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In this paper, we investigate the effects of the quantifg on the spin structure functions of nucleons in the
resonance region. The Schwinger sum rule for the spin structure furg{anQ?) at the real photon limit is
derived for the nucleon treated as a composite system, and it provides a crucial constraint on the longitudinal
transition operator which has not been treated consistently in the literature. The longitudinal anflijusie
evaluated in the quark model with the transition operator that generates the Schwinger sum rule. The numerical
results of the quantityrrs are presented for both spin structure functigngx,Q?) and g,(x,Q?) in the
resonance region. Our results show that this quantity plays an important role in ti@?lesgion, which can
be tested in future experiments at CEBAB0556-282(196)01819-X

PACS numbg(s): 13.60.Hb, 12.39.Ki, 14.20.Gk

I. INTRODUCTION Such a program began with the suggesti@h that the
Q? dependence of the spin-dependent sum rule should be
The quantityorg, defined in the spin structure functions taken into account in order to explain the dg2afor the spin
of nucleons, structure function of the nucleon, which starts with a nega-
tive Drell-Hearn-GerasimoYDHG) [3] sum rule in the real

MK photon limit and ends with a positive sum rJlé] in the
01(x,Q?) = 7| o1 ©,Q%) — oz ,Q?) large Q2 limit [5]:
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is the threshold energy of pion photoproductions,the
anomalous magnetic moment, alda positive quantity. Be-
, 2 cause the contributions from the quantitys to the sum rule
in Eqg. (3) also vanish in the real photon limit, most quanti-
tative studieg5—7] of the Q2 dependence of the sum rule in
cll:’q' (3) were concentrated on the contributions from the
. : 2 ) )
I%uantlty o1~ 03 IN g1 AX,Q%). Indeed, these investiga-
tions have shown a strorn@? dependence of the sum rule in

_[Ul/z(vaz)_Us/z(wan)]

whereK is the photon fluxx the scaling variable, aniil
the nucleon mass, was not fully investigated due to the fa
that most studies were concentrated in the deep inelast

scattering region, where the quantity (@%/w)ors(w,Q?) the Q?<2.5 Ge\? region. However, the study by Soffer and

in g,(x,Q?) vanishes. This is no longer the case now as ther ; L
has been a growing interest in studying the spin structuré—eryvaev[s] suggested that the quantidy;s plays a signif

functions in the smalQ? region, where the resonance con- cant role in the smalQ® region, WhiCh. is highlighted by_
tributions are important. Consequently, the investigation oP”(O)thQ)?et of sum rules for the spin structure function
the effects of the quantitgrg in the smallQ? region has 92087
become increasingly important. -
1 ——k(k+er), Q?%=0,
J 92(x,QY)dx=1{ 4M7 ! 6]
*Mailing address. ° 0, Q%—oo,
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in which the same kinematics as that in E8). is used. The dence of the sum rule fog;(x,Q?), but also provides a
sum rules in Eq(5) were first derived by Schwing¢®] in  quantitative calculation of the sum rule fgs(x,Q?) for the
the real photon limit and by Burkhardt and Cottinghf0] first time in the quark model. The focus of this paper is to
in the largeQ? limit. Combining Eqs(3) and(5) leads to the  develop a framework in the quark model to evaluate the con-
sum rule for the quantityrs in the real photon limit: tributions from the quantityrrs, and to present the numeri-

) cal results that can be tested in future Continuous Electron
d_“’: 4ma ©6) Beam Accelerator FacilityCEBAF) experiments.
\/62 4M$ The sum rules in Eqge3) and (5) are more general and

model independent; therefore, they must be satisfied in the

The magnitude of the sum rule for the quantitys in the  quark model in order to give a consistent evaluation of the
real photon limit is certainly comparable to the DHG sumspin structure functions in the resonance region. It has been
rule. Thus, a more quantitative study of the contributionsshown[11,12] by many authors that the electromagnetic in-
from the quantity ors to the spin structure functions teraction for a many-body system which satisfies the DHG

91(x,Q?) andgy(x,Q?) is called for. Such a study not only s,m rule should be expanded to ordétc? and has the form
enables us to give a more precise estimate ofQhelepen-
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longitudinal transitions of baryon resonang¢é&$]. The sum
where quarkj at the positionr; has massm; and charge rule for the quantityorg provides an important test to the
e;, and M+ is the total mass of the system. The last twoquark model; the consistency requires that the sum rules for
terms in Eq.(7) are the spin-orbit interaction and the nonad-bothg,(x,Q?) andg,(x,Q?) be generated by the same set of
ditive contribution associated with the Wigner rotation whichtransition operators for a many-body system. Following the
transforms the quark spins from the frame of the recoilingsame approach as that in REf1], we shall show in the next
quark to the frame of the recoiling hadron; they are thesection that Eq(6) is indeed generated by the electromag-
O(v?/c?) corrections and essential to reproduce the DHGnetic interactiorH, in Eq. (7), which also satisfies the DHG
sum rule. In Ref[6], we showed that the quantily in Eq.  sum rule. The longitudinal transition operator is obtained by
(3) can also be generated frar in Eq.(7) and is related to  requiring it satisfying the sum rule in E@6), which is not
the quark model matrix element only gauge invariant, but also consistent wiih in Eq. (7).
In particular, the spin-orbit interaction and the Wigner rota-
tion that are crucial to the DHG sum rule for a many-body
> system should be present in the longitudinal transition opera-
| )
P—-A

|2 efof

]

®  tor.
In Sec. lll, we show that the quantityrs in g,(x,Q?)

cancels the transverse cross section— o3, in the large
, . ) ] Q? limit, which leads to the well-known Burkhardt-
where o7 is the spin operator for the quank and A(P)  Cottingham sum rulg10] for the spin structure function
indicates that the directions of the polarization between phogz(X,Q2). Thus, a consistent framework to evaluate the
tons and the target are antiparaligiralle). On the other  guantity o1 is established. In Sec. IV, we evaluate the lon-
hand, the sum rule for the quantityrs in Eq. (6) has not  gitydinal amplitudeS, , with the transition operator that gen-
been previously investigated in the quark model. The d.e.riva‘tv\rates the sum rule for the quantitys, which has not been
tion of Eq. (6) in the quark model is by no means trivial gone systematically in the literature. The numerical results
since it was proved9] in QED by assuming the nucleon as ¢y the spin structure functiong,(x,Q2) and g,(x,Q?) in
an elementary particle. The similar transition of the DHG ¢ smallQ? region are also shown in Sec. IV. Our results
sum rule from an elementary particle to a many-body systenapqy that the effects of the quantity s on the spin structure

led to extensive discussions in late sixties and early seventig§ctions are important in the resonance region. Finally, the
[11]. Moreover, the proof of Eq(6) requires evaluations of ~nclusion is given in Sec. V.

both helicity amplitudeA,,, and the longitudinal amplitude
Si». While the helicity amplituded,,, has been calculated
[12] with the transition operatdd, in Eq. (7), the longitudi-
nal amplitudeS,,, has not been treated consistently in the
literature. In particular, the problem of the current conserva- Because the spin structure functions of the nucleon are
tion was not fully understoodl13], and anad hoccurrent usually measured above the pion photoproduction threshold,
J3=—(k3J3—KkgJp)/ ks was introduced14] to evaluate the the sum rule for the quantity+5 can be formulated g$]

Il. THE SUM RULE FOR THE QUANTITY o+
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1 ) ) where
fo[gl(x,Q =0)+9g2(x,Q°=0)]dx
1 (2¢ e
Moy, [ do C—j S e |2 TT 5 (e oc
— Iim ) 2th ors s ) h I; [e] € 4MT<mj v )0'] (eXPq)i+u
Q2 0 Oth (17)
and
The cross sectionrrgin Eg. (9) can be expressed in terms of
the transverse and longitudinal helicity amplitudes, which is - . . 1l(e er
hP=iX Jee (r—R)— 5| ———
] 4\m; My
™ o1 * H 1 H 1 *
UTS:TE{<|15|HI IEFIHT,— 2 )+ = 2[HE ) S,
. X | €x p_Pr + [P (18)
o m My s

x(f,|H,

i,2)}8(w—w), (10

. - .wheree= —(1/1/2)(1j,0) is the transverse polarized vector
whereH; is the transverse transition operator, and the Iongl-of photons. The last terma® and 2" in Egs.(17) and (18)

tudinal transition operata, is defined as correspond to the second term in Ed). Their contributions

H, = eodo— €3ds. (12) to o5 are more complicated, and will be evaluated sepa-
rately.
Using the gauge-invariant conditiok, J*=k,e*=0, and The longitudinal transition operatdg can be obtained by
choosing the longitudinal polarization vectey as simply replacing the polarization vecter with the vector
Ks ® 12, and the separation of the center of mass from the internal
L_ = = — i for the longitudinal transition is, therefore, easy to
€,=1{€0,0,0,3} [ \/_,0,0, AL (12  motions g , , y
Q VQ2 follow:
we have 0
o 35=\/5(°+1"), (19
. Q :
fI[H|i)=——/f 1
()= —(113d]1), 13 | rere
or - i er e
\/_2 jc=$ [Ie]R k+M<M_T FJJ)O-] (kXPT)
. Q :
(FIHi) = == (F130li)- (14 (20
and

Both Egs.(13) and(14) can be used in the evaluation of the
quantity o5 because of the current conservation. It can be
shown that the quantityg is independent of which longi- ] AL i[er g
tudinal current is used. Consequently, the sum rule for the iP=2 (ik-(rj—Ryej+ 2\ M- me
quantity o5 does not depend on the choice of the longitu- T

dinal current as well, as long as it is gauge invariant. R ES 5 Pr
By substituting Eq(10) into Eq. (9), we have X - | kX #— il (22)

j T
_ i L1I%EFH, i, — &, Now, we are in the position to derive E(G) from the
wthaTS\/Q2 \/waz. Lz 19310 IR = 2.) constituent quark model. Substituting E¢i6) and(19) into

Eq. (15), we have

H RO a9 o
® 0w 47« o )
The operatoH; in Eq. (15) is also responsible to generate UTSEZ ﬁgl {(i, 315 [F)(fIhcli,— 3)
the DHG [3] sum rule for the transverse cross section “th
o~ 03 in the real photon limit. Thus, the consistency (i, — Y0 [ H)(F )
requires that the sam, in Eq. (7) should be also used in T2 '
deriving Eq.(6). Following the same procedure as that in + 4P (£ IR, — &
Refs.[6,11], we rewrite Eq.(7) by separating the center-of- 2 T2
mass motion from the internal motion: + (0, — PP D)), (22)

where the charge? has been written asa explicitly so
w s
H,= \/:(hc+hp), (16) that the total charge for protons becomes 1 insteae.of
2 Using the closure relation, EqR2) becomes
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S {4031 IECTRE = )+, 3 I (AT, )
(i APl )
+(i,= 3 NP ECEPRL 3))

=i, 3 [[*h°+jP*hPli, - 3)
+(i,— 3|+ hP*jP|i,3)
= (i J NN = 2 ) =i = 2 [ [ 2).
(23

. : ~oxipl: o1
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We turn to the correlation between the magnetic tgrm
and the longitudinal transition operatpr The leading term
for the operatom is

c € - - =
pe=2> 5—a;-(exk) (26)
0 i 2mJ J

and

(27)

The correlation betweepg andj® gives

(i 2 [i mgli, = 2)+ (0= 2 |ug"i.2)

RAE

i -2 Bs (@ xRerReKi
i, 5 ijaj-(e )erR-K|i

eTR k

0)i-3)
%>] 29

By substituting the polarizatione= —(1/42)(1j,0) and
€ =—(112)(1,~i,0) into Eq.(28), we find that the two

‘71

2m

terms in Eq.(28) cancel each other so that they vanish. Thus,

the nonzero contributions from the correlation betwgen

and the longitudinal transitiop should come from the next

order. By expanding the photon wave functielf * i, we
have

~ ej N N~ I
p=2 5o (exk)@+ik-rj+0(k). (29
J ]
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We first consider the correlations between the longitudinal

transition operators j¢ [jP], and the first term
—u(hP=uP) in Eq. (17 [Eq. (18)]. In Appendix we
show that
(i, 2 i (he=pO)[i—2)+(,— z[(h™* —u™)ji,3)
_ er (2¢; er)| 1
{1213 i 2y 3] 2 @9
and similarly
o I s S T | P
21: O] (mJ MT)(ZMT 2m]) ' 2> V2. (29

Because the leading term in E@9) gives a zero contribu-
tion to the quantityrg, we examine the second term in Eq.
(29). In the real photon limit, we rewrite the second term in
Eq. (29 as

3

I E

<
i

so that the closure relation could be used, because the tran-
sition operator has no explicit dependence on the transition
energyw. The operatoH in Eq. (30) is the Hamiltonian of

the system;

>

%i>, 0

i

> i&-.(éxﬁ)ﬁ-
]' 2mj l

H= 2 2;J+.EJ Vi (ri—=r)). (31)
Therefore,u® and 1P in Eqgs.(17) and(18) are
i=3 S (xioke 1 (32
T 2m; ) Mt
and
ZLE=Ej %&] <2x§>§~(%— ;TT) (33

The correlation betweep$® andj®P gives
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(i, 3] mi+iP*plli,— 3)+(i,— 3 [T+ aPTiPli, 3) (0, 3 1[N, = 3 )+ (0, =z [h[i)i]j i, 5 )
YTy I A B T A Y =(i, 313 Hi, = $)+(i,— 5 [H* i, 3)
V2
(34) =——5€rK, (42)

This shows that the nonzero contributions to the correlation .

between the magnetic transitignand the longitudinal tran- Which leads to the sum rule in E@6). Consequently, the
sition operatorj come from the higher order expansion in SUm rule for the spin structure functigp in the real photon
i this feature does not exist in the transverse correlationdMitis just a linear combination of Eq6) and the DHG sum

that leads to the DHG sum rule. rule:
Therefore, by combining Eq€25), (28), and (34), we
have - 5. Ot K(k+er)
lim | dxg(X,Q%)=— ———. (43
0 MT 4

2
(i, 3] e+ P*hPli,— 1)+ (i, — L [n®* S+ hP*jP]i, 1) e
B This shows that the sum rules for both(x,Q?%) and
=0. (35 g,(x,Q?) in the real photon limit can be derived consistently
from the same set of the transition operators in the quark
model. It also highlights the importance of the spin-orbit

interaction and the nonadditive term in both transverse and

That is, the sum rule for the quantity; s is only determined
by the static properties of ground states:

o de Amla longitudinal transition operatond; and Js. In the next sec-
ors——==——=1(i,3]]*|iXi|h%[i,— 3) tion, we will give an intuitive pgogf Fhat the same is also true
o NQ? 242 for the sum rules in the larg®“ limit.
+(0, = 3 [h* [ 2)} (36)

lll. THE EXTENSION TO THE LARGE Q2 LIMIT

This is ‘a general feature for the sum rules of both nthe case 0RQ?#0, an extra term is generated from the
91(x,Q%) andg,(x,Q%); the sum rules in real photon limit transverse operatdr=h¢+ hP so that
do not depend on the internal structure of the nucleon so that

it behaves like an elementary particle in the low energy limit. h=hy+h,, (44)
Using the relation

e.
> &
<I EJ: 2m; )

Where(;T is the total spin operator of a many-body system,

whereh, represents the transition operatoat Q?=0, and

i>=ﬂ<i|&T|i>, 37

=

2 e . L =2
hy=2>, S—+aj-(exk)k. -, (45)

J

3

we have while the longitudinal operatof=j°+ jP remains the same.
(lheliy=(iHC]i) (38) Equation(35) shows that the correlation betwebpandj is
zero for the inclusive processes; thus only the correlation
and betweenh; andj needs to be investigated. Note that the
Bjorken scaling variable; is related to the photon energy
(iljCiy=<i|3%i), (399  and the mass of partori6]:
where Q? m;
N T TVI VS (46)
. 2~ o . =sPrk 1
H®=i] erR- e+ uor-(eXk) My 2M in the largeQ? limit. The operatoth; can be written as
hy=> 2 ed (*fo)fZ 0 (47)
er |- - - =2 —eoi (e
x| 2u———| g1 (exPy) (40) S OLRth P
2M+
and The correlation betweeh; andj gives
.1 er |- - - iz ]i*heli,— 2) 40— 2 hTjli, 2
J=ileR e— =—| 2u— = | or- (exP7) |. (41) zlithall, = 2)+ 0= 21Nl 2)
, =—i.5|2 o/ ]i,—5). (49
Thus, the closure relation can be used because the operators Q 2|9 2

H¢ and J® do not connect the ground state with the excited
states: Therefore, we have
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o do 4m2al 1 1 Because the longitudinal amplitud®,, of baryon reso-
lim 0TS == —2< i,§’2 ejzaj+ i,— §>. nances has not been systematically calculated with the tran-
Q2 @th Q2 Q ! sition operatod, in Eq. (53), we show the analytical expres-

(49) sions of the longitudinal amplitude;, between the nucleon
and baryon resonances in SUEBP(3) symmetry limit in
Table . The evaluation of th@? dependence of the longi-
tudinal amplitudesS,;, follows the procedure of Foster and
Hugheg[17], and the longitudinal amplitudes;;, as a func-
i> . (500 tion of Q2 for the resonanceS;;(1535), D;5(1520), and
P-A F.5(1688) are shown in Fig. 1. These results are in better
. ) agreement with the analysis by Gerhdrt8] than the previ-
Combining Egs. (49 and (50) gives the well-known g cajculation§15], who extracted the longitudinal ampli-
Burkhardt-CottinghanfBC) sum rule[10] for the spin struc-  y,qes from the electroproduction data. The numerical results
ture functiongs: in Fig. 1 show that the longitudinal amplitudes are quite
1 large in the lowQ? region, thus suggesting that they play a
f g2(x)dx=0. (51)  significant role in the spin structure functions of nucleon in
0 the low Q? region.
) 5 The resonance contributions to the sum rules of the spin
Therefore, the sum rules for botyy(x,Q%) and g,(x,Q“)  structure functions can be expressed in terms of the helicity

can be qbtained from the same set of electromagnetic i”te%implitudes,Al,z and As;,, and the longitudinal amplitudes
actions in Eqgs.(7) and (19 for a many-body system. It S

shows that the transition of the spin-dependent sum rules
[both DHG sum rule and Ed6)] from the real photon limit

A similar procedure[6] in the largeQ? extension of the
DHG sum rule gives

f‘” ( )dw 47|
O1jp— O3j9)— = —=—1 |
o 127 9312)7 Q?

2 o]

J

to the largeQ? limit is an evolution from an exclusive, co- f 9:1(x, Q%) dx=2, Ey||Af,|?—|AF,?

herent elastic scattering to an inclusive, incoherent deep- R

inelastic scattering of a many-body system. Moreover, by 2

reproducing the spin-dependent sum rules in the real photon 4 (SR*AR_ AR *GR )
and largeQ? limits, we are able to establish a framework to V2wk 12 T2 T2 T2

evaluate the spin structure functions of nucleons in the finite
Q? region, where the quark model has been very successful
in describing the resonance contributions to the spin strucspq
ture functions of the nucleon.

(54

w
R(S?/z* AR+ AT* ST,

v

IV. THE EVALUATION OF THE SPIN-DEPENDENT SUM J 0-(x,Q9)dx= 2, Eg
RULES IN THE LOW Q2 REGION R

The numerical studies of the quantity;g require the
evaluations of the transverse helicity amplitulg, and the
longitudinal amplitudeS,». The helicity amplitudeA,,, has
been calculated12] by using the transition operator in EQ. where the kinetic factoE is
(7) that generates the DHG sum rule. Thus, only the longi-
tudinal amplitudeS,,, needs to be evaluated. Following Eq. M wy,
(14), the longitudinal transition amplitud®,;, is Ex=

S1/2=(f[Joli), (52

and we have the longitudinal transition opergtb] andwy, is given in Eq.(4). The total width of each resonance
is treated as zero so that the integration over the photon
1 energy can be approximated by a summation over all the
‘JO: Z 2

—(|Af22=1AS,1D) |, (55)

(56)

2
dra| 1+ 07) w

ek resonances. The background contributions from the nucleon-
born terms in the single pion photoproductions are not in-
o o . . cluded in Eqs(54) and(55), and they can be easily included
hd i _') -(gjkx pje' Ti—gkx 5je'k'f|)], later in more detailed studies. Because these amplitudes are
evaluated by using the transition operators that generate the
(53) the spin-dependent sum rules, the calculations of the spin
structure function in the resonance region become straight-
where the second and third terms are the spin-orbit and norierward. In Fig. 2, we show the resonance contributions to
additive terms that represent the relativistic corrections to théhe sum rule forg,(x,Q?), in which every resonance below
leading charge operator. The study in previous section2 GeV is included. The resonanceB.,(1440) and
clearly shows that the spin-orbit and the nonadditive term$35(1600) are treated as the hybrid stdt&8], and the study
are crucial in reproducing the sum rule for the quantityshows[20] that theQ? dependence of the transition ampli-
OTs- tudes of the hybrid®,,(1440) andP33(1600) gives a better

ie;
I
e+ —K- (51X P
I am? (0%p;)
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TABLE I. Transition matrix elements between the nucleon and baryon resonances in thexS0{)
symmetry limit. The full matrix elements are obtained by multiplying the entries in this table by a factor

J(2wlkg)2umyexp ®76°) andS],= P, for A states.

Multiplet States Proton Neutron
_ 2 1-1
[70,17]; N(“Pwu)3 1 K| . az) 1 |k|(1+ aZ)
32 @ m; 32 @ 6m;
NCPw)3 ! ! 1K a?
- = 1__
K| a? a 12m;
2|17 12m;
4 1-1
N("Pw)2 1 alk| 1 alk|
362 m; 1082 m;
4 3-1
N("Pw)2 1 oK 5  alk|
910 m; 2710 mM;
4 5-1
N("Pw)2 1 alK| 5  alk|
1210 m; 3610 m;
APyt 1K ( o2 )
3\/5 a 6m§
A(ZPM gfl 1k L a2
akle| 1 g
[56,0'] N(*Ss)3 " 1 k2 0
3 36 @
A(*Sg)3t 0
(56,21, N(?Dg) 3+ 1 K2 . a2> K2
3/15°\ " 2m; 12\/15m?
N(®Dg)3* 1 kz(l az) K2
3yi0e’| " 3mg 9\10m?
A(*D93" 5Kk
72\15m;
A(‘D93" 0
A(*D93" 5,/5k2
216(7m?
A(*Dg)3" 5K2
361/105m;
[70,0'], N(*Sw)3* 1K 1K
1847 1842

4307

agreement with the existing data. The numerical result fok,=1.79 for the proton targ€t]. This result is consistent
the Q? dependence of the integral for the transverse croswith the conclusions of our previous investigatipsl; the
sectiono,,— a3, is also shown in Fig. 2, and it is in good contributions from resonances, in particular the resonance
agreement with a more sophisticated evaluation in Rgf.  P33(1232), dominate the DHG sum rule. The difference be-
The resonance contribution to the integfal; (x,Q>=0)dx  tween theg,(x,Q?) sum rule and the contribution from the
at the real photon limit is-0.121, which is in good agree- quantity o4~ 03, shows the importance of the quantity
ment with the theoretical prediction (wg/4M+1)k? with  ors. It is particularly significant in the sma@? region, and
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FIG. 1. TheQ? dependence of the longitudinal amplitud%%.Z

2 in-
for the resonanceSy;(1535), D 4(1520), andF ,o(1680). FIG. 3. TheQ“ dependence of the spin-dependent sum rule of

9,(x,Q?) in the resonance region. The solid and dash lines repre-
sent the calculations with and without the quantitys. The dot-
dashed line comes from RdR1], see text.

the addition of the quantityrtg has pushed the crossing
point that the sum rule is zero from 0.7 G&Y¥b around 0.5
GeV2. recent calculatior{21] in the single pion channel of pion
The sum rule for the spin structure functiga(x,Q?) in  photoproduction has shown a similar behavior, in which only
the resonance region is shown in Fig. 3. The resonance coithe nucleon-born term is considered. This behavior is not
tributions to the sum rulgg,(x,Q?) at the real photon limit consistent with theQ? dependence of the sum rule of
is 0.182, while Eq.(43) gives 0.192 for the proton target. 9,(x,Q?) derived in Refs[9,8]. It may represent the theo-
This shows that the resonance contributions dominate theetical uncertainty of the quark model calculations. On the
sum rule forg,(x,Q?) in the real photon limit as well. The other hand, it would be very interesting to see if there is a
g,(x,Q?) is only significant in theQ?<1 GeV? region, and  sign change in the experimental data.
decreases very quickly &3? increases. There is also a sign  To highlight the importance of the quantity;s in the
change for the sum rule aj,(x,Q?) at Q>~1 GeV?. A  resonance region, we present an estimate of the total sum
rule for g;(x,Q?) by including the contributions from out-
side the resonance region. Following the procedure in Ref.
015 [5], the total spin-dependent sum rule should be written as

0.1

folgl(X’Qz):fxlr+foxr91(X,Q2)dx, 57)

where

0.05

LALIL L L O B

_______________ 2 2
e — X_Q +2m, Mt+m;
° WA+ QA-M2

(58)

19.°(x,Q%)dx

with W, =2.0 GeV. The first term in Eq57) represents the
contributions from the resonance region; it shows that the
contributions from the resonance region do not cover the
whole kinetic region fronx=0 tox=1. The second term in
Eqg. (57) comes from the outside resonance region, and we
[ FETIN TRUEY SRR PR PR SPT ST FOTRE FETRT showed in Ref[5] that this term becomes increasingly im-
© 025 05 07 1 125 1S 175 2 225 25 portant asQ? increases. Because there is no experimental
) ) information on the quantityr;g outside the resonance re-
Q*(Gev ) gion, one could only make a qualitative estimate on the sec-
ond term in Eq.(57). We show the estimate of th@? de-
FIG. 2. TheQ? dependence of the spin-dependent sum rule ofPeéndence of the spin-dependent sum rj;ﬂgl(x,QZ)dX in
g:(x,Q?) in the resonance region. The solid and dash lines repreFig. 4. The contribution from the second term is obtained
sent the calculations with and without the quantitys. from the estimate of the nonresonant contribution in IR&f.

-0.05
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V. CONCLUSION

0.14

We have presented a consistent framework to investigate
the spin structure functions of nucleon in the resonance re-
gion, in which the model-independent sum rules in the real
photon limit and the larg&? limit are satisfied. We show
that the same set of transition operators generates both DHG
sum rule for the transverse cross secti@g,— o3>, and the
sum rule for the quantityrs. The sum rule for the quantity
o1s also provides a crucial constraint on the longitudinal
transition operator; it requires the longitudinal transition op-
erator to be gauge invariant and to be expanded to order
O(v?/c?) consistently. The operator in Eq53) satisfies
these requirements. This clarifies some of the problems in
the literature on the longitudinal transitions, although the
P PR T SRS FETT FURT FETTL FETEY P SRR problem of the model space truncation discussed in [R8&f.

oo 0 &)2((‘;;\/2‘; er e is not considered here.

A more quantitative calculation of the spin-dependent

FIG. 4. The estimate of the sum rufdg?(x,Q?)dx. The non- UM rulzes for both the spin structure fungtl(glzﬁx,Qz) and
resonant contribution comes from the result in R&l. The solid ~ 92(x,Q?) are presented for the first time in the quark model.
and dash lines correspond to the evaluations with and without th&Ur numerical results indicate that the effects of the quantity
quantity ors. o1s are very important in smalD? region, which certainly

_ _ _ _ _ _ _ can be tested in future experiments at CEBRE].
in which the quantityrrgis not included. Thus, this estimate

could only be regarded as a lower limit of the spin-dependent
sum rule forg,(x,Q?). Nevertheless, the effects of the quan-
tity ors on the Q? dependence of the sum rule
f(l)gl(x,Qz)dx are very important, and it could not be ne-
glected if the high twist term that generates the Ieading]_h
1/Q? corrections to the spin structure function in the deep-
inelastic scattering region is extracted froff~1.5~2.5
GeV? region.

0.12

0.02

P(Q%)
"'1"'|"'|"'T"'|"'|"'|'

ACKNOWLEDGMENTS
Discussions with V. Burkert are gratefully acknowledged.

is work was supported in part by U.S. National Science
Foundation Grant No. PHY-9023586.

APPENDIX

The terms that contribute to the spin flip in E§4) are

C g - . N s ol 1| e (e 26\, =~ L . .
(i 2 i (he=pO)i,— 3 )+ (i, — %|(hc—Mc)*Jc|l,%>=§j: <|,§4MTT(M—TT—FJ)UJ'(|<XPT)R'E

.

i

1l er (e 2\ . - o~ o 1
+; <I,—§ 4MT(M_T_WJ' R-€ O'J--(kXPT)I,E
. 1 er er ZGJ > 3. S > . 1
— - . . (eX - —
+; <|,2 4MT<MT m R-koj (eXPr)|i,— 3
. 1) er [er 2¢)- ~e e 3 1
+;<I,—§ M(M_T_FJ O'j~(€ XPT)R'k|1§ . (Al)
Let us consider the terms proportionalFﬁoE in Eq. (A1). The productr;j . (lzx F3T) can be written as
;- (KX Pr)=—i0] (P,—iP,)+ia; (P+iPy), (A2)

whereo™ = %(crxtioy). By substitutinge= — (1/y2)(1j,0) into Eq.(A1), we have
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2 1l er [ e 2eja(ﬁxﬁ)§e, 1
i,z ——— |0 €|li,— =
] 2[4M7\ My m; )" T 2
1 er er ZEJ N > 1
+ i _—— * g (KX i =
;<I, 2| aM7 | My m, R-€*oj- (K F’T)I,2
1) er [er 2¢) i 1 1l er [er 2e) _ i 1
= i, = ——— o —=P RY|i,— =) - i,—= ———o;y =R P*li,Z), (A3
;<24MTMT m |2 2 ; 2/4M7{Mr m; |71 5 2/ I
whereP~=P,+iP, andR™=R,+iR,. Notice that for the total 1/2 initial and final states
(izlofli,=3)=C.—3lojli, ) (A4)
in our convention for the Pauli matrix™ and the spin-wave functions. Equatioh3) becomes
1| et [ et 2e]) i 1
o —— | ——— P RI—R P*]]i,— =
E< '2[4M\ M7 my \/‘[ =3
er [ er 2¢)| . ) ) 1
< 5| av| wie mj)aj V2[1+iR,P,—iR,P]|i, 5] (A5)

where the ternR,P,—R,P, is an angular momentum operator for the center-of-mass motions of nucleons, which is zero in
this process. Thus, we have

E 21 er [er 2eJ k><P B,
= A2 amy | My my 9 (<P €

1| e er 26\, .. - > o
>+; <i,—E —T(—T——_J>R.e*aj.(k><PT) i3

1| er [er 2ej
My

-3 13/ a,

Taking the same procedure, we have

> (A6)

1| er (eT 2ej)ﬁ sl > < 1| er (eT 2eJ> 1>
i, | ==~ |R k- (exP 3 (i - | ST _SE G (e x BR-K|i
$< 2/aM7 M7 m, (exXPo|i, ; 2| 4aM M7 m, 7j-( v
1l er [er 2g 1
—; <I,§ M(M—T—F}>0‘ I\/_(PR RPZ) 2>
_ 1) er [er 2 +
R CEEl e LI (a7

Combining Egs(A6) and (A7) gives Eq.(24).
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