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Schwinger-Dyson equation approach to chiral symmetry breaking in an external magnetic field
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We develop a method for using the nonperturbative Schwinger-Dyson equation to study chiral symmetry
breaking in an external field. We apply it to massless QED in a constant magnetic field and obtain a nontrivial
solution for the fermion self-energy at weak coupling, suggesting that chiral symmetry is dynamically broken.
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Chiral symmetry plays an important role in elementa
particle and nuclear physics. In this paper we examine
breaking in the theory of quantum electrodynamics. It h
been known@1# for some time that QED may have a nonpe
turbative strong-coupling phase, characterized by sponta
ous chiral symmetry breaking, in addition to the famili
weak-coupling phase. The existence of this new phase
exploited in a novel interpretation@2# of the multiple corre-
lated and narrow-peak structures in electron and posit
spectra@3# observed at GSI several years ago. According
this scenario, thee1e2 peaks are due to the decay of
bounde1e2 system formed in the new QED phase, which
induced by the strong and rapidly varying electromagne
fields present in the neighborhood of the colliding hea
ions. While the experimental situation with regard to the
anomalouse1e2 events is unclear, especially after simila
experiments at Argonne have yielded negative results@4#, it
is still of great interest to investigate whether backgrou
fields can be physically used to induce chiral symme
breaking. Now the question is@5#: what kind of background
fields can potentially induce chiral symmetry breaking
gauge theories? We recall that in a magnetic monopole fi
a gauge field breaks chiral symmetry@6# and that in the
Nambu–Jona-Lasinio model a magnetic field drives the cr
cal transition point towards weaker coupling@7#. Thus, mag-
netic fields are obvious candidates. We will take advant
of the strong-field techniques introduced by Schwinger a
others to consider a constant magnetic field of arbitr
strength. In order to put our problem in as general a sett
as possible, we will use the nonperturbative Schwing
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Dyson equation approach. The presence of the external
makes it difficult to analyze the Schwinger-Dyson equatio
in the usual momentum representation. It is the purpose
this Brief Report to introduce an alternative approach wh
is applicable to any external field. We apply it to the case
a constant magnetic field and compare our result with t
obtained recently by Gusynin, Miransky, and Shovkovy@8#
whose method is very different from ours and is specific
magnetic fields. A comparison of the two approaches w
sharpen our understanding of the underlying physics and
kind of approximations involved.

The motion of a massless fermion of chargee in an ex-
ternal electromagnetic field is described by the Green’s fu
tion that satisfies the modified Dirac equation proposed
Schwinger:

g•P~x!GA~x,y!1E d4x8M ~x,x8!GA~x8,y!5d~4!~x2y!,

~1!

where Pm(x)52 i ]m2eAm(x), and M (x,x8) is the mass
operatorM in the coordinate representation. For a const
magnetic field of strengthH, we may takeA25Hx1 to be the
only nonzero component ofAm . In the following we will use
the method due to Ritus@9#, which is based on the use of th
eigenfunctions of the mass operator and the diagonaliza
of the latter. As shown by Ritus,M is diagonal in the repre-
sentation of the eigenfunctionsEp(x) of the operator
(g•P)2:

2~g•P!2Ep~x!5p2Ep~x!. ~2!

The advantage of using this representation is obvious:M can
now be put in terms of its eigenvalues, so the problems a
ing from its dependence on the operatorP can be avoided.
4181 © 1996 The American Physical Society
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In the chiral representation in whichs3 andg5 are diagonal
with eigenvaluess561 and x561, respectively, the
eigenfunctionsEpsx(x) take the form

Epsx~x!5Nei ~p0x
01p2x

21p3x
3!Dn~r!vsx[Ẽpsxvsx ,

~3!

whereDn(r) are the parabolic cylinder functions@10# with
indices

n5n~k,s![k1
eHs

2ueHu
2
1

2
, n50,1,2, . . . , ~4!

and argument r5A2ueHu(x12p2 /eH). Note that
k50,1,2, . . . . The normalization factor is
N5(4pueHu)1/4/An!; p stands for the set (p0 ,p2 ,p3 ,k);
andvsx are the bispinors ofs3 andg5.

Following Ritus, we form the orthonormal and comple
@11# eigenfunction-matrices Ep5diag(Ẽp11, Ẽp211,
Ẽp121 , Ẽp2121). They satisfy

g•PEp~x!5Ep~x!g• p̄ ~5!

and

E d4x8M ~x,x8!Ep~x8!5Ep~x!S̃A~ p̄!, ~6!

whereS̃A( p̄) represents the eigenvalues of the mass op
tor, and p̄05p0 , p̄150, p̄252sgn(eH)A2ueHuk, p̄3
5p3. These properties of theEp(x) allow us to express the
Green’s function and the mass operator in theEp represen-
tation as (Ēp[g0Ep

†g0)

GA~x,y!5(E d4p

~2p!4
Ep~x!

1

g• p̄1S̃A~ p̄!
Ēp~y!,

(E d4p[(
k
E dp0dp2dp3 , ~7!

and

M ~p,p8!5E d4xd4x8Ēp~x!M ~x,x8!Ep8~x8!

5S̃A~ p̄!~2p!4d̂ ~4!~p2p8!, ~8!

respectively, where

d̂ ~4!~p2p8![dkk8d~p02p08!d~p22p28!d~p32p38!.

We work in the ladder approximation in which

M ~x,x8!5 ie2gmGA~x,x8!gnDmn~x2x8!, ~9!

whereDmn(x2x8) is the bare photon propagator:

Dmn~x2x8!5E d4q

~2p!4
eiq•~x2x8!

q22 i e S gmn2~12j!
qmqn

q2 D .
~10!

The Schwinger-Dyson~SD! equation then takes the form
te

ra-

S̃A~ p̄!~2p!4d̂ ~4!~p2p8!

5 ie2E d4xd4x8(E d4p9

~2p!4
Ēp~x!gmEp9~x!

3
1

g• p̄91S̃A~ p̄9!
Ēp9~x8!gnEp8~x8!Dmn~x2x8!. ~11!

After integrations overx,x8,p09 ,p29 , andp39 , the SD equa-
tion is simplified to read @r[A(q121q2

2)/(2ueHu),
w[arctan(2q2 /q1)#

S̃A~ p̄!dkk85 ie2(
k9

E d4q

~2p!4
1

An!n8!n9! ñ9!
e2r2

3eisgn~eH!~n82n1n92ñ9!w
1

q2 S gmn2~1

2j!
qmqn

q2 D
3g0Dg0gmD9

1

g• p̄91S̃A~ p̄9!

3g0D̃9g0gnD8Jnn9~r !Jñ9n8~r !, ~12!

where summing overs,s8,s9, ands̃9 on the right-hand side
is understood, and

Jnn8~r ![ (
m50

min~n,n8!
n!n8!

m! ~n2m!! ~n82m!!

3@ isgn~eH!r #n1n822m. ~13!

We have also used the following notation@12# in Eq. ~12!:
p̄095p02q0, p̄1950, p̄2952sgn(eH)A2ueHuk9, p̄395p3
2q3, D5D(s)5diag(ds1 ,ds21 ,ds1 ,ds21), D85D(s8),
etc.,n85n(k8,s8), n95n(k9,s9), and ñ95n(k9,s̃9).

Equation~12! may be solved by following the standar
procedure @13# of writing S̃A( p̄)5bg• p̄1SA( p̄), where
SA( p̄) corresponds to the dynamically generated ferm
mass. We will assume thatSA( p̄) is proportional to the unit
matrix ~it will be seen later from the solution that this is
self-consistent assumption!. Equation~12! then leads to two
coupled equations forb andSA :

S SA~ p̄!

bg• p̄ D dkk85 ie2(
k9

E d4q

~2p!4
1

An!n8!n9! ñ9!
e2r2

3eisgn~eH!~n82n1n92ñ9!wJnn9~r !Jñ9n8~r !

3
1

~11b!2p̄921SA
2~ p̄9!

1

q2

3S SA~ p̄9!SG12
12j

q2
Q1D

2~11b!SG22
12j

q2
Q2D D , ~14!

where
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G15DgmD9D̃9gmD8

522~ds91ds̃911ds921ds̃921!

3diag~ds1ds81 ,ds21ds821,ds1ds81 ,ds21ds821!,

Q15Dg•qD9D̃9g•qD8, G25DgmD9g• p̄9D̃9gmD8,

and

Q25Dg•qD9g• p̄9D̃9g•qD8.

We seek solutions withb50. We will show later that
such a solution is consistent with all covariant gauges, a
that the second equation in Eq.~14! is trivially satisfied. We
will also show that the form of the solution is the same for a
values ofj. Without loss of generality, let us now adopt th
Feynman gauge (j51). In this case the two SD equation
decouple and onlyG1 is relevant for determining the dy-
namical fermion mass. The spin structure ofG1 implies that
necessarilys95s̃9, which, in turn, implies that necessarily
n95ñ9. It is convenient to make a change of integratio
variables from (q1 ,q2) to the ‘‘polar coordinates’’ (r ,w).
The integration overw yields

E
0

2p

dweisgn~eH!~n82n!w52pdnn8. ~15!

We note that the spin structure ofG1 also implies that
s5s8, which, together with thednn8 from Eq.~15!, matches
the dkk8 on the left-hand side of Eq.~14!.

Because of the factore2r2 in the integrand in Eq.~14!,
contributions from large values ofr are suppressed. Let us
therefore, as an approximation~we will find out later what
physical condition validates this approximation!, keep only
the smallest power ofr in Jnn9(r ): i.e.,

Jnn9~r !→
@max~n,n9!#!

un2n9u!
@ isgn~eH!r # un2n9u. ~16!

Since the leading contributions come from the term corr
sponding ton95n, we need only keep the two terms give
by k95n1 1

22(s9/2)sgn(eH) in the summation overk9. As
a result, we can replaceJnn9 by n!. The SD equation@Eq.
~14!#, thereby vastly simplified, becomes

SA~ p̄!.
ie2

~2p!3
ueHu E dq0dq3E

0

`

dr2e2r2

3
G1

q2
SA~ p̄9!

p̄921SA
2~ p̄9!

, ~17!

where q252q0
21q3

212ueHur 2 and p̄9252(p02q0)
2

1(p32q3)
212ueHuk9.

Let us make a Wick rotation to Euclidean spac
p0→ ip4, q0→ iq4. Consider the case withp50, i.e.,
p05p35k50. Notice thatk50 means that, for positive
~negative! eH, s51(21) andn50, the last of which im-
plies that fork950 ~the contribution from thek951 term is
relatively small!, s951(21) for the respective sign of
eH. We also note that for either sign ofeH, the matrixG1
nd

ll

n

,

e-

:

can be effectively replaced by2231, with 1 being a 232
unit matrix for either sign ofs. We will assume that the
dominant contributions to the integral in Eq.~17! come from
the infrared region of smallq3 andq4 ~this assumption will
be seen to be self-consistent!. Thus, it is reasonable to re-
placeSA( p̄9) in the integrand bySA(0)5m31. Equation
~17! then becomes

m.
a

p2E dq3dq4E
0

`

dr2e2r2

3
1

2r 21L2~q3
21q4

2!

m

m21~q3
21q4

2!
, ~18!

where a5e2/4p is the fine structure constant and
L51/AueHu is the magnetic length. The integrations ove
q3 andq4 give

1.
a

pE0
`

dr2
e2r2ln~2r 2/m2L2!

2r 22m2L2
, ~19!

which yields the nonzero dynamical mass as

m.aAueHue2bAp/a, ~20!

wherea andb are positive constants of order 1.
Equation ~20! clearly demonstrates the nonperturbativ

nature of the result. As a further check on the consistency
our assumptions, we note that, according to Eq.~18!, the
dominant contributions to the integrals come from the regio
2r 2;L2(q3

21q4
2);m2L2. Our earlier assumption that effec-

tively r!1 is now translated to the physical assumption th

mL!1, which requires thata;!1; in other words, the solu-
tion we have found applies to the weak-coupling regime
QED. Now it is also evident that indeed the infrared regio
of q3 and q4 gives the dominant contributions to the inte
grals.

It remains for us to show thatb50 solves Eq.~14! and
that the form of the solution in Eq.~20! holds for arbitrary
j. The main point to note is that, consistent with thek950
approximation made above, we can approximate theg• p̄9 in
G2 by 2(g0q01g3q3) ~recall also that we are considering
the case ofp50). But then the piece of the integrand involv
ingG2 is odd inq0 as well as inq3, and hence vanishes upon
integration. Similarly, theQ2 term integrates to zero. Hence
b50 is consistent with arbitraryj. Finally we note that,
consistent with ther!1 approximation,Q1 /q

2521. In
other words, for either sign ofs, bothG1 andQ1 /q

2 in Eq.
~14! are proportional to the (232) unit matrix. It follows
that the additional contributions from theQ1 /q

2 term ~for
jÞ1) do not change the form of the solution given by Eq
~20!.

In summary, using the approach introduced here, we ha
found a nontrivial solution to the Schwinger-Dyson equatio
for the fermion self-energy in the presence of a consta
magnetic field. This result suggests that, even at weak ga
coupling, an external magnetic field may trigger the dynam
cal breaking of chiral symmetry in QED, with the dynamica
mass of the fermion given by Eq.~20!, which agrees with
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that found by Gusyninet al. @8# based on an approach whic
is very different from ours.

To establish that chiral symmetry is indeed dynamica
broken, we need to demonstrate the existence of the co
sponding Nambu-Goldstone~NG! bosons. This issue ha
been addressed in a recent work of Gusyninet al. @14#. Spe-
cifically, since there is an effective dimensional reduction
two in the charged fermion propagator in the infrared reg
@see the second propagator factor in Eq.~17! or Eq. ~18!#,
reflecting the fact that the motion of a charged particle
restricted to the directions perpendicular to the magn
field, the Mermin-Wagner-Coleman theorem@15# calls into
question whether chiral symmetry can be spontaneously
ken in this case. Note, however, that this kind of dimensio
reduction is not operative for neutral modes like the N
bosons or photons@see the first propagator factor in Eq.~17!
or Eq.~18! wherer is effectively the transverse momentum#.
It thus seems likely that the dimensional reduction
charged particle propagators in this case does not affec
existence of NG bosons; but it is responsible for generatin
fermion dynamical mass at arbitrarily weak couplings. W
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wish to study in detail these related issues based on our
proach in a future communication. It would also be interes
ing to examine if there are additional solutions of chiral sym
metry breaking due to an external magnetic field, e.g.,
strong gauge couplings. A parallel calculation for the case
a constant background electric field@16# or other background
field configurations may also shed light on the dynamics
chiral symmetry breaking in gauge theories. The formalis
proposed here will be most suitable for these studies.
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