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In a small window of phase space, chiral perturbation theory can be used to make standard model predictions
for 7 decays into two and three pions. Fer27v ., we give the analytical result for the relevant form factor
Fy up to two loops, then calculate the differential spectrum and compare with available data. For
7—3mv,., we have calculated the hadronic matrix element to one loop. We discuss the decomposition of the
three pion states into partition states and we give detailed predictions for the decay in terms of structure
functions. We also compare with low energy predictions of meson dominance models. Overall, we find good
agreement, but also some interesting discrepancies, which might have consequences beyond the limit of
validity of chiral perturbation theory}.S0556-282196)00119-1

PACS numbeps): 13.35.Dx, 12.39.Fe

I. INTRODUCTION very low Q?, below the mass of the lightest resonance. In
this region the only active fields are the pseudoscalar mesons

Semileptonic decays of the heawylepton into ar neu- and one can use an effective Lagrangian to describe their
trino and a hadronic system offer a unique laboratory tanteractions. This effective theory, called chiral perturbation
study the standard model and especially, low energy QCD. Aheory (CHPT), is a systematic method to calculate QCD
variety of multimeson final states with invariant masses frommatrix elements at low energy by means of an expansion in
the production threshold up to themass of about 1.8 GeV powers of the external hadronic momept8-15.
can be studied. These final states can also be produced usingThe limits of applicability of CHPT do not allow one to
hadronic initial statessuch as pion-nucleon or nucleon- give predictions for integrated decay rates, which would in-
nucleon collisions The production inr decays, however, is volve Q? up to Mf. Furthermores decays into more than a
advantageous in that the initial state is simple, clean, andingle pion are dominated by resonant intermediate states,
well understood. Whereas some of the final stéeg., two  such as thep(770) in the two pion channel and the
or four piong can also be produced using an electromagneti,(1260) in the three pion channel. And so, there are only
current, i.e., electron-positron annihilation, other stateg.,  relatively few events with smafD?. For these reasons, in the
three pions in ari=1 stat¢ can only be produced through past, CHPT has been considered as not very interesting for
the weak current. And in the case of the states which can be decays.
produced both inr decays and in electron-positron annihila- ~ However, with the present high luminosity machines such
tion, such as the two and four pion final statesjays now as the CERNe"e™ collider LEP and Cornell Electron Stor-
compete well in statistics with electromagnetic production. age Ring(CESR, and even more so with futute and per-

For inclusive semileptonie decays, ther mass of about haps7-charm factoriesy physics has turned into an era of
1.8 GeV is large enough to allow the application of pertur-precision measurements, exploring very small branching ra-
bative QCD and, in fact, offers a unique possibility to mea-tios and studying details of differential distributions. Thus,
sure the strong coupling constaat(x) at the low scale the smallQ? regime which is interesting for CHPT is now
n=M_ [1]. In the case of exclusive semileptonic decays,becoming accessible.
calculations based on a systematic use of the QCD Lagrang- We would like to mention that there is another small cor-
ian are not available up to now. In these decays, the probeer of phase space where a different systematic expansion of
testing the hadronic current carries a momenf@rwhich is  the hadronic current becomes possible. Heavy meson chiral
mainly in the intermediate energy region, the most difficultperturbation theory16] can be applied ta- decays into a
one for the study of strong interactions. In this region theo-ector meson and a pidsuch asr—pnv,., 7—K*7v)), if
retical predictions have been obtained by using some kind ahe momentum of the pion is small in the vector meson rest
phenomenological models or approximate methods, such deame [17]. A complete calculation which includes vector
quark modeld2,3], vector-meson dominandd—10|, tree- meson decay and interference effects between different
level calculations from effective Lagrangiaffsl], or unita-  vector-meson amplitudes, however, is still missing in this
rization of current algebra result$2]. approach.

A small fraction of these decays, however, happens with Another reason why CHPT is relevant todecays is the
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fact that it can be used to test phenomenological models axhere |,5=V',i=%a'k7ﬂq when n is even, andl';=Ak
fix some of their parameters. Indeed, Bép?) prediction of =307y, 750 whenn is odd. By now, a standard method to
CHPT in the limit of vanishing quark masses has been usedalculate such matrix elements in QCD at low energy is
to normalize vector-meson dominance model$4r10. In  CHPT. In this framework one uses an effective Lagrangian
the present paper we will extend the CHPT prediction tothat respects the chiral symmetry properties of QCD, and
higher order inp?, and it will be a severe test for models if that has the pions as the only “active” fields. Of course, this
they correctly reproduce these higher orders. Lagrangian is expected to be valid only up to energies which
The expansion parameter of CHPTQS/(4xF )%, with  are well below the threshold for the production of heavier
47F =1.2 GeV, so we are interested ifQ? below 500— hadronic states. For more details about this method we refer
600 MeV. Hadronic final states with a single pion or kaonthe reader to the fundamental paper by Gasser and Leutwyler
can be predicted directly froff,, andF [18], and so there [14] and to a number of excellent reviews which are pres-
is nothing interesting CHPT could teach us here. Final stategntly available in the literaturl5]. Here, we simply sketch
with two and three pions allow for a reasonably large regiorthe basic ideas and introduce the relevant notation.
of Q? between threshold and the limit of applicability of ~ We consider the effective Lagrangian relative to two fla-
CHPT. Already with four pions this region has almost dis-vors in the isospin limith=m,=my. This Lagrangian con-
appeared. Moreover, the phase space fon @ion hadronic  tains an infinite number of terms; however, it can be ex-
state, withQ? close to threshold?— (nM )2, opens pro- panded in powers of derivatives and quark masses. One
portional to power of the quark mass will be counted as two powers of
derivativest One will then have

7 (3n—5)/2
(VQ?-nM,) @) Loi= Lot BLy+h2Lot - --. 3)

(see Sec. Il A below The exponent is 1/2 for two pions, The leading order Lagrangian startsG(p?) and is the non-

2 for three pions, and 7/2 for four pions. So, in the case ofinear o-model Lagrangian in the presence of external fields
four pions, the small interesting region for CHPT is evenwhich we represent here in matrix formaﬂzazrk,
more suppressed by the phase space. As for final states wii;ll =viq-k;

kaons, the threshold for a pion-kaon state M,

+My =634 MeV. Furthermore, thé&*(892) resonance is F2 + ) +

very close[19]. Lo=-(D*UD,UT+ M (U+UY),
Therefore, we find reasonable to try a CHPT calculation

only for the 27 and 3 final states and these are the ones we D,U=9,U~i(v,+a,)U+iU(v,~a,),

will discuss in this paper. The two pion state is determined

by only one form factor, namely, the vector-pion form factor. Mi: M?[1+0(m)],

This can be measured in a few other processes, like

e*e” — 2= or we scattering.r decays can provide an inter- M2=2Bm,

esting cross-check measurement, and we will investigate

whetherr decays may become competitive in statistics. The F.=F[1+0(m)]. (4

three pion state, however, can only be produced decay, L
and has a very rich and interesting substructure, which w8 is proportional to the quark condens&tuu|0) and the

will study in detail. unitary 2x2 matrix U contains the pion fields:
Our paper is organized as follows: A brief review of chi- )

ral perturbation theory is given in Sec. Il. In Sec. Ill, we U=o+if 02+¢;=1

discuss the general structure of the phase space, the hadronic F’ Fz2 =

matrix element for two and three pions, and the differential
decay rate. In this section we also discuss general properties ° N
of the three pion final state, regarding isospin invariance, the b= 2 a0
classification in terms of partition states, and the definition of & 7
structure functions. We then calculate the hadronic matrixl-he external fields’* anda® . which we have introduced
elements in CHPT in Sec. IV. Section V is dedicated to Ul 5 1o pe treated as exterlﬁ«,stl sources forqhark currents ’
numerical results, and in Sec. VI we state our conclusions. Ir\1/k and AX, respectively: in other words, the currents
Appendix we summarize our main conventions, display the_# e K : ' . N
decomposition of the three pion form factors into partition coupled tav, anda,, in the effective Lagrangian are the low

states, and collect the main formulas regarding the definitiofNEr9Y representation of the quark'currents. In th|s'frame-
of the structure functions work these currents are expanded in powers of derivatives

and quark masses, and are nonlinear in the pion fields, e.g.,
the axial vector current

®

II. CHIRAL PERTURBATION THEORY

The relevant matrix elements ferdecays into pions are

1Thi : “ " :
of the form This means we are applying the “standard” CHPT counting rule.

For a different counting rule, leading to a different ordering in the

<7Ti1(p ) i (p )ouﬂ | k(0)|0) @ effective Lagrangiarithe so-called “generalized” CHPT see Ref.
1) - . TNPp “ ) [20].
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‘ iE2 TABLE I. The set oﬂand corresponding; which we need for
A#:T<Tk(UTD#U - UDMU*)>+O(p3) the calculation of the matrix elements in question. The values are
taken from[21] for i=1,2, and from[14] for all the others. The
=[_|:(9M¢k+ O(4%)]+0(pd). (6) v; determine the relation between theand thel{(u).
Despite the fact that this Lagrangian is nonrenormaliz- i I Yi
able, one can use it to calculate matrix elements with the 1 ~1.7+1.0 13
standard perturbation theory. As we have emphasized in Eq. 2 6.1405 213
(4), the expansion parameter s This automatically pro- 3 2'% 2'4 12
duces an expansion of the matrix elements in powers of mo- 4 4'3;0'9 2
menta and quark masses. As for the matrix elements in ques- o
. . . 6 16.5+1.1 -1/3
tion, tree diagrams from/L, generate leading order
contributiong 4—-10], while one-loop diagrams yield terms at
next-to-leading order. The occurring divergences in the loop 2
contriputions(in d=_4 dimensior_ﬁ; can b4e absorbed by in- F.=F|l1+ M2 ZKJF O(M4)},
troducing the effective Lagrangian @(p*) [14]: 167F
L —EI D#UD , UT 2+1| D,UD,UTD*UD"U" 2-M2 M - 4
4= 71 uU)°F 712(D,UD,UTK ) M2Z=M? 1= oo —msla+O(M*)|. (10)
1 4 t\2 i 2 t i 2 2 ; ;
+15/sMH(U+UD+ S1,M%(a,(D*U—D*UT) The mass splitting M.—M%, is proportional to
(my,—my)? and thus may be neglected. In the numerical
+15(FE'UF,,UT) evaluation, we will useM ,=139.57 MeV and F ,=93.1
. MeV.
| If one wants to go beyond the next-to-leading order, one
+ =1g(F&'D,,UD, UT+FD,UTD,U)+ - - -, go beyone _ 9 '
2 o(FR'DLUD, L =w W) has to calculate two-loop diagrams witfy, and one-loop

diagrams with one vertex fronf,. Again, these diagrams
F&l = (v +a") — 3" (" =a*) —i[v = a* v +ak], will be divergent, bu'F th|§ is not a problem since at.the same
) order one has contributions from tree diagrams with fie
Lagrangian(which has been constructed in the case of three
where we omitted terms which contain external fields only.ights flavors[22]). By defining appropriately the new cou-

Since we disregard singlet vector and axial vector current!iNg constants occurring in this Lagrangian, one is able to
(.e., (v,)=(a,)=0), there is no contribution from the remove the divergences at the next-to-next-to-leading order,
AT " !

anomaly ato(p%) [14]. and get finite m_atrix elements. In prder to have'numerical
predictions at this level one has to find a way to pin down or
at least to estimate the finite parts of the new low energy
constants. At the moment this has not been done yet in a
systematic way: in Sec. IV A, when calculating the matrix

The coupling constantl are split in a divergent and a
finite piece and are scale independent by definition:

= . r . . .
li=yih+1i(w), element of ther decay into two pions to two loops, we will
show how in a specific case one can try to circumvent this
N N FT(1)+1 problem.
“ 162 a4 247 Iy
lll. PHASE SPACE, MATRIX ELEMENTS,
d | ,ugd*4 N d Ir( )+ 0(d—4)=0 ®) AND STRUCTURE FUNCTIONS
mo=li=yiTe o tugli(u —4)=0.
du '16m du ! A. Phase space considerations

The finite parts have been determined phenomenologically The two pion phase space is given by

for the first time by Gasser and Leutwylgt4]. We adopt M2 [ dQ? Q2 AM2)\ 12
their notation and use instead of thew), the finite and O, = Tgf —S1- 5| 1- —= (11)
. o 128 M M Q
scale-independent quantities T T
o -1 M2 (the reader is referred to Appendix A for our conventigns
li= ( 3;I 2) H(p)—In—5. (9)  where the integral is from thresholdv. up toMZ. Close to
T M

the two pion threshold, this implies

The up to date values for the relevdpand the correspond-

ing y; are listed in Table |. For completeness we give the 2This means that we are neglectija) corrections to the decay
expressions for the pion decay constant and the pion mass wdth I'(7— wv,,) from whichF _ is extracted; for more details see
to and includingO(p*): Ref.[23].
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do,,. 1 1 4M2 G-parity invariance and Bose symmetry are given in terms of
dQ? 1283 M2 1- M2 (VQZ—ZMW)M. (12 three functiond=, G, andH which have to satisfy the prop-
i T erty

The three pion phase space is

®. = M? jMisz Q%\ 1 ((V@-wm,2ds
37 2048m° - M2/Q? 5

T

F(52,31,53): +F(Slasz 153)1

om2 M2 a2 s G(sz,81,53) = +G(s1,52,53),

X[(51- Q%= M?%)?—4Q°M7 1"  s1(s,— 4AM7) ]2 H(s2,51,83) = —H(51,5,53). (19
(13 The matrix elements are then given by

Close to threshold22—>9Mf,, this can be approximated by B
(m°(py) 7°(p2) 7 (P3)|A,(0)]0)
dd,, 1

9M?
o7 H21033,2W4<1— Mi”)(@—smﬁ)% (14) =G(51,52,53) (P1+P2) T H(S1,52,53) (P1—=P2)

+ F(SlISZ!S3)p3,ul

By induction we can shoJ24] that the phase space for an
n pion hadronic state, withQ? close to threshold, (7 (py) 7 (p2)mt (p3)|A, (0)]0)
Q2—(nM )2, opens proportional to a

=G'")(s1,5;,53)(P1+P2) , tH(s1,5;,53)
ddy, (3n—5)/2
dgz *(VQ7 =M, (19) X(PL=P2), TR (s1,82,80Ps,. (20

Forn=2, the exponent is 1/2, far=3 itis 2, recovering the The form factors for z~ 7" and 2r°z~ are related by
above results. Isospin symmetry

It is clear that, in general, the more pions there are, the
slower the phase space opens at threshold. Therefore, for F'*(S1,5,,55)=[G(s,S3,51) +G(S3,51,57)
four and more pions, it is not only the high invariant had-
ronic mass, but also the behavior of the phase space at
threshold which prevents the application of CHPT.

—H(s;,83,8;) + H(S3,51,S2) ],

G'")(s1,52,53) =3 [F(S2,53,51) + F(S3,51,55)
B. Two pion differential decay rate +G(s,,53,51) + G(S3,51,S))

The hadronic matrix element of the decay into two pions _
is characterized by a single form factét,(Q?), FH(S2,85,81) ~H(S5,81,8)],
HA= (7" (py) m°(p2) VA~ A*|0) = \2(p1— p2) “Fu(Q?). H")(s1,52,83) = 3 [F(s2,53,51) — F(S3,51,57)

16
(16 —G(sy,83,51) + G(S3,S1,Sy)
Only |F\(Q?)| can be measured, and it can be obtained by —H —H 21
measuring the differential distribution @2 using (S2,83,81) ~H(83,81,82)]. (21)

dr cof6, dQ? Q2\2 202 Alternatively, one can use a decomposition of the matrix
sz( 2)= 5 i —2( 1- —2> (1+ —2) element into only two functions,Fq(s;,S,,5;) and
e M7 M7 M7 F<(s1,S,,S3), with Fg even under the exchange sf and
AM2)\ 372 s,, andF; of mixed behavior:
x| 1= Q—zﬂ> [Fu(Q?)[%. (17) o ) )
(m(p) 7 (P2) 7 (P3)|A,,(0)]0)
Here, we have normalized to the electronic branching ratio of =[F(S1,5,,53)(P1— P3)”
the 7
G,Z:M5 +F1(82,81,83)(P2—P3) "1 T+ FsQ,
Fe=—r—3. (18
192 _ _ _
i (m (P (p2) 7" (P3)|A,(0)[0)
C. Structure functions and the three pion :[F(1+>(51a32,53)(pl_ Pa3)”
differential decay rate
(+) _ v
1. Form factors and isospin relations +F1(52,51,83) (P2~ P3) T T
The most general form of the hadronic matrix elements +F(s+)Q,L, (22)

for the 7 decays into the 2 7" and 27°#~ final states,
compatible with the requirements of Lorentz, isospin andwhere
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Q.Q, with the indices which are in a row, and antisymmetrize with
Tuw=09u— o7 respect to the momenta with the indices which are in a col-
umn. The order of these operations of symmetrization or
_ antisymmetrization is not important, but must be fixed once
=(py+po+
Qu=(P1H+P2*P3),., and for all.
2_ 2 Remarkably, all the states belonging to the same class
=5;+S,+53—3M2. 23 ) "
Q 1im2n s " 23 defined by the partitiof N;N,N3;] share some common

The decomposition intd; and Fs has the advantage that Properties about isospin and charge distributiofls: the
these form factors correspond to a definite overall gpin, ~ OVerall isospinl is uniquely determined and it i5=0 if
F1 corresponds to spin 1 arf to spin 0, and therefore, the N1—Ns andN;—Nj are both even, ant=1 otherwise;(2)
structure functions(see Sec. IV B are usually expressed the states in a clagN;N,Ns] are composed bNs sub-
through F; and F. If F, G, andH are known, we can Systems of three pions with=0 andN,— N3 subsystems of
calculateF,, Fg through two pions withI=1, andN;—N, remaining single pions
[trivially, 3N3+2(N,—N3) + (N;—N,)=NT; (3) theN pion
—F(s1,5,,53)+ G(S1,S,,S3) states which we are describing contain all possible charge
3 distributions (e.g., for N=2 and zero total charge, they
would contain bothr ™ 7~ and 7°#° stateg. The probability
+H(s1,S,,S3), of a state to contain a given charge distribution is a “class
property,” i.e., is uniquely determined by the partition
Fs(Q?%s1,5,)=aF(s;,S,,53) +(1— a)G(S;,S;,S3) [N1N,N3] to which it belongs.
For a more detailed account of the properties of tHése
—BH(s1,87,83), pion states we refer the reader to the original article by Pais
[25]. We now concentrate on the case of our inteist3.
In this case we have three possible partition300],
2Q° ’ [210], and[111]. The[111] corresponds ter " 7%z~ in an
overall =0 state(e.g., from the decay—3). The re-
51T maining two partitions[210] and[300], havel =1 and so
T 207 (24) they can occur ir—37v,.
These two partitions differ in their branching ratios into
A completely analogous relation holds for the form factors ofthe two charge distribution states. TH&10] decays equally

Fl(QZ,SLSz):

Sl"l‘SZ_ZMqZT
= ——~~75

the all charged matrix element. into 27~ 7" and 27%7:
Let us emphasize two facts regarding the two charge
modes. First, the two matrix elements for the final states ) B2m 7")
27 @t and 27°7 are not independent. If one knows the [210]: B(2#9%7 ") =1 (26)

matrix element for one of the two states, the other one can be
calculated using isospin symmetry. Second, however, isospiwhereas th¢ 300] state prefers the all charged mode
symmetry doesiot require that the form factors and decay

rates are equal for the two modes. This fact can be seen if we B(2m w")

decompose the three pion states in terms of partiti@bs [300): B(2m%m) =4 @7
2. Classification in terms of partitions Equations(26) and(27) immediately lead to the inequalities
In Ref. [25], Pais introduced a classification df pion  ©oPtained in Ref[26]:
states with overall isospih=0 or 1 in terms of correlation 0_— R
guantum numbergN;N,N5]. The three integer quantum 3$|3(2W—7T3$ E E$ Mg L_l
numbersN; are partitions of the total number of piohs 5 B(al(3w)7) 2' 2 B(all(3m)7) 5
N;=N,=N3=0, Experimentally, the branching ratios of thénto the two
states are equal within the errors, so that certainly the
N;+N,+Nz=N. (25) [210] strongly dominates and a possible small admixture of

the[ 300] state(which, as we will show below, is required by
Each stat¢ N;N,N3] is characterized by its symmetry prop- CHPT), has not yet been established. Note that if the decay
erty under the exchange of some of the momentaccurs only via a decay chaim—a,v., a;—pw, and
Pi,....Pn. Such a state is easily constructed with the helpp— 7, as in vector meson dominance models, there is only
of a Young tableau: each Young diagram must have threthe[210] state(because of the resonance, there is one two
rows with N;, N,, and N3 cells in the first, second, and pion subsystem with=1, i.e.,N,—N3z=1), and both decay
third row, respectively. The cells must then be filled with charge modes are produced with equal rates.
numbers going from 1 t&N, with the only rule that all the If one has an analytic expression for the form factors in
numbers in the rowécolumng must be organized in increas- each of the two charge modes, one can easily construct the
ing order from left to right(top to bottom. The rule to con- matrix element of a given partition state, by following the
struct a pion state from a tableau is very simple: one has toules which we described above. The complete decomposi-
symmetrize with respect to the exchange of the momenttion of each of the form factors, G, andH into the three
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partition stategtwo states for the partition210] and one for ~ Without the energy-ordering sigs{—s,), the relevantwy
[300]) is described in Appendix B. Here, we give in an would vanish due to Bose symmetry.
obvious notation the decomposition only®f, since it is the The integrated decay rate is determinedWy and Wg,
most important form factor in the numerical analysis: only, the other functions give vanishing contributions after
integration over the angles. We have
Fy=[FE9+ R,

G2 1 dQ?M2-Q?
F(H)=[2F[300 _ pl2107 28) dr=-4 \,os" c(4 502 Q?
where with Fi?'9 we have indicated the sum of the two 1 2 2Q? 2
1 . i, 5WsA(Q%)+ + 7 |Wa(Q) (. (33
states belonging to tHe210] class. From this decomposition 2 M7
the branching ratios given in Eq&6) and(27) follow, and
.SinCEF:D/MI-D: — Fng) VMD s it is clear that th¢300] partition I\V. CALCULATION OF THE HADRONIC
is absent in the vector meson dominafe&1D) model. MATRIX ELEMENTS
3. Structure functions and differential decay rate A. Two pion decay
The differential decay rate for a general hadronic decay is The hadronic matrix element which is relevant for the
determined by decay into two pions is
Gz (m'(p1) 7' (p2)oufVy;(0)]0) =i €"™(py—Pa) ,Fu(S),
dI(r—3mv,)= co§0c JHArdPSY, (29 (34)

wheres=Q?=(p;+p,)? ande quﬂr g. In the frame-

work of CHPT, F(s) was caIcuIated by Gasser and Leut-

wyler [14] to one loop, and by Gasser and Meissf29] up

to two loops, by using a three-times subtracted dispersive

representation. The function to be integrated inside the dis-
ersive integral is a particular combination of the vector
orm factor and thd =1, P-wave 7 scattering amplitude

at the tree- and one-loop level. In R¢R9] the dispersive

integral was calculated numerically. Here, we are able to

LWHMV:; Ly Wy . (3D give a compact analytic expression of this integral

where the hadronic and leptonic tensors are
i t o t
LIU,V'_L/,L(LV) ’ H,uv_H,u(Hv) ’ (30)

where H = (hadronic final staié,(0)[0). The decay is
most easily analyzed in the hadronic rest frame, and we ¢
write

1 S

In general H*” can be characterized by 16 independent real Fy(s)=1+ g(rz)\’}er crs?+fy W) (35
functions. In our case of a three pion final states, there are w
restrictions due t@& parity and Bose symmetry, which leave )
nine independent structure functioN8y. These hadronic .y, , 2 517 X
structure functionsWy depend on the kinematics only )= | g1t 24m o J(X)]= g5 ]
through the hadronic invariants, s,, andQ?. The angular M2
dependence is contained fully in the corresponding leptonic -
Ly . For details, see Appendix C below afi7,2§. (16 16m2F2 )

There are four structure function&/,, We, Wp, and ) 2101 023 16
WE, which arise from the spin-1 part of the hadronic current; ™ Xt—
i.e., they depend of,(Q25s,;,52). A single structure func- X[1+ 24m°0%3(0)] - 304" m)xz 216" 9
tion Wg 4 arises from the spin-0 part and dependd@n and

. . . 2 4,772 -
four functionsWsg, Wsc, Wsp, andWsgg are due to inter (37x+15)+ - ( 7x2—151x+99)J(x)

X2

27

1 6l,
['2 ot

ference between spin-1 and spin-0 amplitudes. 540
The structure functions can be measured by observing an- )
gular distributions and taking momen(si) with respect to 4 21(x3—30x2+78x—128)K_1(x)

products of trigonometric functions of these angles.
In the numerical evaluation in Sec. V B we will plet,

s, integrated structure functionsy : + 877'2< x2— 1—3x— 2) K_4(X)] (36)
3 1
2y _ 2
Wa.c sasascQ )_J ds,dS;Wa c sasesc(Q%:51,52), where we have used the functions
WD,E,SD,SE(QZ) = f ds,ds,sign(s; —s;) 3The integrals one has to calculate here are similar to the ones that

occur in the w7 scattering amplitude to two loops, see Refs.
XWp g spse(Q%51,52). (32 [30,31.
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— 1 (r?)7=0.431+0.020+0.016 fnt,
I =72l F)+2],

cy=3.2-0.5+0.9 GeV* (40)
— 1 F3(x)
Ky(x)= 1602 o2 where the first and second errors indicate the statistical and
theoretical uncertainties, respectively. We reproduce the cen-
2 tral value of the radius squared given[i82] with a larger
— 1 F(x) 1 1 [F%x) e : .
K4(X)= 5 —— + 5 — 5 Tr2} statistical error, because we fit two parameters simulta-
167" xo® = 327" xo°| o neously: If we keepcy fixed, the statistical error igr2)y
1 1 reduces by a factor of 2. The central valueodf is rather
+ 282 m( F[F3(x)+w202F(x)]—w2] close to the value obtained by resonance saturation,
cy=4.1GeV *[29].
1 1 However, we observe that for both parameters the theo-
+§2— 32,2 37 retical uncertainties are of the same order of magnitude as
the statistical errors. Unless one has a way to keep these
with theoretical uncertainties under control, we do not see how
(r?)J can be determined with the accuracy indicateff3i2].
o—1 Note that we are not able to fix the low energy constgnt
F(x)=olin—=, from our fit, since we do not have independent information
on f4. In the numerical evaluation, we will use the values in
o=\I=4k. (3 Fa-(40.
The functionsK;(x) were recently introduced by Knecht B. Three pion decays
et al. [30], and such ad(x) are analytic everywhere apart  As we have seen in Sec. Il C 1, it is sufficient to discuss
from a branch cut from 4 tec, and go to zero as—0. only one of the two matrix elements, the other one can be

All the constants which occur irh\Lf(s/MfT) are known calculated via the isospin relatiof&l). So, we will consider
(see Sec. )l The subtraction constan{s?)y and cJ are  only the one with two neutral pions. _ _
calculable in CHPT and can be expressed in terms of the low First of all, a general consideration: this matrix element
energy constant (), chiral logs, and the new low energy contains a pole term i@ dug to the direct coyplmg of the
constants which appear ify. With this representation of the axial vector current to the pion. So, the matrix element can
subtraction constants given by CHPT, one automatically sal® Written, in general, as
isfies the relevant Ward identities, up to the order at which 0 0 _ -
one is working. We do not give this explicit representation (m(p) 7 (p2) 7 (p3)|AM(0)|O>
here because up to now there is no information on the nu- A__(S3,5,S,)

. . w\ 93191192
merical value of the newCg low energy constants. In the IIﬁFww
future, with more accurate data on various low energy pro- ™
cesses, and more two-loop calculation aval]ablt_e, one .could +H(S1,52,53) (P1— P2) s T F(51,52,83)P3,, (A1)
try to pin down at least some of them, but this will require a

considerable amount of work and it is beyond the scope OfyhereA _(s,t,u) is the o scattering amplitude as defined,

our analysis. , _ e.g., in Ref[14]. Note that the separation between the pole
We adopt in the _foIIowmg the notation of Gasser andterm and the barred form factoi and G is not unique;

Meissner{29] and write however, one can split them such that the coefficient of the

1 pole is exactly therw scattering amplitude, and therefore,

<r2>g:T[(|6_1)+ %fl +O(M?T)' define in this wayF andG.
16mF7 16mF7 The calculation of the form factors is done by expanding
them in powers of momenta and quark masses:

Qﬂ+G_(SleZrS3)(p1+ P2) .

2

1 1 1 —
CU=1722 2{ 7T s—=fs| +O(M2). (39 2 R(2 -
1672F2 | 60MZ " 1672F2 Rziﬁ__(Rm)JrF_ﬁm . R=FGH,
f_landf_z contain all the contributions at the two-loop level.
In [32] the pion charge radius squaréd)y, has been deter- A=A+ AW 4 (42)

mined from experimental data by means of a simple model

for Fy which contains(r?)y as the only free parameter. where the superscriptnj indicates a contribution of order
Those authors obtain the res(if)7=0.431+0.010 fn?, in-  p". (We remark here that a tree diagram from the Lagrangian
cluding the systematic error as a constraint in the normaliza£,, gives a contribution of ordep" to scattering amplitudes
tion of the data. We repeat the fit with the expressi85) but of orderp”~2 to form factors)

leaving (r?)y and cy as free parameters. Furthermore, we At the tree leveH=0 for the simple reason that its anti-
include a theoretical error, leading to symmetry under exchange ef ands, cannot be satisfied
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TABLE Il. Integrated branching ratios fofQ?< Q. predicted with CHPT at a given ord&{(p") and
from vector meson dominance modéiéMD), see text.

Mode Qmax [MeV] O(p?) o(p O(p°) VMD
400 4.2%10°4 6.66x10° 4 7.34x10°4 7.40x10°4
T—27V, 500 1.5% 1072 2.92x10°3 3.45<10°2 3.72x10°8
600 3.40<10°8 7.57x10°3 9.73x10°3 1.20x1072
500 2.0x10°7 4.19x10°7 4.19x10°7
7— 37V, 600 4.31x10°6 1.07x10°° 1.23x10°°
700 2.21x10°° 6.55x10°° 9.51x10°°
with a constant. As foF© and G, a constant satisfies F2A% (s t,u)=s—M2,
their symmetry propertie€l9), and we find
FO=—1, FIAY (s,t,u) ——[(t— u)2—2M2s+4MA][ 3D +I(D)]

GO 1 I — 30
G=1. (43 _1_2(t—u)(s+2MfT)[J(t)—J(0)]

At the one-loop level we have the results

1 1
S 1 I — +5(s* =M )J(s)+ {2|1(s 2M2)2
F(z)ngw[J(31)+J(52)]_1_2(31_52)[3(51)_3(32)] - o
. +I2[(t—u)2+52]—3l3MfT
_—53\](§3)+—{—2|1(33_2M727) — 5 7
2 96m° +12A,M (5= M%)~ 5 (t-u)?- 582
+1,5(S1+ S+ S3— AM2) — 61 ,M2 .
— 2 2
—lg(sy+Sp+253—4M?2) _§Mﬁ(45—13'\/|7r)]- (45
_}(514_32_553)4_?,\/'2} The form factorskF and G as defined in Eq(20) can be

3 easily reconstructed fror . and the corresponding barred

functions at each given order, via the simple relation

P 1 . —
@— _ M2 1 _ AN
G 6 M2[J(s1)+I(sy)] 12(31 Sp)[I(S1) —I(sy)] e F, 2 ( Oy F::(ZZ) L

ks

w

1 1 5
+233J(33)+ 2I 1(S3—2M%)

F7TA7T7T (7
— b — RN 2=~ "5 +R"2 R=F,G. (46)
—ly(sy+S,—S3—4M2) +61,M2 M7—-Q
+I_6(sl+ s,—2M?2) One could wonder whether it is possible to experimentally

disentangle the contribution &, to some of these form
factors. We are convinced that this is not the case. The rea-
son being thatA . contributes only toFg, which is very
difficult to measure, and that there are, in addition, other
contributions toF .

1 10 ,
+ 5(31+52_733)_ gMﬂ ,

<2>:_1 e V(A + 3 & _1 _cM?2
H 6(31 S2)[I(S1) +I(sy)] 6(31+32 5M?)

V. NUMERICAL RESULTS FOR THE BRANCHING

1 — RATIOS AND THE STRUCTURE FUNCTIONS
X[J(Sl) J(Sz)]+ 96772{ 2l5(s1—s)

A. Two pion decay

5 At first, let us discuss integrated branching ratios
+5(81—S,) |, 44 5
3( 1 2) ( ) BZ#(QmaX)'
Where§i=si/MfT, and thel_iare listed in Table I. B B JQmaxd 2 4
As for A__, its expansion is now known up to the two- 2n( Qmax) = T dQZ(Q ) 4

loop level[31]. Here, we need only the first two terms of the
expansion which are known since a long tif33,14: The results from CHPT are given in Table Il. From the con-
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Given a numbemN of events7— 27y, with hadronic-

0.71_|I\\{IlllIlllllllilll{llf_
e b e invariant mass square@? in the interval M2. .. Q2 ., the
TOF * 3 precision with which(r?)J can be measured isee[36])
0.5 -
= ] 1 1/of(x:p)\2 1712
0.4 t = crp=—U —( (X:p) =—7.37 fn?,
s E INLJ fLap JN
e e S 7 (49)
2 B AT —
° = 4 = where
0.1 K —
E 10 E 2 o, L 2
O Y01 0.15 0.2 0.25 0.3 0.35 FQ%(r >V)':§P(Q) (50
FIG. 1. Differential decay rate for—2mv,: Predictions by ~ With
CHPT at O(p?) (dashey, at O(p*) (dashed-dottegd at O(p®) ’
(solid), and from a vector-meson dominance mo(tkltted, com- p(Q2)= i dI">-(Q%)
pared with experimental data from CLE@ots with error bars I'e dQZ '
_ [ 2 A2
o R= [ "dQ%p(Q7). (51
vergence of the expansion pf we conclude that the CHPT aM7
expansion truncated at this order works fine up to _ . _ -
Q=500 MeV So, givenN, decaying7's and a detection efficiency,
max "

We also compare with the prediction from a VMD model, we have

viz., from the model 1 of5], which has been implemented in N=N,yB(r—2mr,,Q2<0.25 Ge\), (52)
TAUOLA [34]. This VMD model parametrizeB,, in terms of

a coherent superposition ofgaand ap’ Breit-Wigner, with  where the branching ratio B(r—2mv,,Q?<0.25

an overall normalization fixed by matching to ti@(p?)  Ge\?)=3.6x10 2 according to Table II.

chiral prediction. It gives a good parametrization of Based on this, we now give rough order of magnitude
e*e”— 2w annihilations in the range covered by thenass.  estimates for the possible statistical accuracy of present and
We find that in the range up to 500 or 600 MeV, where wefuture experiments. We assume an efficiencyzef 30%.

trust CHPT, the predictions of CHPT and from the VMD CESR has at present abouk80° 7’s, thus the possible
model agree well. statistical accuracy is of the order of<,2>avr:O.1 fm. A b

In F@g. 1 we plot the tw_o pion—inv_ariant mass SpeCtrumfactory might have 5107 r's per year. Assuming three
normalized to the electronic branching ratio of theWe years"of running time, this leads with the assumptions men-

plot the predictions from CHPT, together with the pre-iisneq ahove to a possible statistical accuracy of the order of
diction from the VMD model in[5] and preliminary data 7 2)7=0.02 fn?
. . .
\%

from CLEO [35]. Note that we used a simplified approach
to fix the overall normalization of the data i{{85]. We These numbers have to be compared to the accuracy
multiplied the spectrum frorfi35] with a normalization fac- €valuated from we scattering. With the Zaisumptlons
tor N and determinecdN by fitting the data to the VMD We mMmade above, the present result (s%)j=0.431
prediction of[5]. Of course, the normalization should instead = 0-010 ff [32]. So, it seems difficult forr decays to be-
be taken from the data. In fact, we suggest a careful reanalyz0me competitive withre scattering for the determination of
sis of the low energy part of the spectrum and its absolutér°)v - Nevertheless; decays can provide an interesting
normalization in order to compare it with the CHPT predic- Cross-check.
tion.

It is of some interest to understand how sensitive
r—2mv, decays are to the pion charge rad{u$), which B. Three pion decay

: : ; 2y i 2
is defined from the expansion &#,(Q") in terms ofQ The numerical results for the integrated branching ratio

with Q?<Q?2,, for CHPT atO(p?) andO(p?) are given in
Table Il. The series expansion of CHPT does not seem to
Fu(Q?) =1+ §(r)JQ+cjQ*+fy(Q*) +0(Q°), behave very well. Even fo®,,=500 MeV, the integrated
(48 one-loop contribution is already around 45% of the tree-level
result. This means that to have a CHPT prediction with a
reasonably small theoretical uncertainty for such a quantity,
wherefy(Q?) is given in Eq.(36) and is very small numeri- one should stop aQ,., well below 500 MeV, and this
cally. According to the previous results, we consider thiswould be very difficult to test experimentally, because of the
expansion valid up t@,,,,=500 MeV. Furthermore, we ne- strong phase space suppression of this region. On the other
glect theoretical uncertainties due to higher order correctionsand, we observe that there is a fair agreement with the
and assume thatj is known exactly. For a discussion of VMD model numbers up t® =600 MeV, which is better
these points see Sec. IV A. than what happens in the two pion case. This can be under-
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0.8 7 T T T 1 T T 7 T T T 0.02 [ T T 7 T T T TT T H
- 0.015 3

0.6 - P/
- 0.01 — ",:;." —

[ C i ]

0.4 = 0.005 |- yd -
C 0 - _M,,.‘.,‘r.'-*""‘:' _:

0.2 |— - ]
N -0.005 —

- C | | | | | I ' | | | I ]

0 0.2 0.25 0.3 0.35 0.4

FIG. 3. Integrated structure functiom,(Q?). CHPT atO(p*)
for 2~ 7" (solid) and for 2#°7~ (dashed-dotted and form the
VMD model (dotted, identical prediction for both charge moxdes

FIG. 2. Integrated structure functiow,(Q?) for 27 =*:
CHPT prediction aO(p?) (dashey, at O(p*) (solid), and from a
vector meson dominance moddbtted. The four functionsv, and
w¢ for both modes -~ 7" and 277 all look identical within

the resolution of this diagram. SinceH is zero at the tree level, the difference vanishes at

leading order. Moreover, this difference starts as the square
of a quantity ofO(p?). Using the language of the sixties we
stood in terms of the fact that in the two pion case, thecan say that the vanishing of this difference near threshold is
p(770) resonance is very close, whereas in the three pioa low energy theorerfLET), and that it receives corrections
case, the nearest three pion resonancali&260) is much only at next-to-next-to-leading order. We also notice tHat
farther away. Whether the VMD model is a good represenis a function antisymmetric under exchangespfands,, so
tation of the experimental data even at such a low energyhat its modulus squared has a zero along thedires,. At
though, has still to be verified. low energy, where the distance between this line and the
Beyond the integrated decay rates, this decay mode has@undaries of integration is not largi units of M2), the
very rich structure, which, in principle, could be investigatedpresence of the zero produces an additional suppression of
in detail experimentally. In fact, ifi28] it has been shown the integral. The similarity of these two functions near
that it is possible to extract all three form factors from athreshold was already found in Ref27,2§ in the frame-
measurement of all angular distributions. One could theVork of a VMD model. Here, however, we can give a de-
compare the measured form factors to the analytic formulaktiled algebraic account of why this happens. For all these
of CHPT. This extraction is, however, very difficult in prac- arguments we believe that this fact should be verified experi-
tice, and moreover, the phase space suppresses consideraligntally even at energies well above those where one would
the region where the comparison makes sense. For these rd@iSt a one-loop CHPT calculation. ,
sons we find it more useful to show directly the curves for N Figs. 3 and 4 we plo/p(Q®) andwg(Q"). These are
the integrated structure functioms, in Figs. 2—7. We have Much smaller tharw, near threshold, and certainly more
chosen six out of the nine structure functions which argdifficult to be measured. However, they seem rather interest-
present, mainly because the missing three are too difficult 819 from a theoretical point of view. First of all, for both of
be measured and not particularly interesting. Note that, ithem, theO(p?) contribution vanishes. Second, tp®)
accordance with our definitions in Eq9) and (A6), the  Predictions from CHPT differ strongly for the two charge
Cabibbo angle c3#. is factored out from hadronic matrix Modes. According to the discussion in Sec. IIl C 2, this fact
element, and so the structure functiongdo not include this ~ Suggests that near threshold these two structure functions are
factor. strongly influenced by the partitigr800]. Using the decom-
In Fig. 2 we plotw,(Q?) for the 27~ =" final state.
It turns out thatwa(Q?) and wc(Q?) for both charge
states 2r~ 7" and 2%~ are all very similar, so the four
plots cannot be distinguished from each other. The equality
of the structure functions for the two charge modes suggests
that w, and we are dominated by thdg210] partition. 0 S
We have explicitly verified that this is the case: for example,
at Q?=15M2, the [210] partiton contributes 6.73 -0.005
X102 GeV * to w, for both modes, whereas tH&00]
partition contributes 2.2410 % GeV * for the 27 =™ -0.01
and, according to Eq(26), one quarter of this for the
2707~ mode. The interference of the two partitions is com- 0.2 0.25 0.3 0.35 0.4
pletely negligible.
The reason whyv,~w¢ at low energy is that FIG. 4. Integrated structure functiomg(Q?). CHPT atO(p*)
5 5 20112 for 2~ 7% (solid) and for 27°7~ (dashed-dotted and from the
WC:WA_2X3|F1_ Fyl :WA_8X3|H| : (53 VMD model (dotted, identical prediction for both charge modes
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TABLE llI. Splitting of the integrated structure functionsg
andwp into the contributions of the partitiorj800], [210], and
their interference, aQ?=15M2. 0.0025

L Y I Y T B B |

[300]  [210] Interf. Total 0.002

(27 7') 863x10°2 102 -156 -—0.450 0.0015

10Pwp 0.001
@2#°7") 2.16x102%2 1.02 0.779 1.82

1IHI|\IH|HI\|HI\

3
Ll

\IHl\IIJII\III\IHlHI\II\I

0.0005
(27777T+) 4.62<10°% 0.206 2.08 2.29 0 ‘T'_\'T—J"Iﬂx. I RN RN BN

10%wg 0.2 0.25 0.3 0.35
(27°77) 1.16x10* 0.206 -1.04 -—0.837

:,>+T|H|H

FIG. 5. Integrated structure functiowss(Q?) for 27 =*.
CHPT prediction aD(p?) (dashedland atO(p*) (solid), and from
a VMD model (dotted.

position of the form factors given in E¢28), we have veri-
fied that this is exactly what happens. As can be seen in

Table Il the change of sign in the interference contributionbi”ty that the real value of this combination be twice as
is responsible _for the change o_f sign of the whole integrateg,ch, or very close to zero, cannot be excluded. We have
structure functions in the two different charge modes. As farchecked that by changing the vaIueEf—kE—S by * 1.4

as we know, up to now there are no_da_lta for these ;tr_uctur angeswp in the 27 =" mode by +4.4<10°%, at
functions so close to threshold: so this is a real prediction Oglg: 15Mi- As expected,wg remains practically un-

CHPT. Moreover, this change of sign is absent in all the hanged. Even in the worst case faf,, however, there

models of which we are aware of and which have been used ‘>3 ) :
remains a sizable difference between the two charge modes.

to describe this decay channel. It is then important to aslﬁ_ . . . .
. : S : he effect of higher orders in the chiral expansion and the
how reliable this prediction is and up to what energy it can Flated questior?s of how far in energy onea can trust this

be trusted. These questions are especially difficult to answéf &ed . . :

here because we have only a leading-order calculésioe prediction will remain unanswered until one calculates the
the O(p?) contribution vanishds The only thing we can do form fe}ctors at twq loops, which IS beyond the scope of our
is to check how sensitive the prediction is to the values Weanaly3|s. we may'just' argue th'at since there are no'low-lylng
use for the low energy constants. We concentrate here on the>onances contnbutmg to this partlc_ular three pion state,
[300] state, since it is the one responsible for the new effecty 'C of the possible sources of large higher order corrections
is excluded.

All'in all, we can say that CHPT predicts a sign difference
in the two structure functionap andwg for the two charge
modes near threshold. This prediction will have interesting
consequences in the next subsection, where we compare it
with VMD models and available data.

In Fig. 5 we plotwga(Q?) for the 27~ " state. The
) corresponding curves for ther® 7~ state in Fig. 6 have a
—§J(sg)(s3—MfT). (54) ;/ery S|m|Iar_ sr;?ﬁ;butziogjfferent overall no_rmal|zat|o_n. In

act, the ratiovgy, " /wgj " is close to 4, which according
to Sec. Il C 2 implies that the scalar form factor at low
energies is dominated by tha00] state.

We find that the structure functiomg is very small com-

F2 1 = — (@
_FE300]=727T2[|1+|2_3]<?_31+M721_

iV2

a— 2 ,
+ 53(51)('\/'77_51)_5\](52)(52_ M?)

First of all, we notice that this partition has no contribution
from the tree level. This is not the case for {#10] parti-
tion, which starts as

Fa

\IIII\\IlII\\\\II

2 0.0008
_ T pel210 _Z 2
i\/EFl 3+O(p ). (55
0.0006
This explains why the interference contribution is much big-
ger than the one from thg300] partition alone. Then we 0.0004

may easily see from the definition of these two structure

\I\\l!l\llllllllllll_l

:b-'_l\l\l\‘ltl|\l\llll\l

functions given in Appendix C that th&p is mainly sensi- o000z - 7 -

tive to the real part oF:3% whilst wg to the imaginary : P

part. This means that only the numbers ¥g5 may depend o b L
on the combination of low energy constants which occurs in 0.2 025 0.3 035 o

Fi3%% The value used for the combinatibpt |,— 3 in the
numerical calculations is 1.4, resulting from the central val- F|G. 6. Integrated structure functiowga(Q?) for 2707 .

ues given in Table I. The uncertainty on this number can be&HPT prediction aD(p?) (dashedland atO(p?) (solid), and from
estimated from the same Table | to bel.1. So the possi- a VMD model(dotted.
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S T T T T T T T T T oA STinzzmn(mw+ \JQZ)y
0.02 =
E 3 ST¥*=Q2—m?,
0 F —
o . 2 2 2 2
000 E = .. \/[s+(s+—4mw>—4mw(Q2—mw>][Q2—s+—mW]
r ]l S 7= 7 > .
o004 E E Q°+3m,—s,
e g (58)
-0.06 | = ) _ )
= . We perform a least-square fit to the Dalitz plot density as
=008 Bl Y predicted by CHPT, using a fit function
0.2 0.25 0.3 0.35 0.4

dar
FIG. 7. Integrated structure functiomss(Q?). Prediction from sz(X,y). - indslds2
CHPT for 20 =" (solid), 27°7~ (dashed-dotted and from a

VMD model for 27~ 7" (dotted, 27%w~ (dashedl =a[x+b+cx?+dxC+ext+ fx(x—1)y?].

(59
pared tow,, so the spin-0 contribution to the integrated rate
is negligible. The only chance to measure the spin-0 part ifote that this is a reasonable ansatz for yhdependence.
via its interference with the spin-1 part in the structure func-First, we must haveqz(X,y) = pg2(X, —y) because of Bose

tion wgg(Q?), which is plotted in Fig. 7.

symmetry. Second, at—0 and atx—1, s"-0, so the

In Fig. 8 we consider the Dalitz plot distribution dependence op? must go to zero ax=0,1.

dI'/(dQ?ds,ds,) in s;,s, for fixed Q2=0.36 Ge\f. We dis-
play the O(p*) prediction for the Zr 7% mode. At
O(p?), the Dalitz plot density depends only @qp+s,. As
seen from the figure, this feature seems to persi€(at*).

We choose to discuss the CHPT predictions for
Q?=0.36 Ge\f. At this value ofQ?, the result from the fit is

a=(3.0360:0.0095 x 10 * GeV ®,

Let us analyze this issue quantitatively. To describe the Dal-

itz plot, we defines, ands_ by

S, :=8%,1S,, S_:=5—5,, (56)

and then replace, ,s_ by dimensionless variablesy with
0=x=<1 and—1=<y=<1 via

s, = (s M)y + gmin,
s_=s"y,

(57)

where

0.2

0.18

0.16

0.14

0.12

0.1

0.08

008 01 0.12 0.14 0.16 0.18 0.2

FIG. 8. Dalitz plot distribution of the 2~ =" final state in
sy, S, for Q?=0.36 Gelf.

b=(5.251+0.039x 10 3,
c=(0.786+0.023,
d=(0.190+0.053,
e=(0.189+0.036,

f=(0.0645-0.0026. (60

This fit never deviates from the CHPT prediction by more
than 2%, with an average deviation of less than 1%. It is seen
that they? dependence is very small. In fact, taking into
account that the coefficiem(x— 1), which multipliesy?, is

less or equal to 1/4, we find that the leadinglependence
does not exceed 2%. We have checked that, as one would
expect, they? dependence is even smaller for smallg.

This Dalitz plot distribution, as predicted by CHPT for
Q?<0.36 Ge\, differs strongly from the behavior at high
Q? in the resonance regime, where theesonances lead to
pronounced structures ig; and s, (resonance bands for
fixed s; or s;,) [37].

C. Comparison with vector meson dominance models

In this subsection we will compare with the low energy
behavior of the phenomenological models [£,8,9. The
simplest VMD model which one can build for this channel
(see Ref.[5]) is based on the decay chair—a;v.,,
a,—pm, p—2, and a transversa, propagator. In this
case the amplitude contains only a spin-1 p&{=<0), and
the three pions are only in d210] partition state
(F*°9=0). The comparison to the dafa8,39 shows that
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the model works well, which means that the assumptions iV2/(2
made are reasonable. F1=F— §+O(p2)),
However, it is clear that these assumptions need not be m
strictly true in the physical reality, so the authors of Refs. ) ) )
[8,9] have tried to include in the VMD model a nonzero = :ii & Ss— M~ +0(p?) (61)
scalar form factor. Two possible sources for a nonvanishing S F,\|Q? MfT—Q2 P

Fs are a pseudoscalar three pion resonancemtheor the

nontransverse component of the off-shefl propagator. A Though Q?, s;, and Mi are all counted as quantities of
model for thew’ contribution is given ir{8]. The numerical grder p2, so that the ratios 727/Q2 and s;/Q? are algebra-
impact of thew’ depends on a parametey.. In [8] and in jcally of order 1, it is clear that numerically they are smaller
its implementation imrAUOLA [34], a particularly large value than one. For example, at threshdid=i2/F (—1/24)
from [2] has been chosen, which is probably several orders- —1/16x F;.

of magnitude too largp40]. However, we find that even with  |n Figs. 57, where we plot the two structure functions
this high value off .., the contribution from ther’ to the  wg, and wgg, one can see the comparison of the VMD
scalar form factor at low energies is much smaller than thenodel in [9] to CHPT atO(p%). We find that the VMD
predictions from CHPT. This indicates that, at least at smalmodel, which by construction reproduces ®¢p?) predic-
energies, there are additional contributionsFtg. The off-  tion, does not reproduce well th®@(p?) prediction from
shell contribution of thea, to Fg is discussed if9]. A CHPT. The reason for this discrepan@yhich is larger for
specific model is constructed by matching with #9¢p?)  Wsa, Since it contains the scalar form factor squauiéss in
prediction of CHPT(including theM2+0 effect, and we  the fact thatin the model ifB], the[300] part of Fs is added
will compare this model with the CHPT predictions. as a constant, without a resonance factor enhancement.

On the other hand, the presence df380] component in Summarizing our comparison of CHPT and VMD predic-

the spin-1 form factor has never been proposed in any ofions at low energies, we have found that VMD gives a good

these models. With our calculation we can make a detaile§€Scription of the dominant spin-1 [cgg(r)]wtrlbutl[ﬁllO]. How-
analytical comparison between VMD models and the CHPTEVer, CHPT shows that boffs andF, ™, though small, are
amplitude at low energy. The main conclusion is that even iflot exactly zero. This fact, which is a prediction of CHPT,
the region close to threshold the VMD model works ratherhas still to be verified experimentally. Our analysis shows
well. that the best place to look for these parts of the amplitude is
First, we consider the structure functions which only in-Where they can interfere with the "big” components: the
volve theF,. After a proper normalization of the form fac- Presence ofs should be detected by measuring a nonzero
tors in the VMD model, which takes into account the CHPTWsg, Whereas the presence®F*” should be discovered by
expressions aD(p?), the agreement for the spin-1 spectral measuring a sizable differen¢possibly a sign differenge
function at low energy looks very good. This can be seen irbetween the two charge modes fog andwe .
Fig. 2, where we plotv,, i.e., the main contribution to the
total decay rate. Moreover, th800] component of; starts

only _at one qup, which means thaF in the chiral expansion VI. SUMMARY AND CONCLUSIONS
this is algebraically suppressed with respect to tg&0]
part. Chiral perturbation theory(CHPT) provides model-

However, the, numerically rather small, structure func-independent predictions for hadronic matrix elements in the
tionswp andwg are sensitive to the300] part via interfer-  low energy region below 500—-600 MeV. It does not contain
ence with the[210] part, as we have seen in the previousadditional assumptions beyond the fact that the strong inter-
subsection. Comparing the VMD model with the CHPT pre-actions are described by the QCD Lagrangian and that QCD
diction for these structure functions in Figs. 3 and 4, we findpossesses an approximate chiral symmetry which is sponta-
good agreement for 2°7, but flat disagreement for neously broken. We have evaluatediecays into two pions
27~ 7*. However, at largeQ?, experimental data fowp (and 7 neutring to two loops and decays into three pions to
andwg in 277~ '+ are available, which agree with the VMD the one-loop level. The branching ratio into the phase space
prediction [38,39. Note that the left-right asymmetry region with small enough invariant hadronic mass for CHPT
A r(Q?) measured by ARGUY38] is proportional to to be applicable was found to be about 4073 for the two
We(Q?)/wa(Q?) [27], and confirms the VMD prediction in  pion mode and about 18 for the three pion mode. And so
sign and magnitude down t@°=0.8 Ge\?. We conclude the predictions of CHPT for— 27 v, are testable at present
that, unless the higher orders in the chiral expansion commachines(LEP and CESR while in the case of—37v,,
pletely change the CHPT result, somewhere between thresfiture facilities with very highr production rates seem to be
old andQ?=0.8 Ge\* there must be a zero for each of the required p factories,r-charm factory.
two structure functions in the 2 =" mode. It would be In the case of the decay—2mv,, the predictions for the
extremely interesting to verify this zero experimentally, or asinvariant mass distributions can be tested at present experi-
a minimal option, to verify the existence of a difference be-ments, and the spectrum can be used to extract the pion
tween the two charge modes. charge radiugr?)y .

Next, we consider the scalar form factor: Althoulgh is As for the decayr—3mv,, a detailed comparison to the
nonzero already at the tree level, it is kinematically sup-CHPT predictions for the form factors near threshold re-
pressed: quires very high statistics, mainly because of the phase space
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suppression. For this reason we have tried to identify a fewvhere the phase space elemddt,, is

spots where the consequences of the approximate chiral sym- .

metry of QCD can be tested experimentally with reasonable 4 d3q d3py
statistics. These argl) the very close similarity ofv, and d®,=(2m) 54(Q+q_p)(277)32EVkHl (2m)32E,

wc near threshold, which seems to extend well beyond the (A5)
very low energy region(2) a zero and change of sign in

wp and wg between threshold an®2~0.8 GeV in the and

channel 2r~ 7", or at least a difference between the two

charge modes near threshdlttis would be the first evidence M= Ge Bl HE

for the presence of thg300] partition state in this decay = ECO cbph",
channel, and (3) the presence of a scalar form factor as

predicted by CHPT, to be detected by measuring. LM=U_V(q,S’)yM7,uT(p,S),

Comparing our results to predictions from vector meson
dominance models, we find overall a reasonable agreement H = (m(p;)m(p2)- - - mn(Pn)|V,(0)—A,(0)[0).
in the low energy region. The structure functiary , which
dominates the decay rate, is described well by VMD models.

We have found, however, some interesting discrepancies in  AppeNDIX B: DECOMPOSITION OF THE FORM
certain(numerically rather smallstructure functions. These FACTORS IN TERMS OF PARTITION STATES
discrepancies are related to tf&00] partition state and to
the scalar form factor, both of which are missing or under-

. : . As we discussed in Sec. Ill C 2, we have three possible
estimated in vector-meson dominance models.

partition states, two belonging to the cldgd0] (which we
will indicate as[210], and[ 210],) and one belonging to the
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HI2W0b= I [F 5+ Fp3— Gyg— Gog—Hig—Hygl, (B2
APPENDIX A: GENERAL CONVENTIONS 5 [F1a+Fag— G13=Gaa—Hig=Hzl. (B2)

Consider the decay of ainto n pions: FI300=3[F 1o+ Gyat Gpz—His—Hoal,

7(p,S)—v(q,S") m1(P1) m2(P2) - - - mn(Pn). (AL GEOU= 1[G ,+ & (Fig+ Fogt Gigt Gogt Hist Hog)],

Here,s ands’ denote the polarization four-vectors of the

[300]_ 1 1_ _ _
and the neutrino, respectively. We define the total hadronic 3[H12t 2 (7Figt Fost Gi3~ Gogt Hig—Hag)l,

momentumQ by (B3
B A whereX;;=X(s;,s;j,sx), X=F,G,H, andk#i#]. To recon-
Q=pytpzt---+pn (A2) " struct the form factors in the two charge modes one has to
and in the case of three pions, we will use Dalitz plot invari-">¢ the relations
antss,, s,, andsz defined by X 1= X[300 4 X[2100a | x[210]p,
$1=(p2+tpa3)? (A3) X{5) = 21300 x[210a_ X[210]y (B4)
and cyclic permutations.
The differential decay ratdl’,, is given by APPENDIX C: STRUCTURE FUNCTIONS
FOR THE THREE PION FINAL STATE
ar, 1 |M|2d,,, (A4) In this section we will briefly review the formalism of

S 2M, structure functions for the decay of theinto three pions,



54 7 DECAYS AND CHIRAL PERTURBATION THEORY 4417

and display formulas relevant for the present paper. For mortn generalH#” can be characterized by 16 independent real

details, the reader is referred (27,28 functions. In our case of a three pion final state, there are
The decays are most easily analyzed in the hadronic reséstrictions due t& parity and Bose symmetry, which leave
frame: 9 independent functions. In a convenient basis they are given
by [28]
0=Q=py+ P2+ pPs. (Cy)

Wa= (X34 x3)|F 1|2+ (x5+Xx3)|F 5|2
The orientation of the hadronic system is characterized by ) .
three Euler angles, 3, vy, as introduced if27,28. They +2(X1X2—X3) Re(F1F3),
can be defined by 8 a,y<2w; 0<p<m)

_ 2 2 2 2 2 2
e e . .. We=(x]—x3)|F1|*+ (x53—x3)|F5|
_(nLXnT)'(nLXnJ_) . nT'(nLXnL)

= n=————————-—, +2(X1X2+X:23) Re(Fle),
InuXn|[nxn, | Inuxn|n xn, |
. L Wo = 2[x:X3| 1| = XoX3| F 5|+ X3(x,— x1) Re(F1F3)],
n_-n3 . (nLXng)-ng
cosy=—-5——=, Slhwy=——5—"—>5—"-,
X X
L2 fLen We = — 2X3(X; +Xp) IM(F3F3),
CO%ZEL'EL , (CZ) WSA: (?2“:5'27
where ﬁL is the direction of the laboratory in the hadronic
rest frame,n, = (p;X P,)/(|p1XP,|) is the normal to the Wsp=2/Q?[x;Re(F;F§)+X,Re(F,F%)],
pion plane (here, we assign the momenta according to
|p2|>|p4l), N, is the direction of flight of ther in the had- Wasc=— 24Q2 x4 Im(F1F%) + x,Im(F,oF%)],

ronic rest frame, ands=p3/|ps).
From these definitions it is obvious th@tand y are ob-
servable even if ther rest frame cannot be reconstructed, WSD=2@x3[Re(F1F’S‘)—Re(FzF’S‘)],
whereasa does require this knowledgex could be mea-
sured at ar-charm factory where the pairs are produced

almost at rest and, therefore, theest frame is known, or if Wse=—2VQ3[Im(F1F§) —Im(F,FE)],  (CH)
the 7 direction can be measured with the help of vertex de-
tectors[41]. where
The Euler angles also serve to parametrize the phase
space F2(Q?,51,5,) =F1(Q%5,,51). (C7)
1 1 M2-Q*dQ? The variables; are defined by
dPS¥Y=——- — 2Q —Qz—dsldsz '
(2m®64 M2 Q
X X
da dy dcosB dcosd X1 =017 s,

“om2m 2 2 ©3

X2= 0z~ 03,
where 6 is the angle between the direction of flight of the
7 in the laboratory frame and the direction of the pions as
seen in ther rest frame, and cascan be calculated from the X3=01=—a},
energyEy, of the pion system with respect to the laboratory
frame and beam ener®heam

X4= Q%505 (C8)

o 2Ep/EpMZ—M?-Q° c4 whereq (g7) denotes thex (y) component of the momen-
T M2—0?) 1= MZEZ tum of mesori in the hadronic rest frame. They can easily be
T oA expressed in terms &, s,, ands; [27,28.

The contraction of the leptonic and hadronic tensors can be The hadronic structure function&'y depend only ors,,
expanded in a sum s,, and Q2. The corresponding leptonicy depend on the
Euler anglesy, B, y, and onE,,. The relevant formulas can

be found in[28].
v_ The structure functions can be measured by observing
L, H*= LyWy. C5
my ; XX €9 angular distributions in the Euler anglgs vy, and, if the
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7 rest frame is knowng, and taking moment$¢m) with  As shown in[28], measuring suitable moments involvigy

respect to products of trigopnometric functions andy only [and, in fact, an energy ordering siga(s,) in
some cases to avoid vanishing due to Bose symratigws
3 dcos dy one to extract all the individual structure functio_ns except for
(m):= 2—2f L, H*m —. (C9 Wsc and Wge. If the 7 rest frame and hence is known
2(M7-Q9) 2 2m additionally, Wsc and Wsg can be measured, too.
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