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The process of soldering two unidexterous gravities of opposite chiralities is considered at a quantum
by using the field-antifield formalism with a Pauli-Villars regularization scheme. The resulting effective the
gives rise to a diffeomorphism anomaly which is compared with the originalW2 anomalies.
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The research in two-dimensional quantum field theorie
has been one of the principal arenas for the development
physical ideas. The inescapable features of field theories
two dimensions are those related to the chiral splitting o
space-time@1–5#. Interesting questions come, for example
from the study of chiral scalars in a gravitational back
ground. In a recent work@6# it has been shown, in a classica
way, that two Siegel bosons@1# or equivalently twoW2
gravities@4# of opposite chiralities can be coupled in a non
trivial way such that the resulting effective theory is essen
tially one of a scalar boson in a gravitational background
This implies that the effective theory so obtained must b
invariant under diffeomorphisms, which cannot be the me
direct sum of two unidexterous diffeomorphisms. Actually
the fundamental quantities appearing in the originalW gravi-
ties become combined in a nontrivial way in the effectiv
theory. This has been considered by Wotzasek and the
thors at a classical level@6#. Here we extend our previous
results to the quantum level, by using the field-antifield fo
malism @7,8#. This procedure is chosen since it can be ap
plied in a natural way to theories with open gauge algebra
which is just the case we are considering. As the action stu
ied here is invariant under diffeomorphism, there arises na
rally the question of quantum anomalies. This implies tha
the Becchi-Roult-Stora-Tyutin~BRST! variation of the quan-
tum action has then to be regularized. We adopt here t
Pauli-Villars~PV! regularization scheme in the field-antifield
formalism @8,9# since it leads to consistent anomalies. I
might be interesting to mention here that in the process
soldering, the resulting theory appears naturally with a Be
trami parametrization@10#. The Beltrami parameters can
then be seen as sources of energy-momentum tensors wh
define two decoupled Virasoro algebras@3#. However the
anomalies that come from BRST variation of the induce
action are not just a trivial composition of the Virasoro
anomalies presented by the energy-momentum tensors of
original theories@5,9,11#.

We begin with the gauge invariant action presented
Ref. @6# and derive some of its classical features, with em
phasis on its gauge symmetries and algebra. The fie
antifield formalism for the specific model is then develope
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where the quantization is carried out by using the Pau
Villars regularization scheme. We show that the process
soldering leads naturally to a Beltrami parametrization@10#
of the 2D metric. The anomalous Ward identity is evaluate
and further aspects of the model are discussed along w
some concluding remarks.

The Euclidean version of the action presented in Ref.@6#
can be written in complex coordinates as

S05E dzdz̄@DwD̄w1l~D̄w!21DrD̄r1l̄~Dr!2

2~w2r!E#, ~1!

where the ‘‘electric field’’ is defined as

E5]Ā2 ]̄A. ~2!

In Eq. ~1!, ]5]/]z,]̄5]/] z̄, wherez and z̄ are complex
coordinates.Dw5]w1A andD̄w5 ]̄w1Ā, with similar ex-
pressions forr. If the fieldsA, Ā are taken to be zero, the
action described in Eq.~1! represents two decoupledW2
gravities of opposite chiralities. In that case,w, r, l, and l̄
represent chiral fields which implement the Siegel symmet
in each one of the unidexterous sectors of space-time. As
are going to see, the introduction of the gauge fieldsA, Ā
promotes in an effective way the original Siegel invariance
to a true diffeomorphism.

In Ref. @6# we have basically done an extensive analys
of all the symmetries of action~1!. Instead, we will start here
by considering the equations of motion that come from a
tion ~1!. They can be written as

dS0
dw

522]̄~Dw1lD̄w!22E50 , ~3!

dS0
dr

522]~D̄r1l̄Dr!12E50 , ~4!

dS0
dĀ

52~Dw1lD̄w!50 , ~5!

dS0
dA

52~D̄r1l̄Dr!50 , ~6!:
4177 © 1996 The American Physical Society
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dS0
dl

5~D̄w!250 , ~7!

dS0
dl̄

5~Dr!250 , ~8!

defining the stationary surfaceS. This is an interesting sys-
tem of coupled equations, consistency of which implies th
E must vanish. This is a nice feature because in the dec
pled theory the equations of motion forw and r give just
this. Thus we can think ofE as just the ‘‘anomaly’’ resulting
from the gauging procedure. Equations~5! and ~6! can be
solved forA, Ā as

A5
1

D
@]w1l]̄~w2r!2ll̄]r#,

Ā5
1

D
@]̄r1l̄]~r2w!2ll̄]̄w#. ~9!

whereD5ll̄21. When the expressions~9! are inserted in
Eq. ~2!, the condition of vanishingE gives

]̄F 1D~]f1l]̄f!G1]F 1D ~]̄f1l̄]f!G1]]̄f50 , ~10!

where we have defined

f5
1

2
~w2r!. ~11!

We note that Eq.~10! can be rewritten in a covariant way a

]a~A2ggab]bf!50 , ~12!

if we define the metric tensorial density

A2ggzz5
2

D
l̄,

A2ggz̄ z̄5
2

D
l,

A2ggz z̄511
2

D
. ~13!

We note that due to conformal symmetry, it is not possible
determine the metric tensor itself. However, as it should b
det(A2ggab)521. The above expression displays th
physical content, at the classical level, of the theory d
scribed by action~1!: two coupledW2-gravities belonging
respectively to the holomorphic and antiholomorphic secto
of a two-dimensional~2D! Euclidean space-time can be ef
fectively soldered as a scalar boson in a gravitational ba
ground.

It is interesting to observe that Eqs.~13! give just the
Beltrami parametrization@10# of the two-dimensional Rie-
mannian metric. The last two equations of motion~7! and~8!
are the constraints of the theory. When one uses the exp
sions~9!, we can see that these constraints read
at
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T̄5 1
2 ~p2 ]̄f!2'0,

T5 1
2 ~p1 ]̄f!2'0 , ~14!

which are generators of the diffeomorphism group. In th
above expressions,p represents the momentum conjugate to
f. As it is well known,T and T̄ define two decoupled Vira-
soro algebras once one uses the commutation relations
f @see expression~11!# andp @6#.

To perform the functional quantization of the model it is
first necessary to do an analysis of the symmetries ofS0. In
addition to the~hidden! conformal symmetry, action~1! is
invariant under thea symmetry

dw5a, dr5a,

dl50 , dl̄50 ,

dA52]a, dĀ52 ]̄a, ~15!

and under the diffeomorphism

dw5~h]1h̄ ]̄ !w,

dr5~h]1h̄ ]̄ !r

dl52]h̄1l2]̄h1@~]h!2~ ]̄h̄ !1h̄ ]̄1h]#l,

dl̄52 ]̄h1l̄2]h̄1@~ ]̄h̄ !2~]h!1h̄ ]̄1h]#l̄,

dA5]~hA!1h̄ ]̄A1Ā]h̄2
1

4

dS0
dA

]h̄,

dĀ5 ]̄~ h̄Ā!1h]̄Ā1A]̄h2
1

4

dS0
dĀ

]̄h. ~16!

It is not difficult to see that under the above transforma
tionsA2ggab transforms as

d~A2ggab!5]g~A2ggabhg!

2A2g~gag]ghb1ggb]gha!, ~17!

as expected, where we have identifiedhz5h; h z̄5h̄. w and
r transform as scalars andA and Ā transform as the two
components of a vector plus terms that vanish on-shell.
one truncates the theory, taking for instance
r5l̄5A5Ā5h50, the diffeomorphism for the surviving
quantities~herew andl) reduces to the Siegel symmetry. A
remarkable feature of the set of variations~16! is that they
are invariant under the duality symmetryl→1/l̄,l̄→1/l,
which is related to the symmetry under the interchange of th
right and left movers@6#.

The a symmetry~15! gives an Abelian algebra. Diffeo-
morphism algebra closes on all the fields of the theory, ex
cept forA,Ā, where it is open. We get

@d1 ,d2#F5d3F ~18!

for F5w,r,l,l̄, where the composition rule for the group
parameters is given by
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h35~h2]1h̄2]̄ !h12~h1]1h̄1]̄ !h2 ,

h̄35~h2]1h̄2]̄ !h̄12~h1]1h̄1]̄ !h̄2. ~19!

For A,Ā we get

@d1 ,d2#A5d3A1V
dS
dĀ

,

@d1 ,d2#Ā5d3Ā2V
dS
dA

, ~20!

whereV5 1
4 (]h̄1]̄h22]h̄2]̄h1). The structure of Eq.~20! is

that of an open gauge algebra. The term that vanishes
shell represents a trivial gauge transformation@7#. From the
inspection of the above equations one sees that all the lo
rank structure functions are field independent and that th
on-

wer
ey

satisfy Jacobi identities only by symmetry, without the ap
pearance of higher rank structure functions.

As the algebraic structure of the gauge invariance of ac
tion ~1! has been displayed, one can quantize the theory u
ing a standard method. Because of the existence of an op
algebra, we have chosen the field-antifield formalism@6# as
the quantization procedure. To do so it is necessary to intr
duce a ghostC corresponding to parametera and the ghosts
c,c̄ corresponding to diffeomorphism parametersh,h̄. The
ghosts have odd Grassmannian parity and ghost numb
g51. Corresponding to each one of the fields
w,rl,l̄,A,Ā,C,c,c̄ there is an antifield, written as the cor-
responding field, but with an asterisk. The Grassmannia
parity of any antifield is opposite of that of the corresponding
field, and its ghost number isg*52g21. In the field-
antifield formalism, the classical actionS0 is extended to the
minimal action
S5S01E dzdz̄@w* @C1~ c̄]̄1c]!w#1r* @C1~ c̄]̄1c]!r#1l* @2] c̄1l2]̄c1~]c2 ]̄ c̄1 c̄]̄1c]!l#1l̄* @2 ]̄c1l̄2] c̄

1~ ]̄ c̄2]c1 c̄]̄1c]!l̄#1Ā* ~2 ]̄C2 1
2 ~Dw1lD̄w!]̄c1 ]̄~ c̄Ā!1c]Ā1A]̄c!1A* ~2]C2 1

2 ~D̄r1l̄Dr!] c̄1]~cA!

1 c̄]̄A1Ā] c̄!2 c̄* ~c]1 c̄]̄ !c̄2c* ~c]1 c̄]̄ !c1 1
4A* Ā* ] c̄]̄c#. ~21!
n-

s

d

e

be

e

We note here that the antifieldC* does not appear in the
action because the corresponding symmetry is Abelian a
irreducible. The antibrackets1 of two variablesX andY,

~X,Y!5
] rX

]fA

] lY

]fA*
2

] rX

]fA*
] lY

]fA , ~22!

are such thatS must be a proper solution of the classica
master equation

~S,S!50 . ~23!

This is also equivalent to saying thatS is classically BRST
invariant, once we recognize that the BRST transformati
of any quantityX depending on fields and antifields is give
by

dX5~X,S!. ~24!

From action~21! and the above expressions, we get the cla
sical BRST transformations for the fields and antifields of t
theory. To quantize the model in the path integral approa
it is necessary to fix the gauge degrees of freedom cor
sponding to the gauge parametersa, h, andh̄. As the theory
is irreducible, three independent gauge-fixing functions ha
to be used:J, x, and x̄. They are written in terms of a
unique gauge-fixing fermion as

1] r ( l ) /]FA stands for a right~left! derivative with respect to
FA.
nd

l

on
n

s-
he
ch,
re-

ve

C5C̃J1 c̃x1 c̄x̄. ~25!

In the above expression we have introduced the Grassma

nian variablesC̃, c̃, and c̄̃ , which have ghost number21.
Introducing also the bosonic and 0 ghost number quantitie
B, b, and b̄, we can extend the minimal action~21! to the
nonminimal one

Snm5S1E dzdz̄~BC̃*1bc̃*1b̄ c̄̃ * !. ~26!

It is easy to see that the master equation is not modifie
by the nonminimal extension~26!. In the space of all fields
and antifields, the gauge-fixed surface is defined through th
relation

FA*5
]C

]FA . ~27!

As we have seen, the linear combinationw1r classically
does not appear as a dynamical quantity, and hence can
gauge fixed to zero. We also constrain the fieldsl and l̄ to
be identical to some arbitrary functionsh and h̄, respec-
tively. As a consequence, the gauge-fixing fermion can b
chosen to be@see~25!#

C5~w1r!C̃1~l2h!c̃1~ l̄2h̄! c̄̃ . ~28!

Now we can define the induced actionG(h,h̄) through



-
ut
l
at

de-
d

l-

e-
e

by

n-
or

h
e
d
d

-
l
s it
a-

nt
q,

4180 54BRIEF REPORTS
e2G~h, h̄ !5E @dFA#@dFA* #dFFA*2
]C

]FAGe2Snm. ~29!

Because of thed function, integrations over the antifields
become trivial. The integrations overA,Ā are Gaussian.
These variables can be shifted in the usual way by the so
tions of their equations of motion@see Eq.~9!#. Integrations
over B,b, and b̄ give d functionals which can be used to
perform the integrations overr, l, and l̄. Integrations in
C̃,C are also trivial. At last we get

e2G~h, h̄ !5E @df#@dc#@dc̃#@dc̄#@ c̄̃ eSeff, ~30!

where

Seff52
1

2E dzdz̄$A2g~h,h̄!gab~h,h̄!]af]bf

1 c̃@2] c̄1h2]̄c1~]c2 ]̄ c̄1 c̄]̄1c]!h#

1 c̄̃ @2 ]̄c1h̄2] c̄1~ ]̄ c̄2]c1 c̄]̄1c]!h̄#%. ~31!

By now it is quite obvious that Eq.~30! can be interpreted
as the definition of the induced action for a bosonf in an
external gravitational field with metric given by the tenso
gab parametrized byh and h̄. In what follows we are going
to avoid the technicalities of being in a curved space-tim
and consider the problem in a somewhat naive way. At lea
it is always possible to think of our problem as some confo
mal field theory in flat space-time, having the Beltrami pa
rameters as external sources of the components of
energy-momentum tensor. This kind of procedure, for in
stance, can be found in Ref.@12#.

It is easy to show that the effective action~31! is mani-
festly BRST invariant. To extract physical results from th
induced action, however, it is necessary to use some regu
ization procedure, since further integrations can only be do
in a formal way, as they are divergent. We adopt here t
Pauli-Villars regularization scheme@7–9# which gives by
construction a consistent expression for the anomaly.
implement this regularizing scheme, a PV fieldxA corre-
lu-
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sponding to each one of the fieldsFA appearing in the mea-
sure of Eq.~30! is introduced. They have the same Grass
mannian character as the corresponding original fields, b
have the formal property of contributing to the path integra
with determinants which are the inverses of those ones th
come from theFA integrations @8,9#. Following the PV
scheme, and using the heat-kernel method for evaluating
terminants, the BRST variation of the regularized induce
action is found to be

A52
25

24pE dzdz̄~] c̄1 ]̄c!Rz z̄z z̄@g#, ~32!

whereRz z̄z z̄@g# is the zz̄zz̄ component of Riemann tensor
calculated with the metric tensor written in terms of the Be
trami parametersh andh̄. In the above expression, it is quite
obvious that both sectors of the originally decoupled spac
time appear in a nontrivial combination. However, as can b
verified, itsW2 limits are quite obvious. By taking, for in-
stance,h̄5c50, we get

A52
25

24pE dzdz̄c̄]3h, ~33!

which is essentially the same as the expression derived
Polyakov@5#. The complementary limit is also obvious.

Concluding, in this work we have considered, at the qua
tum level, the question of soldering two Siegel bosons,
equivalently twoW2 gravities, in a fully diffeomorphism
invariant manner. We are led to an effective action whic
describes a full boson living in a two-dimensional space-tim
with nontrivial Riemannian curvature. We have considere
in detail the algebraic structure of the theory and performe
its quantization, by using the field-antifield formalism with a
Pauli-Villars regularization scheme. Although it is straight
forward to take a fully covariant theory and restrict to chira
sectors, we have addressed the opposite problem here. A
is clear, this is nontrivial and leads to many interesting fe
tures.
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