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Contractor renormalization group technology and exact Hamiltonian real-space renormalization
group transformations
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The contractor renormalization group method, a new approach to solving Hamiltonian lattice systems, is
presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson
real-space renormalization group transformations using cluster expansion and contraction techniques. We
illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferro-
magnetic chain, and the anisotropic Ising chain. Future applications to the Hubbard andt-J models and lattice
gauge theory are discussed.@S0556-2821~96!04818-7#

PACS number~s!: 11.15.Tk, 02.70.Rw, 05.50.1q, 71.10.Fd
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I. INTRODUCTION

Whether we wish to compute the mass spectrum of lat
QCD or the phase structure of the extended Hubbard mo
we are faced with the same problem—extracting phys
from a theory to which conventional perturbative metho
cannot be applied. To date, the most popular approach
these problems has been Monte Carlo evaluation of
Feynman path integral. Recently, we introduced an alter
tive, Hamiltonian-based approach called the contrac
renormalization group~CORE! approximation@1# and ap-
plied it to the case of the~111!-dimensional Ising model. In
this paper, we significantly extend the method and simp
its implementation. The CORE approach defines a syst
atic, nonperturbative, and computable means of carrying
a Hamiltonian version of the Kadanoff-Wilson@2# real-space
renormalization group transformation for lattice field the
ries and lattice spin systems. The method relies on cont
tion and cluster expansion techniques.

The CORE approximation improves upon other metho
of implementing approximate real-space renormalizat
group transformations on Hamiltonian systems@3# in several
ways. First, our methods make it possible to define agauge-
invariant renormalization group transformation for any Ab
lian or non-Abelian lattice gauge theory, something whi
was not possible in earlier schemes. Second, it is no m
difficult to treat fermions than bosons when one uses th
methods. Third, it is easy to add a chemical potential to
Hamiltonian for a system such as the Hubbard model in
der to tune the density of the ground state, a difficult feat
earlier Hamiltonian real-space renormalization gro
schemes. Finally, the CORE method allows us to map
theory with one set of degrees of freedom into a theory
scribed in terms of a very different set of degrees of freed
but possessing the same low-energy physics. Within the c
text of lattice gauge theories, this means we can start fro
theory of quarks and gluons and map it into a system
which the effective degrees of freedom have the quant
numbers of mesons and baryons. Computing such a tran
540556-2821/96/54~6!/4131~21!/$10.00
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mation within the Hamiltonian framework was not possib
in earlier methods.

In addition to the above qualitative improvements, the
are also substantial quantitative refinements. For exam
earlier attempts to compute the ground-state energy den
and other properties of the (111)-dimensional Heisenberg
antiferromagnet using previous real-space renormaliza
group methods@4# or t-expansion techniques@5# had diffi-
culty matching the accuracy of Anderson’s@6# naive spin-
wave approximation. We will demonstrate that the COR
approximation significantly improves on Anderson’s calcu
tion without making any large spin approximations. Anoth
example which we discuss is the (111)-dimensional Ising
model. We will show that an easily implemented COR
computation substantially improves upon results from ear
methods.

We close this section with a brief review of the renorma
ization group~RG! in order to contrast the CORE method t
previous RG implementations. Next, in Sec. II, we sta
without proof the rules for carrying out a CORE calculatio
We then illustrate the method in Sec. III by applying th
rules in four examples: free scalar field theory with sing
state truncation, the Heisenberg antiferromagnetic spin ch
with two-state truncation, the anisotropic Ising model wi
two-state truncation, and free scalar field theory with
infinite-state truncation scheme. The rules are then derive
Sec. IV. In Sec. V, two issues are discussed: the use of
proximate contractors, to establish the connection of
CORE approach to earlier methods; and the convergenc
the cluster expansion, to demonstrate the need for summa
via the renormalization group. Finally, future applications
the Hubbard and extended Hubbard models and lattice ga
theory with and without fermions are discussed in Sec.
We also address the issue of relating the contractor renorm
ization group to the familiar perturbative renormalizatio
group inf4 theory.

Preliminary remarks

Physical systems in quantum field theory and statisti
mechanics involve a large number of degrees of freedom
4131 © 1996 The American Physical Society
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can usually be described in terms of a local Hamiltonia
Conventional wisdom says that when the coherence length
such a system is small, the properties of the system dep
strongly on the form and strengths of the interactions in t
Hamiltonian; whereas, when the coherence length is lar
many degrees of freedom behave cooperatively and the p
erties of the system are governed primarily by the nature
this cooperation with the detailed form of the Hamiltonia
playing only a subsidiary role.

The renormalization group@2#, as formulated by Kadanoff
and Wilson, is generally thought of as a method for treati
systems in which the coherence length encompasses m
degrees of freedom. This method is based on iterativelythin-
ning the degrees of freedom in the problem, an approa
which is similar to that followed in hydrodynamics wherei
the innumerable microscopic degrees of freedom are
placed by a much smaller set of spatially-averaged, mac
scopic variables, such as the density and pressure. In
renormalization group method, the thinning is achieved via
sequence of renormalization group transformations.

While the original formulation of the RG method wa
done for the partition function or its path-integral analogue
field theory, the approach has been extended to Hamilton
systems. The basic idea is to construct a real-space renor
ization group transformation,t, which maps the Hamiltonian
H0 of a theory defined on some latticeL0 to a new theory
H1 defined on acoarserlatticeL1 in such a way that the new
theory has thesame low-energy physicsas the original
theory. To extract the low energy physics of the origin
theory, we repeatedly apply the transformationt and gener-
ate the sequence of renormalized Hamiltonians:
H15t(H0), H25t(H1), H35t(H2), . . . . This sequence
usually approaches a fixed point oft, that is, a Hamiltonian
H* satisfyingt(H* )5H* . Each renormalized Hamiltonian
in this sequence possesses thesamelow-energy physics, but
the degrees of freedom have beenthinned. Eventually, the
number of remaining degrees of freedom lying within th
coherence length will be small and the resulting Hamiltoni
will be more amenable to solution.

Generally, the same transformationt is used for each it-
eration; however, this is not required. The use of differe
transformations for each iteration is clearly impractical, b
the use of a different transformation for the first one or fe
steps could be a powerful generalization of the method,
cilitating great simplifications. A quantum field theory coul
be mapped into a generalized spin model; QCD could
mapped into a theory of interacting hadrons.

Defining and carrying out the thinning transformations
the key to the RG approach. The RG transformationt is
usually defined by requiring invariance of the partition fun
tion or its path-integral analogue in field theory. The R
method exactly describes the low-lying physics as long
t can be exactly implemented, which is rarely the case.
practice, approximations must be made, such as those m
in thee expansion@7#, the use of perturbative matching as i
the heavy-quark effective field theory@8# and nonrelativistic
QCD @9#, and stochastic estimation as in the Monte Car
renormalization group@10# approach. The CORE approach i
a new and powerful method for definingt and computing
t(H) which relies on contraction and cluster techniques.
contrast to other methods, the approximations made in
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CORE approach do not limit the usefulness of the method
any restricted range of coupling constants or other para
eters in the theory. The CORE approach works well not o
near a critical point when the coherence length is large,
also in instances where it is small. It is a general method
solving any lattice Hamiltonian problem.

CORE computations begin by defining the way in whic
the new lattice iscoarserthan the original lattice. We begin
by partitioning the lattice into identical blocks. The Hilbe
space of states corresponding to each block is thentruncated
by discarding all but a certain number of low-lying states; w
generally retain enough states so that the truncated deg
of freedom on a block resemble those of a site on the origi
lattice. Therenormalizedor effective HamiltonianH ren in
this truncated space of states is then defined in terms of
original HamiltonianH by

H ren5 lim
t→`

@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2,

~1!

where T(t)5e2tH is the contractor and @@•••## refers to
truncation to the subspace of retained states. There is a
to-one correspondence between the eigenvalues of the re
malized Hamiltonian and the low-lying eigenvalues of th
original Hamiltonian. In general, the renormalized Ham
tonian cannot be exactly determined; CORE approxima
H ren using a finite cluster expansion, an approximation whi
can be systematically improved. Matrix elements of vario
operators can also be evaluated in CORE by defining a
quence of renormalized operators.

We use the phrase ‘‘CORE technology’’ to refer to the s
of tools which allow us to systematically and nonperturb
tively compute an arbitrarily accurate approximation to t
exact renormalization group transformation for a lattice fie
theory or spin system without having to diagonalize t
original infinite-volume theory. The power of these metho
is that usually only a few terms in the cluster expansion
the renormalized Hamiltonian yield remarkably good resu

II. THE RULES

In this section, we state, without proof, the rules for ca
rying out a CORE computation. We assume that we
studying a theory defined by a local HamiltonianH on a
regular lattice of infinite extent in some number of dime
sions.

A CORE computation proceeds as follows.
~1! First, divide the lattice into identical, disjoint block

Bj . Denote the space of states associated with blockBj by
Hj and denote the common dimension of each of the
spaces byN.

~2! Define a truncation scheme by selecting a low-lyin
subspacePj,Hj of dimensionM,N on every block; the
same subspace should be chosen on each block. In w
follows, we will denote theM retained states byufs( j )& and
use them to construct the projection operators

P~ j !5(
s51

M

ufs~ j !&^fs~ j !u, ~2!
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P5)
j
P~ j !. ~3!

Let @@•••## denote truncation to the subspace spanned
taking tensor products of the statesufs( j )&. Thus, for any
operator O, the truncated operator is defined a
@@O##5P†OP. Note, choosing to retain states such that th
truncated degrees of freedom on a single block resem
those associated with a single site on the original lattice e
sures that the renormalized Hamiltonian will take a for
similar to that of the original Hamiltonian, facilitating the
iteration process; however, sometimes it is useful to make
different choice and map the original theory into one form
lated in terms of new degrees of freedom.

~3! Compute~see below! the renormalized Hamiltonian
defined in Eq.~1!, H1

ren5t(H), and the renormalized opera
tors corresponding to any matrix elements of interest.

~4! Repeat the above steps usingHm
ren to obtain

Hm11
ren 5t(Hm

ren). Iterate this process until the renormalize
Hamiltonian is simple enough that its low-lying eigenvalue
can be determined.

Because the Hamiltonian isextensive~a concept we will
define later! and the block-by-block truncation preserves th
property, the renormalized Hamiltonian can be approximat
using the finite cluster method~FCM!. This method was first
used by Domb@11# in the application of the Mayer cluster
integral theory to the Ising model. A formal proof of the
method in the Ising and Heisenberg models was then p
sented by Rushbrooke@12#. The method was later general
ized by Sykeset al. @13#. The finite cluster method expresse
any extensive quantity in an infinite volume as a sum
finite-volume contributions. The procedure is simple t
implement and provides numerous means of detecting co
putational errors. A general statement of the method can
found in Ref.@14#.

Evaluation ofH ren by the finite cluster method is accom
plished in the following sequence of steps.

~1! Compute the renormalized Hamiltonian for a theor
defined on a sublattice which contains only a single blo
Bj ~how this is done will be described below!. Denote this
Hamiltonian byH r(Bj )5h1(Bj ). This yields all of the so-
called range-1 terms in the cluster expansion of the ren
malized Hamiltonian.

~2! Calculate the renormalized Hamiltonian
H r(Bj ,Bj11) for a theory defined on a sublattice made up
two adjacent~connected! blocksBj andBj11. The range-2
contributions to the cluster expansion of the renormaliz
Hamiltonian on the infinite lattice are obtained by removin
from H r(Bj ,Bj11) those contributions which arise from
terms already included in the single block calculation:

h2~Bj ,Bj11!5H r~Bj ,Bj11!2h1~Bj !2h1~Bj11!. ~4!

~3! Repeat this procedure for sublattices containing su
cessively more connected blocks. For example, for a sub
tice consisting of three adjacent blocksBj , Bj11, and
Bj12, use
by
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h3~Bj ,Bj11 ,Bj12!5H r~Bj ,Bj11 ,Bj12!2h2~Bj ,Bj11!

2h2~Bj11 ,Bj12!2h1~Bj !2h1~Bj11!

2h1~Bj12!. ~5!

Since the renormalized Hamiltonian is extensive, only co
nected sublattices need to be considered. Recall that a qu
tity is extensive if, when evaluated on a disconnected subl
tice, it is the sum of that quantity evaluated separately on t
connected components of the sublattice. A truncated clus
expansion can then be defined by neglecting clusters lar
than some specified range.

~4! To complete the determination of the renormalize
HamiltonianH ren on the infinite lattice, sum the connected
contributionshr(Bj , . . . ) from the finite sublattices accord-
ing to their embeddings in the full lattice. For example, on a
infinite one-dimensional lattice,

H ren5 (
j52`

`

(
r51

`

hr~Bj , . . . ,Bj1r21!. ~6!

ExpressH ren in terms of block variables such that the form
of H ren resembles that of the previous Hamiltonian in the R
sequence.

The key ingredient of CORE is the method used to e
plicitly construct the renormalized HamiltonianH r(G) and
other renormalized operators on a given cluster or sublatt
G. While, in principle, the appropriate generalization of Eq
~1! completely specifies what has to be done, in practice,
attempt to compute this quantity by brute force will run into
problems since the operator@@T(t)## becomes singular as
t→`. To see how this problem arises, consider a sublatti
comprised ofR connected blocksB1•••BR . Let H(G) de-
note the Hamiltonian obtained by restricting the infinite la
ticeH to the sublatticeG and suppose that we truncate to th
subspaceP5P1^ •••^PR spanned by theMR states
ufa(G)&. Remember that the statesufa(G)& are tensor prod-
ucts of the retained states on each of theR blocks in the
cluster G. Let us denote byueb(G)& the eigenstates of
H(G) with eigenvalues eb(G) and expand the states
ufa(G)& in terms of these eigenstates: i.e.,

ufa~G!&5(
b

abueb~G!&. ~7!

It then follows that

T~ t !ufa~G!&5(
b

abe
2teb~G!ueb~G!&, ~8!

from which we see that all statesufa(G)& which have a
nonvanishing overlap with the ground state ofH(G) contract
onto the same state ast→`. This causes great difficulties if
we attempt to numerically compute@@T(t)2##21/2. Fortu-
nately, there is an elegant and simple solution to this proble
which avoids explicit computation of@@T(t)2##21/2: make a
unitary ~or orthogonal! change of basis,S(G), on the states
ufa(G)& such that each state in the new basis contracts on
a unique eigenstate ofH(G). In this new basis, the compu-
tation of H r(G) is then straightforward. The discussion
which follows specifies the rules for computing the nece
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sary change of basis andH r(G) for a generalH(G). We
state these rules in full generality so as to allow for the sp
cial situation in whichH(G) has degenerate eigenvalue
and then apply them to successively more complicated
amples in order to show how they work in practice.

H r(G) and the change of basisS(G) may be determined
as follows.

~1! Find the eigenstatesueb(G)& and corresponding eigen-
valueseb(G) of H(G), whereb50•••NR21. Order these
states so thateb<eb11.

~2! Construct theMR3NR matrix

Q~G!ab5^fa~G!ueb~G!&. ~9!

Each row ofQ(G) gives the expansion of one of the retaine
states in terms of the eigenstates ofH(G). Each column of
Q(G) gives the projection of some eigenstate into the tru
cated subspace. Also, letS(G) be theMR3MR identity ma-
trix. Setm5MR, p50, andq50.

~3! Copy the firstg columns ofQ(G) into anm3g ma-
trix C, whereg is the degeneracy of the lowest-lying eigen
value. If the ground state of the cluster is nondegenera
theng51. The columns ofC correspond to the degenerat
eigenstatesueq(G)&, . . . ,ueq1g21(G)&. Having formedC,
perform a singular value decomposition~SVD!, writing

C5USV†, ~10!

whereU is anm3m unitary matrix,V is a g3g unitary
matrix, andS is anm3g matrix of the form

S5S D r3r 0r3~g2r !

0~m2r !3r 0~m2r !3~g2r !
D , ~11!

D5diag~s1 , . . . ,s r !, ~12!

where the elements s j are real and satisfy
s1>s2>•••>s r.0 and r<min(m,g) is the rank of the
matrix C. In other words, use the SVD@15# to construct
orthonormal bases for the nullspace and range of the ma
C. Note that the SVD theorem guarantees that such a dec
position exists and thatS is unique.

~4! Multiply U†Q(G) and, by abuse of notation, once
again call the resultQ(G). Then discard the firstg columns
and the firstr rows of the newQ(G). The resulting matrix,
which we again call Q(G), is now an
(m2r )3(NR2q2g) matrix. Note,r may be zero.

~5! Form the matrix

R5S 1p3p 0p3m

0m3p Um3m
† D , ~13!

and multiplyRS(G); call the resultS(G). Define the states

uTp1s21~G!&5 (
s851

g

Vs8sueq1s821~G!&, ~14!

with corresponding degenerate eigenvalu
Tp1s21(G)5eq(G), for s51...r . Set p→p1r , q→q1g,
andm→m2r .
e-
s,
ex-

d

n-

-
te,
e

trix
om-

es

~6! Repeat steps~3! to ~5! with higher and higher energy
eigenvalues untilp5MR. In step~3!, g is now the degen-
eracy of the lowest-lyingremainingeigenvalue. At the end
of this procedure, we will have constructed a unitar
MR3MR matrix S(G) and a set of eigenstates$uTb(G)&%
with energy eigenvaluesTb(G) for b51•••MR.

In the discussion which follows, it will be convenient to
make the following definitions.

Definition.The eigenstatesuTb(G)& are referred to as the
remnant eigenstatesof H(G) in P. The set of theseMR

remnant eigenstates is called thecontraction remnant. The
matrix S(G) is referred to as thetriangulation matrix.

As we already noted, the triangulation matrixS(G) is
simply a change of basis, taking us from the original bas
$ufa(G)&% of retained tensor-product states in the truncate
subspace to another basis$uja(G)&% in which only the first
state has a nonvanishing overlap with the ground eigensta
only the first and second states have nonzero overlaps w
the first excited eigenstate, and so on; henc
S(G)ab5^ja(G)ufb(G)&. The remnant eigenstates are es
sentially theMR lowest-lying eigenstates ofH(G) whose
projections intoP are nonvanishing and cannot be written a
linear combinations of lower-energy eigenstates project
into P. In other words, the projections of the remnant eigen
states intoP are all linearly independent. Within degenerac
subspaces, the eigenstates must be rotated in order to el
nate all linear combinations whose projections inP are zero
or completely expressible in terms of the projections o
lower-lying eigenstates. Note that the singular value decom
position theorem@15# guarantees the existence of the trian
gulation matrix and the contraction remnant.

~7! In the basis of the remnant eigenstates, construct t
matrices

HT ~G!ab5^Ta~G!uH~G!uTb~G!&5dabTa~G!, ~15!

OT ~G!ab5^Ta~G!uO~G!uTb~G!&, ~16!

whereO(G) is some operator of interest defined on the su
blatticeG.

~8! The renormalized operators are at last given in term
of the triangulation matrix and the operators evaluated in t
contraction remnant:

H r~G!5S†~G!HT ~G!S~G!, ~17!

Or~G!5S†~G!OT ~G!S~G!. ~18!

Note that the CORE approach described here differs fro
that described previously@1#. In our earlier formulation of
the method, the contractorT(t) in Eq. ~1! was approximated
by a product of exactly computable exponentials. The va
ablet was then treated as a variational parameter, adjusted
as to minimize the mean-field energy in each RG iteration

III. FOUR EXAMPLES

To better illustrate the method and demonstrate its effe
tiveness, we now apply these rules in four examples. Each
these examples, free scalar field theory with single-state tru
cation, the (111)-dimensional Heisenberg antiferromagne
with two-state truncation, the (111)-dimensional Ising
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model with two-state truncation, and free scalar field theo
with infinite-state truncation, has been chosen to clarify
particular aspect of the rules.

A. Single-state truncation: Free scalar field theory

First let us discuss a massless (m50) free-field theory.
Free scalar field theory on a lattice is just a set of coupl
harmonic oscillators,

H5(
j

F12P~ j !21
m2

2
f~ j !21

1

2
@f~ j11!2f~ j !#2G ,

~19!

where@f( j ),P(k)#5 id jk . The simplest possible truncation
procedure we can adopt is to keep the number of sites fi
and truncate to a single state per site. Begin by dividingH as

H5(
j

@H~ j !1V~ j !#, ~20!

H~ j !5
1

2
@P~ j !212f~ j !2#, ~21!

V~ j !52f~ j !f~ j11!. ~22!

Truncate by keeping only the ground state ofH( j ) for each
site j ; i.e., keeping the oscillator stateuv( j )& of frequency
v5A2. Note, this procedure truncates the entire Hilbe
space to a single product state and, therefore, the renorm
ized Hamiltonian will be a 131 matrix, as will each term in
the expansion

H ren5(
j ,r

hr~ j !
conn. ~23!

Since the CORE procedure guarantees thatH ren has the same
low energy structure as the original theory, keeping only o
state means that we will only be able to compute the groun
state energy of the free scalar field theory. We will see th
all of the termshr( j )

conn are independent ofj and so it fol-
lows from Eq.~23! that the ground-state energy density wi
be given by

Efree field5(
r51

`

hr~ j !
conn ~24!

for any fixed j .
Following the basic rules, truncateH( j ) to obtain

h1~ j !
conn5

1

2
A2, ~25!

whereh1( j )
conn can be thought of as either a 131 matrix or

as ac number.
To compute the range-2 contribution to the energy de

sity, we must diagonalize the two-site Hamiltonian

H~ j !2 site5
1

2
@P~ j !212f~ j !21P~ j11!212f~ j11!2#

2f~ j !f~ j11!, ~26!
ry
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and expand the tensor product stateuv( j )& ^ uv( j11)& in
terms of the eigenstates ofH( j )2 sites. Since this tensor-
product state has the exact two-site ground state appearin
its expansion in terms of the two-site eigenstates,HT

(2)( j ) is
a 131 matrix whose single entry is the exact ground-sta
energy ofH2 site; i.e., E25

1
2(A311). Furthermore, sinceS

has to be a 131 orthogonal matrix it is trivial. It follows
from these facts that the connected range-2 contribution
the ground-state energy density is given by

h2~ j !
conn5E2~ j !22h1~ j !

conn5
1

2
~A31122A2!. ~27!

To construct the range-3 term, find the ground-state e
ergy of the three-site problem,E3, and then subtract twice
the range-2 contribution, because we can embed a conne
two-site sublattice in the three-site lattice in two ways, an
three times the range-1 contribution, because the single-
can be embedded in the three-site sublattice in three wa
i.e.,

h3
conn~ j !5E3~ j !22h2~ j !

conn23h1~ j !
conn. ~28!

To compute the range-r contributions, find the exact ground-
state energy of ther -site Hamiltonian,Er , and then subtract
the lower orders-range connected contributions as man
times as the corresponding connecteds-site sublattice can be
embedded in ther -site problem:

hr~ j !
conn5Er~ j !22hr21~ j !

conn23hr22~ j !
conn

2•••2rh1~ j !
conn. ~29!

We wish to emphasize the unusual nature of this formu
in that we calculate the energy density of the infinite-volum
Hamiltonian system by exactly solving a series of finite
lattice problems, each defined with open boundary con

TABLE I. Convergence of the partial sumsen in the cluster
expansion of the free massless scalar-field vacuum energy den
as a function of the rangen. The energies are CORE estimates from
a single-state per site truncation algorithm, and the errors are
differences of these estimates from the exact energy dens
0.636619772.

n en Error

1 0.707107 0.070487
2 0.658919 0.022299
3 0.647644 0.011025
4 0.643206 0.006586
5 0.641001 0.004382
6 0.639746 0.003126
7 0.638962 0.002343
8 0.638441 0.001821
9 0.638076 0.001456
10 0.637811 0.001191
20 0.636932 0.000312
30 0.636761 0.000141
40 0.636700 0.000080
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tions, and recombine these results to cancel out finite-volu
effects. The results shown in Table I show the way in wh
the partial sums

en5(
r51

n

hr~ j !
conn ~30!

converge to the true ground-state energy density. The
prising result, given that the energiesEr are computed for
problems with open boundary conditions, is that the fini
volume effects appear to cancel to orderO(1/r 3), rather than
O(1/r ) as one would expect for a theory defined on a fin
lattice with open boundary conditions, or likeO(1/r 2) which
one would expect for a theory defined with periodic boun
ary conditions. At this time we do not completely understa
why the convergence is this rapid, but this behavior is se
in all of the examples we have studied.

B. Two-state truncation: Heisenberg antiferromagnet

There are several reasons for studying the Heisenberg
tiferromagnet. First, the model exhibits spontaneous bre
ing of a continuous symmetry in two and three spatial
mensions and, although in one spatial dimension
Mermin-Wagner@16# theorem forbids a nonvanishing orde
parameter, the theory still has a massless particle; it is in
esting to see if we can obtain the ground-state energy d
sity, the massless spectrum, and the vanishing of the s
gered magnetization by means of a simple COR
computation. Second, this theory is exactly solvable
means of the Bethe ansatz@17# and so we can compare ou
results to the exact ground-state energy dens
eexact52 ln(2)11/4520.443147. Third, there is a computa
tion by Anderson, based on an approximate spin-wave c
putation, which reproduces the spin-1/2 antiferromagnet
ergy density to within 2.5%. Although this approxima
result is based on treating the spin-1/2 system as if it h
spin N, for N@1, and then evaluating the result fo
N51/2, it has been difficult to do as well by earlier Hami
tonian real-space renormalization group methods; we are
nally able to exhibit a simple approximate CORE compu
tion which does significantly better than Anderson’s sp
wave computation working with spin-1/2 from the outse
The final reason for studying this case is that the symme
of the model makes it possible to describe the details of
computation in a straightforward manner. In particular, it
simple to explain the need for, and construction of, the
angulation transformationS which we referred to when we
stated the basic rules for doing a CORE computation.

The Heisenberg antiferromagnet is a theory with a sp
1/2 degree of freedomsW( j ) attached to each sitej of a one-
dimensional spatial lattice and a nearest-neighbor Ham
tonian of the form

H5(
j
sW~ j !•sW~ j11!. ~31!

The sW( j )’s are operators which act in the single-site Hilbe
spacesHj and satisfy the familiar angular momentum com
mutation relations
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@sa~ j !,sb~ l !#5 id j l eabgsg~ j !. ~32!

To analyze this problem, divide the lattice into three-site
blocks and label each block by an integerj . The sites within
each block are labeled by the integers$3 j ,3j11,3j12%.
Corresponding to this decomposition of the lattice into
blocks, divide the Hamiltonian into two partsHB andVBB :

HB5(
j
HB~ j !

5(
j

@sW~3 j !•sW~3 j11!1sW~3 j11!•sW~3 j12!#,

~33!

VBB5(
j
VBB~ j !5(

j
sW~3 j12!•sW~3 j13!. ~34!

Truncate by keeping the two lowest-lying eigenstates o
HB( j ) for each blockB( j ) so as to produce a new coarser
lattice which again has a spin-1/2 degree of freedom assoc
ated with each of its sites. DiagonalizingHB( j ) is a simple
exercise in coupling three spins: i.e.,

HB~ j !5sW~3 j !•sW~3 j11!1sW~3 j11!•sW~3 j12!, ~35!

5sW~3 j11!•@sW~3 j !1sW~3 j12!#, ~36!

5
1

2
@Stot

2 ~ j !2S~012!
2 ~ j !23/4#, ~37!

where SW tot( j )5sW(3 j )1sW(3 j11)1sW(3 j12) and SW 012( j )
5sW(3 j )1sW(3 j12). From Eq.~37! we see that the eigen-
states ofHB( j ) can be labeled by the eigenvalues ofStot

2 ( j )
andS(012)

2 ( j ), and the two lowest-lying eigenstates belong
to the spin-1/2 multiplet for which the spins on sites 3j and
3 j12 couple to spin 1. We denote these two degenera
states byu↑ j& and u↓ j& and use them to construct the projec-
tion operator

P5)
j
P~ j !; P~ j !5u↑ j&^↑ j u1u↓ j&^↓ j u. ~38!

Using theP( j )’s we construct the connected range-1 opera
tors

h1~ j !
conn5P~ j !HB~ j !P~ j !521~ j !, ~39!

where1( j ) stands for the 232 identity matrix.
To obtain the connected range-2 termh2( j )

conn, construct
the Hamiltonian for the two-block or six-site problem. Since
this Hamiltonian commutes with the total-spin operators fo
the six-site sublattice, the eigenstates ofHsix2sites will fall
into spin-3, spin-2, spin-1 or spin-0 multiplets. The state

1

A2
~ u↑ j↓ j11&2u↓ j↑ j11&) ~40!

is the unique linear combination of the original tensor-
product states which has total spin zero; hence, only spin-
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states appear in the expansion of this state in terms of ei
states ofHsix2sites. The lowest-lying eigenstate ofHsix2sites
appearing in the expansion of this spin-0 state is the gro
state ofHsix2sites whose eigenvalue we denote bye0. Simi-
larly, the following states

u↑ j↑ j11&,
1

A2
~ u↑ j↓ j11&1u↓ j↑ j11&), u↓ j↓ j11&,

~41!

are linear combinations of the original tensor-product sta
which have total spin 1 and totalz component of spin
Mz511, 0, 21, respectively. The lowest-lying eigensta
of Hsix2sitesappearing in each of these spin-1 combination
that member of the lowest-lying spin-1 multiplet having t
appropriate value ofMz ; hence, each of these states co
tracts onto a unique eigenstate ofHsix2sites. If we denote the
degenerate eigenvalue of these eigenstates bye1, then the
operatorHT

(2)( j ) has the form

HT
~2!~ j !5S e0 0 0 0

0 e1 0 0

0 0 e1 0

0 0 0 e1

D , ~42!

using these remnant eigenstates as our new basis state
could use the explicit form of the triangulation matrixS,
which rewrites the original tensor product states in terms
these spin eigenstates, to transform this back into the orig
tensor-product basis

u↑ j↑ j11&, u↑ j↓ j11&, u↓ j↑ j11&, u↓ j↓ j11&, ~43!

but this is unnecessary since symmetry considerations
quireS†HT

(2)( j )S to have the form

b01j ^1j111b1sW~ j !•sW~ j11!. ~44!

Equation ~44! can be rewritten in terms of the total sp
operator for sitesj and j11 to obtain

e05b02
3

4
b1 , e15b01

1

4
b1 . ~45!

While the symmetry of this system makes it possible to
terminee0 ande1 analytically, it is more convenient to com
pute it numerically. To six significant figures, this calculati
yields

e0522.493577, e1522.001995. ~46!

To construct the connected range-2 term, we subtract
two ways of embedding the one-block sublattices into
connected two-block sublattice

h2~ j !
conn5~b012!1j ^1j111b1sW~ j !•sW~ j11!. ~47!

We could go on to compute range-r connected terms fo
r.2, but we will stop at range 2 and define the approxim
renormalized Hamiltonian by
gen-
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H ren5(
j
C1j1b1sW~ j !•sW~ j11!, ~48!

whereC5b011. Clearly this approximate Hamiltonian, ex-
cept for the trivial addition of a multiple of the unit matrix,
has the same form as the original Hamiltonian. When th
happens, we say that the theory is at a critical point, a
ub1u,1 implies that it has no mass gap.~The logic which
says thatub1u,1 implies no mass gap is that if we iterate th
renormalization group transformation, then eventually on
thec-number part of the Hamiltonian will remain. Since th
interaction part becomes vanishingly small, eventually all
the low-energy states of the theory must have a vanishin
small energy splitting. Hence, the theory must have a va
ishingly small mass gap.!

To extract the ground-state energy density, we have
pay attention to the constant term. After the first transform
tion, we see that this term will make a contribution to th
ground-state energy density equal toC/3, where the factor of
1/3 appears because each site on the new lattice correspo
to three sites of the old lattice. Remembering this and pe
forming the renormalization group transformation on the in
teraction termb1sW( j )•sW( j11), we generate a new renormal
ized Hamiltonian of the form

H ren8 5(
j

b1C1~ j !1b1
2sW~ j !•sW~ j11!. ~49!

Accumulating the new constantb1C/9 into the previous
computation of the energy-density~where the 1/9 comes
from the fact that one point on the new lattice corresponds
nine points on the original lattice!, we again have a new
Hamiltonian which has the same form as the original Ham
tonian, except that it is multiplied by the factorb1

2. Repeat-
ing this process an infinite number of times yields a series
the ground-state energy density

Eren grp5
C

3(
n50

` S b1

3 D n5 C

3~12b1/3!
520.4484462,

~50!

which agrees well with the exact resultEexact520.443147.
Thus, this simple range-2 calculation gives a result which
good to about one percent; this is more than a factor of
better than that obtained from Anderson’s spin-wave comp
tation. Note that this very simple calculation yields theexact
mass gap. One also finds that the staggered magnetiza
M5( j (21) j sz( j ) vanishes~note that one obtains a non-
vanishing staggered magnetization on two- and thre
dimensional spatial lattices!.

This completes our present discussion of the antiferr
magnet. We will return to it again in the section on question
of convergence since it has something to teach us about
reliability of single-state truncation calculations.

C. Two-state truncation: The „111…-dimensional Ising model

We now revisit the (111)-dimensional Ising model
which we discussed in Ref.@1# using an earlier formulation
of the CORE approximation. While our earlier treatment wa
quite successful in extracting the physics of the model, o
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new approach produces better results, is less computation
intensive, and is much easier to implement and expla
There are two main reasons for treating this example in so
detail. First, remarkably accurate results can be obtain
even when considering only terms up to range 3 in the ren
malized Hamiltonian. Secondly, this problem does not ha
the high degree of symmetry of the Heisenberg antiferr
magnet and so the construction of the operatorS must be
done explicitly.

The Hamiltonian of the~111!-dimensional Ising model is

H Ising52(
j

@clsz~ j !1slsx~ j !sx~ j11!#, ~51!

cl5cos~lp/2!, sl5sin~lp/2!,

where j labels the sites on the infinite one-dimensional sp
tial lattice and 0<l<1. This model is interesting for severa
reasons. First, it exhibits a second-order phase transition
l51/2; for l,1/2, the ground state of the system is uniqu
the order parameter̂sx( j )& vanishes and the excited state
are localized spin excitations; whenl.1/2, the ground state
is twofold degenerate corresponding to values of the ord
parameter̂sx( j )&56@12cot2(lp/2)#1/8 and the excitations
are solitons~kinks and antikinks!. Secondly, the model is
exactly solvable and so we have exact results with which
compare. Thirdly, the model has much less symmetry th
the Heisenberg model and so the structure of the renorm
ization group transformation is richer.

In order to show how a more complicated approxima
renormalization group transformation works, we once aga
adopt a two-state, three-site block truncation algorithm, b
now we computehr( j )

conn for r51,2,3. Because the Hamil-
tonian is more complicated than that of the antiferromagn
and computing the connected range-3 terms involves solv
for the eigenstates of a nine-site problem, we must resor
ally
in.
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numerical methods to carry out the computation. We nume
cally diagonalize the 5123512 nine-site Hamiltonian matrix.
However, since we only need a few low-lying states to com
puteS, we could significantly reduce the computational co
by using the Lanczos method. While unnecessary for th
simple problem, the application of the Lanczos method to t
construction ofS will be very useful when studying more
complicated theories.

The starting Hamiltonian is invariant under parity and th
simultaneous transformationsx( j )→2sx( j ). Our thinning
algorithm preserves this symmetry so that the most gene
form the renormalized Hamiltoniancan take is

H ren52(
a, j

caOa~ j !, ~52!

Oa~ j !5sa0
~ j !sa1

~ j11!•••sar
~ j1r !, ~53!

where theca’s are the couplings,a labels the different types
of operators which can appear, andj is a site label. Given the
symmetries of the original Hamiltonian which will be pre
served in the renormalized Hamiltonian, we see that the on
two possible one-site operators area (1)5$u,z%, whereu de-
notes the identity operator; in other words, the only one-s
operators areOu( i )5su( i )51 andOz( i )5sz( i ). Similarly,
the only two-site operators which are consistent with th
symmetries of the problem area (2)5$xx,yy,zz%, and the
only three-site operators which can appear a
a (3)5$xzx,xux,xxz,zxx,yzy,yuy,yyz, zyy,zuz,zzz%.

Since the original form of the Hamiltonian given in Eq
~51! is just a special form of Eq.~53!, we will discuss the
truncation procedure for the general case. Once again
work with blocks Bj containing the points
$3 j ,3j11,3j12% and keep the lowest two eigenstates of th
generic block Hamiltonian
HB~ j !52cz@Oz~3 j !1Oz~3 j11!1Oz~3 j12!#2cxx@Oxx~3 j !1Oxx~3 j11!#2cyy@Oyy~3 j !1Oyy~3 j11!#

2czz@Ozz~3 j !1Ozz~3 j11!#2cxuxOxux~3 j !2cyuyOyuy~3 j !2czuzOzuz~3 j !2cxzxOxzx~3 j !2cxxzOxxz~3 j !

2czxxOzxx~3 j !2cyzyOyzy~3 j !2cyyzOyyz~3 j !2czyyOzyy~3 j !2czzzOzzz~3 j !. ~54!
of
of

r
If
a-
When we truncateHB( j ) to these two states, we obtain th
new range-1 terms. Sinceh1( j )

conn is a diagonal matrix in
this basis, it can be written as a sum of a multiple of the u
matrix 1( j ) and a multiple ofsz( j ).

If we denote the eigenstates of the three-site blockBj by
u↑ j& andu↓ j&, then the connected range-2 contributions to t
renormalized Hamiltonian are obtained by first solving th
two-block or connected six-site problem exactly and expan
ing the four tensor-product statesufa(Bj , j11)&
5$ u↑ j↑ j11&, u↑ j↓ j11&, u↓ j↑ j11&, and u↓ j↓ j11&% in terms of
the eigenstatesueb(Bj ,Bj11)& of this problem. To compute
S for the range-2 problem, begin by constructing the 4364
overlap matrix Qab5^fa(Bj ,Bj11)ueb(Bj ,Bj11)&. Note
that each row ofQ gives the expansion of each of the fou
e

nit

he
e
d-

r

tensor-product states in terms of the eigenstates
Hsix2site. Ensure that the eigenstates are arranged in order
increasing eigenenergy.

The construction ofS now proceeds iteratively. Begin by
focusing attention on the first column ofQ; this is a 431
matrix C1 whose entries contain the overlaps of the fou
tensor-product states with the eigenstate of lowest energy.
C1 has any nonzero entries, then we can find a rotation m
trix R1 such thatC1 can be brought into a form where only
its upper entry is nonzero. Finding such anR1 is equivalent
to constructing the singular value decomposition ofC1. Us-
ingR1, transformQ to Q̃15R1Q and then focus attention on
the 3363 submatrix obtained by eliminating the first row
and first column ofQ̃1; call the resulting matrixQ1.
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Apply the same reasoning toQ1. Focus on the first col-
umn ofQ1, denoted byC2. If C2 contains some nonvanish
ing entries, construct the orthogonal 333 transformation
U2
† which bringsC2 into the standard form where only th

upper element is nonvanishing. Again, this is equivalent
performing the singular value decomposition ofC2. Next,
define a 434 matrixR2 as

R25S 1 0 0 0

0 ••• ••• •••

0 A U2
†

0 A
D . ~55!

TransformQ to Q̃25R2R1Q, then construct the 2362 sub-
matrixQ2 formed by eliminating the first two rows and co
umns fromQ̃2.

Next, construct the 232 matrixU3
† which brings the first

column ofQ2 into standard form, extendU3
† to a 434 ma-

trix

R35S 1 0 0 0

0 1 0 0

0 0 ••• •••

0 0 A U3
†
D , ~56!

and then define the triangulation matrixS(2)5R3R2R1. Also,
define the diagonal 434 HamiltonianHT

(2) from the four
lowest eigenvalues ofHsix2sites. Then the 434 connected
range-2 operator in the renormalized Hamiltonian is given

h2~ j !
conn5S~2!HT

~2!S~2!2h1~ j !
conn2h1~ j11!conn.

~57!

Note that we have simplified this discussion by assumi
as is usually the case, that the eigenvalues ofHsix2sites are
nondegenerate and that the four tensor-product states
nonvanishing overlaps with the four lowest-lying eigenstat
If this is not the case, then we have to generalize this disc
sion slightly. In the event that some eigenstates do not oc
in the expansion of the tensor product states, the corresp
ing matrixQ1 or Q2 will have a first column in which all
entries are zero. When this happens, simply eliminate
column and use the first nonvanishing column to define
rotation matrix; the corresponding eigenvalue is then use
HT
(2) . When an eigenvalue isg-fold degenerate, include in

C1 or C2 all g columns ofQ1 or Q2 corresponding to the
eigenvectors in the degeneracy subspace and then carr
the singular value decompositionCj5UjS jVj

† . The required
rotation matrix is again obtained fromUj

† , but nowVj is
needed to construct the remnant eigenstates from the de
eracy subspace. Taking degeneracies into account can
come important after a large number of iterations as
renormalized Hamiltonian flows closer and closer to one
its fixed points.

Constructing the range-3 connected terms proceeds
same way, except now we have to work with three adjac
blocks Bj , Bj11, and Bj12. Now the matrixQ has eight
columns corresponding to the tensor-product sta
u↑ j↑ j11↑ j12&, u↓ j↑ j11↑ j12&, u↑ j↓ j11↑ j12&, u↑ j↑ j11↓ j12&,
-
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u↓ j↓ j11↑ j12&, u↓ j↑ j11↓ j12&, u↑ j↓ j11↓ j12&, and
u↓ j↓ j11↓ j12&, and we must compute~assuming nondegen-
eracy of the spectrum and no missed states! the eight lowest
eigenstates ofHnine2sites( j ) in order to constructHT

(3) and
S(3). Except that we are dealing with slightly larger matrice
we go through the same steps described above. The rang
contribution to the renormalized Hamiltonian is then give
by

h3~ j !
conn5S~3!HT

~3!~ j !S~3!2h1~ j !
conn2h1~ j11!conn

2h1~ j12!conn2h2~ j !
conn2h2~ j11!conn.

~58!

Given h(1)( j ), h(2)( j ), andh(3)( j ), the approximate renor-
malized Hamiltonian on the lattice with one-third as man
sites as the original is

H ren5(
j

@h1~ j !1h2~ j !1h3~ j !#. ~59!

Our results were obtained by choosing a specific value
l in the special form of the Hamiltonian given by Eq.~51! in
which onlycz

(1) andcxx
(1) differ from zero. We then apply the

above range-3 CORE procedure. After the first RG transfo
mation, we obtain a new Hamiltonian comprised of all a
lowed operators with nonvanishing couplings; howeve
most of the couplings are small. We iterate the process, o
taining a sequence of renormalized Hamiltonians in whic
the couplings flow until finally, all but one of the coefficients
vanish; i.e., until one reaches a solvable fixed-point Ham
tonian. Our numerical computations show that there are on
two possible fixed-point Hamiltonians: one in which onl
cz
(`) is nonvanishing, and one in which onlycxx

(`) is different
from zero.

In Fig. 1, we plot the fractional error in the CORE esti
mates of the ground-state energy density. The dotted cu
shows the results obtained in Ref.@1# using the earlier ver-

FIG. 1. Fractional error in CORE estimates of the ground-sta
energy density in the Ising model againstl. The dotted curve with
crosses shows previous estimates from Ref.@1#; results from the
present work are shown by the solid curve with circles.
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sion of the CORE approximation. The critical valuelc sepa-
rating the spontaneously broken phase from the unbro
phase is found to belc'0.50365 which agrees well with the
exact value of 1/2.

Extracting the mass gap as a function ofl is easily done
since both fixed-point Hamiltonians are exactly solvable. B
low the phase transition wherecz

(`) is the only nonvanishing
coefficient, eigenstates of the Hamiltonian are tensor pr
ucts of eigenstates ofsz( j ), and so the mass gap is equal
2cz

(`) Above the phase transition, the only nonvanishing c
efficient is cxx

(`) and so eigenstates of the Hamiltonian a
products of eigenstates ofsx( j ). In this case, there are two
degenerate ground states; the discrete symm
sx( j )→2sx( j ) is spontaneously broken. In this phase, t
low-lying eigenstates arekinkswhich have mass 2cxx

(`) . The
results of the CORE computations for the mass gap
shown in Fig. 2.

Finally, the magnetization was also studied. A seque
of renormalized magnetization operators was compu
along with the renormalized Hamiltonian; the starting ope
tor in this CORE sequence wasM5( jsx( j ). The renormal-
ized magnetizationM ren has a cluster expansion given by

M ren5(
j

(
r51

`

mr~ j !
conn, ~60!

where the connected range-r operatorsmr( j )
conn are com-

puted from the truncated one-, two-, and three-block ope
tors,

m1~ j !
conn5M T

~1!~ j !, ~61!

m2~ j !
conn5S†~2!M T

~2!~ j !S~2!2m1~ j !
conn2m1~ j11!conn,

~62!

m3~ j !
conn5S†~3!M T

~3!~ j !S~3!2m2~ j !
conn2m2~ j11!conn

2m1~ j !
conn2m1~ j11!conn2m1~ j12!conn,

~63!

FIG. 2. CORE estimates~circles! of the mass gap in the Ising
model againstl. The solid curve shows the exact mass gap.
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whereM T
(r )( j ) consists of the matrix elements ofM (r ) in the

basis of remnant eigenstates, andM (r ) is the restriction of the
full magnetization operator to ther -block sublattice. A com-
parison of the CORE estimates of the magnetization with th
exactly known results is shown in Fig. 3.

Two procedures were used to extract the critical exponen
from these calculations. Both procedures attempt to fit th
logarithm of the magnetization to the form of the exact an-
swer, namely:

p~l!5
ln@M ~l!#

ln@12tan~lcp/2!2/tan~lp/2!2#
, ~64!

where ln@M(l)# stands for the logarithm of the computed
values of the magnetization andlc stands for that value of
l at which the theory changes phase. If we attempt to extrac
p(l) by fixing lc50.50365, the value above which the
CORE computation changes from havingcz

(`)Þ0 to cxx
(`)

Þ0, then the values ofp(l) obtained from this procedure do
not lie on straight line. Moreover, the average value of
p(l) lies between 0.10 and 0.11, which is not a very good fi
to the exact value 1/8. If, on the other hand, we varylc and
determine its best value by fitting the resulting values for
p(l) to a straight line, then we obtain a very good fit for
lc'0.498 and find that p(l) lies in the range
0.1236,p(l),0.126. The discrepancy betweenlc50.498
andlc50.50365 givesa priori evidence, without knowledge
of the exact solution, that the determination of the critical
point must have an error of about one percent due to a
accumulation of numerical errors and limiting the computa-
tion to range-3 terms. Figure 4 displays three plots ofp(l)
for lc50.496, 0.498, and 0.500; the best fit to a straight line
is given by the middle curve which corresponds to
lc50.498.

D. Infinite-state truncation: Free scalar field theory

Lastly, we return to the case of free scalar field theory in
111 dimensions, but this time, we use a truncation algo
rithm which keeps an infinite number of states at each step

FIG. 3. Comparison of the CORE estimates~crosses! of the
magnetization with the exact results~solid curve! in the Ising model
againstl. lc is the critical point.
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Consider a truncation procedure based upon two-s
blocks. For each two-site blockBp , we introduce the opera-
tors

F~p!65
1

A2
@f~2p!6f~2p11!#, ~65!

V~p!65
1

A2
@P~2p!6P~2p11!#, ~66!

and define ladder operatorsA1(p) andA2(p) using

F~p!65
1

A2g6

@A~p!6
† 1A~p!6#, ~67!

V~p!65 iAg6

2
@A~p!6

† 2A~p!6#, ~68!

where g25Am213 and g15Am211. In terms of these
variables, the two-site Hamiltonian is simply a sum of tw
decoupled oscillators, and its eigenstates are given by

uN1~p!,N2~p!&5
1

AN1!AN2!
A1
† ~p!N1A2

† ~p!N2ug1 ,g2&,

~69!

where A1ug1 ,g2&5A2ug1 ,g2&50. We now adopt a
simple truncation procedure in which we keep an infinite s
of block states

uN~p!&5uN1~p!5N; N2~p!50&. ~70!

FIG. 4. Plots ofp(l) as given in Eq.~64! for lc50.496~dashed
curve with squares!, 0.498 ~solid curve with circles!, and 0.500
~dotted curve with diamonds!. lc is the critical coupling in the Ising
model, andj is the critical exponent corresponding to the magn
tization.
ite

o

et

In other words, only states for which the higher-frequenc
g2 oscillator is in its ground state are retained. With thi
choice of eigenstates,h1(p)

conn can be written as

h1~p!conn5
g2

2
1g1FA1

† ~p!A1~p!1
1

2G , ~71!

5
g2

2
1
1

2
@V1~p!21g1

2 F1~p!2#.

~72!

Now consider an r -block sublattice B(p, . . . ,p
1r21)5$2p,2p11, . . . ,2p12r21%. The Hamiltonian re-
stricted to this sublattice has the form

Hr~p!5
1

2 (
j52p

2p12r21

P~ j !2

1
1

2 (
j 1 , j 252p

2p12r21

f~ j 1!Mr~ j 1 , j 2!f~ j 2!, ~73!

whereMr is a 2r32r real-symmetric matrix whose ele-
ments satisfyMr( i , j )5Mr( i2 j ). Mr can be diagonalized
to obtain the normal modes, and ther -lowest eigenvalues of
Mr then yieldHT , the remnant eigenvalues. The triangula
tion matrixS is determined as usual, except that we can no
work in terms of the fields instead of basis states. The pro
of these statements is a straightforward exercise in norm
ordering using simple generalizations of the identities give
in the Appendix and the definition of the operatorS. The
connected range-r term hr(p)

conn is then computed from
Hr(p) by subtracting from it the previously computed con
nected range-j terms, for j51, . . . ,r21. Finally, the terms
hr(p)

conn are combined to form the renormalized Hamil
tonian, which takes the form

H ren5(
p

1

2 Fh01V1~p!212(
m50

r21

am
~r !F1~p!F1~p1m!G ,

~74!

whereh0 andam
(r ) arec numbers. For example, if we trun-

cate the cluster expansion after two-block clusters (r52),
we find in each RG stepn→n11 that a1

(2)(n11)
5a1

(2)(n)/2 and a0
(2)(n11)5a0

(2)(n)1(A521)a1
(2)(n)/2,

for a1
(2)(n),0. Amazingly, noF4 terms appear in the renor-

malized Hamiltonian, but note that the exact CORE transfo
mation of the nearest-neighbor Hamiltonian results in a ne
Hamiltonian which has an infinite number of terms. The im
portance of these results is that it shows we can, both
principle and in practice, directly deal with field theories
having an infinite number of states per site, without firs
mapping them to spin systems. A more detailed descripti
of the above calculation will appear in a forthcoming pape
which will also describe the analogous calculation for Ferm
fields.

At this point, an interesting question is ‘‘How big must
r be in order to do a good job of reproducing the mass g
and correlation functions of the free-field theory?’’ To ana
lyze this question for the massless field~the hardest case!,

e-
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expand the fieldsF1 andV1 in terms of their Fourier com-
ponents to rewrite the renormalized Hamiltonian form50 as

H ren5 (
k52p/2

p/2
1

2 S Ṽ~k!Ṽ~2k!12F (
s50

r21

as
~r !cos~sk!G

3F̃~k!F̃~2k!D . ~75!

We then explicitly compute theas
(r ) couplings for various

values ofr , the cluster expansion truncation order. Table
compares the values ofa0

(r ) , a1
(r ) , a2

(r ) , anda3
(r ) obtained

from a range-2, range-3, and range-4 CORE computatio
We see from the table that any given coefficient converg
rapidly in r to its r→` limit. In this limit, the renormalized
Hamiltonian matches the original theory restricted to th
subspace spanned by the oscillators having mome
2p/2<k<p/2; hence, we can use

(
s50

`

as
~`!cos~sk!512cos~k/2!, ~76!

to determine the couplings in ther→` limit. We find

a0
~`!512

2

p
, ~77!

as
~`!5

4~21!s

p~4s221!
~s.0!. ~78!

Note that the exact coefficientsas
(`) fall off as 1/s2. This

means that if we truncate the formula for the frequency

v r
2~k!52(

s50

r21

as
~`!cos~ks!, ~79!

then the massm(r ), defined bym2(r )5v r
2(0), fails to van-

ish; in fact, for some values ofr , it becomes negative; the
behavior of the gap as a function ofr is shown in Fig. 5.
Since negative values for the gap make no sense as t
imply that the renormalized Hamiltonian has no ground sta
we can only truncate after an even number of terms. A
important observation we can make from the plot is that w
can only accurately compute the mass gap for the free-fie
theory if we work out to a ranger'1/m. We should note,
however, that the mass is the quantity which is most sen
tive to making a finite-range truncation of the exact reno
malized Hamiltonian and that the functionv r(k) converges

TABLE II. Comparison of some of the couplingsas
(r ) in the

renormalized Hamiltonian of a free scalar field theory forr52, 3, 4,
`, wherer is the cluster-expansion truncation order. Note that on
a0 anda1 are defined for the caser52.

as
(r ) r52 r53 r54 r5`

a0 0.381966 0.371054 0.367594 0.363380
a1 20.500000 20.451922 20.438360 20.424413
a2 0.104212 0.098137 0.084883
a3 20.041400 20.036378
II
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for k.mmore rapidly than it does fork50. This means that
even for the worst caseof a free-field theory, careful exami-
nation of the behavior of the functionv r(k) and the oscilla-
tory behavior ofm(r ) will allow us to extract the correct
physics without having to compute an infinite number o
terms in the finite-range cluster expansion. A final poin
which we state without proof is that the importance of th
longer range terms is significantly reduced if we work wit
larger blocks. In one dimension for blocks of sizeL, the
corresponding coefficientsas(r ) fall off as 1/r

2L2.
This discussion applies to the truncation procedure

which we keep an infinite set of states at each truncati
step. It would be interesting to discover how much of th
behavior occurs if we keep only a finite number of states
the first step and map the theory into a spin system. T
results of the Ising calculation show that we do not alwa
need to work with large values ofr in order to correctly
reproduce the mass gap for a theory near its critical point

Note that CORE’s ability to reproduce the mass gap a
density of states near zero momentum is much greater th
that of the naive (t50) renormalization group procedure
For example, if we diagonalize the single-site Hamiltonian
the massless free scalar field theory and keep the single-
ground state and first excited state, then the naively det
mined renormalized Hamiltonian is the simple Ising Hami
tonian for a value of the coupling far from its critical point
the system has a nonvanishing mass gap. However, if
keep the same single-site states but use the CORE rule
construct the renormalized Hamiltonian, many more intera
tion terms emerge and the couplings in the renormaliz
Hamiltonian are such that the system is much closer to t
critical point where the mass vanishes. A more comple
analysis of this system which examines the costs and bene
of keeping more states versus computing longer-range c
nected contributions to the renormalized Hamiltonian wou
be very informative.

IV. DERIVING THE BASIC RULES

The definition of the renormalized Hamiltonian in Eq.~1!
is the cornerstone of the CORE approach. We were led
this definition by first observing that the state

ly

FIG. 5. CORE estimates of the mass gap squaredm2(r ) in the
free scalar field theory against the truncation orderr in the cluster
expansion of the renormalized Hamiltonian. The CORE estima
are obtained using an infinite-state truncation algorithm.
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uC~ t !&5
e2tH/2

A^C0ue2tHuC0&
uC0& ~80!

contracts, ast→`, onto the lowest energy eigenstate ofH
for which the starting trial stateuC0& has a nonvanishing
overlap, typically the ground state. Note that the ground-sta
expectation value of any operatorO can be obtained by tak-
ing the limit

^O&5 lim
t→`

^C~ t !uOuC~ t !&. ~81!

The use of Eq.~1! to define the renormalized Hamiltonian is
strongly suggested by the following theorem.

Theorem I.Given a Hilbert spaceH and truncation algo-
rithm with associated projection operatorP, diagonalizing
the renormalized Hamiltonian

H ren~ t !5@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2,
~82!

whereT(t)5e2tH and@@O##5P†OP, is equivalent to find-
ing the vectoruc& in the subspaceP5PH which minimizes
the ratio

Ec~ t !5^cuT~ t !HT~ t !uc&/^cuT~ t !2uc&. ~83!

Proof: Let ufn& label a basis forP5PH and expand
uc&5(nanufn&. Then,

Ec~ t !5
(n,mam* an^fmuT~ t !HT~ t !ufn&

(p,qap* aq^fpuT~ t !2ufq&
. ~84!

To minimize this expression over all the states inP, differ-
entiate Eq.~84! with respect toar* and equate to zero; this
yields

^f r uT~ t !HT~ t !uc&5Ec~ t !^f r uT~ t !2uc&. ~85!

Since this applies for eachr , this can be rewritten

@@T~ t !HT~ t !##uc&5Ec~ t !@@T~ t !2##uc&. ~86!

Hence, finding the stateuc& which minimizes Ec(t) is
equivalent to solving a generalized eigenvalue problem
Given that@@T(t)2## is a positive matrix, the relative eigen-
value problem can be converted into an equivalent standa
eigenvalue problem. In other words, finding the state whic
minimizes the ground-state energy of the original Hamil
tonian is equivalent to diagonalizing the operatorH ren(t) de-
fined in Eq.~82!.

In order to demonstrate that the renormalized Hamiltonia
given in Eq.~1! defines a valid renormalization group trans-
formationH ren5t(H), we must at least show that the eigen-
values ofH ren and the low-lying eigenvalues of the original
HamiltonianH are the same.

Theorem II. Let H be a Hamiltonian defined in an
N-dimensional Hilbert spaceH with eigenstates$ueb&% and
corresponding eigenvalueseb , for b50•••N21 and
eb<eb11. Let P be an M -dimensional subspaceP,H
spanned by the states$ufa&% for a50•••M21, where
M,N. The projector into this subspace is
P5(a50

M21ufa&^fau. Furthermore, letS denote theM3M
te

.

rd
h
-

n

unitary triangulation matrix whose construction has bee
previously described, and$uTb&% denote the remnant eigen-
states ofH in P with corresponding eigenvaluesTb . Then
the operator defined by

H ren5 lim
t→`

@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2,

~87!

where the contractorT(t)5e2tH and@@O##5P†OP, simpli-
fies to

H ren5S†HTS, ~88!

whereHT5diag(T0 , . . . ,TM21).
Proof: Define theM statesuja& by

uja&5 (
r50

M21

ufr&Sra
† . ~89!

From the construction ofS and the remnant eigenstates using
the singular value decomposition, the statesuja& satisfy
^Truja&50 for r,a. However, since the projections of
missed or nonremnant eigenstates intoP can be expressed in
terms of the projections of lower-lying remnant states, this
means that̂ eruja&50 for all r satisfyinger,Ta . The use
of Eq. ~14! and the singular value decomposition to define
the remnant eigenstates also ensures that^Truja&50 even
for r corresponding to remnant states which are degenera
with but orthogonal touTa&, and, hence,

e2tHuja&5e2tTauTa&^Tauja&1 (
eb.Ta

e2tebueb&^ebuja&,

~90!

where^Tauja&Þ0. Now define a new set of states

uQa~ t !&5Zab~ t !ujb&, ~91!

Zab~ t !5dabe
tTau^jauTa&u21. ~92!

It is not difficult to show that

lim
t→`

^Qa~ t !uT~ t !2uQb~ t !&5dab , ~93!

lim
t→`

^Qa~ t !uT~ t !HT~ t !uQb~ t !&5Tadab . ~94!

In matrix notation, these equations are

lim
t→`

Z~ t !S@@T~ t !2##S†Z~ t !5I , ~95!

lim
t→`

Z~ t !S@@T~ t !HT~ t !##S†Z~ t !5HT , ~96!

where I is theM3M identity matrix. It then follows from
Eq. ~95! that

lim
t→`

~S@@T~ t !2##S†!21/25 lim
t→`

Z~ t !, ~97!

and thus, Eq.~96! becomes
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lim
t→`

~S@@T~ t !2##S†!21/2~S@@T~ t !HT~ t !##S†!

3~S@@T~ t !2##S†!21/25HT . ~98!

Using the matrix relationBA21/2B215(BAB21)21/2 and the
unitarity of S, it then follows that

lim
t→`

S@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2S†5HT ,

~99!

and, finally,

H ren5S†HT S. ~100!

This theorem demonstrates that the eigenvalues of
renormalized Hamiltonian are theM eigenvaluesTa associ-
ated with the remnant eigenstates of the original Ham
tonian. If the truncation procedure is such that no eigenv
ues are missed, then the eigenvalues ofH ren are theM lowest
eigenvalues of H. By showing that the mapping
t(H)5H ren replaces the original theory with a theory con
taining the same low-energy physics but defined in terms
fewer degrees of freedom, Theorem II provides the justific
tion for identifyingt as arenormalization grouptransforma-
tion.

An important aspect of the CORE approach is the use
the finite cluster method to approximate the renormaliz
Hamiltonian on the infinite lattice. In Ref.@13#, lattice con-
stant theory was used to show that the finite cluster meth
can be applied in the calculation of any quantity so long
that quantity is extensive. We now demonstrate the extens
ity of the renormalized Hamiltonian. Recall that a quantity
extensive if, when evaluated on a disconnected graph, i
the sum of that quantity evaluated separately on the co
nected components of the graph.

Theorem III.The renormalized Hamiltonian is extensive
Proof: Consider a disconnected sublatticeG5G1øG2

comprised of two connected componentsG1 andG2. Since
G is disconnected, H(G)5H(G1)1H(G2) and
@H(G1),H(G2)#50; hence, TG(t)5TG1

(t)TG2
(t)

5TG2
(t)TG1

(t). Since the truncation is done on a block-by

block basis, then@@TG(t)##5@@TG1
(t)##@@TG2

(t)## and

H r~G!5@@TG1
~ t !2##21/2@@TG2

~ t !2##21/2~@@TG1
~ t !

3H~G1!TG1
~ t !##@@TG2

~ t !2##

1@@TG2
~ t !H~G2!TG2

~ t !##@@TG1
~ t !2## !

3@@TG1
~ t !2##21/2@@TG2

~ t !2##21/2, ~101!

5@@TG1
~ t !2##21/2@@TG1

~ t !H~G1!TG1
~ t !##

3@@TG1
~ t !2##21/21@@TG2

~ t !2##21/2

3@@TG2
~ t !H~G2!TG2

~ t !##@@TG2
~ t !2##21/2,

~102!

5H r~G1!1H r~G2!. ~103!
the
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Hence,H r is extensive.
Clearly, the eigenvalues of the renormalized Hamiltonia

on a given cluster containingR blocks are the same as the
lowest MR eigenvalues~modulo missing ones! of the full
Hamiltonian restricted to the cluster, assumingM states are
retained in each block. In truncating the cluster expansion
the renormalized Hamiltonian on the infinite lattice, the co
respondence between the low-lying eigenvalues of the in
nite latticeH ren andH can then be only approximate. How-
ever, our previous examples suggest that truncating
cluster expansion of the renormalized Hamiltonian after on
a very few terms can lead to remarkably accurate results

V. APPROXIMATION ISSUES

In this section, we discuss two issues related to appro
mations and the CORE procedure. First, within the conte
of free scalar field theory, we link the methods presented
this paper to our earlier Letter@1# where we used approxi-
mate contractors to carry out the computations. We demo
strate how such approximations converge and show why p
vious approaches always found a best finite value oft for
determining the ground-state energy. Second, we recons
the question of single-state truncations in the Heisenberg
tiferromagnet. We do this to show how simple single-sta
truncations can encounter problems with surface effects a
how the multistate renormalization group algorithm avoid
these problems.

A. Connection to earlier methods: Approximate contractors

Our earlier version of the CORE procedure@1# used an
approximate contractorTn(t) obtained by decomposing
H5H11H2 into two or more parts and writing

Tn~ t !5@e2tH1/2ne2tH2 /ne2tH1/2n#n, ~104!

whereH1 and H2 are chosen such thate2tH1 and e2tH2

could either be computed exactly or numerically to any d
sired degree of accuracy. The validity of this approximatio
follows from the fact that, for operatorsA andB, one can
show that

ed~A1B!5edA/2edB/2eC~d!edB/2edA/2, ~105!

C~d!5(
j51

`

d2 j11O2 j11 . ~106!

In particular, ford5t/n we see that asn→`, the sequence
Tn(t) converges toe

2tH as (t/n)3. When approximating the
contractor in this way, we will see thatt must be viewed as
a variational parameter to be optimized. We will also see th
this earlier procedure is less accurate and more time consu
ing than the method presently proposed.

To see this, consider once again the Hamiltonian given
Eq. ~19! which describes a free scalar field theory in on
spatial dimension. This Hamiltonian can be expressed a
sum of single-site operators and nearest-neighbor inter
tions:H5H01V, where

H05(
j

1

2
@P~ j !21g0

2f~ j !2#, ~107!
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V52(
j

f~ j !f~ j11!, ~108!

andg05Am212. The ground state ofH0 is then a product
of uncorrelated Gaussians:

^fuC0&5)
j

^fug0~ j !&5)
j
e2g0f~ j !2/2. ~109!

Our aim is now twofold: to demonstrate how to recover th
ground state of the full theory by applyinge2tH to uC0& and
taking the limit t→`, and to determine how well
Tn(t)5T1(t/n)

n5@e2tH0/2ne2tV/ne2tH0/2n#n approximates
e2tH for finite values ofn and t.

First, evaluatee2tHuC0&. Introducing the Fourier trans-
forms f̃(k) andP̃(k), we obtain

H5(
k
H~k!5(

k

1

2
@P̃~2k!P̃~k!1v2~k!f̃~2k!f̃~k!#,

~110!

H05(
k
H0~k!5(

k

1

2
@P̃~2k!P̃~k!1g0

2f̃~2k!f̃~k!#,

~111!

V5(
k
V~k!52(

k
cos~k!f̃~2k!f̃~k!, ~112!

^f̃uC0&5)
k
exp@2g0f̃~2k!f̃~k!/2#, ~113!

where v(k)5Am214sin2(k/2). Since f̃(2k)5f̃(k)† and
P̃(2k)5P̃(k)†, we can decompose the fields in terms o
their real and imaginary parts and restrict all sums tok.0,
handling the casek50 separately. Since theH(k) mutually
commute, thene2tHuC0& can be written as a product over
states labeled by the momentumk so that we can limit our
attention to a singlek mode without loss of generality. Let
ug(k)& denote a simple harmonic oscillator ground state
frequencyg(k). Now apply Theorem A2 proven in the Ap-
pendix:

e2tH~k!ug~k!&5A~k,t !ug~k,t !&, ~114!

where A(k,t) is a normalization factor andug(k,t)& is a
simple harmonic oscillator state of frequency

g~k,t !5v~k!S g01v~k!1e22 tv~k!@g02v~k!#

g01v~k!2e22 tv~k!@g02v~k!#
D .

~115!

Thus, ast→`, the frequenciesg(k,t)→v(k) which means
that the statee2tHuC0& converges@up to the normalization
factor)kA(k,t)# to the true ground state of the lattice free
field theory. Since the normalization factor cancels out
ratios such as

^C0ue2tH/2He2tH/2uC0&

^C0ue2tHuC0&
5
1

2(k>0
S g~k,t !1

v2~k!

g~k,t ! D ,
~116!
e

f

of

-
in

we will ignore it from here on.
The determination ofTn(t)uC0& proceeds similarly to that

of e2tHuC0&. Since we have @H0(k),H0(k8)#50,
@V(k),V(k8)#50, and @H0(k),V(k8)#50 for kÞk8, then
Tn(t)uC0& can be written as a product over states labeled b
the variablek and we can study the general problem onek
mode at a time. Ifugp(k)& is a simple harmonic oscillator
ground state of frequencygp(k) associated with a modek,
then

e2tH0~k!/2nugp~k!&}ug8~k,t/2n!&, ~117!

e2tV~k!/nugp~k!&}ug9~k,t/n!&, ~118!

where the frequencies of the new oscillator ground states a
related togp(k) by

g8~k,t !5g0S gp~k!1g01e22 tg0@gp~k!2g0#

gp~k!1g02e22 tg0@gp~k!2g0#
D ,

~119!

g9~k,t !5gp~k!22tcos~k!. ~120!

Using the above relations,
@e2tH0(k)/2ne2tV(k)/ne2tH0(k)/2n#nug0(k)& can then be easily
evaluated. We find that the Gaussian stateug0(k)& evolves to
a new Gaussian stateugn(k,t)& of frequencygn(k,t).

Plots ofgn(k,t) for various values ofk andn and a range
of t values are shown in Figs. 6, 7, and 8. Plots of the e
pectation value ofH in the stateTn(t)uC0& for the same
values ofn and range oft are shown in Fig. 9. There are two
things to notice about these figures. First, for larger values
k, the frequencies converge quickly to the values they wou
have in the exact wave function, indicated by the horizont
lines; however, for smaller values ofk, the exact frequencies
are not well reproduced, even for very large values ofn. This
means that computing the action ofTn(t) on uC0& can do
well at approximating the ground-state energy density an
still fail to reproduce the mass gap. Second, we observe th

FIG. 6. The scalar field theory frequenciesgn(k,t) obtained
using an approximate contractorTn(t) for n51 and various mo-
mentak. The starting state is a product of uncorrelated Gaussian
The curves correspond to different values ofk; the corresponding
frequencies in the exact wave function are indicated by the horizo
tal lines.
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for finite values ofn, there is a finitet which yields a best
estimate of the ground-state energy density.Tn(t) does a
very good job of approximatinge2tH for smaller values of
t, so at first,Tn(t)uC0& tends towards the ground state
H; however,Tn(t)uC0& eventually begins to move awa
from the ground-state wave function and so the expecta
value of the energy density starts to get worse. This sho
that without additional improvements, working withTn(t)
for finite n and abest tcannot be expected to always acc
rately reconstruct the infrared properties of the theory. T
renormalization group method works better than simp
evaluating the action ofTn(t) on a single state because
eliminates only the higher states whichTn(t) reproduces
well and carries the more difficult long-wavelength mod
over to the next step of the calculation. The agreement
tween the results of our earlier CORE treatment of the Is
model which usedn<16 and a best value oft and our cur-
rentn5` and t5` calculation supports this picture.

B. Antiferromagnet: Simple cluster formulas

We now return to the Heisenberg antiferromagnet a
compute the vacuum energy density using two differe
single-state truncation procedures. There are two reason

FIG. 8. The frequenciesgn(k,t) as in Fig. 6, except that
n540.

FIG. 7. The frequenciesgn(k,t) as in Fig. 6, except thatn52.
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doing this: first, to show that computing the ground-sta
energy density for an infinite-volume theory from a series
finite-volume calculations is generally applicable; secon
we often learn more from examples which do not work a
expected than from ones which work well. In this case, w
will learn that partitioning the lattice into either two- or
three-site blocks can produce sequences of truncated clu
expansions which converge at very different rates. We e
plain why this happens and show how the two-state trunc
tion algorithm used earlier avoids these convergence pr
lems.

First, we apply a single-state RG algorithm in which th
lattice is partitioned into two-site blocks and we retain on
the lowest-lying eigenstate in each block. Denote byEr the
ground-state energy of the theory defined by restricting t
full Hamiltonian to anr -site sublattice. The two-, four-, six-,
and eight-site ground-state energies areE2520.75,
E4521.616025, E6522.493577, andE8523.374932,
and they yield the following connected contributions in th
cluster expansion of the renormalized Hamiltonian:

e25E2520.75, ~121!

e45E422e2520.116025, ~122!

e65E622e423e2520.011527, ~123!

e85E822e623e424e2520.003803. ~124!

Thus, we obtain a sequence of approximations to the infini
volume ground-state energy density from the truncated cl
ter expansions

E25e2/2520.375, ~125!

E245~e21e4!/2520.4330125, ~126!

E2465~e21e41e6!/2520.438776, ~127!

E24685~e21e41e61e8!/2520.4406775, ~128!

FIG. 9. Expectation value of the free scalar field theory Ham
tonian in the stateTn(t)uC0& for n51, 2, and 40, showing how the
bestt changes as a function ofn.
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which are to be compared to the exact energy dens
Eexact520.443147. Note that we divide by 2 in the abov
formulas so that our results refer to the energy per site of
original lattice instead of the energy per two-site block. F
this simple truncation algorithm, the finite-range cluster e
pansion converges rapidly and agreement with the exact
swer to better than one percent is obtained with ease. Giv
our earlier discussion of the free-field theory, it is interestin
to compare the approximations built from connected terms
what we would obtain from simply dividing the ground-stat
energy for eachn-site block byn. The comparison of these
results is presented in Table III.

The better than one-percent agreement of the finite-ran
cluster expansion with the exact ground-state energy den
brings into question the benefits of using the renormalizati
group algorithm. However, the need for the renormalizatio
group becomes apparent after examining the sequence of
proximations obtained using three-site blocks. In this ca
numerical diagonalization of the appropriate sublattic
Hamiltonians yields E3521.0, E6522.493577, and
E9523.736322, yielding connected contributions

e35E3521.0, ~129!

e65E622e3520.493577, ~130!

e95E922e623e350.250832. ~131!

If we now use these results to construct the correspond
approximations to the energy density per site, we obtain t
sequence

E35e3/3521/3, ~132!

E365~e31e6!/3520.497859, ~133!

E3695~e31e61e9!/3520.4142483, ~134!

which oscillates about the correct answer and converg
much more slowly than that for the two-site decompositio
of H. The cause of this oscillation and slow convergen
arises from the fact that the physical excitations of th
model have integer spin; the three-site decomposition h
difficulty reproducing the low-lying physics since the groun
state of the three-site block is a spin-1/2 multiplet, that of th
six-site block is spin 0, and the ground-state of the nine-s
block is once again spin 1/2. The two-site decomposition
the Hamiltonian does not suffer from this effect. This lack o
rapid convergence is very instructive; since there is no w
to know in advance what the correct spectrum of excitatio
is, this shows that we need a method for summing, at le

TABLE III. Comparison of truncated-clusterEr and finite-
volumeEr /r Heisenberg antiferromagnet ground-state energy de
sities for ranger .

r Er Er /r

2 20.3750000 20.3750000
4 20.4330125 20.4040063
6 20.4387760 20.4155962
8 20.4406775 20.4218665
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partially, an infinite number of terms in the finite-range clu
ter expansion. As we saw in our earlier discussion of t
antiferromagnet, this is what the full renormalization grou
calculation allows us to do.

VI. LOOKING AHEAD

This paper sets forth the basic rules for CORE compu
tions, derives the rules from first principles, and discuss
issues related to the convergence of the procedure. Fu
papers will focus on the application of these methods
more interesting physical systems and on clarifying the co
nection of the CORE approach to perturbative methods
instances where both are applicable. Some systems wh
should receive early attention are lattice gauge theories w
and without fermions,t-J models@18#, and extended Hub-
bard models@19#. It is important to study the application of
CORE technology to lattice gauge theories in order to see
as we believe, it provides a powerful alternative to Mon
Carlo calculations for studying QCD and chiral symmetr
breaking. Extended Hubbard andt-J models are of interest
because they are conjectured to have some relevance to h
Tc superconductivity and have proven difficult to study i
more than one spatial dimension by conventional metho
In this section, we discuss the application of CORE metho
to these problems and indicate how one could establish
connection between the CORE approach and a perturba
renormalization group treatment off4 theory.

A. Lattice gauge theory without fermions

There are many ways to apply the techniques introduc
in this paper to lattice gauge theories. One interesting a
proach is to divide the lattice into finite-size blocks, trunca
the Hilbert space associated with each block to a set
gauge-invariant states, and then use the renormaliza
group formalism to map the gauge theory into a syste
which, like a spin system, has only a finite number of stat
associated with each lattice site. This approach yields
‘‘equivalent’’ Hamiltonian theory in which all of the un-
physical degrees of freedom have been eliminated. We
then treat the new Hamiltonian in the same way as in t
Heisenberg and Ising models.

For example, we could associate with eachplaquetteof
the original lattice a singlesite in the new lattice. We could
then find the low-lying gauge-invariant eigenstates of th
one-plaquette Hamiltonian, either exactly or numericall
and truncate by selecting a finite number of these eigensta
Using this truncation procedure, we construct a renormaliz
tion group transformation which maps the gauge theory in
a generalized ‘‘spin’’ system. The interactions betwee
nearby ‘‘spins’’ are found by evaluating the renormalize
Hamiltonian on clusters containing several connect
plaquettes. This new spin system would be guaranteed
have the same low-lying gauge-invariant physics as t
original theory and could be treated in the same way as
Heisenberg and Ising models. This approach allows us
define and carry out a gauge-invariant renormalization gro
calculation for any lattice gauge theory.

This ability to define a gauge-invariant, Hamiltonian
based, real-space renormalization group calculation is uniq
to the CORE approach. Earlier real-space renormalizat

n-
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group procedures also kept a finite number of states p
block, but they defined the renormalized Hamiltonian b
@@H##, the truncation of the original Hamiltonian to the sub
space spanned by the retained states~this corresponds to the
t50 limit of the CORE approach!. In such calculations,
keeping only gauge-invariant block states leads to a tru
cated Hamiltonian in which the block-block interactions van
ish. In order to retain interblock couplings, flux must mov
across the links joining the blocks; this cannot happen wit
out keeping some gauge-noninvariant single-block stat
However, if one keeps such states in the truncation proc
dure, the entire process becomes much more cumbersom

The question of how many single-block gauge-invaria
states and how many terms in the cluster expansion of
renormalized Hamiltonian should be retained naturally aris
when carrying out a contractor renormalization group calc
lation; each choice constructs a mapping of the origin
gauge theory into a different generalized spin system. W
hope to answer this question in the future by carrying o
several computations in a simple lattice gauge theory, su
as ~211!-dimensional compact U~1!, varying the number of
retained single-block states and clusters to see how quanti
of interest, such as mass gaps and the specific heat, dep
on these factors.

B. Lattice gauge theory with fermions

Interesting possibilities arise when we consider lattic
gauge theories with fermions. One way of treating the
theories is to study systems with either SLAC@20#, Wilson
@21#, or Quinn-Weinstein@22# fermions and truncate the sys-
tem to the subspace spanned by tensor products of gau
invariant, single-site states. In the case of lattice QCD, th
would include all color-singlet single-site states, i.e., meso
and baryons, which can be formed by applying quark an
antiquark creation operators to the single-site vacuum sta
subject to the constraints imposed by the exclusion princip
As the only terms which appear in the lattice QCD Hami
tonian create~or destroy! closed loops of flux or move
quarks from site to site trailing their flux behind them, th
color-singlet mesons and baryons are all degenerate and
connected range-1 part of the renormalized QCD Ham
tonian will vanish. In order to compute the connecte
range-2 terms, we solve the problem of two sites connect
by a single link and find the low-lying gauge-invariant eigen
states which have an overlap with all of the tensor produc
of the two sets of single-site meson and baryon states. T
computation yields connected range-2 contributions to t
renormalized Hamiltonian which contain meson and baryo
kinetic terms as well as meson-meson and meson-baryon
teractions. Connected range-3 terms come from compu
tions involving three sites arranged in a straight line or form
ing a right angle. These range-3 terms contain corrections
the terms already described, new terms which allow meso
and baryons to hop along diagonals of the underlying lattic
and terms which describe three-site interactions. Continui
in this way produces a renormalized Hamiltonian express
only in terms of the physical degrees of freedom; the unde
lying quarks and gluons disappear from the problem.

We would now like to say something about how chira
symmetry breaking will show up in QCD with three flavors
er
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of quarks and either SLAC or Quinn-Weinstein fermion de
rivatives ~the case of Wilson fermions is somewhat differ
ent!. Consider a theory with three massless flavors of quar
and apply a more restrictive truncation procedure whic
keeps only single-site fluxless states containing equal nu
bers of quarks and antiquarks, i.e., mesons. For three flav
of quarks there are 924 such states and, as was shown in R
@23#, they form an irreducible representation of the grou
SU~12! where the group generators are formed from bilinea
in the single-site quark fieldsQW . Note that forNf flavors, the
fluxless states form an irreducible representation of the gro
SU(4Nf). For a truncation algorithm based upon keepin
gauge-invariant single-site states, the renormalized Ham
tonian contains no range-1 connected terms. The first nonv
nishing contribution to the renormalized Hamiltonian will be
the range-2 connected terms and these are computed by s
ing the two-site theory.

It was pointed out in Ref.@23# that if we keep only the
nearest-neighbor terms in the fermion derivative, then th
resulting Hamiltonian is invariant under a global SU~12!, and
since the two-site problem cannot have anything but neare
neighbor terms, this observation can be used to simplify th
computation of the connected range-2 terms in the renorm
ized Hamiltonian. We already noted that the fluxless single
site states form an irreducible 924-dimensional represen
tion of SU~12! and so tensor products formed from thes
states can be decomposed into the irreducible representati
of SU~12! which appear in the product of two924’s; these
are the only states in the full problem relevant to our COR
computation. Starting from the highest weight state in eac
of these irreducible representations and applying the Lancz
method, we can numerically find the relevant eigenvalues
the two-site Hamiltonian to a high degree of accuracy. Fro
general symmetry arguments, the most general two-s
Hamiltonian one can write for this system will be in the form
of a finite polynomial in the Casimir operator and highe
order invariants formed out of the generators of SU~12!.
Thus, the general structure of the connected range-2 Ham
tonian will be given by

h2
conn~ j !5a1QW ~ j !•QW ~ j11!1a2„QW ~ j !•QW ~ j11!…21•••.

~135!

It is a simple exercise to show that in the strong couplin
limit, the leading term in this expansion is the one propor
tional toQW ( j )•QW ( j11); in other words, in strong-coupling,
the renormalized range-2 Hamiltonian is just a generalize
Heisenberg antiferromagnet. As was argued in Ref.@23# and
Ref. @24#, we expect this theory to spontaneously break t
SUV(6)3SUA(6), where the vector SUV(6) is realized nor-
mally and the axial-vector SUA(6) is realized in the Gold-
stone mode. Thus, in the strong-coupling limit, the connecte
range-2 part of the renormalized Hamiltonian unavoidab
leads to a spontaneously broken symmetry, but the group
too large and there are too many Goldstone bosons. Clea
a detailed calculation is necessary to determine if these co
clusions persist in weak coupling where other terms in E
~135! can become significant. However, we can show th
the problems of having too large a symmetry group and to
many Goldstone bosons disappear once we compute the c
nected range-3 terms.
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To see this, observe that, independent of the coup
constant, the next-to-nearest-neighbor terms in both
SLAC and Quinn-Weinstein types of derivative break t
SU~12! symmetry and, after including these terms in t
renormalized Hamiltonian, all that remains of the SU~6!
3SU~6! symmetry of the nearest-neighbor theory is SU~3!
3SU~3!. As in the discussion of the range-2 terms, we c
invoke the strong-coupling limit to calculate the structure
the leading range-3 terms and explicitly show that t
range-3 terms give the unwanted Goldstone bosons mass
that the degenerate SU~6! multiplets of mesons break up int
SU~3! multiplets. This is in strict analogy to what was dis
cussed in Ref.@24#. Of course, as we noted for the case of t
range-2 terms, the generic structure of the connected ran
terms in the renormalized Hamiltonian is richer than that
the leading terms in the strong-coupling limit, and so ass
ing that this pattern of symmetry breaking persists to
physically more interesting weak-coupling regime requir
more work than we have done to this point.

Much interesting work remains to be done in this pictu
of dynamical chiral symmetry breaking; nevertheless,
fact that the CORE procedure provides a couplin
independent way of constructing an effective theory of m
sons which, in the strong-coupling limit, coincides with ea
lier descriptions in which dynamical chiral symmetr
breaking appears naturally, is new and unique to this
proach.

C. Hubbard and extended Hubbard models

Among the interesting features of the Hubbard and
tended Hubbard models are the variety of phase transit
which can occur as the density of particles in the grou
state changes. While tuning the density of particles in
ground state is easily accomplished by adding a chem
potential to the Hamiltonian, early attempts to analyze th
theories using naive real-space renormalization group m
ods ran into problems: projecting onto a small number
states per block so that the occupation number of each s
is a finite integer, and therefore the density a rational fr
tion, made it difficult to achieve a smooth dependence of
density on the chemical potential. CORE mitigates this pro
lem without having to keep a large number of states
block: first, the connected range-r terms are computed by
diagonalizing the full r -site Hamiltonian, including the
chemical potential, and so these terms can encode more c
plicated behavior of the chemical potential coefficientm;
second, the operator which measures the density of part
in the ground state as a function ofm undergoes a much
more complicated evolution than it does in a naive truncat
procedure, evolving connected range-r terms of its own. Pre-
liminary computations support this picture but more exte
sive computations are needed to fully explore the potentia
CORE methods for this class of problems.

D. Connection to perturbation theory

In this section, we discuss the way in which one cou
establish the relationship between the CORE approach
the familiar perturbative renormalization group in the wea
coupling limit. To illustrate this connection, consider addin
a lf4 interaction to the scalar field theory Hamiltonia
ling
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given in Eq.~19!, where thel coupling is small, and again
apply the CORE procedure outlined in Sec. III D. It is a
straightforward exercise to include thef4 term and pertur-
batively compute the CORE transformation associated w
the two-site, infinite-state truncation procedure.

We begin with the same truncation procedure defined f
the free-field case and keep the same tower of oscilla
states for each two-site block. A new feature is that we mu
now computeS andHT even for the range-1 terms becaus
the retained states contract onto states which are differ
from the two-site, free-field eigenstates and the eigenenerg
corresponding to these states are also changed from th
free-field values. A direct consequence of this is that the ne
range-1 connected part of the renormalized Hamiltonian co
tains higher-order polynomials in the fields. Given a pertu
bative expression for the connected range-1 terms, we ha
to perturbatively solve the four-site problem to computeS
andHT in order to obtain the connected range-2 terms in th
renormalized Hamiltonian. Once again, we get a set of term
of the form fm(p)fn(p11) which do not correspond to
terms in the original Hamiltonian. Longer-range connecte
terms are computed in the same manner. Since the ze
coupling limit of this procedure builds up a finite-range ex
pansion of the free-field theory, one should be able to ma
this perturbative expansion match up with more familia
renormalization group computations.

There is a simple way to modify the procedure just ou
lined so as to automatically resum the perturbative expans
of the renormalized Hamiltonian to very high order in th
coupling. One virtue of this modified approach is that it gua
antees that the ground-state energy density will behave
l1/3 for large couplings. The basic idea is to change th
definitions ofg6 in Eq. ~68! in order to treat them as varia-
tional parameters which depend uponm2 and l. To deter-
mine their values, we minimize the expectation value of th
two-site Hamiltonian in the stateug1 ,g2& with respect to
g1 andg2 . Fixing g1 andg2 in this way, we then rewrite
the two-site Hamiltonian in terms of annihilation and cre
ation operators, normal order the resulting expression, a
do perturbation theory in the nonquadratic terms. Note th
this minimization process guarantees that the sta
ug1 ,g2& is the lowest-lying eigenstate of the ‘‘free Hamil-
tonian’’ obtained by keeping the quadratic terms, includin
those which come from normal ordering the quartic sel
interaction. Sinceg1 andg2 are nontrivial functions ofm2

andl, the perturbation theory just described amounts to a
infinite resummation of the usual expansion.

To compute the range-2 terms in the renormalized Ham
tonian, solve the four-site free problem but treat theg fre-
quencies as variational parameters determined by minim
ing the expectation value of the Hamiltonian in the groun
state of the oscillators. This leads to four coupled equatio
which can be solved numerically for any value ofl. Once
again, normal order the Hamiltonian and treat all term
which are not quadratic in the ladder operators as perturb
tions. The states obtained by working to finite order in thes
perturbations are used to constructS. The computation of
higher-range connected terms proceeds in a similar mann

VII. CONCLUSION

The contractor renormalization group, a general metho
for solving any Hamiltonian lattice system, was presente
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The CORE approach is a systematic and nonperturba
procedure for carrying out real-space renormalization gro
transformations which relies on contraction and cluster te
niques. The method was illustrated using four examples:
scalar field theory with single-state truncation, the Heis
berg antiferromagnetic spin chain with two-state truncati
the anisotropic Ising model with two-state truncation, a
free scalar field theory with an infinite-state truncatio
scheme. The use of approximate contractors, the con
gence of the cluster expansion in determining the renorm
ized Hamiltonian, and the need for summation via the ren
malization group were also discussed.

A particularly exciting feature of the CORE technology
its ability to treat systems with dynamical fermions, syste
which are difficult to study using stochastic methods. COR
also makes possible gauge-invariant renormalization gr
transformations in Hamiltonian lattice gauge theory and e
ily incorporates a chemical potential. These features sug
that the CORE approximation will prove to be a powerf
tool in future applications to the Hubbard andt-J models and
lattice gauge theory with and without fermions.
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APPENDIX: HARMONIC OSCILLATOR IDENTITIES

Consider the canonically conjugate operatorsx and p
which satisfy @x,p#5 i , and introduce the one-paramet
family of annihilation and creation operator
Av5xAv/21 ip/A2v andAv

†5xAv/22 ip/A2v which sat-
isfy @Av ,Av

† #51. Note that x5(Av
†1Av)/A2v and

p5 i (Av
†2Av)Av/2. Furthermore, define the Hamiltonia

Hv5 1
2(p

21v2x2).
Theorem A1.The stateuv1& defined byAv1

uv1&50 and

the stateuv0& defined byAv0
uv0&50 are related by

uv1&5S 4v0v1

~v01v1!
2D 1/4expH ~v02v1!

2~v01v1!
Av0

2 J uv0&.

~A1!

Proof:Write Av1
in terms ofx andp, then expressx and

p in terms ofAv0
andAv0

† to show that

Av1
5gMAv0

† 1gPAv0
, ~A2!

where

gM5 1
2 ~Av1 /v02Av0 /v1!, ~A3!

gP5 1
2 ~Av1 /v01Av0 /v1!. ~A4!

Now use@Av0
,Av0

n
#5nAv0

†n21 to show that

@Av0
,exp~jAv0

†2!#52j exp~jAv0

†2!Av0

† . ~A5!

Hence,
tive
up
ch-
free
en-
on,
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n
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n

Av1
exp~jAv0

†2!uv0&5~gM12jgP!exp~jAv0

†2!Av0

† uv0&,
~A6!

which vanishes if we setj52gM /(2gP)5(v02v1)/
@2(v01v1)#. SinceAv1

uv1&50 definesuv1&, then clearly

Nv1
exp$2gMAv0

†2/~2gP!%uv0&5uv1&. ~A7!

Requiring^v1uv1&51 and usinĝ v0uAv0

n Av0

†m
uv0&5dmnn!,

we have

Nv1

225 (
n50

`
~2n!!

~n! !2
j2n5~124j2!21/2, ~A8!

soNv1
5@4v1v0 /(v11v0)

2#1/4.
Given this result, we can now easily show that applying

e2tHv0 to an arbitrary Gaussian wave function produces a
new Gaussian wave function of a different frequency; as
t→`, the new frequency tends tov0.

Theorem A2.Let uv1& be the simple harmonic oscillator
ground state defined byAv1

uv1&50 andHv0
be the Hamil-

tonian for a simple harmonic oscillator of frequencyv0.
Then

e2tHv0uv1&5A~ t !uv~ t !&, ~A9!

whereuv(t)& is the ground state of a simple harmonic oscil-
lator of frequencyv(t), and

A~ t !5S v1

v~ t ! D
1/4S v~ t !1v0

v11v0
D 1/2e2tv0/2, ~A10!

v~ t !5v0S v01v12e22 tv0~v02v1!

v01v11e22 tv0~v02v1!
D . ~A11!

Proof: Using e2tHv0Av0

†m et Hv05e2mtv0 Av0

†m, one sees

that

e2tHv0ejAv0

†2
et Hv05ej8Av0

†2
, ~A12!

wherej85e22tv0j. Usinge2tHv0uv0&5e2tv0/2uv0& and Eq.
~A1!, one finds that

e2tHv0uv1&5Nv1
e2tv0/2

3expH ~v02v1!

2~v01v1!
e22tv0Av0

2 J uv0&.

~A13!

If we set

@v02v~ t !#

2 @v~ t !1v0#
5e22 tv0

~v02v1!

2 ~v01v1!
, ~A14!

then we can identify the state on the right-hand side of Eq
~A13! with the Gaussian wave functionuv(t)&. Solving Eq.
~A14! for v(t) yields the result given in Eq.~A11!. Note that
v(0)5v1 and v(t→`)5v0. The multiplicative factor
A(t) is then given byA(t)5(Nv1

/Nv(t))e
2tv0/2 which sim-

plifies to the result shown in Eq.~A10!.
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