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Unidexterous versus ambidexterous gravities

Ricardo Amorinf and Ashok Das
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 3 April 1996

The process of soldering two unidexterous gravities of opposite chiralities is considered at a quantum level,
by using the field-antifield formalism with a Pauli-Villars regularization scheme. The resulting effective theory
gives rise to a diffeomorphism anomaly which is compared with the origing2 anomalies.
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The research in two-dimensional quantum field theoriesvhere the quantization is carried out by using the Pauli-
has been one of the principal arenas for the development ofillars regularization scheme. We show that the process of
physical ideas. The inescapable features of field theories ioldering leads naturally to a Beltrami parametrizafih]
two dimensions are those related to the chiral splitting ofof the 2D metric. The anomalous Ward identity is evaluated
space-timg 1-5]. Interesting questions come, for example,and further aspects of the model are discussed along with
from the study of chiral scalars in a gravitational back-some concluding remarks.
ground. In a recent worf6] it has been shown, in a classical ~ The Euclidean version of the action presented in R&ff.
way, that two Siegel bosongl] or equivalently two)/2  can be written in complex coordinates as
gravities[4] of opposite chiralities can be coupled in a non-
trivial way such that the resulting effective theory is essen-
tially one of a scalar boson in a gravitational background.
This implies that the effective theory so obtained must be
invariant under diffeomorphisms, which cannot be the mere —(¢—p)E], @
direct sum of two unidexterous diffeomorphisms. Actually,
the fundamental quantities appearing in the originagravi-
ties become combined in a nontrivial way in the effective
theory. This has been considered by Wotzasek and the au-
thors at a classical levgb]. Here we extend our previous - _
results to the quantum level, by using the field-antifield for- I Eq. (1), d=d/dz,d=dl 3z, wherez andz are complex
malism[7,8]. This procedure is chosen since it can be ap-coordinatesD¢=d¢+ A andD¢=de+ A, with similar ex-
plied in a natural way to theories with open gauge algebraspressions foip. If the fieldsA, A are taken to be zero, the
which is just the case we are considering. As the action studaction described in Eq(l) represents two decoupled2

ied here is invariant under diffeomorphism, there arises natugravities of opposite chiralities. In that case, p, A, andx
rally the question of quantum anomalies. This implies thatepresent chiral fields which implement the Siegel symmetry
the Becchi-Roult-Stora-TyutitBRST) variation of the quan- jn each one of the unidexterous sectors of space-time. As we
tum action has then to be regularized. We adopt here thg,, going to see, the introduction of the gauge fiehdsA

Pauli-Villars (PV) regularization scheme in the field-antifield promotes in an effective way the original Siegel invariances
formalism [8,9] since it leads to consistent anomalies. It}0 a true diffeomorphism.

might _be interesting_ to mention here that in the Process of |, Ref [6] we have basically done an extensive analysis
soldering, the resulting theory appears naturally with a Bely¢ ) the symmetries of actiofl). Instead, we will start here

trami parametrizationf10]. The Beltrami parameters can by considering the equations of motion that come from ac-
then be seen as sources of energy-momentum tensors Whl{%n (1). They can be written as

define two decoupled Virasoro algebrgd. However the
anomalies that come from BRST variation of the induced 58, . o
action are not just a trivial composition of the Virasoro —=-29(Dp+A\D¢)—2E=0, 3
anomalies presented by the energy-momentum tensors of the S
original theorieq5,9,11. e
We begin with the gauge invariant action presented in 0 . T _
Ref. [6] and derive some of its classical features, with em- 5_p_ 20(Dp+ADp)+2E=0, @)
phasis on its gauge symmetries and algebra. The field-

antifield formalism for the specific model is then developed

So= | 4zdADeD o+ N(De)?+DpDY+N(DpY

where the “electric field” is defined as

E=0A—dA. 2

580—2(0 +ADg)=0 (5)
(5A_ (P (P - ]
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88y  — T=1(m—d)?~0,
2= (D)0, ™ (7o)
T=%(m+d¢$)?>~0, (14
S
5—)\0:(Dp)2=0, (8) which are generators of the diffeomorphism group. In the

above expressions; represents the momentum conjugate to

defining the stationary surface. This is an interesting sys- ¢. As itis well known, 7 and7 define two decoupled Vira-

tem of coupled equations, consistency of which implies thafOro algebras once one uses the commutation relations for
E must vanish. This is a nice feature because in the decou? [S€€ expressiofLl)] and m [6].

pled theory the equations of motion fgr and p give just G To perform the;unctlonalquanticza;]tion of the _modc;l itis
this. Thus we can think c as just the “anomaly” resulting [IrSt necessary to do an analysis of the symmetrieSoin

from the gauging procedure. Equatiot® and (6) can be addition to the(hidden conformal symmetry, actiofl) is
solved forA. A as invariant under thex symmetry

1 o o Sp=a, Op=a,
= yLde+Nd(e—p)=ANdp],

— 1 — — — - _ A= — da
A=K[c9p+)\&(p—qo)—)\)\(9(p]. 9 oA da, A da, (19

and under the diffeomorphism

whereA=XA—1. When the expression®) are inserted in =
Eq. (2), the condition of vanishing gives op=(nd+nd)e,

1 -
gfx(ﬂdﬁ Ndg)

where we have defined

. _ Sp= 7).
+a§(a¢+m¢) +ddp=0, (10 p=(mi+ndlp

SN=—dn+\2n+[(9n)—(dn)+ o+ nd]\,

SN=—an+N2dn+[(In)—(9m)+ 7+ na]\,
1
¢=5(¢=p). (11) 55 —

SA=9(nA)+ 77(9A+Ar977— 7 A an,
We note that Eq(10) can be rewritten in a covariant way as
R — 1 68,—
d,(N—99*Pd¢)=0, (12 SA=(7A) + noA+Adn— = 2 A —a. (16)
if we define the metric tensorial densit
Y It is not difficult to see that under the above transforma-
2 tions V—gg*? transforms as
V=99 =1 N
8(N-99*#)=4d,(N-9g9*’7?)
oz 2 —\=9(g*%, P +9"3,7%, (1D
J— zz g Y b2 L]
gg A )\‘l

as expected, where we have identifig= 7; 7%= 7. ¢ and
3 p transform as scalars amdl and A transform as the two
V-ggrr=1+ A (13 components of a vector plus terms that vanish on-shell. If
one truncates the theory, taking for instance
We note that due to conformal symmetry, it is not possible tgo=A=A=A= =0, the diffeomorphism for the surviving
determine the metric tensor itself. However, as it should begquantities(heree and\) reduces to the Siegel symmetry. A
det(y—gg*®)=—1. The above expression displays theremarkable feature of the set of variatiofi€) is that they
physical content, at the classical level, of the theory deare invariant under the duality symmetky— 1/A,\\— 1/\,
scribed by action(1): two coupledW2-gravities belonging which is related to the symmetry under the interchange of the
respectively to the holomorphic and antiholomorphic sectorsight and left moverg6].
of a two-dimensional2D) Euclidean space-time can be ef-  The o symmetry(15) gives an Abelian algebra. Diffeo-
fectively soldered as a scalar boson in a gravitational backmorphism algebra closes on all the fields of the theory, ex-

ground. ) o cept forA,A, where it is open. We get
It is interesting to observe that Eq&l3) give just the
Beltrami parametrizatiof10] of the two-dimensional Rie- [81,68,]P=53P (18

mannian metric. The last two equations of mot{@hand(8)
are the constraints of the theory. When one uses the exprer ®=¢,p,\, )\ where the composition rule for the group
sions(9), we can see that these constraints read parameters is given by
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7732(7725+E0_)771—(771f7+z3_)772, satisfy Jacobi identities only by symmetry, without the ap-
pearance of higher rank structure functions.
73:(,72&+%5_)71_(,]13+715_)%. (19) As the algebraic structure of the gauge invariance of ac-
L tion (1) has been displayed, one can quantize the theory us-
For A,A we get ing a standard method. Because of the existence of an open
algebra, we have chosen the field-antifield formal[§has
[5,,8,]A= 63A+V£, the quantization procedure. To do so it is necessary to intro-

duce a ghos€ corresponding to parametarand the ghosts

c,c corresponding to diffeomorphism parameters). The
ghosts have odd Grassmannian parity and ghost number
g=1. Corresponding to each one of the fields
e I ®,p\,\AA,C,c,c there is an antifield, written as the cor-
whereV=%(d7,d1m,— dn,dn,). The structure of Eq20) is  responding field, but with an asterisk. The Grassmannian
that of an open gauge algebra. The term that vanishes omparity of any antifield is opposite of that of the corresponding
shell represents a trivial gauge transformafidh From the field, and its ghost number ig*=—g—1. In the field-
inspection of the above equations one sees that all the lowemntifield formalism, the classical actidh is extended to the
rank structure functions are field independent and that thegninimal action

51 5 A= S AV 20
[112]_3_ﬁ1 ()

S=50+J dzdZ ¢*[C+(Ca+Ca) @]+ p*[C+ (Ca+Cd)p]+N*[ — dC+N2dC+ (3C— dC+ Ca+ CI)N]+ N [ — dc+\2dC

+(dC— dc+Ca+CIN]+A* (—dC— 3 (De+AD@)dc+ d(CA) + CIA+AIC) +A* (—IC—L(Dp+\Dp)dc+ d(cA)

+CAA+AAIC) — CF (Ca+Ca)C—c* (Cd+Cd)c+ LA* A* jcac]. (21)

We note here that the antifield* does not appear in the W =CE+Cx+Cx. (25)
action because the corresponding symmetry is Abelian and

ireducible. The antibracketsf two variablesX andY, In the above expression we have introduced the Grassman-

aX aY  a.X aY nian variablesE, <, andET which have ghost number 1.
X, Y)=—=% S (22 Introducing also the bosonic and 0 ghost number quantities
B, b, andb, we can extend the minimal actid@1) to the

: .. nonminimal one
are such thatS must be a proper solution of the classical

master equation _ .
Snm=8+fdzoEBC*+bE*+bc*). (26)
(85,8=0. (23

This is also equivalent to saying thétis classically BRST It is easy to see that the master equation is not modified

invariant, once we recognize that the BRST transformatior?y the nonminimal extensio26). In the space of all fields
of any quantityX depending on fields and antifields is given anld _antlflelds, the gauge-fixed surface is defined through the
by relation

- av
OX=(X,S). (29 ‘I’K:W- 27)
From action(21) and the above expressions, we get the clas-
sical BRST transformations for the fields and antifields of the  As we have seen, the linear combinatigr p classically
theory. To quantize the model in the path integral approachdoes not appear as a dynamical quantity, and hence can be
it is necessary to fix the gauge degrees of freedom correyauge fixed to zero. We also constrain the fieldand A to
sponding to the gauge parametersy, and7. As the theory  pe jgentical to some arbitrary functiorts and h, respec-

is irreducible, three independent gauge-fixing functions ha"%vely. As a consequence, the gauge-fixing fermion can be
to be used:E, x, and x. They are written in terms of a osen to bésee(25)]

unigue gauge-fixing fermion as
V=(p+p)C+(A—h)S+(A—h)cC. (28)

1(9r(|)/a<I>A stands for a right(left) derivative with respect to _
DA, Now we can define the induced actibrth,h) through
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sponding to each one of the fields® appearing in the mea-
e m (29 sure of Eq.(30) is introduced. They have the same Grass-
mannian character as the corresponding original fields, but
Because of thes function, integrations over the antifields have the formal property of contributing to the path integral
become trivial. The integrations ovefk,A_are Gaussian. With determinants which are the inverses of those ones that
These variables can be shifted in the usual way by the sol(gome from the®” integrations(8,9]. Following the PV

tions of their equations of motiofsee Eq/(9)]. Integrations sche_me, and using the hegt-lfernel method for _evalu_ating de-
over B,b, andb give & functionals which can be used to terminants, the BRST variation of the regularized induced

. . : : action is found to be
perform the integrations oves, N, and \. Integrations in
C,C are also trivial. At last we get 25 S

A=~ | dzddicticRzAgl, (32

o
o} -

e-”hvh):f [dDAI[dD;]S Y

e "= [ [dgldeldTIdelTes s, (30)

whereR, 771 g] is the zzzz component of Riemann tensor
calculated with the metric tensor written in terms of the Bel-

where trami parameterh andh. In the above expression, it is quite
1 o obvious that both sectors of the originally decoupled space-
Seff=— EJ dzdZ\—g(h,h)g*4(h,h)d, bz time appear in a nontrivial combination. However, as can be
verified, itsW2 limits are quite obvious. By taking, for in-
+T[ — dc+h?ac+(ac— dc+ca+ca)h] stanceh=c=0, we get
+C[—dc+h2ic+ (dc— gc+ca+cahl}. (3D A=— ZZTfo dzdzcah, (33

By now it is quite obvious that Eq30) can be interpreted
as the definition of the induced action for a bosprin an

external gravitational field with metric given by the tensor
g T g y Concluding, in this work we have considered, at the quan-

9.p parametrized byr andh. In what follows we are going tum level, the question of soldering two Siegel bosons, or
to avoid the technicalities of being in a curved space-time

and consider the problem in a somewhat naive way. At Ieas(?quwalently WwoW?2 gravities, in a fully diffeomorphism

it is always possible to think of our problem as some Confor_mvanant manner. We are led to an effective action which

mal field theory in flat space-time, having the Beltrami pa_descrlbes a full boson living in a two-dimensional space-time

rameters as external sources of the components of th\gith nontrivial Riemannian curvature. We have considered
energy-momentum tensor. This kind of procf)edure for in-" detail _the .algebraic_structur.e of thg _theory and_ perfqrmed
stance. can be found in Ré{ﬂZ] ' its quantization, by using the field-antifield formalism with a

It is easy to show that the effective actiéd) is mani- Pauli-Villars regularization scheme. Although it is straight-

festly BRST invariant. To extract physical results from theforward to take a fully covariant theory and restrict to chiral

induced action, however, it is necessary to use some regula??Ctors’ we h_ave ad(_jr_essed the opposite prqblem h_ere. As it
f clear, this is nontrivial and leads to many interesting fea-

which is essentially the same as the expression derived by
Polyakov[5]. The complementary limit is also obvious.

ization procedure, since further integrations can only be don

in a formal way, as they are divergent. We adopt here th ures.
Pauli-Villars regularization schemg’—9] which gives by This work has been supported in part by U.S. Department
construction a consistent expression for the anomaly. Tef Energy, Grant No. DE-FG-02-91ER 40685, and by CNPq,
implement this regularizing scheme, a PV figld corre-  Brazilian research agency, Brasilia, Brazil.
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