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Fixed point action and topology in the CP model
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We define a fixed point action in two-dimensional latticeNCPmodels. The fixed point action is a classical
perfect lattice action, which is expected to show strongly reduced cutoff effects in numerical simulations.
Furthermore, the action has scale-invariant instanton solutions, which enables us to define a correct topological
charge without topological defects. Using a parametrization of the fixed point action for then@fl in a
Monte Carlo simulation, we study the topological susceptibi[i§0556-282196)01118-§
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I. INTRODUCTION guantity in the @3) nonlinearc model. This observation is
supported by results of semiclassical approximatid],
One possible way of regularizing a continuum quantumwhere the instanton size distribution is divergent for small
field theory is to introduce a lattice as a UV regulator. Aninstanton sizes.
additional benefit of this method is that it opens the door to  In CP'~! models withN>2, however, the semiclassical
computer simulations. However, by naively discretizingapproximation indicates that there is no dominance of small
physical observables, the correct values are only obtained imstantons. Furthermore, foN>3 dislocations are sup-
the continuum limit, when the lattice spacing is going topressed even for the standard lattice actidh It should
zero. At finite lattice spacing the lattice induces systematidherefore be possible, to determine unambiguously the topo-
errors(cutoff effects. In order to remove these cutoff effects logical susceptibility in these models. On the other hand,
one has to introduce finer and finer lattices, and finally exthere were several recent determinations of the topological
trapolate the calculated quantities to the continuum limit.susceptibility in the CP model, using different discretiza-
This delicate limit is a major difficulty in extracting con- tions of the action and the topological chaf@e-11], but the
tinuum physics from the lattice. results of these determinations are partly in plain contradic-
It is possible to circumvent this problem by using Wil- tion with each other. The situation is, therefore, by no means
son’s renormalization group theory. If one constructs the latclear. We suggest to use the same concepts and methods in
tice action and all operators in a form that corresponds to therder to determine the topological susceptibility as was pro-
renormalized trajectory, one obtains results that do not deposed in Ref[3].
pend on the lattice spacing. It has been shown in a series of This paper is organized as follows. In Sec. Il we con-
papers recently publishdd,?] that it is possible to construct struct a classical perfect lattice action for the *0ORodel
a fixed point action for asymptotically free theories. Thisalong the same lines as in R¢L]. We define a RG trans-
action is the fixed poin{FP) of an exact renormalization formation and determine the FP with analytical and numeri-
group (RG) transformation and as such may be taken as &al methods. We give a parametrization of the FP action, that
first approximation to the renormalized trajectory. works reasonably well even for coarse grained fields. In Sec.
As a pilot project a local parametrization of the FP actionlV we define a FP topological charge along the lines of in
was constructed in the (@) nonlinearo model, and used in Ref.[3]. In order to use the FP charge in numerical simula-
numerical simulationg1]. The result was very promising: tions, we construct a parametrization of the dependence of
Although the FP action is perfect strictly only classically, nothe fine field on a coarse input field. In Sec. V we discuss the
cutoff effects were seen even at small correlation lengthgopological susceptibility and the influence of a lattice regu-
(£€~3). larization on its measurement. Finally, we present the results
In a subsequent pap¢8] a FP topological charge was of numerical simulations using the FP action and the FP
proposed. It was shown, that the combination FP action andharge.
FP charge has no topological defects. The FP action has the
correct value for instanton solutions, and does not depend on Il. cP N1 MODELS
the scale of the instanton. Hence it admits stable instanton '
solutions on the lattice. This is in contrast to the standard Two-dimensional CP¥~! models are an important testing
lattice action, whose value depends on the instanton scalground for methods in quantum field theories because of
and which suffers from dislocatiorjg]. These dislocations their similarities with four-dimensional non-Abelian gauge
were suspected to be responsible for the nonscaling behavititeories. Important common properties are asymptotic free-
of the topological susceptibility in the (@ nonlineare  dom, dynamical mass generation, confinement of non-gauge-
model. However, using parametrizations of the FP action anéhvariant states and a nontrivial topology. Despite these com-
the FP topological charge in a Monte Carlo simulation, evermon features, two-dimensional spin models are much easier
with the absence of dislocations a strong violation of scalingo handle both analytically and numerically.
of the topological susceptibility was establisH&dl This in- The CP'"! model (in the continuum consists of a
dicates that the topological susceptibility is not a physicalN-component complex spin field'(x) which satisfies the
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constraintz(x)z(x) =1. The action has a global SNJ sym-  The form of the RG transformation in E¢8) was chosen,
metry and a local U(1)gauge symmetry. The gauge field, such that for the CPmodel it corresponds to the one used
however, is not independent and can be expressed in tHer the Q3) nonlinearc model in Ref[1]. In order to com-
basic fieldz(x). Only after quantization, the gauge field be- pute the normalizing factok{z), consider the unitary matrix
comes dynamical, and gives rise to a confining potential, as

is explicitly seen in the larg&t limit [12]. In the following it M, =S 7207 5)
will sometimes prove useful, not to use the basic field e

z(x), but the gauge invariant composite operator

P(x)=2z(x)®z(x). ForN=2 the CP'~! model is equivalent It is just the sum of the composite operatésat every site
to the 3) nonlineare model andP(x) can be written in  of a block. Let the Hermitian matrii ng have eigenvalues

terms of the usual @) covariant spinsS(x) as P(X) )\inB and eigenvectorwins. BecauseM,_ is gauge invariant,

) ' : . nd e _
=21+ 0~ (x)). Here o are the usual Pauli matrices. In the 45, jts eigenvalues and eigenvectors do not depend on the

notation with the composite operators the continuum aCtiorbauge. Using these eigenvalues and eigenvectors, we can re-
for CPV~! assumes the form write one term in Eq(3)

Nﬁ 2 2 i o2
NBAon=—5—| d Xtr{‘?MP(X)aMP(X)}- (1) E |§na ={n Mp ¢n :2 An |§n Wh | . (6)
2 neng B B N8B <4 B'°MNs "N
One has several possibilities to discretize the continuunin the limit 85— o we perform a saddle point approximation.
theory, and to put it on a'latti'cHC{I. If one approaches the We get to lowest ordev\/(z)‘1=exp(KN,BEnBAnB), where
continuum I|rr_1|t, each of_lt WI|! give the same results. We )‘\n is the largest eigenvalue d¥l, . The FP of the RG
choose for this study a discretization, which does not use an'® . _ _ LB N
explicit gauge field. The standard lattice action Withouttransformatlorﬁ) is determined in this limit by the implicit

gauge fields assumes the form equation(FP equation
Ape( §) =min{ Aee(2) + T ({,2)}, (7)

_ .2
NBAsr= N’B%; 1=z 5zl @ \ith the transformation kernel
For N=2 this goes over to the standard lattice action of the T(L,2)= Kz f\n — 2 |Znza 2] 8)
O(3) nonlinearac model, which is not the case if one would Ng B neng B

use a formulation with an explicit gauge field. The param- ) ) ) ] .
etrization of the FP action will be a generalization of the The kernel7({,z) is gauge invariant in a strong sense: It
standard action, taking into account couplings between tw&0€s not change under independent gauge transformations on

spins, that are more distant than nearest neighbor and al§fher the coarser on the fine spins. This is more than

that the kernel is gauge invariant under a combined gauge
transformation on the coarsd the fine spins. The gauge
lll. FIXED POINT ACTION invariance of the kernel assures, that if the acti(z) of
A. Equation for the fixed point action the fine field is gauge invariant, then also the action
Aep({) of the coarse field after the RG transformation is
gauge invariant.
The FP equatiol7) determines the value of the FP action
or a given input configuratiofif}. One may solve this equa-

We consider the CP'! model on a two-dimensional
square lattice with variables, at each lattice sita. Then we
perform an exact RG transformation. For this we split thef
lattice into 22 blocksng and with each block we associate tion iteratively, leading to a minimization on a multigrid of

a block sping,,. We define thagauge-invariantRG trans-  |aice configurations with the configuratiéti} on the coars-
formation as an averaging over the fine spins in one blockest level, and witfk finer configurationgz®? on successive

that has the form levels:
eNB'A'(é“):f/\/(z)exp{ “NBA(2) ,A(k)(g):min{z(l)yz(Z) _____ z(k)}{A(O)(z(k))—I—T(z(k—l),z(k))
‘ o+ T2} ©
+KNBHE nZn |§nBZ_n\2]- € On each successive level the spin configurations become
B €N

smoother and smoother, hence one may choose for the action
A©(z1) on the finest configuratiofiz¥} any lattice dis-
%retization of the continuum action. The FP actidp(¢) is
then obtained in the limik—o of A®(¢). For practical
purposes, however, only a few levels are needed, and, start-
ing from the standard action on the lowest level, the FP value
Mz) = J exp[ KNBE 2 o Zn 2]_ (4) is reached soon. This i.terative method can be used to solve
¢ B the FP equation numerically. One can, however, make some

Here,k is a free parameter of the RG transformation, and th
normalizing factor\(z) assures, that the partition function
does not change under the RG transformation

ng nNeng



54 FIXED POINT ACTION AND TOPOLOGY IN THE CP MODEL 4123

important statements even without explicitly solving Ef.

. . . N 2.2 T T T T T T T T T T T T

This will be done in the next section.
2.0 - g 8 5 &6 6 & %
18 w 0°
B. Classical solutions e Xl o ia A2 a & 4
6 r $ A 1

As in the 3) nonlinearc model we can show the fol- § 14l . Z ]
lowing important statement concerning classical solutions 8 ' o A5 1
(e.g., instanton solutions s 12p I ! _ -~ geometric charge

Statementlf the coarse configuratiofy} satisfies the FP § 1.0 r 1 fixed point charge ]
classical equations of motiofi.e., the classical equations s 08 5 ‘ o standard action e
corresponding todgp), and therefore is a local minimum of  © gg x | ‘fiymaa“rz:‘ng‘ripzrgged action |
Arp({), then the configuratioz({)} on the fine lattice, 04 L i < A zﬂnimized ]
which minimizes the right-hand side of E(Y), satisfies the 02 ; ]
equations of motion as well. In addition, the value of the ’ F !
action remains unchangegtex(z({))=Ars({). . 00 03704 05 06 07 0.8 09 1.0 1.1 12 1.3 1.4 15

Proof. Since{{} is a solution of the FP classical equations pla
of motion, it is a stationary point aflgx(¢), and it satisfies
S8Arpl 8.=0. The transformation kernel is positive: FIG. 1. Actions and charge of instantons with radii of the order

R . of one lattice spacing.
7;182 )\nB_ gnBM ntnBZO- (10) ‘ .
The minimizing configuratiodz} must fulfill 7, =0, other- v=(0,10, .. )21 ai=i:21 bi
B

wise we could find another coarse configuratigf}, that

fulfills this equation and lowers therefore the value ofwhereo(n) is the Weierstrass function and the factoV
Age(£); which would be in contradiction to the assumption, ensures the correct normalization. The vectorandv are
that {{} is a stationary point. Hence we have(abeit not ~ N-component CP~! vectors which specify the orientation
unique relation between the given coarse fig} and the  of the instantons in “color space.” The four complex param-

minimizing fine field{z({)} etersay, a,, by, andb, specify the size of the instantons and
. their position and orientation on the torus. We choose them
MntnB:)\ntnB: (11 in the form
a;=(L/2—p)i, a,=L/2+(L/12+p)i, (13

in other Words,g’nB is the eigenvector corresponding to the
largest eigenvalue of the matriMnB defined in Eq.(5). by=(L/2+p)i, by=L/2+(L/2—p)i,
7T ({,2) is zero(that means, at its absolute minimufor the
minimizing fine field{z({)}; hence{z({)} is also a station- wherep is the instanton size arld the size of the torus. The
ary point of Agp and{z({)} satisfies the classical FP equa- action A Of the configuration(12) is equal 2< 2 irre-
tions of motion. Furthermore, the value of the action is thespective of the size of the instantons. Next we want to
same:Ap(z({))= Arp(¢) O. construct lattice two-instanton configurations of different
Note, that the reverse statement is not always true. If theizes. We first discretize the continuum two-instanton con-
fine configuration{z} is a solution of the equations of mo- figuration on a very fine lattice, so that the cutoff effects can
tion, then the coarse configuration obtained from @d) is  safely be neglected. Then we perfokmblock transforma-
a local minimum, but it need not be the absolute minimumtions using Eq(11). Under a block transformation the size of
that has to be found at the right-hand side of the FP equatiothe instantons is halved. Choosing the numkenf block
(7). This mechanism prevents the existence of arbitrarihtransformations and the initial size one can get any final
small instantons on the lattidgsee below. size p2~* on a coarse lattice. The above statement shows,
Using the above statement, we can now construct instarthat the action remains the same, unless the size of the in-
ton configurations on the latticksee also Ref[3] for the  stantons is too small, and they fall through the lattice.
corresponding construction in the(Z) nonlinears model. We have numerically performed the above program for
We consider instanton configurations of the continuum on ahe CP model, and have measured several quantities on the
torus. On a torus, however, there exists no exact onefinally blocked configurations. On the coarse configuration
instanton configuratiofil4]. In order to clearly separate cut- itself we measured the geometric charge, the standard action,
off effects from finite size effects, we have to fall back uponthe Symanzik improved action and the parametrization of the
exact two-instanton configurations. The two-instanton con+P action presented in Sec. Il C. Performing a minimization
figurations of CP, embedded into CP 1, have the form on a multigrid with three finer levels, we measured the exact
FP action and on the finest level the FP chaigfeSec. I\V).
Because instantons in €Bre embedded CRnstantons, it is
) (12 clear, that the results presented in Fig. 1 are practically iden-
tical to the ones obtained in the(®) nonlinearc model[3].
The results show, that it is possible to obtain a parametriza-
w:x+iy,l]=(1,0,0, R tion of the FP action that performs very well for instanton

O'(W_a.i) -

2
zZ(w)=N u+ iljl 0'(W——bi)v
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. . . , . . 1. Lowest order, determination gb

ror * ] The analytic result for the lowest order term in the FP

action will be valid for allN, as long alN>1. Consider on
the coarse level a smooth configuration, which is weakly
] fluctuating around the first direction

6.0
> FP action (minimized)

50 [ — — standard action 4*(1-cos’(8))
4*(p(1,0)+p(1,1))"’

c |- -
g 4 T VI TXogP
< Np ’ (15)
30 ] B XnB
20 ¢ ] whereX,_ has (N—1) components, aniK,_[<1. With this
100 ] choice we have fixed the gauge by imposing, that the first
] component is real and positive. Then the minimizing fine
0.00-0. o2 04 o8 o8 1o 12 12 6 conf|gur_at|on will also fluctu;_;lt_e around _th_e first direction
relative angle 8 of rotated spin and, using the same gauge fixing prescription, we make the
ansatz
FIG. 2. Actions of configurations with one spin rotated against a
trivial background. NEIA
Zn: V ) (16)
n

configurations down to the smallest possible size on the lat-

tice. In contrast, the standard action and also the Symanziwith |V,|<1. Putting these expansions and the parametriza-
improved action perform quite bad, especially for small in-tion of the action(14) in the FP equatior{7) and keeping
stantons. It is worth mentioning, that the range of instantoronly terms up to quadratic order i§ and V, we get the
sizes, where the geometric charge differs from the FP chargeguation

is quite narrow. For instanton configurations, the geometric

charge seems to be as good as the FP charge. For general 1 —

configurations created in a Monte CarlblC) simulation, EnEr p(reg) RE(Xn X, +rp)

however, there is a noticeable difference between the two B8

charged(cf. Sec. V). 1 _
:min{v}[EE p(NREV,Vi.ir)

2
] . (17)

This equation can be solved fpr most easily by using the
1 same technique as described in R&f. Taking into account
AR(2)=— EE p(r) O o+ > coupling the fact, that for the CPmodel the RG transformation goes
n.r NN, over to the one used for the(8) nonlinearo model, it is not
2 (14) astonishing, that the resultingis exactly the same as in Ref.
Mi Ny’ [1]. Consequently, in order to have a most local action, we
will also choose the free parameter2 in the RG transfor-
where On, 'nj=arccos(ziniznj|) is the angle between two mation Eq.(3).
spins. Note, that in CP 1 models the maximal angle be-
tween two spins isr/2; z and — z is the same spin, different 2. Higher orders for the CFP model

only by a gauge transformation. There are two reasons why it | order to have a reasonably good parametrization of the
is useful to use the anglé, , instead of (- ’Z_niznj|2)3 For  Jattice action which performs well also for coarse configura-
solutions of the equations of motion of the form tions, we include higher order terms in the parametrization
z(n) = (cosvng,sindng,0, . . . ), thed dependence of the ac- (14). The coefficients of these higher order terms will depend
tion is exactlyg?. Moreover, if one rotates a single spin in a on the chosen model, and are different for eAthWe de-
trivial background with all spins pointing in the same direc- termined them numerically for the @odel. To do this, we
tion, the # dependence of the action is more liké rather  first produced about 300 configurations of lattice size 3 with
than 1— cog(6). Figure 2 shows how well the minimized FP a Monte Carlo program using the standard action. The con-
action is approximated even by the two first tertngarest figurations ranged from ones with small actions and fluctua-
neighbor, diagonalof the lowest order of the parametriza- tions with small amplitudes to strongly fluctuating ones. We
tion in Eqg. (14). In contrast, the standard action performsalso included some two-instanton configurations with radii of
very bad for large angles. the order of one lattice spacingf. Sec. Il B. For every
We can calculate the coefficieni$ér) of the lowest order configuration we calculated the value of the FP action by
analytically. The coefficients of the higher orders can be deminimizing the FP equation on a multigrid. Then we deter-
termined in a numerical fitting procedure. mined the coefficients of 30 higher order operators chosen

C. Parametrization of the FP action

If we want to use the FP action in practical numerical +2K2
simulations, we must construct a parametrization, that con- s
sists of a not too large set of local operators. Our parametri-

zation has the form

1
XnB_'Z'ES Vn

neng

X products off
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0.6

04 r

< standard action
+ A, parametrized

FIG. 3. Scatter plot of the actions of the configurations used fo

5.0 10.0

15.0

Agp minimized

20.0

because of their locality. Their value was determined so that
the average difference between minimized and parametrized
FP action was minimal.

Figure 3 illustrates the quality of the parametrization. The
relative deviation from the minimized FP action is only large
for very coarse configurations with large actions. For com-
parison, we also plot the standard action for the same con-
figurations. Note, that here the relative deviation of the stan-
dard action from the FP action is not small, even for
configurations with small amplitude fluctuations.

The resulting 32 coefficients of the parametrizatiad)
are given with a graphical notation of the corresponding op-
erators in Table I. A line with two dots =—e means that the
angle Gﬁlvnz between the two spins at positiong andn, of

the dots enters into the parametrization. A graph consisting
of several lines represents just the multiplication of the cor-
Iresponding angles. Coefficients No. 1 and No. 4 are the only
analytically calculated ones, all the other couplings were de-

the fit. ) o . .
termined by the fitting procedure. The locality of the action
TABLE I. Couplings used for the FP action.

No. Type Coupling No. Type Coupling No. Type Coupling
1 L a— -0.61884 2 —— -0.05381 3 === 0.20023
4 / —0.19058 5 / —0.01892 6 / —0.06735
7 : 0.01455 8 : —0.25328 9 { 0.07099

®

10 Z 0.04334 11 0.02704 12 —0.12660

*~—
. b
13 0.06787 14 A 0.18327 15 ; 0.13297
>
* —o *—e
16 A —0.28036 17 —0.00174 18 0.26017
—e —e
—s
19 0.11006 20 >< 0.01396 21 >< 0.09222
*—
22 >< —0.02530 23 z 0.52163 24 ‘; —0.05146
25 E —0.06314 26 E —0.29456 27 i —0.04937
*r— *—e
28 % 0.17930 29 -0.15733 30 —0.15941
*—e *~—
31 0.11217 32 0.47978
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is expres_sed. in the_ fact, that it is posslb]e to construct a go_od Qe 0) = lim Q¥ (0)), (21)
parametrization with operators consisting of spins, that lie k—o0
only within a 2x2 section of the whole lattice. On the other
hand, the parametrization seems to be not as local as the ondiere{z(¥} is the solution of the iterated FP equati@ on
found in the @3) nonlinear model. Some couplings of the lowest level in & level multigrid. As the configurations
operators of higher order have quite a large value. Neverthedet smoother on each successive level, one may choose for
less, one should not give too much attention to the actudhe chargeQ on the lowest level any lattice discretization of
value of the couplings. A large coupling for a higher orderthe topological charge. In this paper we will use the geomet-
operator does not mean, that the action is less local. Sonféc charge[15], because it is stable against small variations
combinations of couplings can be changed without much afof the field, if the field is sufficiently smooth, and because it
fecting the quality of the parametrization. In principle one always gives an integer number.
would not need to keep all 32 operators in the parametriza- In Ref.[3] it was shown, that the combination FP action
tion, we just did so for reasons of completeness. Using 32nd FP topological charge always obeys the inequality
operators for an action in a MC simulation may seem to be a
lot. However, compared with the expected benefit of using Ar( ) =27 Qe £)]- (22)
such an action, the additional computational effort neede<ii_| . .

ence there are no dislocations.

seems to be reasonable. . . ) T . .
In numerical simulations it is very time consuming to

minimize a multigrid for every configuration. One needs a
IV. FIXED POINT TOPOLOGICAL CHARGE parametrization of the solutiofz(¢)} of the FP equation.

A feature of CP~! models common with gauge field 1his will be done in the next section.
models is the existence of topologically nontrivial solutions. _ o
In the continuum theory the topological char@emay be B. Fixed point field

defined as the integral The FP field is the fine field® in the multigrid solution
. of the iterated FP equatiof®) ask goes to infinity. If the
Q= '_f d2xe , tr[P(X)3,P(X)3,P(X)]. (18) functiona}l dependence of 'the solution on the first fine Igvel
2m . a z on ¢ is known, the FP field can be evaluated by iteration.
o _ ~ Below we give an expression for the fietth)=z(1)(¢). (In
The action is related to the charge through the inequality he limit k— o the solution{zM} of the iterated FP equation
_ is identical to the solutiodz} of the FP equation.
Acone>27(Ql. (19 We make the expansiori$5) and(16) for the coarse and
the fine configuration. Then the solution of the FP equation

For instantons the equality holds. They minimize the actlon1eads in lowest order to the relation

and are therefore solutions of the equations of motion.
On the lattice, however, this concept breaks down because
continuity is lost. In the continuum the topological sectors Vo= a(n,ng)Xn, (23
are clearly separated, but on the lattice one may continuously "8
transform a field from one topological sector to another. FUriyith « the same as for the @) o model[1-3,16.

fthermore, Wh?n using the sf[andz_ird _Iatt|ce action, the scale To obtain this result, we have fixed the gauge in a specific
invariance of instanton solutions is violated. The action de-

. C O ; - -~ way. However, we want a relation betwegg} and{{}, that
creases with dgcreasmg instanton size, an_d conf_lguratlorgﬁ)es not depend on the choice of the gauge fixing prescrip-
tha;rvelog?)tsesitai inequality19) — so called “dislocations tion. Furthermore, for coarse configurations we have to in-

. . . clude high dert , that trize the d d f
In Refs.[1,3] it was shown that the FP action admits clide higher order terms, that parametrize e dependence o

) ; . Z} on . For this we construct the gauge-invariant com-
stable instanton solutions. Furthermore, it was shown how té } 4 — gaug

construct a correct charge — the FP charge — which doeB0S!t€ OPerator®n, = {n ®¢p, on the coarse lattice. On the
not admit dislocations. In this section we will proceed alongfine lattice we build matriceQ, by summing over the coarse
the same lines as in these works, in order to construct the FFoMposite operators including the next to leading order

charge for the CPmodel. terms,

. '\ n2

A. Definition of the FP charge Q=2 a(n,ng)P,_+ > B(n,ng ,mB,mB)GmB m Pngs
n n B
We define the FP charge by means of the iterated solution mg fgm,
of the FP equatior(9). Under a RG transformation in the 8 (24)
limit B—o, an operato?(z) transforms inta®’(¢) on the
coarse lattice as and define the fine field variablg, as the eigenvector of
o Q,, with largest eigenvalue. In next order enters the angle
0'(§)=0@(9), (20 6’ between the coarse spins at sitgs andmj, respec-

mg ,mg,
where the spin configuratiofz({)} is the solution of the FP tively. In order to determine the coefficiengs we used the
equation(7). The FP topological charge is obtained in the same~300 configurations like for the parametrization of the
limit of infinitely many RG transformations: action, minimized the FP equatiofi/) and stored the
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TABLE II. Coefficients of the parametrization of the fine field.

No. Type Coeff. No. Type Coeff. No. Type Coeff.

1 b 0.59497 2 b 0.15621 3 o 0.08300
Gl
----7--- f""@""‘. -'""T"HEJ

4 ot 0.00942 5 ot —0.00171 6 ot —0.00668
- St S : ol -

7 P —0.03600 8 P —0.03104 9 \ : —0.11141
e - pp--ed o

10 o 0.02788 11 : [ ; —0.01814 12 / | —0.01660

13 T oo 0.01600 14 PR —0.01311 15 / : 0.03643
R SO

16 X ': —0.02649 17 L oo 0.01849
N

resulting fine lattices. The coefficients were then determinedrrom the perturbative renormalization group it is expected to

by minimizing the difference between the minimized fine scale according to the two log® function

spins and the parametrizatig®4).
The numerical values of the coefficients and 8 are

given in Table Il with a graphical notation of the correspond-

xi< (3 TNB)MNexp(—7NB), (B—x).  (26)

ing operators. We chose a set of 17 operators mainly because

of their compactness. Numbers 1-6 are the analytically de-

termined coefficientsy, Nos. 7—17 are the numerically de- In order to check the continuum limit, a scaling behavior is
termined coefficientg. The meaning of the graphical nota- more important to observe than the above asymptotic scal-
tion of the operators is the following: The dashed linesing. One additionally measures a second quantity, e.g., the
represent a 8 3 section of the coarse lattice grid. The crosscorrelation length¢, and builds the dimensionless product
+ in between indicates the positionof the matrixQ,, in
Eqg. (24). The little square] denotes the positiong of the
coarse composite operathB, the two connected dots e—-e

are the positionsmg and mg of the spins whose angle

x:£2, which should go to a constant in the continuum limit
E— oo,

In general, cutoff effects can originate from two sources:
from the discretization of the action and from the discretiza-
tion of an operator. The topological charge is an operator,

O my, €NMETS iNto the parametrization. Graphs obtained by o sirongly exhibits lattice cutoff effects, as was demon-
trivial symmetry transformations are not drawn separately. strated in Sec. IlIB: instantons with a radius smaller than

V. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility is defined as the ratio

Xt

(@)
v

(25

about 0.2 fall through the lattice and are lost in a Monte
Carlo simulation. This fraction is large at correlation lengths
of the same order as the lattice spacing, and gets smaller as
the correlation length grows. One therefore expects a scaling
violation, which is determined by the small instanton size
distribution.

One may estimate the behavior of the expected scaling
violation by using the results of a semiclassical expansion,

whereQ is the topological charge and is the space—time and performing a kind of dilute instanton gas approximation.
volume. In CP'~! models it is a dimension two quantity, In CP® the probability density to find a field configuration
that vanishes to all orders in the weak coupling expansionwith topological charg€ =1 in a sphere with radiurR is[5]
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TABLE lll. Results of MC simulations.

NB L 5 <Q§oarse} <Qr2nin 1st Ieve) <Q5ar 1st Ieve} <Q;§ar 2nd Ieve} X}nin 1st Ieveg2 tiar 1st Ievéf2
14 6 0.997227) 1.098166) 1.00817) 0.02785)

2.1 12 2.00888) 1.895@998) 1.75822) 0.04927)
2.45 18 3.04414) 2.27q13) 2.15728) 2.121(26) 2.11444) 0.061710) 0.06079)
2.45 34 2.9500r1) 8.23546) 7.79444) 0.058714)
2.7 24 4.26719) 2.27216) 2.15231) 0.068@12)

3.0 36 6.4227) 2.37316) 2.28234) 0.072€12)
3.0 54 6.24123) 5.47739) 5.20837) 0.06967)
3.0 76 6.2401) 11.01(11) 10.5111) 0.07099)
3.2 48 8.56826) 2.41417) 2.36042) 2.27124) 0.075214) 0.07269)
3.5 74 13.06871) 2.41Q31 2.30429) 0.071812)
3.5 94 12.89773) 3.94549) 3.78648) 0.071312)
3.79 110 19.9433) 2.217123) 2.13836) 0.070313)
3.79 200 19.4@.3) 7.61(13) 7.2912) 0.068815)
3.95 150 24.9015) 2.60735) 2.52834) 0.069813)

D1(R)=K(4)ApsR?IN?(AysR), (R—0), (27)  taken at an expected plateauxa,= &.

In order to avoid finite size effects, one has to make mea-
where A,s Iis the perturbative A parameter and surements inlarge enough volumes. We made measurements
K(4)=36.2995 results from the integration over the instan-for all 8 values in volumes with the ratib/§=5.5—-6 kept
ton parameters. This result is valid for small volumes, so weapproximately constant. These volumes are usually large
can use it to estimate the probability of loosing a charge-on€nough to totally avoid any finite size effects. In"CP
configuration that falls through a small lattice mesh. models, however, the baskcparticles are subject to a con-

We denote the charge measured on the lattice @ignd  fining potential. Thus the resulting bound states may have a
the lost charge witly. If we assume tha® andq are inde- fadius that is larger than the correlation length. For this rea-

pendent, then the topological susceptibility measured on thgon We also made measurements for sginealues in even
lattice is larger volumegwith ratiosL/¢ up to 12.

The masses that are determined in the “small” volume

<Q2> <q2> L/é=5.6 are about 3% below the ones measured in “infi-
_ cont T . .

VA e vat (28)  nite” volume, as can be seen in Table lll. The magnitude of

this finite size effect fits nicely with the one observed in

We make a kind of dilute gas approximation by assumingRefs.[8,17]. Furthermore, we observed, that in the large vol-
that within each lattice mesh there can be independently aHmes the determination of the mass gap showed a nice pla-

lat__
o=

instanton or an antiinstanton. The result is teau behavior. Such a plateau was sometimes not very
clearly seen in the small volumes. Nevertheless, we may use

(9?) the results obtained in the small volume in order to look for

v 2D (29 a scaling behavior iry,£2. The actual values are spoiled by

finite-size effects, but since/ ¢ is constant, these effects are
Identifying R with the minimal sizep=ca of an instanton on  the same for every point. _ .
the lattice €=0.7) provides We checked asymptotic scaling of the mass gap according
to the perturbative lattice scale in two-loop approximation

lat cont, 4 2.21n2
= —2K(4)A},<c“aIn“(Aysca), a—0
Xt =Xt 1(4) Ays (Ausca),  ( )(30) AP =(% 7NB)*Nexp(—  7NpB). (31

which can be compared with the results of a Monte Carldn Fig. 4 we show the ration/A{?) versus the correlation
simulation. length, with masses determined in “small” volumes

L/é=5.6 and also some measurements in “large” volumes.
The most striking observation is that the ratio approaches a
constant valuem/A(?=8.1(1) (this value is obtained in
We performed Monte Carlo simulations in the®QRodel  “large” volumes), and that its final value is attained already
using the parametrized FP action given in Ed). In order  at a quite short correlation length. Such a precocious asymp-
to reduce critical slowing down, we implemented a hybridtotic scaling has not been stated for other lattice actions.
overrelaxation algorithm similar to the one described in RefWwith the standard action, for example, one does not even see
[9]. The mass gap= ¢~ was obtained from the long dis- an asymptotic scaling at correlation lengtfis 50 [9,10].
tance fall off of the correlation function projected to zero Note that the asymptotic scaling behavior for the FP action is
spatial momentum. We made a minimg fit to the corre-  a purely phenomenological observation that has not been ex-
lation function with the functiorc(e”™+e ™L"%) in the  pected theoretically. The FP action was constructed nonper-
interval X e [ Xmin,L/2] for different x,,. The value ofmis  turbatively in order to reduce cutoff effects. That the mass

VI. NUMERICAL RESULTS
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FIG. 4. Asymptotic scaling test for the mass in the3GRodel. FIG. 5. Scaling test for the topological susceptibility. These are

the results measured in “small” volumésg¢=5.6. The larger error

. . . . bars at some results from the first finer level are due to the fact that
gap scales with the perturbative parameter is just an addi-
we performed less measurements where we also measured the FP

tional, unexpected benefit. We furthermore observe, that th?harge
value of the ratian/A(? is remarkably small. From this we '

conclude, thatAgp is much closer to the continuum scale have the effect that one overestimates the amount of topo-
thanAsr. logical excitation.

We determined the topological charge, using both the |n Fig. 5 we show the results of the scaling test for the
geometric definition and the definition of the FP Chargedimensiomess quantitwtgzl measured in volumes with a
given in Sec. IV. For the measurement of the FP charge weatio L/£=5.6. One clearly sees the expected raise at small
used the geometric charge on a finer lattice of the multigrictorrelation lengths, which is due to lost small instantons in
with the Monte Carlo generated lattice as coarsest level. ligig region. At correlation lengti= 10 this effect is already
order to determine the configuratiai{) on the first finer  saturated. The measurements in “small” volumes using the
level, one can either minimize the FP equatfafich is very  gp chargei.e., Qpar 1/eve) ShOW the expected scaling plateau
time consuminy or use the parametrization of the depen-at 3 value of aboug,£2=0.071 (cf. Fig. 5. The measure-
dence on, given in Sec IVB. We denote the correspondingments using the geometric definition of the topological
chargesQcoarsefor the geometric charge and, €. @par1ievel  charge give somewhat larger values but they seem to con-
for the charge measured on the first finer level using theerge to the value obtained from the FP topological charge
parametrization of the fine field. _ for larger correlation lengths — these measurements do not

For someg values we compared the results of using theshow the same nice scaling behavior as the measurements
parametrization on a finer level and of minimizing on a mU"using the FP charge. This is also what is to be expected in
tigrid. The results were found to be consistent within thethe CP model if dislocations contribute to the geometric
statistical errors, as is reported in Table Ill. This shows, thagharge. In the continuum limit the effect of these dislocations
the parametrization performs well for typical configurationsjs suppressed, but they still contribute at the considered cor-
occurring in a Monte Carlo simulation. We wanted to berg|ation lengths.
sure, that it is sufficient to measure the Charge Only on the We can now use the four measurements in “|arge” Vo|_
first finer level. As a test we calculated for ofevalue also | mes, WithQpar 1 jeverfor the topological charge and perform

the charge on the second finer level. The result presented @it to the data with Eq(30), in order to extrapolate to the
Table Ill shows that the values on the first and the secon@ontinuum value. We obtain the valyge2=0.07q2).

finer level were found to be consistent within the statistical et us compare our numerical value with previous deter-

errors. This means that the process of going to a lower levehinations and with results from the large expansion{4].

is already stable at that stage, and that it is sufficient targ |eading order in M one gets

calculate the fine field only on the first finer level. This is not

unexpected, since we use a geometric definition of the topo- , 3 5

logical charge at a lower level. Therefore, we always get an xi&" =7 +O(IN =0.06 (for N=4). (32

integer number for the charge, and the charge has to change

abruptly when going to a finer level. The field on the first This value is comparable with the value we got at the scaling

finer level is then(in most casgssmooth enough to yield plateau. However, the correction to the leading order is large

already the FP topological charge. in Eq. (32) and the agreement with numerical results occurs
Table Ill shows the effect of using different definitions of at chance aN=4. The numerical results of Reff8] (who

the lattice topological charge. On the coarse level the valugse actions with an explicit gauge figld— quoting

of (QZ%as) IS higher than the one obtained with the FP y,£2=0.06 with an uncertainty of 10-20% — are in quite

charge(on the first finer level This can be explained with good correspondence with our result. Measurements using

dislocations which contribute to the geometric charge. Theyhe standard action and the geometric definition of the topo-
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logical chargg(Refs.[9,10)) lead to a value roughly twice as solution of the FP equation which is iterated to obtain the FP
large as ours, but with large scaling violations at large corfield. We used these parametrizations in MC simulations of
relation lengths — this is probably the effect of dislocationsthe CP model. We find two main results. First, the mass gap
which still contribute at the considered correlation lengths. unexpectedly scales according to the perturbative lattice
scale. Second, the dimensionless quanti? raises as ex-
VII. CONCLUSIONS pected at small correlation lengths, and reaches a scaling
. o _ _ _ plateau aty;£2=0.07Q2).
In CP'™* models it is possible to define a FP action and @ For the future, it would be interesting and profitable to use
FP topological charge. The FP action is the fixed point of anpe parametrized FP action for further MC simulations, for

exact RG transformation. It is a classically perfect action a”‘bxample in order to investigate the spectrum of'CPmod-
possesses scale invariant instanton solutions. The definitiqgg.

of the FP topological charge is based on the FP field opera-
tor. Both, the FP action and the FP field can be evaluated to
any precision desired on a sufficiently large multigrid. It can
be shown that the FP topological charge together with the FP
action have no lattice defects. | would like to thank P. Hasenfratz, F. Niedermayer, M.

It is profitable to use the FP action and the FP topologicaBlatter, U.-J. Wiese, A. Papa, and P. Kunszt for helpful dis-
charge in numerical simulations. For this purpose, we haveussions. This work was supported in part by the Schweiz-
parametrized for the CPmodel the FP action and the field erischer Nationalfonds.
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