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Schwinger-Dyson equation approach to chiral symmetry breaking in an external magnetic field
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We develop a method for using the nonperturbative Schwinger-Dyson equation to study chiral symmetry
breaking in an external field. We apply it to massless QED in a constant magnetic field and obtain a nontrivial
solution for the fermion self-energy at weak coupling, suggesting that chiral symmetry is dynamically broken.
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Chiral symmetry plays an important role in elementaryDyson equation approach. The presence of the external field
particle and nuclear physics. In this paper we examine itgnakes it difficult to analyze the Schwinger-Dyson equations
breaking in the theory of quantum electrodynamics. It hadn the usual momentum representation. It is the purpose of
been knowr{1] for some time that QED may have a nonper- this Brief Report to introduce an alternative approach which
turbative strong-coupling phase, characterized by spontanés applicable to any external field. We apply it to the case of
ous chiral symmetry breaking, in addition to the familiar @ constant magnetic field and compare our result with that
weak-coupling phase. The existence of this new phase wa#Ptained recently by Gusynin, Miransky, and Shovk¢8y
exploited in a novel interpretatiof?] of the multiple corre- Whose method is very different from ours and is specific to
lated and narrow-peak structures in electron and positrofiagnetic fields. A comparison of the two approaches will
spectra[3] observed at GSI several years ago. According tosharpen our understanding of the underlying physics and the
this scenario, thee* e~ peaks are due to the decay of a kind of approximations involved. _
bounde®e~ system formed in the new QED phase, which is ~ The motion of a massless fermion of chamgén an ex-
induced by the strong and rapidly varying electromagnetidernal electromagnetic field is described by the Green’s func-
fields present in the neighborhood of the colliding heavytion that satisfies the modified Dirac equation proposed by
ions. While the experimental situation with regard to theseSchwinger:
anomalouse™e™ events is unclear, especially after similar
gxpgriments at Argonne haye yie_lded negative regdltsit y-H(x)GA(x,y)Jrf d*% M (X, X" )Ga(X',y)= ¥ (x—y),
is still of great interest to investigate whether background
fields can be physically used to induce chiral symmetry @)
preaking. Now thg que_stion 5] what kind of backgro_und_ where IT,(x) = —id,~eA,(x), and M(x,x') is the mass
fields can potentially induce chiral symmetry breaking ingneratorM in the coordinate representation. For a constant
gauge the(_)rles? We reca_ll that in a magnetic monqpole f'elﬂwagnetic field of strengtH, we may taked,= Hx; to be the
a gauge field breaks chiral symmetf§] and that in the o0y nonzero component @, . In the following we will use
Nambu—Jona-Lasinio model a magnetic field drives the critivha" method due to RitJ©], which is based on the use of the

cal transition point towards weaker couplifid. Thus, mag-  gjgenfunctions of the mass operator and the diagonalization
netic fields are obvious candidates. We will take advantag@yihe |atter. As shown by Ritusd is diagonal in the repre-

of the strong-field techniques introduced by Schwinger an entation of the eigenfunction& (x) of the operator
others to consider a constant magnetic field of arbitrar;sy.n)z: P

strength. In order to put our problem in as general a settin

as possible, we will use the nonperturbative Schwinger- —(y-H)zEp(X)=p2Ep(X). 2)
The advantage of using this representation is obvibusan
*Electronic address: cnleung@chopin.udel.edu now be put in terms of its eigenvalues, so the problems aris-
"Electronic address: Ng@Physics.UNC.edu ing from its dependence on the operalbrcan be avoided.
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In the chiral representation in whiak, and y5 are diagonal S (py(2m)*6¥ (p—p’)

with eigenvalueso=+*1 and y==*1, respectively, the .
. . d4p” —
eigenfunctionsE ,,,, (x) take the form :ie2J d“xd“x’i (2:)4 EL(X) y4Ep(X)

pox

i (0x0 2 3 ~
Epox(x) =Neg (P Pxpax )Dn(p)wU'XE Epoy@oy

3 —
_ _ _ _ xﬁEpn(x’)y”Ep,(x’)DW(x—x’). (11
whereD,(p) are the parabolic cylinder functiofig0] with y-p"+2a(p")
indices After integrations ovek,x’,pg,p5, andpj, the SD equa-
eHo 1 tion is simplified to read [r=\(qi+q3)/(2|eH]),
n= n(k O') K+ ——— 2| H| E, n:O,l,Z ey (4) (PEarctaneqz/ql)]
and argument p=+2|eH|(x;—p,/eH). Note that S (D) S =ie f o2
k=0,1,2... . The  normalization factor is A(P) B kz (277)4 nln’ln”ln”l
N=(4=|eH|)¥n!; p stands for the setpy,p,,ps.K);
andw,, are the bispinors ofr; and ys. Xeisgr{eH)(n’n+n”~ﬁ’)cpi(g —(1
Followmg Ritus, we form the orthonormal and complete g\ o~
[11] eigenfunction-matrices  E, dlagaipll, P11 .9
Epi-1, Ep-1-1). They satisfy ) %)
y-TEy(X)=Ep(X)y-p (5 1
X ')’OA'}/O’}/’MA”?
and y-p"+2a(p")
~ OAN O VAT _
j d4X’M(X,X’)Ep(X’):Ep(X)EA(p), (6) Xy A vy A Jnnrr(r)\]nun/(r), (12)

where summing over,o’,o”, andg” on the right-hand side
where S A(p) _represents the eigenvalues of the mass operds understood, and

tor, and po=pg, P1=0, p,=—sgneH)v2|eHk, ps min(n.n’) ,
=ps. These properties of thg,(x) allow us to express the 3o(r)= 2 nin’t
Green’s function and the mass operator in Eyerepresen- T & mi(n—m)l(n’ —m)!
tation as E_pz Y°E}Y°) ,
X[isgreH)r]"*" —2m, (13
4 J—
GA(X’y):i (zj p4Ep(x) _1,, —Eq(y), We have also used the following notatipf2] in Eq. (12):
(2m) 7 P+Ea(P) Po=Po—Co, P7=0, p5=—sgneH) 2[eHK",

—d3s, A:A(U) dlag(50'1150'7115(rlv§(r*l)1 A,:A(O")v

40— 7 etc.,n'=n(k’,¢’), n"=n(k",a"), andn”=n(k",o").
id P Ek: jdpod P2dps, Y Equation(12) may be solved by following the standard

procedure[13] of writing 3A(p)=B7y-p+2a(p), where

and Sa(p) corresponds to the dynamically generated fermion
o mass. We will assume that,(p) is proportional to the unit
M(p,p'):f d4xd4x’Ep(x)M(x,x’)Ep,(x’) matrix (it will be seen later from the solution that this is a
self-consistent assumptiprEquation(12) then leads to two
=§A(E(27r)43(4)(p— '), ®) coupled equations fo8 andX. 4 :
. 2a(p
respectively, where ( A % —ie?S j 4 o2
- ,8‘)/ K’ (27T) nln’ln”|n”|
8 (p=p")= i 8(Po— Py) (P2~ P3) S(P3— P3). o
. TS X glS0ner =m0 (1) I (1)
We work in the ladder approximation in which
1 1
M(x,X")=ie2y*Ga(X,X")y"D ,(X—X"), 9 X —
( ) Y A( )7 " ( ) ( ) (1+ﬁ)2F2+2,2A(p”) q2
whereD ,,(x—x") is the bare photon propagator: 1—
) (W)(G ——gQ )
diq el 0ex) qq A 177 <L
D, (Xx—x")= f(ZW)4 L (gw (1— &)X X 1-¢ , (19
(10) _(1+B) Gy— q2 Qz)

The Schwinger-DysofSD) equation then takes the form  where
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G1=AV“A"K"7,A' can be effectively replaced by 2X 1, with 1 being a 2<2
unit matrix for either sign ofo. We will assume that the
=—2(851105m % 64r-1651-1) dominant contributions to the integral in E@.7) come from
) the infrared region of smalj; andq, (this assumption will
Xdiag 6,105/1105-105'-1: 65104111 05-105' 1), be seen to be self-consistgnThus, it is reasonable to re-
~ o~ lace 2 A(p”) in the integrand b 0)=mx 1. Equation
Qu-Ay N T'y-aa', G-y Ay TR AL 7 e bacomas e PEAO) !

and
Q,=Ay-qA"y-p"A"y-qA’.

We seek solutions wittB=0. We will show later that % m
such a solution is consistent with all covariant gauges, and 2r2+ L2(q§wL qﬁ) m2+(q§+ qﬁ)’
that the second equation in Ed.4) is trivially satisfied. We
will also show that the form of the solution is the same for alliwhere a=e2/47+ is the fine structure constant and
values of¢. Without loss of generality, let us now adopt the | =1/\/[eH| is the magnetic length. The integrations over
Feynman gaugeé(=1). In this case the two SD equations g, andq, give
decouple and onlyG; is relevant for determining the dy-
namical fermion mass. The spin structureGf implies that o (> Ze*rzln(2r2/m2L2)
1=— f dr
7Jo

o * 2,12
m=—[ dgzdqg, | dr<e
™ 0
1

(18)

necessarilyc” =¢", which, in turn, implies that necessarily T T e (19
n”"=n". It is convenient to make a change of integration re=m
variables from ¢,q9,) to the “polar coordinates” (,¢). ) ) )
The integration over yields which yields the nonzero dynamical mass as

27 —_ —bvaTla

f d(Peisgr(eH)(n’fn)‘p:277_5””,_ (15) m=a |eH|e ’ (20)
0
wherea andb are positive constants of order 1.

We note that the spin structure @&, also implies that Equation (20) clearly demonstrates the nonperturbative
o= ', which, together with thé,,, from Eq.(15), matches nature of the result. As a further check on the consistency of
the 8y on the left-hand side of Eq14). our assumptions, we note that, according to Ekp), the

Because of the factoe™ " in the integrand in Eq(14), dominant contributions to the integrals come from the region
contributions from large values ofare suppressed. Let us, 2r2~L?(g5+a3)~m?L2. Our earlier assumption that effec-
therefore, as an approximatigwe will find out later what tively r <1 is now translated to the physical assumption that
physical condition validates this approximatipkeep only  ml<1, which requires thar<1; in other words, the solu-

the smallest power af in J,y(r): i.e., tion we have found applies to the weak-coupling regime of
[max(n,n")]! QED. Now it is also evident that indeed the infrared region
Jnn,,(r)_)ﬁ[isgdeH)r]\n*n”\_ (16)  of gz andq, gives the dominant contributions to the inte-
n—n"|!
grals.

It remains for us to show tha8=0 solves Eq(14) and
that the form of the solution in Eq20) holds for arbitrary
&. The main point to note is that, consistent with #fe=0
approximation made above, we can approximateythg” in
G, by —(¥°qo+ v3q3) (recall also that we are considering
the case op=0). But then the piece of the integrand involv-

L e? o , ing G, is odd inqg as well as i3, and hence vanishes upon
2A(p)= 2—g|eH|f dqodq3J dr2e™" integration. Similarly, the), term integrates to zero. Hence,

(2m) 0 B=0 is consistent with arbitrary¥. Finally we note that,
G 3 A(P7) consistent with ther<1 approximation,Q;/q’=—1. In
_21_’*—_, (17)  other words, for either sign af, both G, andQ, /g in Eq.
a” p2+33(p") (14) are proportional to the (22) unit matrix. It follows
_ that the additional contributions from th@,/q? term (for
where g°=-qj+qg3+2/eHr? and p"?=—(po—0o)> &#1) do not change the form of the solution given by Eq.
+(p3—0g)*+2|eH[k". (20).

Let us make a Wick rotation to Euclidean space: In summary, using the approach introduced here, we have
Po—ip4, Jo—id4. Consider the case witlp=0, i.e., found a nontrivial solution to the Schwinger-Dyson equation
po=pz=k=0. Notice thatk=0 means that, for positive for the fermion self-energy in the presence of a constant
(negative eH, o=1(—1) andn=0, the last of which im- magnetic field. This result suggests that, even at weak gauge
plies that fork” =0 (the contribution from th&”=1 termis  coupling, an external magnetic field may trigger the dynami-
relatively small, ¢”"=1(—1) for the respective sign of cal breaking of chiral symmetry in QED, with the dynamical
eH. We also note that for either sign eH, the matrixG;  mass of the fermion given by E@20), which agrees with

Since the leading contributions come from the term corre
sponding ton”=n, we need only keep the two terms given
by k”=n+ 3—(¢"/2)sgneH) in the summation ovek”. As

a result, we can replacé,,» by n!. The SD equationlEq.
(14)], thereby vastly simplified, becomes
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that found by Gusynimt al.[8] based on an approach which wish to study in detail these related issues based on our ap-
is very different from ours. proach in a future communication. It would also be interest-
To establish that chiral symmetry is indeed dynamicallying to examine if there are additional solutions of chiral sym-
broken, we need to demonstrate the existence of the correnetry breaking due to an external magnetic field, e.g., at
sponding Nambu-Goldstone@NG) bosons. This issue has strong gauge couplings. A parallel calculation for the case of
been addressed in a recent work of Gusyatiml.[14]. Spe- a constant background electric fi¢lth] or other background
cifically, since there is an effective dimensional reduction byfield configurations may also shed light on the dynamics of
two in the charged fermion propagator in the infrared regiorchiral symmetry breaking in gauge theories. The formalism
[see the second propagator factor in EL?) or Eq. (18)], proposed here will be most suitable for these studies.
reflecting the fact that the motion of a charged particle is
restricted to the directions perpendicular to the magnetic This work was supported in part by the U.S. Department
field, the Mermin-Wagner-Coleman theorddb] calls into  of Energy under Grants No. DE-FG02-84ER40163 and No.
guestion whether chiral symmetry can be spontaneously brdE-FG05-85ER-40219 Task A, and by the Bahnson Fund
ken in this case. Note, however, that this kind of dimensionalnd the Reynolds Fund of UNC. The work reported here was
reduction is not operative for neutral modes like the NGdone when C.N.L. was visiting UNC and when Y.J.N. was
bosons or photonjsee the first propagator factor in E§7)  visiting M.I.T. and the Institute for Advanced Study. They
or Eq.(18) wherer is effectively the transverse momentiim thank the respective faculties for their hospitality. C.N.L.
It thus seems likely that the dimensional reduction foralso thanks T.A.L. Ziman, and Y.J.N. thanks S. Adler, W.
charged particle propagators in this case does not affect théhen, K. Johnson, D.S. Lee, K. Milton, V.A. Miransky, and
existence of NG bosons; but it is responsible for generating &. Semenoff for useful discussions. Y.J.N. also thanks the
fermion dynamical mass at arbitrarily weak couplings. Welate J.S. Schwinger for a useful discussion.
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