different overall normalization. In

fact, the ratiowSA
2p2p1

/wSA
2p0p2

is close to 4, which according
to Sec. III C 2 implies that the scalar form factor at low
energies is dominated by the@300# state.

We find that the structure functionwSA is very small com-

FIG. 5. Integrated structure functionwSA(Q
2) for 2p2p1.

CHPT prediction atO(p2) ~dashed! and atO(p4) ~solid!, and from
a VMD model ~dotted!.

FIG. 6. Integrated structure functionwSA(Q
2) for 2p0p2.

CHPT prediction atO(p2) ~dashed! and atO(p4) ~solid!, and from
a VMD model ~dotted!.
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pared towA , so the spin-0 contribution to the integrated ra
is negligible. The only chance to measure the spin-0 par
via its interference with the spin-1 part in the structure fun
tion wSB(Q

2), which is plotted in Fig. 7.
In Fig. 8 we consider the Dalitz plot distribution

dG/(dQ2ds1ds2) in s1,s2 for fixedQ
250.36 GeV2. We dis-

play the O(p4) prediction for the 2p2p1 mode. At
O(p2), the Dalitz plot density depends only ons11s2. As
seen from the figure, this feature seems to persist atO(p4).
Let us analyze this issue quantitatively. To describe the D
itz plot, we defines1 ands2 by

s1 :5s11s2 , s2 :5s12s2 , ~56!

and then replaces1 ,s2 by dimensionless variablesx,y with
0<x<1 and21<y<1 via

s15~s1
max2s1

min!x1s1
min ,

s25s2
maxy, ~57!

where

FIG. 7. Integrated structure functionswSB(Q
2). Prediction from

CHPT for 2p2p1 ~solid!, 2p0p2 ~dashed-dotted!, and from a
VMD model for 2p2p1 ~dotted!, 2p0p2 ~dashed!.

FIG. 8. Dalitz plot distribution of the 2p2p1 final state in
s1, s2 for Q

250.36 GeV2.
te
t is
c-

al-

s1
min52mp~mp1AQ2!,

s1
max5Q22mp

2 ,

s2
max5A@s1~s124mp

2 !24mp
2 ~Q22mp

2 !#@Q22s12mp
2 #

Q213mp
22s1

.

~58!

We perform a least-square fit to the Dalitz plot density as
predicted by CHPT, using a fit function

rQ2~x,y!:5
dG

dQ2ds1ds2

5a@x1b1cx21dx31ex41 f x~x21!y2#.

~59!

Note that this is a reasonable ansatz for they dependence.
First, we must haverQ2(x,y)5rQ2(x,2y) because of Bose
symmetry. Second, atx→0 and atx→1, s2

max→0, so the
dependence ony2 must go to zero atx50,1.

We choose to discuss the CHPT predictions for
Q250.36 GeV2. At this value ofQ2, the result from the fit is

a5~3.036060.0095!310214 GeV25,

b5~5.25160.039!31023,

c5~0.78660.023!,

d5~0.19060.053!,

e5~0.18960.036!,

f5~0.064560.0026!. ~60!

This fit never deviates from the CHPT prediction by more
than 2%, with an average deviation of less than 1%. It is see
that they2 dependence is very small. In fact, taking into
account that the coefficientx(x21), which multipliesy2, is
less or equal to 1/4, we find that the leadingy dependence
does not exceed 2%. We have checked that, as one wou
expect, they2 dependence is even smaller for smallerQ2.

This Dalitz plot distribution, as predicted by CHPT for
Q2<0.36 GeV2, differs strongly from the behavior at high
Q2 in the resonance regime, where ther resonances lead to
pronounced structures ins1 and s2 ~resonance bands for
fixed s1 or s2) @37#.

C. Comparison with vector meson dominance models

In this subsection we will compare with the low energy
behavior of the phenomenological models in@5,8,9#. The
simplest VMD model which one can build for this channel
~see Ref. @5#! is based on the decay chaint→a1nt ,
a1→rp, r→2p, and a transversea1 propagator. In this
case the amplitude contains only a spin-1 part (FS50), and
the three pions are only in a@210# partition state
(F1

@300#50). The comparison to the data@38,39# shows that



s

e

r-
D
a-

e

ri-
n

ce

54 4415t DECAYS AND CHIRAL PERTURBATION THEORY
the model works well, which means that the assumptio
made are reasonable.

However, it is clear that these assumptions need not
strictly true in the physical reality, so the authors of Re
@8,9# have tried to include in the VMD model a nonzer
scalar form factor. Two possible sources for a nonvanish
FS are a pseudoscalar three pion resonance, thep8, or the
nontransverse component of the off-shella1 propagator. A
model for thep8 contribution is given in@8#. The numerical
impact of thep8 depends on a parameterf p8. In @8# and in
its implementation inTAUOLA @34#, a particularly large value
from @2# has been chosen, which is probably several ord
of magnitude too large@40#. However, we find that even with
this high value off p8, the contribution from thep8 to the
scalar form factor at low energies is much smaller than
predictions from CHPT. This indicates that, at least at sm
energies, there are additional contributions toFS . The off-
shell contribution of thea1 to FS is discussed in@9#. A
specific model is constructed by matching with theO(p2)
prediction of CHPT~including theMp

2Þ0 effects!, and we
will compare this model with the CHPT predictions.

On the other hand, the presence of a@300# component in
the spin-1 form factor has never been proposed in any
these models. With our calculation we can make a deta
analytical comparison between VMD models and the CH
amplitude at low energy. The main conclusion is that even
the region close to threshold the VMD model works rath
well.

First, we consider the structure functions which only i
volve theF1. After a proper normalization of the form fac
tors in the VMD model, which takes into account the CHP
expressions atO(p2), the agreement for the spin-1 spectr
function at low energy looks very good. This can be seen
Fig. 2, where we plotwA , i.e., the main contribution to the
total decay rate. Moreover, the@300# component ofF1 starts
only at one loop, which means that in the chiral expans
this is algebraically suppressed with respect to the@210#
part.

However, the, numerically rather small, structure fun
tionswD andwE are sensitive to the@300# part via interfer-
ence with the@210# part, as we have seen in the previou
subsection. Comparing the VMD model with the CHPT pr
diction for these structure functions in Figs. 3 and 4, we fi
good agreement for 2p0p2, but flat disagreement for
2p2p1. However, at largerQ2, experimental data forwD
andwE in 2p2p1 are available, which agree with the VMD
prediction @38,39#. Note that the left-right asymmetry
ALR(Q

2) measured by ARGUS@38# is proportional to
wE(Q

2)/wA(Q
2) @27#, and confirms the VMD prediction in

sign and magnitude down toQ250.8 GeV2. We conclude
that, unless the higher orders in the chiral expansion co
pletely change the CHPT result, somewhere between thre
old andQ250.8 GeV2 there must be a zero for each of th
two structure functions in the 2p2p1 mode. It would be
extremely interesting to verify this zero experimentally, or
a minimal option, to verify the existence of a difference b
tween the two charge modes.

Next, we consider the scalar form factor: AlthoughFS is
nonzero already at the tree level, it is kinematically su
pressed:
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F15
iA2
Fp

S 231O~p2! D ,
FS5

iA2
Fp

SMp
2

Q2

s32Mp
2

Mp
22Q2 1O~p2! D . ~61!

ThoughQ2, s3, andMp
2 are all counted as quantities of

order p2, so that the ratiosMp
2 /Q2 and s3 /Q

2 are algebra-
ically of order 1, it is clear that numerically they are smaller
than one. For example, at thresholdFS5 iA2/Fp(21/24)
521/163F1.

In Figs. 5–7, where we plot the two structure functions
wSA and wSB, one can see the comparison of the VMD
model in @9# to CHPT atO(p4). We find that the VMD
model, which by construction reproduces theO(p2) predic-
tion, does not reproduce well theO(p4) prediction from
CHPT. The reason for this discrepancy~which is larger for
wSA, since it contains the scalar form factor squared! lies in
the fact that in the model in@9#, the@300# part ofFS is added
as a constant, without a resonance factor enhancement.

Summarizing our comparison of CHPT and VMD predic-
tions at low energies, we have found that VMD gives a good
description of the dominant spin-1 contribution@210#. How-
ever, CHPT shows that bothFS andF1

@300# , though small, are
not exactly zero. This fact, which is a prediction of CHPT,
has still to be verified experimentally. Our analysis shows
that the best place to look for these parts of the amplitude i
where they can interfere with the ‘‘big’’ components: the
presence ofFS should be detected by measuring a nonzero
wSB, whereas the presence ofF1

@300# should be discovered by
measuring a sizable difference~possibly a sign difference!
between the two charge modes forwD andwE .

VI. SUMMARY AND CONCLUSIONS

Chiral perturbation theory~CHPT! provides model-
independent predictions for hadronic matrix elements in th
low energy region below 500–600 MeV. It does not contain
additional assumptions beyond the fact that the strong inte
actions are described by the QCD Lagrangian and that QC
possesses an approximate chiral symmetry which is spont
neously broken. We have evaluatedt decays into two pions
~andt neutrino! to two loops and decays into three pions to
the one-loop level. The branching ratio into the phase spac
region with small enough invariant hadronic mass for CHPT
to be applicable was found to be about 431023 for the two
pion mode and about 1025 for the three pion mode. And so
the predictions of CHPT fort→2pnt are testable at present
machines~LEP and CESR!, while in the case oft→3pnt ,
future facilities with very hight production rates seem to be
required (b factories,t-charm factory!.

In the case of the decayt→2pnt , the predictions for the
invariant mass distributions can be tested at present expe
ments, and the spectrum can be used to extract the pio
charge radiuŝr 2&V

p .
As for the decayt→3pnt , a detailed comparison to the

CHPT predictions for the form factors near threshold re-
quires very high statistics, mainly because of the phase spa
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suppression. For this reason we have tried to identify a f
spots where the consequences of the approximate chiral s
metry of QCD can be tested experimentally with reasona
statistics. These are~1! the very close similarity ofwA and
wC near threshold, which seems to extend well beyond
very low energy region,~2! a zero and change of sign in
wD and wE between threshold andQ2;0.8 GeV2 in the
channel 2p2p1, or at least a difference between the tw
charge modes near threshold~this would be the first evidence
for the presence of the@300# partition state in this decay
channel!, and ~3! the presence of a scalar form factor a
predicted by CHPT, to be detected by measuringwSB.

Comparing our results to predictions from vector mes
dominance models, we find overall a reasonable agreem
in the low energy region. The structure functionwA , which
dominates the decay rate, is described well by VMD mode
We have found, however, some interesting discrepancie
certain~numerically rather small! structure functions. These
discrepancies are related to the@300# partition state and to
the scalar form factor, both of which are missing or unde
estimated in vector-meson dominance models.
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APPENDIX A: GENERAL CONVENTIONS

Consider the decay of at into n pions:

t~p,s!→nt~q,s8!p1~p1!p2~p2!•••pn~pn!. ~A1!

Here,s ands8 denote the polarization four-vectors of thet
and the neutrino, respectively. We define the total hadro
momentumQ by

Q5p11p21•••1pn ~A2!

and in the case of three pions, we will use Dalitz plot inva
antss1, s2, ands3 defined by

s15~p21p3!
2 ~A3!

and cyclic permutations.
The differential decay ratedGn is given by

dGn5
1

2M t
uMu2dFn , ~A4!
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where the phase space elementdFn is

dFn5~2p!4d4~Q1q2p!
d3q

~2p!32En
)
k51

n
d3pk

~2p!32Ek

~A5!

and

M5
GF

A2
cosuCLmH

m,

Lm5ūn~q,s8!gmg2ut~p,s!,

Hm5^p1~p1!p2~p2!•••pn~pn!uVm~0!2Am~0!u0&.
~A6!

APPENDIX B: DECOMPOSITION OF THE FORM
FACTORS IN TERMS OF PARTITION STATES

As we discussed in Sec. III C 2, we have three possib
partition states, two belonging to the class@210# ~which we
will indicate as@210#a and@210#b) and one belonging to the
class@300#. The matrix elements of these states are easi
constructed by performing the appropriate symmetrization
and antisymmetrizations with respect to momenta exchang
as described in Sec. III C 2. The result can be expressed
terms of the three form factorsF, G, andH, and reads

F @210#a5 2
3 @F122G231H23#,

G@210#a5 2
3 @G122

1
2 ~F231G231H23!#,

H @210#a5 2
3 @H122

1
2 ~F232G232H23!#, ~B1!

F @210#b5 1
3 @2G131G231H132H23#,

G@210#b5 1
6 @2F131F232G131G232H131H23#,

H @210#b5 1
6 @F131F232G132G232H132H23#, ~B2!

F @300#5 1
3 @F121G131G232H132H23#,

G@300#5 1
3 @G121

1
2 ~F131F231G131G231H131H23!#,

H @300#5 1
3 @H121

1
2 ~2F131F231G132G231H132H23!#,

~B3!

whereXi j5X(si ,sj ,sk), X5F,G,H, andkÞ iÞ j . To recon-
struct the form factors in the two charge modes one has
use the relations

X125X@300#1X@210#a1X@210#b,

X12
~1 !52X@300#2X@210#a2X@210#b. ~B4!

APPENDIX C: STRUCTURE FUNCTIONS
FOR THE THREE PION FINAL STATE

In this section we will briefly review the formalism of
structure functions for the decay of thet into three pions,
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and display formulas relevant for the present paper. For m
details, the reader is referred to@27,28#.

The decays are most easily analyzed in the hadronic
frame:

0W 5QW 5pW 11pW 21pW 3. ~C1!

The orientation of the hadronic system is characterized
three Euler anglesa, b, g, as introduced in@27,28#. They
can be defined by (0<a,g,2p; 0<b,p)

cosa5
~nW L3nW t!•~nW L3nW'!

unW L3nW tuunW L3nW'u
, sina52

nW t•~nW L3nW'!

unW L3nW tuunW L3nW'u
,

cosg52
nW L•nW 3

nW L3nW'

, sing5
~nW L3nW'!•nW 3

nW L3nW'

,

cosb5nW L•nW' , ~C2!

wherenW L is the direction of the laboratory in the hadron
rest frame,nW'5(pW 13pW 2)/(upW 13pW 2u) is the normal to the
pion plane ~here, we assign the momenta according
up2W u.up1W u), nW t is the direction of flight of thet in the had-
ronic rest frame, andnW 35pW 3 /upW 3u.

From these definitions it is obvious thatb andg are ob-
servable even if thet rest frame cannot be reconstructe
whereasa does require this knowledge.a could be mea-
sured at at-charm factory where thet pairs are produced
almost at rest and, therefore, thet rest frame is known, or if
the t direction can be measured with the help of vertex d
tectors@41#.

The Euler angles also serve to parametrize the ph
space

dPS~4!5
1

~2p!5
1

64

M t
22Q2

M t
2

dQ2

Q2 ds1ds2

3
da

2p

dg

2p

dcosb

2

dcosu

2
, ~C3!

whereu is the angle between the direction of flight of th
t in the laboratory frame and the direction of the pions
seen in thet rest frame, and cosu can be calculated from the
energyEh of the pion system with respect to the laborato
frame and beam energyEbeam

cosu5
2Eh /EbM t

22M t
22Q2

~M t
22Q2!A12M t

2/Ebeam
2

. ~C4!

The contraction of the leptonic and hadronic tensors can
expanded in a sum

LmnH
mn5(

X
LXWX . ~C5!
ore
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In general,Hmn can be characterized by 16 independent rea
functions. In our case of a three pion final state, there a
restrictions due toG parity and Bose symmetry, which leave
9 independent functions. In a convenient basis they are giv
by @28#

WA5~x1
21x3

2!uF1u21~x2
21x3

2!uF2u2

12~x1x22x3
2! Re~F1F2* !,

WC5~x1
22x3

2!uF1u21~x2
22x3

2!uF2u2

12~x1x21x3
2! Re~F1F2* !,

WD52@x1x3uF1u22x2x3uF2u21x3~x22x1! Re~F1F2* !#,

WE522x3~x11x2! Im~F1F2* !,

WSA5Q2uFSu2,

WSB52AQ2@x1Re~F1FS* !1x2Re~F2FS* !#,

WSC522AQ2@x1Im~F1FS* !1x2Im~F2FS* !#,

WSD52AQ2x3@Re~F1FS* !2Re~F2FS* !#,

WSE522AQ2x3@ Im~F1FS* !2Im~F2FS* !#, ~C6!

where

F2~Q
2,s1 ,s2!5F1~Q

2,s2 ,s1!. ~C7!

The variablesxi are defined by

x15q1
x2q3

x ,

x25q2
x2q3

x ,

x35q1
y52q2

y ,

x45AQ2x3q3
x , ~C8!

whereqi
x (qi

y) denotes thex (y) component of the momen-
tum of mesoni in the hadronic rest frame. They can easily be
expressed in terms ofs1, s2, ands3 @27,28#.

The hadronic structure functionsWX depend only ons1,
s2, andQ

2. The corresponding leptonicLX depend on the
Euler anglesa, b, g, and onEh . The relevant formulas can
be found in@28#.

The structure functions can be measured by observin
angular distributions in the Euler anglesb, g, and, if the
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t rest frame is known,a, and taking momentŝm& with
respect to products of trigonometric functions

^m&:5
3

2~M t
22Q2!

E LmnH
mnm

dcosb

2

dg

2p
. ~C9!
As shown in@28#, measuring suitable moments involvingb
andg only @and, in fact, an energy ordering sign(s12s2) in
some cases to avoid vanishing due to Bose symmetry# allows
one to extract all the individual structure functions except f
WSC andWSE. If the t rest frame and hencea is known
additionally,WSC andWSE can be measured, too.
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