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The contractor renormalization group method, a new approach to solving Hamiltonian lattice systems, is
presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson
real-space renormalization group transformations using cluster expansion and contraction techniques. We
illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferro-
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[. INTRODUCTION mation within the Hamiltonian framework was not possible
in earlier methods.
Whether we wish to compute the mass spectrum of lattice In addition to the above qualitative improvements, there

QCD or the phase structure of the extended Hubbard mode®'e also substantial quantitative refinements. For example,
we are faced with the same problem—extracting physic@ar“er attempts to compute the ground-state energy density

from a theory to which conventional perturbative methods2nd Other properties of the (11)-dimensional Heisenberg
antiferromagnet using previous real-space renormalization

cannot be applied. To date, the most popular approach toroup methods4] or t-expansion technique] had diffi-

these problems_ has been Monte Ca_\rlo evaluation of thgulty matching the accuracy of Andersor8] naive spin-
Eeynman path_lntegral. Recently, we introduced an alterna\ivave approximation. We will demonstrate that the CORE
tive, Hamiltonian-based approach called the contractog, . ,yimation significantly improves on Anderson’s calcula-
renormalization grougCORB approximation[1] and ap-  {jon without making any large spin approximations. Another
plied it to the case of thel+1)-dimensional Ising model. In  example which we discuss is the £11)-dimensional Ising
this paper, we significantly extend the method and simplifyyodel. We will show that an easily implemented CORE
its implementation. The CORE approach defines a systentomputation substantially improves upon results from earlier
atic, nonperturbative, and computable means of carrying ouhethods.
a Hamiltonian version of the Kadanoff-Wils¢@] real-space We close this section with a brief review of the renormal-
renormalization group transformation for lattice field theo-ization group(RG) in order to contrast the CORE method to
ries and lattice spin systems. The method relies on contrag@revious RG implementations. Next, in Sec. Il, we state
tion and cluster expansion techniques. without proof the rules for carrying out a CORE calculation.
The CORE approximation improves upon other methoddVe then illustrate the method in Sec. Il by applying the
of implementing approximate real-space renormalizatiorrules in four examples: free scalar field theory with single-
group transformations on Hamiltonian systef@kin several  state truncation, the Heisenberg antiferromagnetic spin chain
ways. First, our methods make it possible to defirgaage-  With two-state truncation, the anisotropic Ising model with
invariant renormalization group transformation for any Abe- two-state truncation, and free scalar field theory with an
lian or non-Abelian lattice gauge theory, something whichinfinite-state truncation scheme. The rules are then derived in
was not possible in earlier schemes. Second, it is no morg€C- IV. In Sec. V, two issues are discussed: the use of ap-
difficult to treat fermions than bosons when one uses thesBroximate contractors, to establish the connection of the

methods. Third, it is easy to add a chemical potential to th&ORE approach to earlier methods; and the convergence of

der to tune the density of the ground state, a difficult feat invia the renormalization group. Finally, future applications to
earlier Hamiltonian ~ real-space renormalization groupthe Hubbard and gxtended Hybbard mo_dels and I.attlce gauge
schemes. Finally, the CORE method allows us to map sheory with and W|th9ut fermions are discussed in Sec. VI.
theory with one set of degrees of freedom into a theory dey\/e_also address the issue pf relating the_ contractor re_:no_rmal-
scribed in terms of a very different set of degrees of freedon¥zation group to the familiar perturbative renormalization
but possessing the same low-energy physics. Within the corg"oup In ¢* theory.
text of lattice gauge theories, this means we can start from a

theory of quarks and gluons and map it into a system in

which the effective degrees of freedom have the quantum Physical systems in quantum field theory and statistical
numbers of mesons and baryons. Computing such a transfomechanics involve a large number of degrees of freedom and
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can usually be described in terms of a local Hamiltonian.CORE approach do not limit the usefulness of the method to
Conventional wisdom says that when the coherence length @fny restricted range of coupling constants or other param-
such a system is small, the properties of the system depergders in the theory. The CORE approach works well not only
strongly on the form and strengths of the interactions in thenear a critical point when the coherence length is large, but
Hamiltonian; whereas, when the coherence length is largelso in instances where it is small. It is a general method for
many degrees of freedom behave cooperatively and the progolving any lattice Hamiltonian problem.
erties of the system are governed primarily by the nature of CORE computations begin by defining the way in which
this cooperation with the detailed form of the Hamiltonian the new lattice isoarserthan the original lattice. We begin
playing only a subsidiary role. by partitioning the lattice into identical blocks. The Hilbert
The renormalization grouj®], as formulated by Kadanoff space of states corresponding to each block is thercated
and Wilson, is generally thought of as a method for treatingdy discarding all but a certain number of low-lying states; we
systems in which the coherence length encompasses maggnerally retain enough states so that the truncated degrees
degrees of freedom. This method is based on iteratithéty ~ of freedom on a block resemble those of a site on the original
ning the degrees of freedom in the problem, an approactattice. Therenormalizedor effective HamiltonianH™" in
which is similar to that followed in hydrodynamics wherein this truncated space of states is then defined in terms of the
the innumerable microscopic degrees of freedom are resriginal HamiltonianH by
placed by a much smaller set of spatially-averaged, macro- ren__ 2111/ 9112
scopic variables, such as the density and pressure. In this H'™"= Im[[T(OZ1" YA TOHTOIT(D]] 2
renormalization group method, the thinning is achieved via a i
sequence of renormalization group transformations.
While the original formulation of the RG method was
done for the partition function or its path-integral analogue inwhere T(t)=e™"" is the contractor and [[ - - - ]] refers to
field theory, the approach has been extended to Hamiltoniaffuncation to the subspace of retained states. There is a one-
systems. The basic idea is to construct a real-space renormé®-one correspondence between the eigenvalues of the renor-
ization group transformatiorr, which maps the Hamiltonian malized Hamiltonian and the low-lying eigenvalues of the
H, of a theory defined on some lattitg to a new theory original Hamiltonian. In general, the renormalized Hamil-
H, defined on aoarserlatticel ; in such a way that the new tonian cannot be exactly determined; CORE approximates
theory has thesame low-energy physicas the original H™"using a finite cluster expansion, an approximation which
theory. To extract the low energy physics of the originalcan be systematically improved. Matrix elements of various
theory, we repeatedly apply the transformatioand gener- Operators can also be evaluated in CORE by defining a se-
ate the sequence ofrenormalized Hamiltonians: gquence of renormalized operators.
H,=7(Ho), Ho=7(H;), Hy=7(H,), ... . This sequence We use the phrase “CORE technology” to refer to the set
usually approaches a fixed point ef that is, a Hamiltonian  Of tools which allow us to systematically and nonperturba-
H* satisfying7(H*)=H*. Each renormalized Hamiltonian tively compute_an .arbltrarlly accurate approxmaﬂon to _the
in this sequence possesses shenelow-energy physics, but exact renormalization group transformation for a lattice field

the degrees of freedom have betinned Eventually, the tN€Ory or spin system without having to diagonalize the
number of remaining degrees of freedom lying within theoriginal infinite-volume theory. The power of these methods

coherence length will be small and the resulting HamiltoniarS that usually only a few terms in the cluster expansion of
will be more amenable to solution. the renormalized Hamiltonian yield remarkably good results.

D)

tH

Generally, the same transformatieris used for each it-
eration; however, this is not required. The use of different Il. THE RULES
transformations for each iteration is clearly impractical, but
the use of a different transformation for the first one or few In this section, we state, without proof, the rules for car-
steps could be a powerful generalization of the method, farying out a CORE computation. We assume that we are
cilitating great simplifications. A quantum field theory could studying a theory defined by a local Hamiltoni&h on a
be mapped into a generalized spin model; QCD could beegular lattice of infinite extent in some number of dimen-

mapped into a theory of interacting hadrons. sions.
Defining and carrying out the thinning transformations is A CORE computation proceeds as follows.
the key to the RG approach. The RG transformatiois (1) First, divide the lattice into identical, disjoint blocks

usually defined by requiring invariance of the partition func-B;. Denote the space of states associated with bgcky

tion or its path-integral analogue in field theory. The RGH; and denote the common dimension of each of these
method exactly describes the low-lying physics as long aspaces byN.

7 can be exactly implemented, which is rarely the case. In (2) Define a truncation scheme by selecting a low-lying
practice, approximations must be made, such as those madebspaceP; CH; of dimensionM <N on every block; the

in the € expansior] 7], the use of perturbative matching as in same subspace should be chosen on each block. In what
the heavy-quark effective field theof$] and nonrelativistic ~ follows, we will denote theM retained states biyp(j)) and
QCD [9], and stochastic estimation as in the Monte Carlouse them to construct the projection operators
renormalization groupl0] approach. The CORE approach is

a new and powerful method for definingand computing M

7(H) which relies on contraction and cluster techniques. In = ; ;

contrast to other methods, the approximations made in the PO) 521 LD @)
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h3(B;,Bj+1,Bj+2)=H'(Bj,Bj+1,Bj12) —ha(B;,Bj1)
—hy(Bj+1,Bj+2) —hy(Bj) —hy(Bj1)
—hy(Bj;2). 6)

: ; %ince the renormalized Hamiltonian is extensive, only con-
taking tensor products of the statify(j)). Thus, f(_)r 8 " nhected sublattices need to be considered. Recall that a quan-
operator O, the truncated operator is defined as.. = L :

0]]=P'OP. Note, choosing to retain states such that th lity is extensive if, when evalugted on a disconnected sublat-
LL dd ) ’ f freed inale block b?nce, it is the sum of that quantity evaluated separately on the
truncated degrees of freedom on a single block resemblg,,nqcieg components of the sublattice. A truncated cluster

those associated with a single site on the original lattice €Naxpansion can then be defined by neglecting clusters larger

sures that the renormal_iz_ed Hamil_tonian will _tgke_ a formipan some specified range.

similar to that of the original Hamiltonian, facilitating the (4) To complete the determination of the renormalized
iteration process; however, sometimes it is useful to make @, itonian H™" on the infinite lattice. sum the connected
different choice and map the original theory into one formu'contributionsh,(Bj ,...) from the finite sublattices accord-

lated in terms of new dlegre(;s of freedolm. iitoni ing to their embeddings in the full lattice. For example, on an
(3) Compute(see below the renormalized Hamiltonian infinite one-dimensional lattice,

defined in Eq(1), H"=7(H), and the renormalized opera-
tors corresponding to any matrix elements of interest. 2
(4) Repeat the above steps using®™ to obtain Hen= > 21 he(Bj,....Bjir-1). (6)

. . : “=,E
ol =71(HZ". lterate this process until the renormalized !

Hamiltonian is simple enough that its low-lying eigenvaluesgxpressH'™" in terms of block variables such that the form
can be determined. of H™" resembles that of the previous Hamiltonian in the RG
Because the Hamiltonian extensivga concept we will sequence.
define latey and the block-by-block truncation preserves this  The key ingredient of CORE is the method used to ex-
property, the renormalized Hamiltonian can be approximategicitly construct the renormalized Hamiltoniad'(G) and
using the finite cluster methd@CM). This method was first  gther renormalized operators on a given cluster or sublattice
used by DomH11] in the application of the Mayer cluster G_\while, in principle, the appropriate generalization of Eq.
integral theory to the Ising model. A formal proof of the (1) completely specifies what has to be done, in practice, an
method in the Ising and Heisenberg models was then pregttempt to compute this quantity by brute force will run into
_sented by Rushbrooke 2]. The_ method was later general- problems since the operatpfT(t)]] becomes singular as
ized by Sykest al.[13]. The finite cluster method expressest_ .« T see how this problem arises, consider a sublattice
any extensive quantity in an infinite volume as a sum Ofcomprised ofR connected block®; - - -Bg. Let H(G) de-
finite-volume contributions. The procedure is simple topgte the Hamiltonian obtained by restricting the infinite lat-
implement and provides numerous means of detecting coNjice H 1o the sublatticés and suppose that we truncate to the
putational errors. A general statement of the method can b§ubspace7>= P,®---®Pg spanned by theMR states

found in Ref.[14]. - , | #.(G)). Remember that the statgs,(G)) are tensor prod-
Evaluation ofH™" by the finite cluster method is accom- |,.ts of the retained states on each of Bblocks in the

plished in the following sequence of steps. cluster G. Let us denote byles(G)) the eigenstates of
(1) Compute the renormalized Hamiltonian for a theoryH(G) with eigenvaluese4(G) and expand the states
defined on a sublattice which contains only a single bloclﬂd) (G)) in terms of these Beigenstates: ie.

B; (how this is done will be described belpwDenote this
Hamiltonian byH'(B;)=h,(B;). This yields all of the so-
called range-1 terms in the cluster expansion of the renor- |6.(G)) =2 agles(G)). (7)
malized Hamiltonian. b
(2) Calculate the renormalized  Hamiltonian |t then follows that
H'(B;,Bj1) for a theory defined on a sublattice made up of
two adjacent(connectedl blocks B; and B;, ;. The range-2 _
contributions to the cluster expémsion Jof the renormalized T(t)l"sa(G»:% age” ' eg(G)), 8
Hamiltonian on the infinite lattice are obtained by removing
from H'(B;,Bj.1) those contributions which arise from from which we see that all statd#,(G)) which have a
terms already included in the single block calculation: nonvanishing overlap with the ground stateH{fG) contract
onto the same state &s-. This causes great difficulties if
we attempt to numerically computd T(t)?]]~ 2 Fortu-
h,(B;,Bj+1)=H'(Bj,Bj+1)—hi(Bj)—hy(Bj+1). (4) nately, there is an elegant and simple solution to this problem
which avoids explicit computation ¢f T(t)?]]~ Y% make a
unitary (or orthogonal change of basis3(G), on the states
(3) Repeat this procedure for sublattices containing suct¢,(G)) such that each state in the new basis contracts onto
cessively more connected blocks. For example, for a sublag unique eigenstate #1(G). In this new basis, the compu-
tice consisting of three adjacent block, Bj.;, and tation of H'(G) is then straightforward. The discussion
B2, Use which follows specifies the rules for computing the neces-

P=TJ_[ P(j). &)

Let [[---]] denote truncation to the subspace spanned b
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sary change of basis and'(G) for a generalH(G). We (6) Repeat steps3) to (5) with higher and higher energy
state these rules in full generality so as to allow for the speeigenvalues untib=MR. In step(3), g is now the degen-
cial situation in whichH(G) has degenerate eigenvalues, €racy of the lowest-lyingemainingeigenvalue. At the end
and then apply them to successively more complicated exof this procedure, we will have constructed a unitary

amples in order to show how they work in practice. MRXMR matrix S(G) and a set of eigenstate$7,(G))}
H'(G) and the change of bas&G) may be determined Wwith energy eigenvalue®,(G) for g=1-- - MR,
as follows. In the discussion which follows, it will be convenient to

(1) Find the eigenstatdg 5(G)) and corresponding eigen- make the following definitions.
valuese(G) of H(G), where=0- - .NR=1. Order these Definition. The eigenstatetsTﬂ(G)) are referred to as the

states so thatéz<eg, . remnant eigenstatesf H(G) in P. The set of thesavR

(2) Construct theM Rx NR matrix remnant eigenstates is called tbentraction remnantThe
matrix S(G) is referred to as th&iangulation matrix

Q(G) op=(?4(G)|€4(G)). (9) As we already noted, the triangulation mati&G) is

simply a change of basis, taking us from the original basis
Each row ofQ(G) gives the expansion of one of the retained{| ¢,(G))} of retained tensor-product states in the truncated
states in terms of the eigenstatestfG). Each column of  subspace to another bagig,(G))} in which only the first
Q(G) gives the projection of some eigenstate into the trunstate has a nonvanishing overlap with the ground eigenstate,
cated subspace. Also, I8{G) be theMRx MR identity ma-  only the first and second states have nonzero overlaps with
trix. Setm=MR, p=0, andq=0. the first excited eigenstate, and so on; hence,
(3) Copy the firstg columns ofQ(G) into anmXxg ma- S(G)aﬁ=(§a(G)|¢B(G)>. The remnant eigenstates are es-
trix C, whereg is the degeneracy of the lowest-lying eigen- sentially theMR lowest-lying eigenstates dfl(G) whose
value. If the ground state of the cluster is nondegeneratgyrojections intgP are nonvanishing and cannot be written as
theng=1. The columns ofc correspond to the degenerate linear combinations of lower-energy eigenstates projected

eigenstategey(G)), . . . | €q+4-1(G)). Having formedC, into P. In other words, the projections of the remnant eigen-
perform a singular value decompositi®VD), writing states intoP are all linearly independent. Within degeneracy
subspaces, the eigenstates must be rotated in order to elimi-
C=U3V', (100 nate all linear combinations whose projectionsFirare zero

_ . . . . or completely expressible in terms of the projections of
whereU is anmXm unitary matrix,V is a gXxg unitary  Jower-lying eigenstates. Note that the singular value decom-

matrix, and is anmxg matrix of the form position theorenf15] guarantees the existence of the trian-
gulation matrix and the contraction remnant.
B A Orx(g—1) (7) In the basis of the remnant eigenstates, construct the
2= ' 13 matrices

Om-r)xr  Om-r)x(g-n)

A=diag oy, . ...0,), (12) HT(G)aB:<7:1(G)|H(G)|,TB(G)>:5aBIZ:1(G)u (15

where the elements o; are real and satisfy O7(G)ap=(7.(G)|O(G)|T4(G)), (16)

01=0p=---=0,>0 andr<=min(m,g) is therank of the  \yhereO(G) is some operator of interest defined on the su-
matrix C. In other words, use the SVPL5] to construct  |attice G.

orthonormal bases for the nullspace and range of the matrix (8) The renormalized operators are at last given in terms
C. Note that the SVD theorem guarantees that such a decorgs the triangulation matrix and the operators evaluated in the

position exists and thal is unique. contraction remnant:
(4) Multiply UTQ(G) and, by abuse of notation, once
again call the resulQ(G). Then discard the firgy columns H'(G)=S"(G)H,(G)S(G), (17)
and the firstr rows of the newQ(G). The resulting matrix,
which  we again cal Q(G), is now an 0'(G)=S'(G)0;(G)S(G). (18)
(m—r) X (NR—q—g) matrix. Note,r may be zero.
(5) Form the matrix Note that the CORE approach described here differs from
that described previouslyl]. In our earlier formulation of
Loxp  Opxm the method, the contractdi(t) in Eq. (1) was approximated
= Omscp Ufmxm , (13 by a product of exactly computable exponentials. The vari-

ablet was then treated as a variational parameter, adjusted so

and multiply R G); call the resultS(G). Define the states as to minimize the mean-field energy in each RG iteration.

9 1. FOUR EXAMPLES
T _ G = Vo ’_ G y 14 . .
Tpis-2(G)) Srz::l sl €qrsr-1(C)) 4 To better illustrate the method and demonstrate its effec-
tiveness, we now apply these rules in four examples. Each of
with corresponding degenerate eigenvalueghese examples, free scalar field theory with single-state trun-

Tp+s-1(G)=¢€4(G), for s=1..r. Setp—p+r, g—q+g, cation, the (1 1)-dimensional Heisenberg antiferromagnet
andm—m-—r. with two-state truncation, the (#1)-dimensional Ising
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model with two-state truncation, and free scalar field theory TABLE I. Convergence of the partial sums, in the cluster
with infinite-state truncation, has been chosen to clarify expansion of the free massless scalar-field vacuum energy density
particular aspect of the rules. as a function of the range The energies are CORE estimates from

a single-state per site truncation algorithm, and the errors are the
differences of these estimates from the exact energy density

A. Single-state truncation: Free scalar field theory 0.636619772

First let us discuss a massless=0) free-field theory.

Free scalar field theory on a lattice is just a set of coupled n €n Error
harmonic oscillators,
1 0.707107 0.070487
1, w1 o, 2 0.658919 0.022299
H=2 | ST()%+ S b()2+ 5[+ 1) = b()1?|, 3 0.647644 0.011025
: (19 4 0.643206 0.006586
5 0.641001 0.004382
where[ ¢(j),I1(k) ]=i6j,. The simplest possible truncation 6 0.639746 0.003126
procedure we can adopt is to keep the number of sites fixed 7 0.638962 0.002343
and truncate to a single state per site. Begin by dividings 8 0.638441 0.001821
9 0.638076 0.001456
H=2, [H(j)+V()], (20) 10 0.637811 0.001191
] 20 0.636932 0.000312
1 30 0.636761 0.000141
H(j)= E[H(j)2+2¢>(j)2], 21) 40 0.636700 0.000080
V()=—¢(j))¢(j+1). (220 and expand the tensor product staéf(j))®|w(j+1)) in

terms of the eigenstates (), iess Since this tensor-
Truncate by keeping only the ground stateHffj) for each  product state has the exact two-site ground state appearing in
site j; i.e., keeping the oscillator state)(j)) of frequency its expansion in terms of the two-site eigenstaté$)(j) is
w=+2. Note, this procedure truncates the entire Hilbertg 1x 1 matrix whose single entry is the exact ground-state
space to a single product state and, therefore, the renormeghergy ofH, gie; i.€., Eo=(v/3+1). Furthermore, sinc&
ized Hamiltonian will be a X1 matrix, as will each termin  pas to be a ¥ 1 orthogonal matrix it is trivial. It follows
the expansion from these facts that the connected range-2 contribution to
the ground-state energy density is given by

Hren— ; h, (] yconn (23)

1
() M= Eo(j) — 2y () ©M=5 (V3+1-242). (27)
Since the CORE procedure guarantees k&t has the same
low energy structure as the original theory, keeping only one i
state means that we will only be able to compute the ground- 10 construct the range-3 term, find the ground-state en-
state energy of the free scalar field theory. We will see thafrdy of the three-site problenk;, and then subtract twice
all of the termsh, (j)°™ are independent djf and so it fol- the range-2 contribution, because we can embed a connected

lows from Eq.(23) that the ground-state energy density will two-site sublattice in the three-site lattice in two ways, and

be given by three times the range—l contribut_ion, becayse _the single-site
can be embedded in the three-site sublattice in three ways:
* ie.,
Eree eid= 2, (1) (24)

h3™™(i)=Ea(j) —2h,(j)*°"—3hy(j) ™ (28)
for any fixedj. I !
Following the basic rules, truncaté(j) to obtain To compute the range-<contributions, find the exact ground-
state energy of the-site Hamiltoniang, , and then subtract
_ 1 the lower orders-range connected contributions as many
hy(j)*"= 5\/5, (25 times as the corresponding connecsesite sublattice can be
embedded in the-site problem:
whereh;(j)°"can be thought of as either a1l matrix or

as ac number. hr (1) *M=Eq () = 2hy_1(j) %"= 3h, _5(j) ™
To compute the range-2 contribution to the energy den- h. (i yconn 5
sity, we must diagonalize the two-site Hamiltonian == rhy ()™M (29

1 We wish to emphasize the unusual nature of this formula
H(1)2site=5[11(] )2+ 2¢())2+11(j +1)*+2¢(j +1)?] in that we calculate the energy density of the infinite-volume
Hamiltonian system by exactly solving a series of finite-

—¢(j)p(j+1), (26) lattice problems, each defined with open boundary condi-
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tions, and recombine these results to cancel out finite-volume [Sa(}),Sa() =168} €apy5,()). (32
effects. The results shown in Table | show the way in which
the partial sums To analyze this problem, divide the lattice into three-site
blocks and label each block by an integeiThe sites within
n each block are labeled by the integdi3j,3j+1,3j +2}.
€= >, h,(j)eom (30)  Corresponding to this decomposition of the lattice into
blocks, divide the Hamiltonian into two partég andVgg:

converge to the true ground-state energy density. The sur- .
prising result, given that the energi&s are computed for HB:; He(j)
problems with open boundary conditions, is that the finite-
volume effects appear to cancel to or@¥l/r ), rather than

O(1/r) as one would expect for a theory defined on a finite

= [8(3))-s(3j+1)+5(3j+1)-5(3j +2)],
lattice with open boundary conditions, or lik¥1/r2) which :

one would expect for a theory defined with periodic bound- (33

ary conditions. At this time we do not completely understand

why the convergence is this rapid, but this behavior is seen Veg=> Vaa(j)=2> S(3j+2)-5(3j+3). (34
i ]

in all of the examples we have studied.

Truncate by keeping the two lowest-lying eigenstates of

Hg(j) for each blockB(j) so as to produce a new coarser
There are several reasons for studying the Heisenberg afattice which again has a spin-1/2 degree of freedom associ-

tiferromagnet. First, the model exhibits spontaneous breakated with each of its sites. Diagonalizittg(j) is a simple

ing of a continuous symmetry in two and three spatial di-exercise in coupling three spins: i.e.,

mensions and, although in one spatial dimension the

B. Two-state truncation: Heisenberg antiferromagnet

Mermin-Wagner 16] theorem forbids a nonvanishing order HB(j)=§(3j)-§(3j + 1)+§(3j +1)-§(3j +2), (35
parameter, the theory still has a massless patrticle; it is inter-
esting to see if we can obtain the ground-state energy den- =s(3j+1)-[s(3j)+s(3j+2)], (36)

sity, the massless spectrum, and the vanishing of the stag-

gered magnetization by means of a simple CORE 1, . ) _

computation. Second, this theory is exactly solvable by =5[Sti) = S(o+2)(1) — 3/4], (37)
means of the Bethe ansdtk7] and so we can compare our

results to the exact ground-state energy densit & ((Y=&(31) 4531+ 1)+ (31 + 2 ,
et —In(2)+ Lid= — 0.443147. Third, there is a computa: 1€ Sall) 32(31) (3 +1)+s(3)+2) ";lmd ?*20)
tion by Anderson, based on an approximate spin-wave com= S(31) +S(3j +2). From Eq.(37) we see that the eigen-

putation, which reproduces the spin-1/2 antiferromagnet erﬁt""tes2 ofHg(j) can be labeled by the agqnvalues&ﬁ;t(n
ergy density to within 2.5%. Although this approximate @nd S, 2(j), and the two lowest-lying eigenstates belong
result is based on treating the spin-1/2 system as if it hadP the spin-1/2 multiplet for which the spins on sitejs &hd
spin N, for N>1, and then evaluating the result for 3j+2 couple to spin 1. We denote these two degenerate
N=1/2, it has been difficult to do as well by earlier Hamil- States by1;) and||;) and use them to construct the projec-
tonian real-space renormalization group methods; we are filon operator
nally able to exhibit a simple approximate CORE computa-
tion which doe; significgntly _better.than Anderson’s spin- P:H P(j): P(i)=|Tj><Tj|+|lj><lj|- (39)
wave computation working with spin-1/2 from the outset. j
The final reason for studying this case is that the symmetry
of the model makes it possible to describe the details of th&Jsing theP(j)’s we construct the connected range-1 opera-
computation in a straightforward manner. In particular, it istors
simple to explain the need for, and construction of, the tri- . . . . .
angulation transformatio which we referred to when we h1(J)°"=P(j))Hg())P(j)=—1(j), (39
stated the _basic rules f_or doing a C(_)RE computa_tion. _wherel(j) stands for the X2 identity matrix.

The Heisenberg antiferromagnet is a theory with a spin- To obtain the connected range-2 temg(j)<°™ construct

1/2 degree of freedors(j) attached to each sifeof a one-  the Hamiltonian for the two-block or six-site problem. Since
dimensional spatial lattice and a nearest-neighbor Hamilthjs Hamiltonian commutes with the total-spin operators for
tonian of the form the six-site sublattice, the eigenstatesHf,_qies Will fall
into spin-3, spin-2, spin-1 or spin-0 multiplets. The state
H=2, s(j)-s(j+1). (31) .
]

E(|T]lj+l>_|lﬁj+l>) (40)
The s(j)’s are operators which act in the single-site Hilbert
spacesH; and satisfy the familiar angular momentum com-is the unique linear combination of the original tensor-
mutation relations product states which has total spin zero; hence, only spin-0
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states appear in the expansion of this state in terms of eigen-

states ofHg,_sies. The lowest-lying eigenstate ¢y stes Hren= 2> C1j+B15())-s(j+1), (48
appearing in the expansion of this spin-0 state is the ground !
state OfHj-sites WhoSe eigenvalue we denote by. Simi-  \yhereC=g,+ 1. Clearly this approximate Hamiltonian, ex-
larly, the following states cept for the trivial addition of a multiple of the unit matrix,
L Eas the same formhas tr?e t(?]rigina[ Hatmiltor!i:an.l Whe? this(;i
appens, we say that the theory is at a critical point, an
15752, E(|T1li+l>+|m”1>)' idisa), |B1]<1 implies that it has no mass gafThe logic which

(42) says thatB;|<1 implies no mass gap is that if we iterate the
renormalization group transformation, then eventually only
are linear combinations of the original tensor-product statethe c-number part of the Hamiltonian will remain. Since the
which have total spin 1 and total component of spin interaction part becomes vanishingly small, eventually all of
M,=+1, 0, —1, respectively. The lowest-lying eigenstate the low-energy states of the theory must have a vanishingly
of Hgix_sies@ppearing in each of these spin-1 combinations issmall energy splitting. Hence, the theory must have a van-
that member of the lowest-lying spin-1 multiplet having theishingly small mass gap.
appropriate value oM,; hence, each of these states con- To extract the ground-state energy density, we have to
tracts onto a unique eigenstatetf, .. If Wwe denote the pay attention to the constant term. After the first transforma-
degenerate eigenvalue of these eigenstates;byhen the tion, we see that this term will make a contribution to the

operatorH (72)(j) has the form ground-state energy density equalG(8, where the factor of
1/3 appears because each site on the new lattice corresponds
e 0 0 O to three sites of the old lattice. Remembering this and per-
e 0 forming the renormalization group transformation on the in-
H(TZ)(j )= ! , (42)  teraction ternﬁ1§(j) . §(j +1), we generate a new renormal-
0 & O ized Hamiltonian of the form
0 0 0 ¢

;o - 220\, &
using these remnant eigenstates as our new basis states. We Hren_; B1CL(j)+B1s(j)-s(j+1). (49)

could use the explicit form of the triangulation matr$

which rewrites the original tensor product states in terms ofAccumulating the new constan®,C/9 into the previous

these spin eigenstates, to transform this back into the originglomputation of the energy-densitywhere the 1/9 comes

tensor-product basis from the fact that one point on the new lattice corresponds to

nine points on the original lattigewe again have a new

[1iTi+0 ITilic0 [T+ [jlj+2), 43 Hamiltonian which has the same form as the original Hamil-
o . , , tonian, except that it is multiplied by the factﬁﬁ. Repeat-

but this is unnecessary since symmetry considerations resg this process an infinite number of times yields a series for

quire S'TH?)(j) S to have the form e roind state onargy dendiy
Boli® 141+ Bas(])-s(j+1). (44) co (g c
Erengrp:§2 3 :3(1——,8/3):_0-4484462-
Equation (44) can be rewritten in terms of the total spin n=0 1 o

operator for siteg andj+1 to obtain

which agrees well with the exact result, .= —0.443147.
_ 3 — 1 Thus, this simple range-2 calculation gives a result which is
€=hBo~ 7P, €= PBot 7P (45 ’ o
good to about one percent; this is more than a factor of 2
i i ) ) better than that obtained from Anderson’s spin-wave compu-
While the symmetry of this system makes it possible to detation. Note that this very simple calculation yields thect
terminee, ande; analytically, it is more convenient to com- mass gap. One also finds that the staggered magnetization
pute it numerically. To six significant figures, this calculation /\/l:EJ-(—l)sz(j) vanishes(note that one obtains a non-
yields vanishing staggered magnetization on two- and three-
dimensional spatial lattices
€0= —2.493577, €,=—2.001995. (46) This complgtes our present discussion of the antiferro-
magnet. We will return to it again in the section on questions
i convergence since it has something to teach us about the
E‘reliability of single-state truncation calculations.

To construct the connected range-2 term, we subtract th
two ways of embedding the one-block sublattices into th
connected two-block sublattice

hz(j)Conn:(Bo+2)1j®1j+1+B1§(j)'§(j +1). (47 C. Two-state truncation: The (1+1)-dimensional Ising model
We now revisit the (3 1)-dimensional Ising model

We could go on to compute rangeeonnected terms for which we discussed in Refl] using an earlier formulation

r>2, but we will stop at range 2 and define the approximateof the CORE approximation. While our earlier treatment was

renormalized Hamiltonian by quite successful in extracting the physics of the model, our
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new approach produces better results, is less computationalhumerical methods to carry out the computation. We numeri-
intensive, and is much easier to implement and explaincally diagonalize the 512512 nine-site Hamiltonian matrix.
There are two main reasons for treating this example in somelowever, since we only need a few low-lying states to com-
detail. First, remarkably accurate results can be obtaineguteS, we could significantly reduce the computational cost
even when considering only terms up to range 3 in the renorby using the Lanczos method. While unnecessary for this
malized Hamiltonian. Secondly, this problem does not haveimple problem, the application of the Lanczos method to the
the high degree of symmetry of the Heisenberg antiferroconstruction ofS will be very useful when studying more
magnet and so the construction of the oper&@amust be  complicated theories.
done explicitly. The starting Hamiltonian is invariant under parity and the
The Hamiltonian of thé¢1+1)-dimensional Ising model is  simultaneous transformatios,(j)— —s,(j). Our thinning
algorithm preserves this symmetry so that the most general
Hising= _; [eyali)tsodi)o(i+1)], (5 form therenormalized Hamiltoniarcan take is

c,=cog\7/2), S,=sin(\m/2), H’e”=—a2j CaO4(j), (52

wherej labels the sites on the infinite one-dimensional spa- ) ) ] )
tial lattice and G\ <1. This model is interesting for several Ou(i)=04y(1) 00, (j+1)---0g (j+T), (53
reasons. First, it exhibits a second-order phase transition at
N =1/2; for A< 1/2, the ground state of the system is unique where thec,’s are the couplingsy labels the different types
the order parametdio,(j)) vanishes and the excited states of operators which can appear, gni$ a site label. Given the
are localized spin excitations; whan>1/2, the ground state Symmetries of the original Hamiltonian which will be pre-
is twofold degenerate corresponding to values of the ordegerved in the renormalized Hamiltonian, we see that the only
parameter o,(j)) = +[1— cof(A7/2)]*® and the excitations two possible one-site operators ard)={u,z}, whereu de-
are solitons(kinks and antikinks Secondly, the model is notes the identity operator; in other words, the only one-site
exactly solvable and so we have exact results with which t®@perators ar® (i) =o(i)=1 andO,(i) =o(i). Similarly,
compare. Thirdly, the model has much less symmetry thathe only two-site operators which are consistent with the
the Heisenberg model and so the structure of the renormasymmetries of the problem are®={xx,yy,zz, and the
ization group transformation is richer. only three-site operators which can appear are
In order to show how a more complicated approximatea®)={xzxXux,xxzzxxyzy,yuy,yyz zyy,zuzzz3.
renormalization group transformation works, we once again Since the original form of the Hamiltonian given in Eq.
adopt a two-state, three-site block truncation algorithm, but51) is just a special form of Eq53), we will discuss the
now we computé, (j)"" for r=1,2,3. Because the Hamil- truncation procedure for the general case. Once again we
tonian is more complicated than that of the antiferromagnework — with  blocks B;  containing the points
and computing the connected range-3 terms involves solving3j,3j + 1,3j + 2} and keep the lowest two eigenstates of the
for the eigenstates of a nine-site problem, we must resort tgeneric block Hamiltonian

HB(j ) == Cz[oz(sj ) + Oz(sj + 1) + Oz(3j + 2)] - Cxx[oxx(sj ) + Oxx(3j + 1)] - ny[oyy(3j ) + Oyy(‘?’j + 1)]
- sz[ Ozz(gj ) + Ozz(Sj + 1)] - Cxuxoxux(3j )— CyuyOyuy(3j ) - Czuzozuz(3j ) - szxoxzx(3j ) - Cxxzoxxz(3j )
- szszx>&3j )— Cyzy(/)yZ)KBj )— nyzOyyz(?’j )— CzyyOzy)KSj )— szzozzz(sj ) (54)

When we truncatédg(j) to these two states, we obtain the tensor-product states in terms of the eigenstates of
new range-1 terms. Sinde, (j)°°"is a diagonal matrix in  Hgy_sie. ENsure that the eigenstates are arranged in order of
this basis, it can be written as a sum of a multiple of the unitincreasing eigenenergy.
matrix 1(j) and a multiple ofs,(j). The construction o now proceeds iteratively. Begin by

If we denote the eigenstates of the three-site bBghy  focusing attention on the first column @F; this is a 4<1
[1;) and||;), then the connected range-2 contributions to thematrix C; whose entries contain the overlaps of the four
renormalized Hamiltonian are obtained by first solving thetensor-product states with the eigenstate of lowest energy. If
two-block or connected six-site problem exactly and expand€; has any nonzero entries, then we can find a rotation ma-
ing the four tensor-product states|¢,(B;,j+1))  trix Ry such thatC,; can be brought into a form where only
={ 115+ [TjLj+0): [LjTj+1), and|];];+1)} in terms of  its upper entry is nonzero. Finding such @pis equivalent
the eigenstatefe4(B;,B;.4)) of this problem. To compute o constructing the singular value decompositiorCaf Us-
S for the range-2 problem, begin by constructing the@%  ing Ry, transformQ to Q;=R;Q and then focus attention on
overlap matrix Q,z=(#(B;,Bj+1)|€s(B;,Bj;1)). Note the 3x63 submatrix obtained by eliminating the first row
that each row ofQ gives the expansion of each of the four and first column ofQ; call the resulting matrixQ;.




54 CONTRACTOR RENORMALIZATION GROUP TECHNOLOGY ... 4139

Apply the same reasoning ;. Focus on the first col-

umn of Q4, denoted byC,. If C, contains some nonvanish-  0.0005 } I
ing entries, construct the orthogonalx3 transformation '
UE which bringsC, into the standard form where only the ..,
upper element is nonvanishing. Again, this is equivalent to
performing the singular value decomposition ©f. Next,
define a 44 matrixR, as 0.0003
1 0 0 0
0.0002 |
R 0 (55
“lo UZ 0.0001 |
0
Tran_sfoer to Q,= Rle_Q, t_hen construct the 262 sub- 0 b 02 04 0.6 '0.8 1
matrix Q, formed by eliminating the first two rows and col-
umns fromQ,. A
Next, construct the 2 2 matrix U} which brings the first
column ofQ, into standard form, extendg to a 4X4 ma- FIG. 1. Fractional error in CORE estimates of the ground-state
trix energy density in the Ising model againstThe dotted curve with
crosses shows previous estimates from R&f, results from the
1 0 O 0 present work are shown by the solid curve with circles.
0 1
Ry= , (56) [Lilj+1Tj+2) [LiTj+1dj+2) [Tilj+alj+2), and
0 O |lej+1lj+2>, and we must computéassuming nondegen-
0 0 ul eracy of the spectrum and no missed staties eight lowest

eigenstates oH e siedj) in order to construcH$ and

and then define the triangulation mat8)=R;R,R;. Also, ~ S'¥). Except that we are dealing with slightly larger matrices,
define the diagonal ¥4 HamiltonianH{? from the four ~We go through the same steps described above. The range-3
lowest eigenvalues offqy_sis. Then the 44 connected contribution to the renormalized Hamiltonian is then given
range-2 operator in the renormalized Hamiltonian is given b)by

ho(j)eM= S@HP'S2 —h, (j)COM—h(j+1)cM ha())"=SFHP(j)S® —hy(j)*M—hy(j + 1)

(57) _hl(j+2)conn_ hz(j)conn_ hz(j+l)conn_

Note that we have simplified this discussion by assuming, (58)
as is usually the case, that the eigenvalue$igf s are
nondegenerate and that the four tensor-product states ha@iven h*)(j), h®)(j), andh®)(j), the approximate renor-
nonvanishing overlaps with the four lowest-lying eigenstatesmalized Hamiltonian on the lattice with one-third as many
If this is not the case, then we have to generalize this discusites as the original is
sion slightly. In the event that some eigenstates do not occur
in the expansion of the tensor product states, the correspond- ren._ . . .
ing matrix Q; or Q, will have a first column in which all H _21-: [ha(})+ha(j) +hs())]. (59
entries are zero. When this happens, simply eliminate this
column and use the first nonvanishing column to define the Our results were obtained by choosing a specific value of
rotation matrix; the corresponding eigenvalue is then used in in the special form of the Hamiltonian given by E§1) in
H{. When an eigenvalue ig-fold degenerate, include in which onlyc{*) andc(? differ from zero. We then apply the
C, or C, all g columns ofQ, or Q, corresponding to the above range-3 CORE procedure. After the first RG transfor-
eigenvectors in the degeneracy subspace and then carry autation, we obtain a new Hamiltonian comprised of all al-
the singular value decompositi@]=UjE-VjT. The required lowed operators with nonvanishing couplings; however,
rotation matrix is again obtained frotd;, but nowV; is most of the couplings are small. We iterate the process, ob-
needed to construct the remnant eigenstates from the degei@ining a sequence of renormalized Hamiltonians in which
eracy subspace. Taking degeneracies into account can bi&e couplings flow until finally, all but one of the coefficients
come important after a large number of iterations as th&anish; i.e., until one reaches a solvable fixed-point Hamil-
renormalized Hamiltonian flows closer and closer to one ofonian. Our numerical computations show that there are only
its fixed points. two possible fixed-point Hamiltonians: one in which only
Constructing the range-3 connected terms proceeds thg”) is nonvanishing, and one in which ont{;) is different
same way, except now we have to work with three adjacenfrom zero.
blocks B;, Bj;1, andBj,,. Now the matrixQ has eight In Fig. 1, we plot the fractional error in the CORE esti-
columns corresponding to the tensor-product statesnates of the ground-state energy density. The dotted curve
15T i+1T 20 [LiTj+aTj+2)s [Tjlj+alj+2)s [TjTj41lj+2),  shows the results obtained in Rét] using the earlier ver-
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FIG. 2. CORE estimategircles of the mass gap in the Ising FIG. 3. Comparison of the CORE estimat@sossey of the

model againsh. The solid curve shows the exact mass gap. magnetization with the exact resu(solid curve in the Ising model
against\. A, is the critical point.

sion of the CORE approximation. The critical valugsepa- )¢ . . )

rating the spontaneously broken phase from the unbrokeﬁ/hereMT (J) consists of the matrix elements BF'" in the

phase is found to bl_~0.50365 which agrees well with the asis of remnant eigenstates, anfl) is the restriction of the
exact value of 1/2 c full magnetization operator to threblock sublattice. A com-

Extracting the mass gap as a function\ofs easily done parison of the CORE estimates of the magnetization with the

. h . o exactly known results is shown in Fig. 3.
since both fixed-point Hamiltonians are exactly solvable. Be- .
Two procedures were used to extract the critical exponent

. o) . .
low the phase transition Whené is the only nonvanishing from these calculations. Both procedures attempt to fit the

coefficient, eigenstates of the Hamiltonian are tensor prOdFogarithm of the magnetization to the form of the exact an-
ucts of eigenstates af,(j), and so the mass gap is equal to g, namely:

Zc§°°) Above the phase transition, the only nonvanishing co-
efficient is c{;) and so eigenstates of the Hamiltonian are (N = IN[M(\)]
products of eigenstates of,(j). In this case, there are two P In[ 1—tan(\ 7/2)%/tan(\ 7/2)%]’

degenerate ground states; the discrete symmetry .
o(j)— —o(j) is spontaneously broken. In this phase, theWhere IiM(\)] stands for the logarithm of the computed

low-lying eigenstates arkinkswhich have mass&x‘i). The values of the magnetization ang stands for that value of

results of the CORE computations for the mass gap ard & which.the theory changes phase. If we attempt to extract
shown in Fig. 2 P gap p(\) by fixing \.=0.50365, the value above which the
. - L . i i) ()
Finally, the magnetization was also studied. A sequenc&©ORE computation changes from haV'ﬂé #0 10 Cyy
of renormalized magnetization operators was computed 0. then the values gi(A) obtained from this procedure do
along with the renormalized Hamiltonian; the starting opera'0t lie on straight line. Moreover, the average value of
tor in this CORE sequence was=3,0,(j). The renormal- p(\) lies between 0.10 and 0.11, which is not a very good fit

ized magnetizatioM™" has a cluster expansion given by {0 the exact value 1/8. If, on the other hand, we vigyand
determine its best value by fitting the resulting values for

* p(\) to a straight line, then we obtain a very good fit for
M= > my(j)m, (60) A,~0.498 and find that p(\) lies in the range
por=t 0.1236<p(N\)<0.126. The discrepancy betwean=0.498
where the connected rangeeperatorsm,(j)®™ are com- @ndA.=0.50365 gives priori evidence, without knowledge
puted from the truncated one-, two-, and three-block opera®f the exact solution, that the determination of the critical

(64)

tors, point must have an error of about one percent due to an
accumulation of numerical errors and limiting the computa-
my(j)=MP(j), (61)  tion to range-3 terms. Figure 4 displays three plotpEf)
for A\=0.496, 0.498, and 0.500; the best fit to a straight line
my(j )= ST<2>M<TZ>(j)s(2>_ml(j)Conn_ my(j +1)cm is given by the middle curve which corresponds to

(62 Ac=0.498.

mg(j)°M=ST®M (73)(1' )S3)— my(j)%M— my(j + 1) D. Infinite-state truncation: Free scalar field theory

. . . Lastly, we return to the case of free scalar field theory in

_ conn__ conn__ conn ’
ma(}) my(j+1) my(j+2)7, 1+1 dimensions, but this time, we use a truncation algo-
(63 rithm which keeps an infinite number of states at each step.
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FIG. 4. Plots ofp(\) as given in Eq(64) for \;=0.496(dashed
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In other words, only states for which the higher-frequency
v_ oscillator is in its ground state are retained. With this
choice of eigenstate$,; (p) " can be written as

conn_ V- T 1
hi(p) =5t A+(p)«4+(p)+§, (71)
Y 0L (prr b))
2 2 + + + .
(72)

Now consider an r-block sublattice B(p, ...,p
+r—1)={2p,2p+1,...,2+2r—1}. The Hamiltonian re-
stricted to this sublattice has the form

2p+2r—1
Hip)=3 2, 11()?
12p+2r—1

+5 2 d(DMuidba), (73
i1.J2=2p

model, andé is the critical exponent corresponding to the magne-where M, is a 2rX2r real-symmetric matrix whose ele-

tization.

ments satisfyM,(i,j)=M,(i—]j). M, can be diagonalized
to obtain the normal modes, and théowest eigenvalues of

Consider a truncation procedure based upon two-sitd, then yieldH, the remnant eigenvalues. The triangula-
blocks. For each two-site blodk,, we introduce the opera- tion matrix S is determined as usual, except that we can now

tors
d(p) _1 2p) = (2p+1) (65)
(P i—ﬁ[(ﬁ( P)*¢(2p+1)],
Q(p) 1 IM(2p)=11(2p+1) (66)
(pi—ﬁ[(p—(p 1,
and define ladder operators, (p) and.A_(p) using
B(p).=——[A(p)]+A(p).] (67)
p * \/m p * p =1
Q(p)- =i\ ZTAMPL - A(p).], (69)

where y_= \/,u2+3 and y, =Ju?+1. In terms of these

work in terms of the fields instead of basis states. The proof
of these statements is a straightforward exercise in normal
ordering using simple generalizations of the identities given
in the Appendix and the definition of the operatér The
connected range-term h,(p)®"™ is then computed from
H,(p) by subtracting from it the previously computed con-
nected rangg-terms, forj=1,... r—1. Finally, the terms
h,(p)®"™ are combined to form the renormalized Hamil-
tonian, which takes the form

1 r-1
HE= 20 3 Mot Qu(p)*+2 2 '@ (PP (pm) |,
74

whereh, and o[} arec numbers. For example, if we trun-
cate the cluster expansion after two-block clusters 2),
we find in each RG stepn—n+1 that «{?(n+1)
=a?(n)/2 and «P(n+1)=aP(n)+(V5-1)a{P(n)/2,
for «{?(n)<0. Amazingly, nod* terms appear in the renor-

variables, the two-site Hamiltonian is simply a sum of twomalized Hamiltonian, but note that the exact CORE transfor-

decoupled oscillators, and its eigenstates are given by

1
IN-(P)N-(P)) = o e AL AL (D) s, 7-),

(69

where A, |y, ,y_)=A_|y,,y_)=0. We now adopt a

simple truncation procedure in which we keep an infinite set

of block states

IN(p))=[N-(p)=N; N_(p)=0). (70

mation of the nearest-neighbor Hamiltonian results in a new
Hamiltonian which has an infinite number of terms. The im-

portance of these results is that it shows we can, both in
principle and in practice, directly deal with field theories

having an infinite number of states per site, without first
mapping them to spin systems. A more detailed description
of the above calculation will appear in a forthcoming paper,
which will also describe the analogous calculation for Fermi
fields.

At this point, an interesting question is “How big must

r be in order to do a good job of reproducing the mass gap
and correlation functions of the free-field theory?” To ana-

lyze this question for the massless fiditie hardest cage
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TABLE Il. Comparison of some of the couplings!” in the
renormalized Hamiltonian of a free scalar field theoryrfer2, 3, 4,

o, wherer is the cluster-expansion truncation order. Note that only

ag and «, are defined for the cage=2.

al’ r=2 r=3 r=4 r=o

ag 0.381966 0.371054 0.367594 0.363380
a, —0.500000 —0.451922 —0.438360 —0.424413
a; 0.104212 0.098137 0.084883
az —0.041400 -—0.036378

expand the field® ., and(} ., in terms of their Fourier com-
ponents to rewrite the renormalized Hamiltonian fo= 0 as

72

Hren—
>

=—

r-1

>

- ( Q) Q(—k) +2 a(s”cos(sk)}
/2 2

X D(K)D(— k)) . (75)

We then explicitly compute the!"”) couplings for various
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FIG. 5. CORE estimates of the mass gap squanéd) in the
free scalar field theory against the truncation ondém the cluster
expansion of the renormalized Hamiltonian. The CORE estimates
are obtained using an infinite-state truncation algorithm.

for k>m more rapidly than it does fde=0. This means that
even for the worst casef a free-field theory, careful exami-
nation of the behavior of the function, (k) and the oscilla-

tory behavior ofm(r) will allow us to extract the correct

compares the values afy’, o{?, of, anda{’ obtained

terms in the finite-range cluster expansion. A final point

from a range-2, range-3, and range-4 CORE computatiorwhich we state without proof is that the importance of the
We see from the table that any given coefficient convergesonger range terms is significantly reduced if we work with

rapidly inr to itsr—oo limit. In this limit, the renormalized

larger blocks. In one dimension for blocks of sike the

Hamiltonian matches the original theory restricted to thecorresponding coefficientsy(r) fall off as 14212,
subspace spanned by the oscillators having momenta This discussion applies to the truncation procedure in

—wl2<k<w/2; hence, we can use

o)

> al”cogsk)=1—cogk/2), (76)
s=0
to determine the couplings in thre— limit. We find
(=) 2
4(—-1)°
. (s>0). (78)

s T h(4s2—1)

Note that the exact coefficients”) fall off as 15°. This
means that if we truncate the formula for the frequency

r-1
w?(k)=22, al”cogks), (79
s=0

then the mass(r), defined bymz(r)zwf(O), fails to van-

ish; in fact, for some values af, it becomes negative; the

behavior of the gap as a function ofis shown in Fig. 5.

Since negative values for the gap make no sense as th

which we keep an infinite set of states at each truncation
step. It would be interesting to discover how much of this
behavior occurs if we keep only a finite number of states at
the first step and map the theory into a spin system. The
results of the Ising calculation show that we do not always
need to work with large values of in order to correctly
reproduce the mass gap for a theory near its critical point.
Note that CORE'’s ability to reproduce the mass gap and
density of states near zero momentum is much greater than
that of the naive {=0) renormalization group procedure.
For example, if we diagonalize the single-site Hamiltonian of
the massless free scalar field theory and keep the single-site
ground state and first excited state, then the naively deter-
mined renormalized Hamiltonian is the simple Ising Hamil-
tonian for a value of the coupling far from its critical point;
the system has a nonvanishing mass gap. However, if we
keep the same single-site states but use the CORE rules to
construct the renormalized Hamiltonian, many more interac-
tion terms emerge and the couplings in the renormalized
Hamiltonian are such that the system is much closer to the
critical point where the mass vanishes. A more complete
analysis of this system which examines the costs and benefits
f keeping more states versus computing longer-range con-

imply that the renormalized Hamiltonian has no ground state ected contributions to the renormalized Hamiltonian would

we can only truncate after an even number of terms. A

Pe very informative.

important observation we can make from the plot is that we

can only accurately compute the mass gap for the free-field

theory if we work out to a range~ 1/m. We should note,

IV. DERIVING THE BASIC RULES

however, that the mass is the quantity which is most sensi- The definition of the renormalized Hamiltonian in E@)
tive to making a finite-range truncation of the exact renor-is the cornerstone of the CORE approach. We were led to

malized Hamiltonian and that the functias (k) converges

this definition by first observing that the state



e—tH/2

- ’\I]O
V(‘l’o|e_tH|‘1’o>| >

contracts, ag—o, onto the lowest energy eigenstate Hf
for which the starting trial stat¢¥,) has a nonvanishing

¥ ()= (80

overlap, typically the ground state. Note that the ground-state

expectation value of any operat@rcan be obtained by tak-
ing the limit

(O)=lim(W¥ (1)[O[W(1)). (81)
t

— 0

The use of Eq(1) to define the renormalized Hamiltonian is
strongly suggested by the following theorem.

Theorem |.Given a Hilbert spac&{ and truncation algo-
rithm with associated projection operatBr, diagonalizing
the renormalized Hamiltonian

H™® ) =[[T()2]] YA [TMOHTO T4 YA -

whereT(t)=e ™ and[[O]]=P'OP, is equivalent to find-
ing the vector ) in the subspac®= PH which minimizes
the ratio

EQO=(UTORTOD YT 9). (83

Proof: Let |¢,) label a basis forP=PH and expand
|#)=Znan| dn). Then,
2 mAman{ ém TOHT (0| dp)
2 5.q8p 8q{ Sl T(1)?[ ¢bg)
To minimize this expression over all the statesHAndiffer-

entiate Eq.(84) with respect toa’ and equate to zero; this
yields

Eylt)=

(84

(S TOHT[9)=E (ST 9). (85)
Since this applies for eaah this can be rewritten
[[TOHTOI ) =ELOIT)?1] ). (86)

Hence, finding the stat¢y) which minimizes £,(t) is

equivalent to solving a generalized eigenvalue problem.

Given that[[ T(t)?]] is a positive matrix, the relative eigen-

value problem can be converted into an equivalent standard
eigenvalue problem. In other words, finding the state which
minimizes the ground-state energy of the original Hamil-

tonian is equivalent to diagonalizing the operdttf'(t) de-
fined in Eq.(82).

In order to demonstrate that the renormalized Hamiltonian
given in Eq.(1) defines a valid renormalization group trans-
formationH"™"= 7(H), we must at least show that the eigen-

values ofH™" and the low-lying eigenvalues of the original
HamiltonianH are the same.

Theorem |II. Let H be a Hamiltonian defined in an
N-dimensional Hilbert space( with eigenstateg|eg)} and
corresponding eigenvalueg;, for S=0---N—1 and
€g<€p 1. Let P be an M-dimensional subspac#®CH
spanned by the state§¢,)} for a=0---M—1, where
M<N. The projector into this subspace
P=3M"1¢,)(¢,|. Furthermore, letS denote theM X M

is
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unitary triangulation matrix whose construction has been
previously described, and7;)} denote the remnant eigen-
states ofH in P with corresponding eigenvalueg. Then
the operator defined by

H™e"=lim [[T(t)?]]" YA [TOHTOII T
t—ow
(87)

where the contractoF(t)=e " and[[O]]=PTOP, simpli-
fies to

H™"=S"H S, (88)
whereH =diag(Zg, . . - Ty-1)-
Proof: Define theM states ¢,) by
M-1
€)= 2, 16,8} (89)
=

From the construction db and the remnant eigenstates using
the singular value decomposition, the stafés) satisfy
(7,]¢,)=0 for p<a. However, since the projections of
missed or nonremnant eigenstates iRtoan be expressed in
terms of the projections of lower-lying remnant states, this
means thate,|£,)=0 for all p satisfyinge, <7, . The use

of Eqg. (14) and the singular value decomposition to define
the remnant eigenstates also ensures ¢gi£,)=0 even

for p corresponding to remnant states which are degenerate
with but orthogonal td7,), and, hence,

eitH|§a>:e7tTa|%><%|§a>+ E’T eite'g|eﬁ><€ﬁ|§a>’
Eﬁ> a

(90)
where(7,|£,)#0. Now define a new set of states
|®a(t)>zzaﬂ(t)|§ﬁ>! (91)
ZaB(t): 5aBetTa|<§a|,Ta>| _l' (92)
It is not difficult to show that
lim (0 ()| T()?[@ 4(t)) = 6,5, (93
t—o
im (@ (D[ TOHT(D)|O (1)) =T,8,5. (99
t—oo
In matrix notation, these equations are
limZ(t)S[[T(t)2]1S'Z(t) =1, (95)
t—ow
limZ®)S[T(HHT(t)]]1S'Z2(t)=H, (96)

t—oo

wherel is the M XM identity matrix. It then follows from

Eq. (95 that
lim (S[[T(t)?]]S") ~V*=lim Z(t), 97)
t—oo

t—oo

and thus, Eq(96) becomes
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lim (S[[T(1)2]18") YA S[T(HHT(1)]]S") Hence H' is extensive.
t—oe Clearly, the eigenvalues of the renormalized Hamiltonian
_ on a given cluster containinB blocks are the same as the
X(S[[T()?]1S") " H>=Hr. 98 |owest MR eigenvaluesmodulo missing onesof the full
Hamiltonian restricted to the cluster, assumMgstates are
retained in each block. In truncating the cluster expansion of
the renormalized Hamiltonian on the infinite lattice, the cor-
: 277- 1 29712t _ respondence between the low-lying eigenvalues of the infi-
JTZOS[[T(U IMAITOHTO TS =Hy, nite latticeH™" andH can then be only approximate. How-
(99) ever, our previous examples suggest that truncating the
cluster expansion of the renormalized Hamiltonian after only
and, finally, a very few terms can lead to remarkably accurate results.

Using the matrix relatioBA~Y?B~1=(BAB™!)~¥?and the
unitarity of S, it then follows that

H'"=S'H,S. (100 V. APPROXIMATION ISSUES

This theorem demonstrates that the eigenvalues of the In this section, we discuss two issues related to approxi-
renormalized Hamiltonian are thé eigenvaluesT, associ- mations and the CORE procedure. First, within the context
ated with the remnant eigenstates of the original Hamil-of free scalar field theory, we link the methods presented in
tonian. If the truncation procedure is such that no eigenvalthis paper to our earlier Lett¢d] where we used approxi-
ues are missed, then the eigenvalues 6f are theM lowest ~mate contractors to carry out the computations. We demon-
eigenvalues of H. By showing that the mapping strate how such approximations converge and show why pre-
7(H)=H"" replaces the original theory with a theory con- Vious approaches always found a best finite value tdr
taining the same low-energy physics but defined in terms ofletermining the ground-state energy. Second, we reconsider
fewer degrees of freedom, Theorem Il provides the justificathe question of single-state truncations in the Heisenberg an-
tion for identifying r as arenormalization grougransforma-  tiferromagnet. We do this to show how simple single-state
tion. truncations can encounter problems with surface effects and

An important aspect of the CORE approach is the use ohow the multistate renormalization group algorithm avoids
the finite cluster method to approximate the renormalizedhese problems.

Hamiltonian on the infinite lattice. In Ref13], lattice con-

stant theory was used to show that the finite cluster methodA. Connection to earlier methods: Approximate contractors

can be ap.pligd in the_calculation of any quantity so long @S oyr earlier version of the CORE procedurs used an
Fhat quantity s extensive. We how demonstrate the extfens.‘“’aipproximate contractofT ,(t) obtained by decomposing
ity of the rgnormahzed Hamiltonian. R_ecall that a quantlty'ls'H —H,+H, into two or more parts and writing

extensive if, when evaluated on a disconnected graph, it is
the sum of that quantity evaluated separately on the con- T, (t)=[e Hi/2ng=tHa/ng=tHy/2n]n (104)
nected components of the graph.

Theorem lIl.The renormalized Hamiltonian is extensive. where H; and H, are chosen such tha M1 and e tH2

Proof: Consider a disconnected sublattiG=G,UG,  could either be computed exactly or numerically to any de-
comprised of two connected compone@s andG,. Since  sired degree of accuracy. The validity of this approximation
G is disconnected, H(G)=H(G;)+H(G,) and follows from the fact that, for operato’s and B, one can

[H(G,),H(G,)]=0; hence, Te(t) =TGl(t)TG2(t) show that

=Tg, ()T, (). Since the truncation is done on a block-by- S(A+B) — AOA2OBI2AC(8) nOBI2a0AI2

block basis, thefi[ Te(t)11=[[Te, () 11[[To,(t)]] and © ereeTeTeTn (109
H'(G)=[[Te, (1] [ Ta,()21] YA[[ Te, (1) C(0)=2, 5710y 1. (106

XH(Gy)Tg, (O] Te,(1)?
(G) A i ol ] In particular, for6=t/n we see that an—«, the sequence

[ Te.(OH(G)Te. (O Te.(H)21]) T,(t) converges te " as ¢/n)3. When approximating the
2 2 ! contractor in this way, we will see thamust be viewed as
X[[Te, (D21 YA [Te, (12117 (10))  avariational parameter to be optimized. We will also see that
this earlier procedure is less accurate and more time consum-
=Te (D211 YT (ODH(G)Tw (t ing than the method presently proposed.
L Gl( L Gl( JH(Gy) Gl( il To see this, consider once again the Hamiltonian given in
X[[Te. (D)2]] Y24 [[To.(1)2]] 12 Eq. (19) which describes a free scalar field theory in one
! 2 spatial dimension. This Hamiltonian can be expressed as a
><[[TGZ(t)H(GZ)TGZ(t)]][[TGZ(t)2]]—1/2, sum of single-site operators and nearest-neighbor interac-

tions:H=Hy+V, where
(102

1
_ - 2 2 4082
HY(Gy)+ HY(G,), 103 Ho=20 5T+ %6¢(1)°1, (107



V=—§ B(I)p(j+1), (109

and yo=\u?+2. The ground state dfl, is then a product
of uncorrelated Gaussians:

<¢|\Ifo>=fj[ <¢|yo<j>>=fj[ e 2 (109

Our aim is now twofold: to demonstrate how to recover the
ground state of the full theory by applyireg " to |¥,) and
taking the Ilimit t—e, and to determine how well
To(t)=Ty(t/n)"=[e tHo2ne=tVing=tHo2nn  gpproximates
e~ M for finite values ofn andt.

First, evaluatee ™| W ). Introducing the Fourier trans-

forms E(k) and ﬁ(k), we obtain

1~ ~ ~ ~
H=2 H( =2 SII(= KTk + w?(K) ¢( k) $(K)],
(110

1~ ~ ~ ~
Ho=23 Ho(k)=2 ST~ k)Ti(k)+ %56~ (K],

(111
V=§ V<k>=—2k cogk)p(—K)p(k), (112
<E|\Ifo>=1'k[ exd — yob(—K)p(K)/2], (113

where o(k)= Ju?+4sirf(ki2). Since ¢(—k)= (k)" and
II(—k)=II(k)", we can decompose the fields in terms of
their real and imaginary parts and restrict all sum&xe0,
handling the cask=0 separately. Since thd(k) mutually
commute, there™™H|¥ ) can be written as a product over
states labeled by the momentlso that we can limit our
attention to a singl& mode without loss of generality. Let

|v(k)) denote a simple harmonic oscillator ground state of

frequencyy(k). Now apply Theorem A2 proven in the Ap-
pendix:

e M M]y(k) =Ak D] y(k,D), (114

where A(k,t) is a normalization factor angly(k,t)) is a
simple harmonic oscillator state of frequency

_ Yot (k) +e 20 yo— w(k)]
y(k)=w(k) Yot w(k)—e 2“M yo—w(k)]/)’
115

Thus, ast—», the frequencies/(k,t) — w(k) which means
that the statee™""| W) convergeqdup to the normalization
factor IT,A(k,t)] to the true ground state of the lattice free-

CONTRACTOR RENORMALIZATION GROUP TECHNOLOGY ...

4145

2

1.5

\
WA

t

10

FIG. 6. The scalar field theory frequencieg(k,t) obtained
using an approximate contractdy,(t) for n=1 and various mo-
mentak. The starting state is a product of uncorrelated Gaussians.
The curves correspond to different valueskofthe corresponding
frequencies in the exact wave function are indicated by the horizon-
tal lines.

we will ignore it from here on.

The determination of ,(t)| W) proceeds similarly to that
of e ™MWwy). Since we have [Hy(k),Hq(k')]=0,
[V(k),V(k")]=0, and[Hg(k),V(k’')]=0 for k#k’, then
T,(t)|¥) can be written as a product over states labeled by
the variablek and we can study the general problem dne
mode at a time. If ¥p(K)) is a simple harmonic oscillator
ground state of frequency,(k) associated with a mode,
then

e Moy (k)= o (k. t/2n)), (117

e VI (k)< ¥ (k,tin)), (118

where the frequencies of the new oscillator ground states are
related toyp(k) by

Yo(K)+ o+ €72 y,(K) = ¥o]
Yp(K)+vo—e~ 2 yp(K) = ¥0] )

Y (k,t)=17o

Y"(K,t) = yp(k) — 2tcog k). (120
Using the above relations,
[eftH0(k)/2neftV(k)/neftHO(k)IZn]n|,yo(k)> can then be easily
evaluated. We find that the Gaussian statgk)) evolves to
a new Gaussian state,(k,t)) of frequencyy,(k,t).

Plots of y,(k,t) for various values ok andn and a range
of t values are shown in Figs. 6, 7, and 8. Plots of the ex-
pectation value oH in the stateT,(t)|¥,) for the same
values ofn and range of are shown in Fig. 9. There are two
things to notice about these figures. First, for larger values of
k, the frequencies converge quickly to the values they would

field theory. Since the normalization factor cancels out inhave in the exact wave function, indicated by the horizontal

ratios such as

<‘P0| e*[H/ZH eftH/2|XI,O> - 1
(Wole ™| W)

lines; however, for smaller values kf the exact frequencies
are not well reproduced, even for very large values.ofhis
means that computing the action &f(t) on |¥,) can do

well at approximating the ground-state energy density and
still fail to reproduce the mass gap. Second, we observe that
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2 072 i e n=1
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FIG. 7. The frequencieg,(k,t) as in Fig. 6, except that=2.
FIG. 9. Expectation value of the free scalar field theory Hamil-
for finite values ofn, there is a finitet which yields a best tonian in the staté ()| o) for n=1, 2, and 40, showing how the
estimate of the ground-state energy densfty(t) does a Pestt changes as a function of
very good job of approximating " for smaller values of
t, so at first,T,(t)|¥,) tends towards the ground state of
H; however, T, (t)|¥,) eventually begins to move away

doing this: first, to show that computing the ground-state
energy density for an infinite-volume theory from a series of

from the ground-state wave function and so the expectatioﬂlnite'vOlume calculations is generally gpplicable; second,
value of the energy density starts to get worse. This show¥® oftter:j It%arn fmore from er?a[]npleskwhul:lh |d°th’?°t work as
that without additional improvements, working with,(t) expecte an irom ones which work weil. In this case, we

for finite n and abest tcannot be expected to always accu_wiII Ieayn that partitioning the lattice into either two- or
éhree—sne blocks can produce sequences of truncated cluster

renormalization group method works better than simpl expansions WhiCh converge at very different rates. We ex-
group pyplam why this happens and show how the two-state trunca-

evaluating the action oT(t) on a single state because it ;"\ Cibt ised earlier avoids these convergence prob-
eliminates only the higher states whidh,(t) reproduces lems 9 ? P

well and carries the more difficult long-wavelength modes First we apply a sinale-state RG alaorithm in which the
over to the next step of the calculation. The agreement be- . "~ Ibply a sing ) 9 .
tween the results of our earlier CORE treatment of the Isinaattlce is partitioned into two-site blocks and we retain only

model which usech=<16 and a best value dfand our cur- he lowest-lying eigenstate in each block. Denotehythe

_ _ : L ground-state energy of the theory defined by restricting the
rentn=c> andt=c> calculation supports this picture. full Hamiltonian to anr-site sublattice. The two-, four-, six-,

and eight-site ground-state energies akg,=—0.75,
B. Antiferromagnet: Simple cluster formulas E,=—1.616025, Eq=—2.493577, andEg=—3.374932,

We now return to the Heisenberg antiferromagnet andnd they yield the following connected contributions in the
compute the vacuum energy density using two differenluster expansion of the renormalized Hamiltonian:
single-state truncation procedures. There are two reasons for

e,=E,=—0.75, (121
2 e4=E;—2e,=—0.116025, (122
L A eg=Eg—2€,— 3€,= —0.011527, (123
. \\ eg=Eg—2€5—3€,—4€,=—0.003803. (129
05 Thus, we obtain a sequence of approximations to the infinite-
’ volume ground-state energy density from the truncated clus-
. ter expansions
2 ! ° ’ 10 E£r= e,l2=—0.375, (125
05 t
En= (€51 €4)/2=—0.4330125, (126
-1

Eong= (€t €4+ €6)/2=—0.438776, (127
FIG. 8. The frequenciesy,(k,t) as in Fig. 6, except that
n=40. 52468:(62“1‘ E4+ €6+ 68)/2: - 04406775, (128)
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TABLE Ill. Comparison of truncated-clustef, and finite-  partially, an infinite number of terms in the finite-range clus-
volumeE, /r Heisenberg antiferromagnet ground-state energy denter expansion. As we saw in our earlier discussion of the

sities for ranger . antiferromagnet, this is what the full renormalization group
calculation allows us to do.

r & E, /r

2 —0.3750000 —0.3750000 VI. LOOKING AHEAD

4 —0.4330125 —0.4040063 This paper sets forth the basic rules for CORE computa-

6 —0.4387760 —0.4155962 tions, derives the rules from first principles, and discusses

8 —0.4406775 —0.4218665 issues related to the convergence of the procedure. Future

papers will focus on the application of these methods to

hich o b d 1o th ¢ q .tmore interesting physical systems and on clarifying the con-
:’SV 'C_ 32)6440314(37 Clgrr;peirhet 0 d_e_dexgc zepe:gy sns' Yection of the CORE approach to perturbative methods in
fexaC‘_I ' that - Note It a ]yvet I;/k: e by 21in e_ta Ofvtiinstances where both are applicable. Some systems which
ormulas so that our results reter to the energy per sité ol thgy, 4 receive early attention are lattice gauge theories with
or_lgmgl lattice '”S‘?ad of th? energy per two-site block. Forand without fermionst-J models[18], and extended Hub-
this §|mple truncation a}Igorlthm, the flnlte-range cluster Xpard modeld19]. It is important to study the application of
pansion converges rapidly and agreement W't.h the exact alknpE technology to lattice gauge theories in order to see if,
swer to better than one percent is obtained with ease. G|vegs we believe, it provides a powerful alternative to Monte

our earlier discussion of the free-field theory, it is interestingCarlo calculations for studying QCD and chiral symmetry
to compare the approximations built from connected terms t%reaking. Extended Hubbard and models are of interest

what Wi WOUIdhﬁbt.":“nglrorE ‘E'mplyrﬁ'v'dmg th?‘ grou;\?r;state because they are conjectured to have some relevance to high-
energy for eacm-site block byn. the comparnson of these T. superconductivity and have proven difficult to study in

res_ll_JrI]ts E i)trerstt;ntr?d rl1n Tal:r)le r|1|t| reement of the finite-ran more than one spatial dimension by conventional methods.
€ better than one-percent agreement ot the €Tange this section, we discuss the application of CORE methods

cluster expansion with the exact ground-state energy densi% these problems and indicate how one could establish the

brings into question the benefits of using the renormal.izat.io%onnection between the CORE approach and a perturbative
group algorithm. However, the need for the renormal'Zat'or}enormalization group treatment @f theory

group becomes apparent after examining the sequence of ap-
proximations obtained using three-site blocks. In this case,

numerical diagonalization of the appropriate sublattice A. Lattice gauge theory without fermions

Hamiltonians yields E;=—1.0, Eg=-2.493577, and There are many ways to apply the techniques introduced
Eq= —3.736322, yielding connected contributions in this paper to lattice gauge theories. One interesting ap-
proach is to divide the lattice into finite-size blocks, truncate

e3=E;=-1.0, (129 the Hilbert space associated with each block to a set of
gauge-invariant states, and then use the renormalization

€6=E¢—2€3=—0.493577, (130 group formalism to map the gauge theory into a system

which, like a spin system, has only a finite number of states

€9=Eg—2€5—3€3=0.250832. (131

associated with each lattice site. This approach yields an

If we now use these results to construct the correspondin f]qg:\é::egé rgggngiofrrlger:jége%gvénbgggcgliﬂlin(gtégevl\;g-can
approximations to the energy density per site, we obtain thg1 y 9 :

en treat the new Hamiltonian in the same way as in the

sequence : .
Heisenberg and Ising models.
Ea= €3/3= — 1/3, (132 For example, we could associate with egathquetteof
the original lattice a singlsite in the new lattice. We could
Ese=(€3+ €5)/3=—0.497859, (133  then find the low-lying gauge-invariant eigenstates of the
one-plaquette Hamiltonian, either exactly or numerically,
Eap= (€3+ €5+ €9)/3= —0.4142483, (134 and truncate by selecting a finite number of these eigenstates.

Using this truncation procedure, we construct a renormaliza-
which oscillates about the correct answer and convergesion group transformation which maps the gauge theory into
much more slowly than that for the two-site decompositiona generalized “spin” system. The interactions between
of H. The cause of this oscillation and slow convergencenearby “spins” are found by evaluating the renormalized
arises from the fact that the physical excitations of thisHamiltonian on clusters containing several connected
model have integer spin; the three-site decomposition haglaquettes. This new spin system would be guaranteed to
difficulty reproducing the low-lying physics since the ground have the same low-lying gauge-invariant physics as the
state of the three-site block is a spin-1/2 multiplet, that of theoriginal theory and could be treated in the same way as the
six-site block is spin 0, and the ground-state of the nine-sitdeisenberg and Ising models. This approach allows us to
block is once again spin 1/2. The two-site decomposition oflefine and carry out a gauge-invariant renormalization group
the Hamiltonian does not suffer from this effect. This lack of calculation for any lattice gauge theory.
rapid convergence is very instructive; since there is no way This ability to define a gauge-invariant, Hamiltonian-
to know in advance what the correct spectrum of excitationdased, real-space renormalization group calculation is unique
is, this shows that we need a method for summing, at leasb the CORE approach. Earlier real-space renormalization
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group procedures also kept a finite number of states pesf quarks and either SLAC or Quinn-Weinstein fermion de-
block, but they defined the renormalized Hamiltonian byrivatives (the case of Wilson fermions is somewhat differ-
[[H]], the truncation of the original Hamiltonian to the sub- end. Consider a theory with three massless flavors of quarks
space spanned by the retained stétiis corresponds to the and apply a more restrictive truncation procedure which
t=0 limit of the CORE approadh In such calculations, keeps only single-site fluxless states containing equal num-
keeping only gauge-invariant block states leads to a trunbers of quarks and antiquarks, i.e., mesons. For three flavors
cated Hamiltonian in which the block-block interactions van-©Of quarks there are 924 such states and, as was shown in Ref.
ish. In order to retain interblock couplings, flux must move[23]; they form an irreducible representation of the group
across the links joining the blocks; this cannot happen with-SU(12) where the group generators are formed from bilinears

out keeping some gauge-noninvariant single-block statedD the single-site quark field?. Note that forN; flavors, the
However, if one keeps such states in the truncation proceﬂuxless states form an irreducible representation of the group
dure, the entire process becomes much more cumbersome>U(4Ny). For a truncation algorithm based upon keeping
The question of how many single-block gauge-invariantgd@uge-invariant single-site states, the renormalized Hamil-
states and how many terms in the cluster expansion of th{Pnian contains no range-1 connected terms. The first nonva-
renormalized Hamiltonian should be retained naturally ariseQiShing contribution to the renormalized Hamiltonian will be
when carrying out a contractor renormalization group calcull€ range-2 connected terms and these are computed by solv-
lation; each choice constructs a mapping of the originafngltthe two-§|tte (’;heo:y_. Ref[23] that if K v th
gauge theory into a different generalized spin system. W?]e was pointed out in Refl23] that if we keep only the

hope o answer this tion in the future b i arest-neighbor terms in the fermion derivative, then the
P NIS questio € Iuture by carrying ou esulting Hamiltonian is invariant under a global @2, and
several computations in a simple lattice gauge theory, suc

o 1)-di onal o th ber of ince the two-site problem cannot have anything but nearest-
as(2+1)-dimensional compact (@), varying the number of  aignnor terms, this observation can be used to simplify the
retained single-block states and clusters to see how quantities putation of the connected range-2 terms in the renormal-

of interest, such as mass gaps and the specific heat, depe&ég Hamiltonian. We already noted that the fluxless single-

on these factors. site states form an irreducible 924-dimensional representa-
_ _ _ tion of SU12) and so tensor products formed from these
B. Lattice gauge theory with fermions states can be decomposed into the irreducible representations

Interesting possibilities arise when we consider latticedf SU(12) which appear in the product of tw@24s; these
gauge theories with fermions. One way of treating thesére the only states in the full problem relevant to our CORE
theories is to study systems with either SLAZD], Wilson ~ computation. Starting from the highest weight state in each
[21], or Quinn-Weinsteii22] fermions and truncate the sys- Of these irreducible representations and applying the Lanczos
tem to the subspace spanned by tensor products of gaug@ethod, we can numerically find the relevant eigenvalues of
invariant, single-site states. In the case of lattice QCD, thighe two-site Hamiltonian to a high degree of accuracy. From
would include all color-singlet single-site states, i.e., mesongeneral symmetry arguments, the most general two-site
and baryons, which can be formed by applying quark andiamiltonian one can write for this system will be in the form
antiquark creation operators to the single-site vacuum stat®f @ finite polynomial in the Casimir operator and higher
subject to the constraints imposed by the exclusion principleorder invariants formed out of the generators of (£2).

As the only terms which appear in the lattice QCD Hamil- Thus, the general structure of the connected range-2 Hamil-
tonian create(or destroy closed loops of flux or move tonian will be given by

quarks from site to site trailing their flux behind them, the R R R R

color-singlet mesons and baryons are all degenerate and thds " (J)=a1Q(j)- Q(j + 1)+ @2(Q(j) - Q(j +1))*+ - - -.
connected range-1 part of the renormalized QCD Hamil- (139
tonian will vanish. In order to compute the connected ) ) ) )
range-2 terms, we solve the problem of two sites connecteli IS @ simple exercise to show that in the strong coupling
by a single link and find the low-lying gauge-invariant eigen-limit, the leading term in this expansion is the one propor-
states which have an overlap with all of the tensor productdional to Q(j)-Q(j+1); in other words, in strong-coupling,

of the two sets of single-site meson and baryon states. Thigie renormalized range-2 Hamiltonian is just a generalized
computation yields connected range-2 contributions to théleisenberg antiferromagnet. As was argued in F2] and
renormalized Hamiltonian which contain meson and baryorRef. [24], we expect this theory to spontaneously break to
kinetic terms as well as meson-meson and meson-baryon ilBUy(6) X SUA(6), where the vector SI6) is realized nor-
teractions. Connected range-3 terms come from computanally and the axial-vector SK[6) is realized in the Gold-
tions involving three sites arranged in a straight line or form-stone mode. Thus, in the strong-coupling limit, the connected
ing a right angle. These range-3 terms contain corrections teange-2 part of the renormalized Hamiltonian unavoidably
the terms already described, new terms which allow mesonigads to a spontaneously broken symmetry, but the group is
and baryons to hop along diagonals of the underlying latticetoo large and there are too many Goldstone bosons. Clearly,
and terms which describe three-site interactions. Continuing detailed calculation is necessary to determine if these con-
in this way produces a renormalized Hamiltonian expressedlusions persist in weak coupling where other terms in Eq.
only in terms of the physical degrees of freedom; the under¢135 can become significant. However, we can show that
lying quarks and gluons disappear from the problem. the problems of having too large a symmetry group and too

We would now like to say something about how chiral many Goldstone bosons disappear once we compute the con-
symmetry breaking will show up in QCD with three flavors nected range-3 terms.
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To see this, observe that, independent of the couplingjiven in Eq.(19), where the\ coupling is small, and again
constant, the next-to-nearest-neighbor terms in both thapply the CORE procedure outlined in Sec. llID. It is a
SLAC and Quinn-Weinstein types of derivative break thestraightforward exercise to include th# term and pertur-
SU(12) symmetry and, after including these terms in thebatively compute the CORE transformation associated with
renormalized Hamiltonian, all that remains of the (U the two-site, infinite-state truncation procedure.

X SU(6) symmetry of the nearest-neighbor theory is(3U We begin with the same truncation procedure defined for

X SU3). As in the discussion of the range-2 terms, we carfhe free-field case and keep the same tower of oscillator
invoke the strong-coupling limit to calculate the structure ofStates for each two-site block. A new feature is that we must

the leading range-3 terms and explicitly show that theN®W cOmputeS andH 7 even for the range-1 terms because

range-3 terms give the unwanted Goldstone bosons mass a retained states contract onto states which are different
that the degenerate $6) multiplets of mesons break up into oM the two-site, free-field eigenstates and the eigenenergies
SU(3) multiplets. This is in strict analogy to what was dis- corresponding to these states are also changed from their

cussed in Ref24]. Of course, as we noted for the case of thefree—field values. A direct consequence of this is that the new
= O rgnge-1 connected part of the renormalized Hamiltonian con-
range-2 terms, the generic structure of the connected rangegs o higher-order polynomials in the fields. Given a pertur-

terms in.the renor_malized Hamiltonia_n is.riqher than that of4tive expression for the connected range-1 terms, we have
Fhe Ieadlng. terms in the strong-coupling I!mlt, andl so asserty, perturbatively solve the four-site problem to comp6te
ing that this pattern of symmetry breaking persists to the;ngH_in order to obtain the connected range-2 terms in the
physically more interesting weak-coupling regime requireSenormalized Hamiltonian. Once again, we get a set of terms
more work than we have done to this point. of the form ¢™(p)¢"(p+1) which do not correspond to
Much interesting work remains to be done in this pictureterms in the original Hamiltonian. Longer-range connected
of dynamical chiral symmetry breaking; nevertheless, thaerms are computed in the same manner. Since the zero-
fact that the CORE procedure provides a coupling-coupling limit of this procedure builds up a finite-range ex-
independent way of constructing an effective theory of mepansion of the free-field theory, one should be able to make
sons which, in the strong-coupling limit, coincides with ear-this perturbative expansion match up with more familiar
lier descriptions in which dynamical chiral symmetry renormalization group computations.
breaking appears naturally, is new and unigue to this ap- There is a simple way to modify the procedure just out-
proach. lined so as to automatically resum the perturbative expansion
of the renormalized Hamiltonian to very high order in the
coupling. One virtue of this modified approach is that it guar-
antees that the ground-state energy density will behave as
Among the interesting features of the Hubbard and exA'® for large couplings. The basic idea is to change the
tended Hubbard models are the variety of phase transitiongefinitions ofy.. in Eq. (68) in order to treat them as varia-
which can occur as the density of particles in the groundional parameters which depend uperd and \. To deter-
state changes. While tuning the density of particles in thénine their values, we minimize the expectation value of the
ground state is easily accomplished by adding a chemicdwo-site Hamiltonian in the statgy, ,y_) with respect to
potential to the Hamiltonian, early attempts to analyze these/+ andy_ . Fixing y, andy_ in this way, we then rewrite
theories using naive real-space renormalization group metrihe two-site Hamiltonian in terms of annihilation and cre-
ods ran into problems: projecting onto a small number ofation operators, normal order the resulting expression, and
states per block so that the occupation number of each sta@® perturbation theory in the nonquadratic terms. Note that
is a finite integer, and therefore the density a rational fracthis minimization process guarantees that the state
tion, made it difficult to achieve a smooth dependence of théy+ ,y-) is the lowest-lying eigenstate of the “free Hamil-
density on the chemical potential. CORE mitigates this probtonian” obtained by keeping the quadratic terms, including
lem without having to keep a large number of states pethose which come from normal ordering the quartic self-
block: first, the connected rangeterms are computed by interaction. Sincey, andy_ are nontrivial functions of.®
diagonalizing the fullr-site Hamiltonian, including the and\, the perturbation theory just described amounts to an
chemical potential, and so these terms can encode more corififinite resummation of the usual expansion.
plicated behavior of the chemical potential coefficignt To compute the range-2 terms in the renormalized Hamil-
second, the operator which measures the density of particldgnian, solve the four-site free problem but treat thére-
in the ground state as a function pf undergoes a much quencies as variational parameters determined by minimiz-
more complicated evolution than it does in a naive truncatioring the expectation value of the Hamiltonian in the ground
procedure, evolving connected rangeerms of its own. Pre-  state of the oscillators. This leads to four coupled equations
liminary computations support this picture but more exten-which can be solved numerically for any value Jof Once
sive computations are needed to fully explore the potential ofgain, normal order the Hamiltonian and treat all terms

C. Hubbard and extended Hubbard models

CORE methods for this class of problems. which are not quadratic in the ladder operators as perturba-
tions. The states obtained by working to finite order in these
D. Connection to perturbation theory perturbations are used to constri®&t The computation of

) . ) . ) higher-range connected terms proceeds in a similar manner.
In this section, we discuss the way in which one could

establish the relationship between the CORE approach and
the familiar perturbative renormalization group in the weak-

coupling limit. To illustrate this connection, consider adding The contractor renormalization group, a general method
a A¢* interaction to the scalar field theory Hamiltonian for solving any Hamiltonian lattice system, was presented.

VII. CONCLUSION
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The CORE approa_ch is a systematic and nqnpgrturbatlve AwleXP@Aliﬂwo):(m+2§7P)9XF3(§AI,§)AI,O|0)0>,

procedure for carrying out real-space renormalization group (A6)

transformations which relies on contraction and cluster tech-

niques. The method was illustrated using four examples: fregshich vanishes if we seté=—yy/(2yp)=(wo— 1)/

scalar field theory with single-state truncation, the Heisen{2(w,+ w,)]. SinceAa,1|w1)=O defineg w,), then clearly

berg antiferromagnetic spin chain with two-state truncation,

the anlsotrop!c Ising modell with tvyo—_st.ate truncation, r_;md Nwlexq_7MAI)i/(27P)}|wO>:|w1>- (A7)

free scalar field theory with an infinite-state truncation

scheme. The use of appro_ximgte contrgc_tors, the CONVeRequiring(w,|w,)=1 and using( wo|A” Alm|w0>:5mnn!’

gence of the cluster expansion in determining the renormal- 0 o

ized Hamiltonian, and the need for summation via the renor?’® have

malization group were also discussed. = (2n)!
A particularly exciting feature of the CORE technology is N 2= E N =(1-4£2) 12 (A8)

its ability to treat systems with dynamical fermions, systems “1 i=o (n!)

which are difficult to study using stochastic methods. CORE

also makes possible gauge-invariant renormalization group® Ny, =[4 0100/ (01 @)

transformations in Hamiltonian lattice gauge theory and eas- Given this result, we can now easily show that applying

ily incorporates a chemical potential. These features suggesf "'« to an arbitrary Gaussian wave function produces a

that the CORE approximation will prove to be a powerful new Gaussian wave function of a different frequency; as

tool in future applications to the Hubbard and models and t—, the new frequency tends toy.

2 ] 1/4_

lattice gauge theory with and without fermions. Theorem A2Let |w,) be the simple harmonic oscillator
ground state defined b9(w1|w1>=0 andeO be the Hamil-
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where|w(t)) is the ground state of a simple harmonic oscil-

APPENDIX: HARMONIC OSCILLATOR IDENTITIES lator of frequencyw(t), and
Consider the canonically conjugate operatarsand p [ o \ Yot +wg) 2 tay2
which satisfy [x,p]=i, and introduce the one-parameter Alt) = w(t) w1+ wg e ' (A10)

family ~ of annihilation and creation operators

A,=xol2+ip/\2w andA] =x\/w/2—ip/\2w which sat- wo+ wy—e 210 wy— w,)
isfy [A,.,Al]=1. Note that x=(Al+A,)/\2Zw and ()= w0l o e T go—wy) ) LV
p=i(AI)—Aw)\/w/2. Furthermore, define the Hamiltonian

H,= (p?+ w?x?). Proof: Using e tHuAl™ et Huy=e M@0 ATM one sees

Theorem AlThe statew,) defined byA,, [w;)=0 and  that ° °

the statd wo) defined byA,, [wo)=0 are related by i i

e~ tHugethuy et Hug=gf Auy, (A12)

4 wow, v (wg—w1) >

lwy)= z) WA‘”O} |wo)- where¢’ =e™ ¢, Usinge ™ "Hug| wg) =102 wy) and Eq.
(A1) (Al), one finds that

(wo+ 1)

—tH,, — —twgl2
Proof: Write A,,_ in terms ofx andp, then express and e Mooy =N, e "o

i t
p in terms ofA,, andA,, to show that (Wo— 1) . 2
Xexp s————€ A ¢ |wp).
t 2(0)0+ (1)1) 0
Awlz yMAwo+ ‘}’PA(»O! (AZ) (A13)
where If we set
1
ym=z(Vo1/wo— Vool wy), (A3) [wo— w(t)] Cote. (@0 1) AL4
e Lo ———
1 2loDraol ©  2(wprap’ MY
¥p=3(No1/wo+ Vwglw,). (A4)
. then we can identify the state on the right-hand side of Eq.
Now use[Awo,Awo]znAZf(‘)’l to show that (A13) with the Gaussian wave functidm(t)). Solving Eq.
(A14) for w(t) yields the result given in EqA11). Note that
[Awo,exquI)i)]=2§ exp(gAI)i)ALO. (A5)  ©(0)=w; and w(t—x)=w,. The multiplicative factor

A(t) is then given byA(t)=(N,, /N,)e "o which sim-
Hence, plifies to the result shown in E4A10).
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