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Effects of the quantity sTS on the spin structure functions of nucleons in the resonance region
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In this paper, we investigate the effects of the quantitysTS on the spin structure functions of nucleons in the
resonance region. The Schwinger sum rule for the spin structure functiong2(x,Q

2) at the real photon limit is
derived for the nucleon treated as a composite system, and it provides a crucial constraint on the longitudinal
transition operator which has not been treated consistently in the literature. The longitudinal amplitudeS1/2 is
evaluated in the quark model with the transition operator that generates the Schwinger sum rule. The numerical
results of the quantitysTS are presented for both spin structure functionsg1(x,Q

2) and g2(x,Q
2) in the

resonance region. Our results show that this quantity plays an important role in the lowQ2 region, which can
be tested in future experiments at CEBAF.@S0556-2821~96!01819-X#

PACS number~s!: 13.60.Hb, 12.39.Ki, 14.20.Gk
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I. INTRODUCTION

The quantitysTS, defined in the spin structure function
of nucleons,

g1~x,Q
2!5

MTK

8p2aS 11
Q2

v2D Fs1/2~v,Q2!2s3/2~v,Q2!

1
2AQ2

v
sTS~v,Q2!G ~1!

and

g2~x,Q
2!5

MTK

8p2aS 11
Q2

v2D F 2v

AQ2
sTS~v,Q2!

2@s1/2~v,Q2!2s3/2~v,Q2!#G , ~2!

whereK is the photon flux,x the scaling variable, andMT
the nucleon mass, was not fully investigated due to the f
that most studies were concentrated in the deep inela
scattering region, where the quantity (2AQ2/v)sTS(v,Q

2)
in g1(x,Q

2) vanishes. This is no longer the case now as the
has been a growing interest in studying the spin structu
functions in the smallQ2 region, where the resonance con
tributions are important. Consequently, the investigation
the effects of the quantitysTS in the smallQ2 region has
become increasingly important.
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Such a program began with the suggestion@1# that the
Q2 dependence of the spin-dependent sum rule should
taken into account in order to explain the data@2# for the spin
structure function of the nucleon, which starts with a neg
tive Drell-Hearn-Gerasimov~DHG! @3# sum rule in the real
photon limit and ends with a positive sum rule@4# in the
largeQ2 limit @5#:

E
0

1

g1~x,Q
2!dx5H 2

v th

4MT
k2, Q250,

G, Q2→`,

~3!

where

v th5
Q212mpM1mp

2

2M
~4!

is the threshold energy of pion photoproductions,k the
anomalous magnetic moment, andG a positive quantity. Be-
cause the contributions from the quantitysTS to the sum rule
in Eq. ~3! also vanish in the real photon limit, most quanti
tative studies@5–7# of theQ2 dependence of the sum rule in
Eq. ~3! were concentrated on the contributions from th
quantity s1/22s3/2 in g1,2(x,Q

2). Indeed, these investiga-
tions have shown a strongQ2 dependence of the sum rule in
theQ2<2.5 GeV2 region. However, the study by Soffer and
Teryvaev@8# suggested that the quantitysTS plays a signifi-
cant role in the smallQ2 region, which is highlighted by
another set of sum rules for the spin structure functio
g2(x,Q

2):

E
0

1

g2~x,Q
2!dx5H v th

4MT
k~k1eT!, Q250,

0, Q2→`,

~5!
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in which the same kinematics as that in Eq.~3! is used. The
sum rules in Eq.~5! were first derived by Schwinger@9# in
the real photon limit and by Burkhardt and Cottingham@10#
in the largeQ2 limit. Combining Eqs.~3! and~5! leads to the
sum rule for the quantitysTS in the real photon limit:

lim
Q2→0

E
v th

`

sTS

dv

AQ2
5
4p2a

4MT
2 eTk. ~6!

The magnitude of the sum rule for the quantitysTS in the
real photon limit is certainly comparable to the DHG su
rule. Thus, a more quantitative study of the contributio
from the quantity sTS to the spin structure functions
g1(x,Q

2) andg2(x,Q
2) is called for. Such a study not only

enables us to give a more precise estimate of theQ2 depen-
m
ns

dence of the sum rule forg1(x,Q
2), but also provides a

quantitative calculation of the sum rule forg2(x,Q
2) for the

first time in the quark model. The focus of this paper is t
develop a framework in the quark model to evaluate the co
tributions from the quantitysTS, and to present the numeri-
cal results that can be tested in future Continuous Electr
Beam Accelerator Facility~CEBAF! experiments.

The sum rules in Eqs.~3! and ~5! are more general and
model independent; therefore, they must be satisfied in
quark model in order to give a consistent evaluation of th
spin structure functions in the resonance region. It has be
shown@11,12# by many authors that the electromagnetic in
teraction for a many-body system which satisfies the DH
sum rule should be expanded to orderv2/c2 and has the form
Ht5(
j

H ejrW j•EW j2
ej
2mj

sW j•BW j2
ej
4mj

sW j•FEW j3
pW j

2mj
2

pW j

2mj
3EW j G1(

j, l

1

4MT
F sW j

mj
2

sW l

ml
G•~elEW l3pW j2ejEW j3pW l !J , ~7!
for
f
e

-

y

-
y
ra-

e
-

lts

s

he

re
ld,
where quarkj at the positionr j has massmj and charge
ej , andMT is the total mass of the system. The last tw
terms in Eq.~7! are the spin-orbit interaction and the nonad
ditive contribution associated with the Wigner rotation whic
transforms the quark spins from the frame of the recoilin
quark to the frame of the recoiling hadron; they are th
O(v2/c2) corrections and essential to reproduce the DH
sum rule. In Ref.@6#, we showed that the quantityG in Eq.
~3! can also be generated fromHt in Eq. ~7! and is related to
the quark model matrix element

G5
1

2K iU(j ej
2s j

zU i L
P2A

, ~8!

where s j
z is the spin operator for the quarkj , and A(P)

indicates that the directions of the polarization between ph
tons and the target are antiparallel~parallel!. On the other
hand, the sum rule for the quantitysTS in Eq. ~6! has not
been previously investigated in the quark model. The deriv
tion of Eq. ~6! in the quark model is by no means trivia
since it was proved@9# in QED by assuming the nucleon a
an elementary particle. The similar transition of the DH
sum rule from an elementary particle to a many-body syst
led to extensive discussions in late sixties and early seven
@11#. Moreover, the proof of Eq.~6! requires evaluations of
both helicity amplitudeA1/2 and the longitudinal amplitude
S1/2. While the helicity amplitudeA1/2 has been calculated
@12# with the transition operatorHt in Eq. ~7!, the longitudi-
nal amplitudeS1/2 has not been treated consistently in th
literature. In particular, the problem of the current conserv
tion was not fully understood@13#, and anad hoccurrent
J3852(k3J32k0J0)/k3 was introduced@14# to evaluate the
o
-
h
g
e
G

o-

a-
l
s
G
em
ties

e
a-

longitudinal transitions of baryon resonances@15#. The sum
rule for the quantitysTS provides an important test to the
quark model; the consistency requires that the sum rules
bothg1(x,Q

2) andg2(x,Q
2) be generated by the same set o

transition operators for a many-body system. Following th
same approach as that in Ref.@11#, we shall show in the next
section that Eq.~6! is indeed generated by the electromag
netic interactionHt in Eq. ~7!, which also satisfies the DHG
sum rule. The longitudinal transition operator is obtained b
requiring it satisfying the sum rule in Eq.~6!, which is not
only gauge invariant, but also consistent withHt in Eq. ~7!.
In particular, the spin-orbit interaction and the Wigner rota
tion that are crucial to the DHG sum rule for a many-bod
system should be present in the longitudinal transition ope
tor.

In Sec. III, we show that the quantitysTS in g2(x,Q
2)

cancels the transverse cross sections1/22s3/2 in the large
Q2 limit, which leads to the well-known Burkhardt-
Cottingham sum rule@10# for the spin structure function
g2(x,Q

2). Thus, a consistent framework to evaluate th
quantitysTS is established. In Sec. IV, we evaluate the lon
gitudinal amplitudeS1/2 with the transition operator that gen-
erates the sum rule for the quantitysTS, which has not been
done systematically in the literature. The numerical resu
for the spin structure functionsg1(x,Q

2) and g2(x,Q
2) in

the smallQ2 region are also shown in Sec. IV. Our result
show that the effects of the quantitysTSon the spin structure
functions are important in the resonance region. Finally, t
conclusion is given in Sec. V.

II. THE SUM RULE FOR THE QUANTITY sTS

Because the spin structure functions of the nucleon a
usually measured above the pion photoproduction thresho
the sum rule for the quantitysTS can be formulated as@5#
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E
0

1

@g1~x,Q
250!1g2~x,Q

250!#dx

5 lim
Q2→0

Mv th

4p2aEv th

`

sTS

dv

AQ2
. ~9!

The cross sectionsTS in Eq. ~9! can be expressed in terms o
the transverse and longitudinal helicity amplitudes, which

sTS5
p

A2(
f. i

$^ i , 12 uHl* u f &^ f uHtu i ,2
1
2 &1^ i ,2 1

2 uHt* u f &

3^ f ,uHl u i ,
1
2 &%d~v2v f !, ~10!

whereHt is the transverse transition operator, and the lon
tudinal transition operatorHl is defined as

Hl5e0J02e3J3 . ~11!

Using the gauge-invariant condition,kmJ
m5kmem50, and

choosing the longitudinal polarization vectorem as

em
L5$e0,0,0,e3%5H k3

AQ2
,0,0,

v

AQ2 J , ~12!

we have

^ f uHl u i &5
AQ2

v
^ f uJ3u i &, ~13!

or

^ f uHl u i &5
AQ2

k
^ f uJ0u i &. ~14!

Both Eqs.~13! and~14! can be used in the evaluation of th
quantitysTS because of the current conservation. It can
shown that the quantitysTS is independent of which longi-
tudinal current is used. Consequently, the sum rule for t
quantitysTS does not depend on the choice of the longit
dinal current as well, as long as it is gauge invariant.

By substituting Eq.~10! into Eq. ~9!, we have

E
v th

`

sTS

dv

AQ2
5

p

A2v
(
f. i

$^ i , 12 uJ3* u f &^ f uHtu i ,2
1
2 , &

1^ i ,2 1
2 uHt* u f &^ f uJ3u i ,

1
2 &%. ~15!

The operatorHt in Eq. ~15! is also responsible to generat
the DHG @3# sum rule for the transverse cross sectio
s1/22s3/2 in the real photon limit. Thus, the consistenc
requires that the sameHt in Eq. ~7! should be also used in
deriving Eq. ~6!. Following the same procedure as that
Refs.@6,11#, we rewrite Eq.~7! by separating the center-of-
mass motion from the internal motion:

Ht5Av

2
~hc1hp!, ~16!
f
is

gi-

e
be

he
u-

e
n
y

in

where

hc5 i(
j

H ejRW •eW2
1

4MT
S 2ejmj

2
eT
MT

DsW j•~eW3PW T!J 1m̂c

~17!

and

hp5 i(
j

H ejeW•~rW j2RW !2
1

4
S ej
mj

2
eT
MT

D
3sW j•F eW3S pW j

mj
2

PW T

MT
D G J 1m̂p, ~18!

wheree52(1/A2)(1,i ,0) is the transverse polarized vector
of photons. The last termsm̂c and m̂p in Eqs.~17! and ~18!
correspond to the second term in Eq.~7!. Their contributions
to sTS are more complicated, and will be evaluated sepa
rately.

The longitudinal transition operatorJ3 can be obtained by
simply replacing the polarization vectoreW with the vector

kŴ , and the separation of the center of mass from the intern
motions for the longitudinal transition is, therefore, easy t
follow:

J35Av

2
~ j c1 j p!, ~19!

where

j c5(
j

H iejRW •kŴ1
i

4MT
S eTMT

2
2ej
mj

DsW j•~kŴ3PW T!J
~20!

and

j p5(
j

H ikŴ•~rW j2RW !ej1
i

4
S eT
MT

2
ej
mj

D
3sW j•FkŴ3S pW j

mj
2

PW T

MT
D G J . ~21!

Now, we are in the position to derive Eq.~6! from the
constituent quark model. Substituting Eqs.~16! and~19! into
Eq. ~15!, we have

E
v th

`

sTS

dv

AQ2
5
4p2a

2A2 (
f. i

$^ i ,12ujc* uf&^fuhcui,21
2&

1^ i ,2 1
2uhc* u f &^ f u j cu i ,12&

1^i,12ujp* uf&^fuhpui,21
2&

1^ i ,2 1
2uhp* u f &^ f u j pu i ,12&%, ~22!

where the chargee2 has been written as 4pa explicitly so
that the total charge for protons becomes 1 instead ofe.
Using the closure relation, Eq.~22! becomes
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(
f. i

$^ i , 12 u j c* u f &^ f uhcu i ,2 1
2 &1^ i ,2 1

2 uhc* u f &^ f u j cu i , 12 &

1^ i , 12 u j p* u f &^ f uhpu i ,2 1
2 &

1^ i ,2 1
2 uhp* u f &^ f u j pu i , 12 &%

5^ i , 12 u j c* hc1 j p* hpu i ,2 1
2 &

1^ i ,2 1
2 uhc* j c1hp* j pu i , 12 &

2^ i , 12 u j c* u i &^ i uhcu i ,2 1
2 &2^ i ,2 1

2 uhc* u i &^ i ,u j cu i , 12 &.

~23!
We first consider the correlations between the longitudina
transition operators j c @j p#, and the first term
hc2mc(hp2mp) in Eq. ~17! @Eq. ~18!#. In Appendix we
show that

^ i , 12 u j c* ~hc2m̂c!u i2 1
2 &1^ i ,2 1

2 u~hc*2m̂c* ! j cu i , 12 &

52K i , 12 U(j s j
1

eT
2MT

S 2ejmj
2

eT
MT

D U i ,2 1

2L A2, ~24!

and similarly
^ i , 12 u j p* ~hp2m̂p!u i ,2 1
2 &1^ i ,2 1

2 u~hp*2m̂p* ! j pu i , 12 &5K i , 12 U(j s j
1S ejmj

2
eT
MT

D S eT
2MT

2
ej
2mj

D U i ,2 1

2L A2. ~25!
n-
n

We turn to the correlation between the magnetic termm̂
and the longitudinal transition operatorj . The leading term
for the operatorm is

m0
c5(

j

ej
2mj

sW j•~eW3kŴ ! ~26!

and

m0
p50. ~27!

The correlation betweenm0
c and j c gives

^ i , 12 u j c* m̂0
cu i ,2 1

2 &1^ i ,2 1
2 um̂0

c* j cu i , 12 &

5(
j

H K i , 12 UeTRW •kŴ ej
2mj

sW j•~eW3kŴ !U i ,2 1

2L
1 K i ,2 1

2 U ej
2mj

sW j•~eW*3kŴ !eTRW •kŴU i , 12L J . ~28!

By substituting the polarizatione52(1/A2)(1,i ,0) and
e*52(1/A2)(1,2 i ,0) into Eq. ~28!, we find that the two
terms in Eq.~28! cancel each other so that they vanish. Thu
the nonzero contributions from the correlation betweenm̂
and the longitudinal transitionj should come from the next
order. By expanding the photon wave functioneik

W
•rW j , we

have

m̂5(
j

ej
2mj

sW j•~eW3 k̂
W
!„11 ikW•rW j1O~k!…. ~29!
s,

Because the leading term in Eq.~29! gives a zero contribu-
tion to the quantitysTS, we examine the second term in Eq.
~29!. In the real photon limit, we rewrite the second term in
Eq. ~29! as

K fU i(
j

ej
2mj

sW j•~eW3kŴ !kW•rW jU i L
5 i K fUFH,(

j

ej
2mj

sW j•~eW3kŴ !k̂W•rW j GU i L
5K fU(

j

ej
2mj

sW j•~eW3kŴ !kŴ•
pW j

mj
U i L , ~30!

so that the closure relation could be used, because the tra
sition operator has no explicit dependence on the transitio
energyv. The operatorH in Eq. ~30! is the Hamiltonian of
the system;

H5(
j

pW j
2

2mj
1(

i , j
Vi j ~rW i2rW j !. ~31!

Therefore,m̂c and m̂p in Eqs.~17! and ~18! are

m̂1
c5(

j

ej
2mj

sW j•~eW3 k̂
W
!k̂
$
•

PW T

MT
~32!

and

m̂1
p5(

j

ej
2mj

sW j•~eW3 k̂
W
!k̂
W
•S pW j

mj
2

PW T

MT
D . ~33!

The correlation betweenm̂1
c,p and j c,p gives
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^ i , 12 u j c* m̂1
c1 j p* m̂1

pu i ,2 1
2 &1^ i ,2 1

2 um̂c
1* j

c1m̂p
1* j

pu i , 12 &

5K i , 12 U(j s j
1F eT
2MT

ej
mj

1S ejmj
2

eT
MT

D ej
2mj

GU i ,2 1

2L A2.

~34!

This shows that the nonzero contributions to the correlati
between the magnetic transitionm̂ and the longitudinal tran-
sition operatorj come from the higher order expansion i
m̂; this feature does not exist in the transverse correlatio
that leads to the DHG sum rule.

Therefore, by combining Eqs.~25!, ~28!, and ~34!, we
have

^ i , 12 u j c* hc1 j p* hpu i ,2 1
2 &1^ i ,2 1

2 uhc* j c1hp* j pu i , 12 &

50. ~35!

That is, the sum rule for the quantitysTS is only determined
by the static properties of ground states:

E
v th

`

sTS

dv

AQ2
52

4p2a

2A2
$^ i , 12 u j c* u i &^ i uhcu i ,2 1

2 &

1^ i ,2 1
2 uhc* u i &^ i u j cu i , 12 &%. ~36!

This is a general feature for the sum rules of bo
g1(x,Q

2) andg2(x,Q
2); the sum rules in real photon limit

do not depend on the internal structure of the nucleon so t
it behaves like an elementary particle in the low energy lim
Using the relation

K iU(
j

ej
2mj

sW jU i L 5m^ i usW Tu i &, ~37!

wheresW T is the total spin operator of a many-body system
we have

^ i uhcu i &5^ i uHcu i & ~38!

and

^ i u j cu i &5^ i uJcu i &, ~39!

where

Hc5 i H eTRW •eW1msW T•~eW3kŴ !
PW T•kŴ

MT
2

1

2MT

3S 2m2
eT
2MT

D sW T•~eW3PW T!J ~40!

and

Jc5 i H eTRW •eW2
1

2MT
S 2m2

eT
2MT

DsW T•~eW3PW T!J . ~41!

Thus, the closure relation can be used because the opera
Hc andJc do not connect the ground state with the excite
states:
on

n
ns

th

hat
it.

,

tors
d

^ i , 12 u j c* u i &^ i uhcu i ,2 1
2 &1^ i ,2 1

2 uhc* u i &^ i u j cu i , 12 &

5^ i , 12 uJc*Hcu i ,2 1
2 &1^ i ,2 1

2 uHc* Jcu i , 12 &

5
A2
2MT

2 eTk, ~42!

which leads to the sum rule in Eq.~6!. Consequently, the
sum rule for the spin structure functiong2 in the real photon
limit is just a linear combination of Eq.~6! and the DHG sum
rule:

lim
Q2→0

E
0

1

dxg2~x,Q
2!5

v th

MT

k~k1eT!

4
. ~43!

This shows that the sum rules for bothg1(x,Q
2) and

g2(x,Q
2) in the real photon limit can be derived consistentl

from the same set of the transition operators in the qua
model. It also highlights the importance of the spin-orb
interaction and the nonadditive term in both transverse a
longitudinal transition operatorsHt andJ3. In the next sec-
tion, we will give an intuitive proof that the same is also tru
for the sum rules in the largeQ2 limit.

III. THE EXTENSION TO THE LARGE Q2 LIMIT

In the case ofQ2Þ0, an extra term is generated from the
transverse operatorh5hc1hp so that

h5h01h1 , ~44!

whereh0 represents the transition operatorh atQ250, and

h15(
j

Q2

v2

ej
2mj

sW j•~eW3 k̂
W
!kŴ•

pW j

mj
, ~45!

while the longitudinal operatorj5 j c1 j p remains the same.
Equation~35! shows that the correlation betweenh0 and j is
zero for the inclusive processes; thus only the correlatio
betweenh1 and j needs to be investigated. Note that th
Bjorken scaling variablexj is related to the photon energy
and the mass of partons@6#:

xj5
Q2

2MTv
5

mj

MT
~46!

in the largeQ2 limit. The operatorh1 can be written as

h15(
j

2

Q2ejsW j•~eW3kŴ !kŴ•pW j . ~47!

The correlation betweenh1 and j gives

^ i , 12 u j * h1u i ,2
1
2 &1^ i ,2 1

2 uh1* j u i ,
1
2 &

5
2A2
Q2 K i , 12 U(j ej

2s j
1U i ,2 1

2L . ~48!

Therefore, we have
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lim
Q2→`

E
v th

`

sTS

dv

AQ2
5
4p2a

Q2 K i , 12 U(j ej
2s j

1U i ,2 1

2L .
~49!

A similar procedure@6# in the largeQ2 extension of the
DHG sum rule gives

E
v th

`

~s1/22s3/2!
dv

v
5
4p2a

Q2 K iU(
j
ej
2s j

zU i L
P2A

. ~50!

Combining Eqs. ~49! and ~50! gives the well-known
Burkhardt-Cottingham~BC! sum rule@10# for the spin struc-
ture functiong2:

E
0

1

g2~x!dx50. ~51!

Therefore, the sum rules for bothg1(x,Q
2) and g2(x,Q

2)
can be obtained from the same set of electromagnetic in
actions in Eqs.~7! and ~19! for a many-body system. It
shows that the transition of the spin-dependent sum ru
@both DHG sum rule and Eq.~6!# from the real photon limit
to the largeQ2 limit is an evolution from an exclusive, co
herent elastic scattering to an inclusive, incoherent de
inelastic scattering of a many-body system. Moreover,
reproducing the spin-dependent sum rules in the real pho
and largeQ2 limits, we are able to establish a framework
evaluate the spin structure functions of nucleons in the fin
Q2 region, where the quark model has been very succes
in describing the resonance contributions to the spin str
ture functions of the nucleon.

IV. THE EVALUATION OF THE SPIN-DEPENDENT SUM
RULES IN THE LOW Q2 REGION

The numerical studies of the quantitysTS require the
evaluations of the transverse helicity amplitudeA1/2 and the
longitudinal amplitudeS1/2. The helicity amplitudeA1/2 has
been calculated@12# by using the transition operator in Eq
~7! that generates the DHG sum rule. Thus, only the lon
tudinal amplitudeS1/2 needs to be evaluated. Following Eq
~14!, the longitudinal transition amplitudeS1/2 is

S1/25^ f uJ0u i &, ~52!

and we have the longitudinal transition operator@16#

J05A 1

2vH (
j

S ej1 iej
4mj

2kW•~sW j3pW j !D eikW•rW j
2(

j, l

i

4MT
S sW j

mj
2

sW l

ml
D •~ejkW3pW le

ikW•rW j2elkW3pW je
ikW•rW l !J ,

~53!

where the second and third terms are the spin-orbit and n
additive terms that represent the relativistic corrections to
leading charge operator. The study in previous sectio
clearly shows that the spin-orbit and the nonadditive ter
are crucial in reproducing the sum rule for the quant
sTS.
ter-

les

-
ep-
by
ton
to
ite
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uc-

.
gi-
.

on-
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ns
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ity

Because the longitudinal amplitudeS1/2 of baryon reso-
nances has not been systematically calculated with the tr
sition operatorJ0 in Eq. ~53!, we show the analytical expres-
sions of the longitudinal amplitudesS1/2 between the nucleon
and baryon resonances in SU(6)^O(3) symmetry limit in
Table I. The evaluation of theQ2 dependence of the longi-
tudinal amplitudesS1/2 follows the procedure of Foster and
Hughes@17#, and the longitudinal amplitudesS1/2 as a func-
tion of Q2 for the resonanceS11(1535), D13(1520), and
F15(1688) are shown in Fig. 1. These results are in bett
agreement with the analysis by Gerhardt@18# than the previ-
ous calculations@15#, who extracted the longitudinal ampli-
tudes from the electroproduction data. The numerical resu
in Fig. 1 show that the longitudinal amplitudes are quit
large in the lowQ2 region, thus suggesting that they play a
significant role in the spin structure functions of nucleon i
the lowQ2 region.

The resonance contributions to the sum rules of the sp
structure functions can be expressed in terms of the helic
amplitudes,A1/2 and A3/2, and the longitudinal amplitudes
S1/2:

E g1~x,Q
2!dx5(

R
EKF uA1/2

R u22uA3/2
R u2

1
Q2

A2vk
~S1/2

R *A1/2
R 1A1/2

R *S1/2
R !G

~54!

and

E g2~x,Q
2!dx5(

R
EKF v

A2k
~S1/2

R *A1/2
R 1A1/2

R *S1/2
R !

2~ uA1/2
R u22uA3/2

R u2!G , ~55!

where the kinetic factorEK is

EK5
Mv th

4paS 11
Q2

v2Dv

~56!

andv th is given in Eq.~4!. The total width of each resonance
is treated as zero so that the integration over the phot
energy can be approximated by a summation over all t
resonances. The background contributions from the nucleo
born terms in the single pion photoproductions are not i
cluded in Eqs.~54! and~55!, and they can be easily included
later in more detailed studies. Because these amplitudes
evaluated by using the transition operators that generate
the spin-dependent sum rules, the calculations of the sp
structure function in the resonance region become straig
forward. In Fig. 2, we show the resonance contributions
the sum rule forg1(x,Q

2), in which every resonance below
2 GeV is included. The resonancesP11(1440) and
P33(1600) are treated as the hybrid states@19#, and the study
shows@20# that theQ2 dependence of the transition ampli-
tudes of the hybridP11(1440) andP33(1600) gives a better
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TABLE I. Transition matrix elements between the nucleon and baryon resonances in the SU(6)^O(3)
symmetry limit. The full matrix elements are obtained by multiplying the entries in this table by a fac
A(2p/k0)2mmqexp

2(k2/6a2), andS1/2
n 5S1/2

p for D states.

Multiplet States Proton Neutron

@70,12#1 N(2PM)
1
2

21
1

3A2
uku
a S 11

a2

6mq
2D 2

1

3A2
uku
a S 11

a2

6mq
2D

N(2PM)
3
2

21 1
3

uku
a S 12

a2

12mq
2D 2

1
3

uku
a S 12

a2

12mq
2D

N(4PM)
1
2

21
1

36A2
auku
mq
2 2

1

108A2
auku
mq
2

N(4PM)
3
2

21
1

9A10
auku
mq
2 2

5

27A10
auku
mq
2

N(4PM)
5
2

21
1

12A10
auku
mq
2 2

5

36A10
auku
mq
2

D(2PM)
1
2

21

2
1

3A2
uku
a S 12

a2

6mq
2D

D(2PM)
3
2

21
1

3
ukua S 11

a2

12mq
2D

@56,01#2 N(2SS8)
1
2

1

2
1

3A6
k2

a2

0

D(4SS8)
3
2

1 0

@56,21#2 N(2DS)
3
2

1

2
1

3A15
k2

a2 S 11
a2

2mq
2D 2

k2

12A15mq
2

N(2DS)
5
2

1

2
1

3A10
k2

a2 S 12
a2

3mq
2D k2

9A10mq
2

D(4DS)
1
2

1

2
5k2

72A15mq
2

D(4DS)
3
2

1
0

D(4DS)
5
2

1
5A5k2

216A7mq
2

D(4DS)
7
2

1
5k2

36A105mq
2

@70,01#2 N(2SM8)
1
2

1
1

18

k2

a2 2
1

18

k2

a2
ce
-

agreement with the existing data. The numerical result
the Q2 dependence of the integral for the transverse cr
sections1/22s3/2 is also shown in Fig. 2, and it is in good
agreement with a more sophisticated evaluation in Ref.@5#.
The resonance contribution to the integral*g1(x,Q

250)dx
at the real photon limit is20.121, which is in good agree
ment with the theoretical prediction2(v th/4MT)k

2 with
for
oss

-

kp51.79 for the proton target@5#. This result is consistent
with the conclusions of our previous investigation@6#; the
contributions from resonances, in particular the resonan
P33(1232), dominate the DHG sum rule. The difference be
tween theg1(x,Q

2) sum rule and the contribution from the
quantity s1/22s3/2 shows the importance of the quantity
sTS. It is particularly significant in the smallQ

2 region, and
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the addition of the quantitysTS has pushed the crossin
point that the sum rule is zero from 0.7 GeV2 to around 0.5
GeV2.

The sum rule for the spin structure functiong2(x,Q
2) in

the resonance region is shown in Fig. 3. The resonance c
tributions to the sum rule*g2(x,Q

2) at the real photon limit
is 0.182, while Eq.~43! gives 0.192 for the proton target
This shows that the resonance contributions dominate
sum rule forg2(x,Q

2) in the real photon limit as well. The
g2(x,Q

2) is only significant in theQ2<1 GeV2 region, and
decreases very quickly asQ2 increases. There is also a sig
change for the sum rule ofg2(x,Q

2) at Q2'1 GeV2. A

FIG. 1. TheQ2 dependence of the longitudinal amplitudesS1/2
P

for the resonancesS11(1535),D13(1520), andF15(1680).

FIG. 2. TheQ2 dependence of the spin-dependent sum rule
g1(x,Q

2) in the resonance region. The solid and dash lines rep
sent the calculations with and without the quantitysTS.
g

on-

.
the

n

recent calculation@21# in the single pion channel of pion
photoproduction has shown a similar behavior, in which on
the nucleon-born term is considered. This behavior is n
consistent with theQ2 dependence of the sum rule of
g2(x,Q

2) derived in Refs.@9,8#. It may represent the theo-
retical uncertainty of the quark model calculations. On th
other hand, it would be very interesting to see if there is
sign change in the experimental data.

To highlight the importance of the quantitysTS in the
resonance region, we present an estimate of the total s
rule for g1(x,Q

2) by including the contributions from out-
side the resonance region. Following the procedure in R
@5#, the total spin-dependent sum rule should be written a

E
0

1

g1~x,Q
2!5E

xr

1

1E
0

xr
g1~x,Q

2!dx, ~57!

where

xr5
Q212mpMT1mp

2

Wr
21Q22MT

2 ~58!

with Wr52.0 GeV. The first term in Eq.~57! represents the
contributions from the resonance region; it shows that th
contributions from the resonance region do not cover th
whole kinetic region fromx50 to x51. The second term in
Eq. ~57! comes from the outside resonance region, and w
showed in Ref.@5# that this term becomes increasingly im
portant asQ2 increases. Because there is no experimen
information on the quantitysTS outside the resonance re-
gion, one could only make a qualitative estimate on the se
ond term in Eq.~57!. We show the estimate of theQ2 de-
pendence of the spin-dependent sum rule*0

1g1(x,Q
2)dx in

Fig. 4. The contribution from the second term is obtaine
from the estimate of the nonresonant contribution in Ref.@5#,

of
re-

FIG. 3. TheQ2 dependence of the spin-dependent sum rule
g2(x,Q

2) in the resonance region. The solid and dash lines repr
sent the calculations with and without the quantitysTS. The dot-
dashed line comes from Ref.@21#, see text.
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in which the quantitysTS is not included. Thus, this estimat
could only be regarded as a lower limit of the spin-depend
sum rule forg1(x,Q

2). Nevertheless, the effects of the qua
tity sTS on the Q2 dependence of the sum rul
*0
1g1(x,Q

2)dx are very important, and it could not be ne
glected if the high twist term that generates the leadi
1/Q2 corrections to the spin structure function in the dee
inelastic scattering region is extracted fromQ2'1.5;2.5
GeV2 region.

FIG. 4. The estimate of the sum rule*0
1g1

p(x,Q2)dx. The non-
resonant contribution comes from the result in Ref.@5#. The solid
and dash lines correspond to the evaluations with and without
quantitysTS.
e
ent
n-
e
-
ng
p-

V. CONCLUSION

We have presented a consistent framework to investiga
the spin structure functions of nucleon in the resonance r
gion, in which the model-independent sum rules in the re
photon limit and the largeQ2 limit are satisfied. We show
that the same set of transition operators generates both DH
sum rule for the transverse cross section,s1/22s3/2, and the
sum rule for the quantitysTS. The sum rule for the quantity
sTS also provides a crucial constraint on the longitudina
transition operator; it requires the longitudinal transition op
erator to be gauge invariant and to be expanded to ord
O(v2/c2) consistently. The operator in Eq.~53! satisfies
these requirements. This clarifies some of the problems
the literature on the longitudinal transitions, although th
problem of the model space truncation discussed in Ref.@13#
is not considered here.

A more quantitative calculation of the spin-dependen
sum rules for both the spin structure functionsg1(x,Q

2) and
g2(x,Q

2) are presented for the first time in the quark mode
Our numerical results indicate that the effects of the quanti
sTS are very important in smallQ2 region, which certainly
can be tested in future experiments at CEBAF@22#.
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the
APPENDIX

The terms that contribute to the spin flip in Eq.~24! are

^ i , 12 u j c* ~hc2m̂c!u i ,2 1
2 &1^ i ,2 1

2 u~hc2m̂c!* j cu i , 12 &5(
j

K i , 12 U eT
4MT

S eTMT
2
2ej
mj

DsW j•~kŴ3PW T!RW •eWU i ,2 1

2L
1(

j
K i ,2 1

2 U eT
4MT

S eTMT
2
2ej
mj

DRW •eW*sW j•~ k̂W3PW T!U i , 12L
1(

j
K i , 12 U eT

4MT
S eTMT

2
2ej
mj

DRW •kŴsW j•~eW3PW T!U i ,2 1

2L
1(

j
K i ,2 1

2 U eT
4MT

S eTMT
2
2ej
mj

DsW j•~eW*3PW T!RW •kŴU i , 12L . ~A1!

Let us consider the terms proportional toRW •eW in Eq. ~A1!. The productsW j•(kŴ3PW T) can be written as

sW j•~kŴ3PW T!52 is j
1~Px2 iPy!1 is j

2~Px1 iPy!, ~A2!

wheres65 1
2(sx6 isy). By substitutinge52(1/A2)(1,i ,0) into Eq.~A1!, we have
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(
j

K i , 12U eT
4MT

S eT
MT

2
2ej
mj

D sW j•~kŴ3PW T!RW •eWU i ,2 1

2L
1(

j
K i ,2 1

2U eT
4MT

S eT
MT

2
2ej
mj

DRW •eW*sW j•~kŴ3PW T!U i , 12L
5(

j
K i , 12U eT

4MT
S eT
MT

2
2ej
mj

D s j
1

i

A2
P2R1U i ,2 1

2L 2(
j

K i ,2 1

2U eT
4MT

S eT
MT

2
2ej
mj

D s j
2

i

A2
R2P1U i , 12L , ~A3!

whereP65Px6 iPy andR
65Rx6 iRy . Notice that for the total 1/2 initial and final states

^ i , 12 us j
1u i ,2 1

2 &5^ i ,2 1
2 us j

2u i , 12 & ~A4!

in our convention for the Pauli matrixs6 and the spin-wave functions. Equation~A3! becomes

(
j

K i , 12U eT
4MT

S eT
MT

2
2ej
mj

D s j
1

i

A2
@P2R12R2P1#U i ,2 1

2L
5(

j
K i , 12U eT

4MT
S eT
MT

2
2ej
mj

D s j
1A2@11 iRyPx2 iRxPy#U i ,2 1

2L , ~A5!

where the termRyPx2RxPy is an angular momentum operator for the center-of-mass motions of nucleons, which is zer
this process. Thus, we have

(
j

K i , 12 U eT
4MT

S eTMT
2
2ej
mj

DsW j•~kŴ3PW T!RW •eWU i ,2 1

2L 1(
j

K i ,2 1

2 U eT
4MT

S eTMT
2
2ej
mj

DRW •eW*sW j•~kŴ3PW T!U i , 12L
5(

j
K i , 12 U eT

4MT
S eTMT

2
2ej
mj

Ds j
1A2U i ,2 1

2L . ~A6!

Taking the same procedure, we have

(
j

K i , 12 U eT
4MT

S eTMT
2
2ej
mj

DRW •kŴsW j•~eW3PW T!U i ,2 1

2L 1(
j

K i ,2 1

2 U eT
4MT

S eTMT
2
2ej
mj

DsW j•~eW*3PW T!RW •kŴU i , 12L
5(

j
K i , 12 U eT

4MT
S eTMT

2
2ej
mj

Ds j
1iA2~PzRz2RzPz!U i ,2 1

2L
5(

j
K i , 12 U eT

4MT
S eTMT

2
2ej
mj

Ds j
1A2U i ,2 1

2L . ~A7!

Combining Eqs.~A6! and ~A7! gives Eq.~24!.
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