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We define a fixed point action in two-dimensional lattice CPN21 models. The fixed point action is a classica
perfect lattice action, which is expected to show strongly reduced cutoff effects in numerical simula
Furthermore, the action has scale-invariant instanton solutions, which enables us to define a correct topo
charge without topological defects. Using a parametrization of the fixed point action for the CP3 model in a
Monte Carlo simulation, we study the topological susceptibility.@S0556-2821~96!01118-6#

PACS number~s!: 11.15.Ha, 11.10.Hi, 75.10.Hk
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I. INTRODUCTION

One possible way of regularizing a continuum quantu
field theory is to introduce a lattice as a UV regulator. A
additional benefit of this method is that it opens the door
computer simulations. However, by naively discretizin
physical observables, the correct values are only obtained
the continuum limit, when the lattice spacing is going
zero. At finite lattice spacing the lattice induces systema
errors~cutoff effects!. In order to remove these cutoff effect
one has to introduce finer and finer lattices, and finally e
trapolate the calculated quantities to the continuum lim
This delicate limit is a major difficulty in extracting con-
tinuum physics from the lattice.

It is possible to circumvent this problem by using Wil
son’s renormalization group theory. If one constructs the l
tice action and all operators in a form that corresponds to
renormalized trajectory, one obtains results that do not
pend on the lattice spacing. It has been shown in a serie
papers recently published@1,2# that it is possible to construct
a fixed point action for asymptotically free theories. Th
action is the fixed point~FP! of an exact renormalization
group ~RG! transformation and as such may be taken as
first approximation to the renormalized trajectory.

As a pilot project a local parametrization of the FP actio
was constructed in the O~3! nonlinears model, and used in
numerical simulations@1#. The result was very promising:
Although the FP action is perfect strictly only classically, n
cutoff effects were seen even at small correlation leng
(j;3).

In a subsequent paper@3# a FP topological charge was
proposed. It was shown, that the combination FP action a
FP charge has no topological defects. The FP action has
correct value for instanton solutions, and does not depend
the scale of the instanton. Hence it admits stable instan
solutions on the lattice. This is in contrast to the standa
lattice action, whose value depends on the instanton sc
and which suffers from dislocations@4#. These dislocations
were suspected to be responsible for the nonscaling beha
of the topological susceptibility in the O~3! nonlinear s
model. However, using parametrizations of the FP action a
the FP topological charge in a Monte Carlo simulation, ev
with the absence of dislocations a strong violation of scali
of the topological susceptibility was established@3#. This in-
dicates that the topological susceptibility is not a physic
5421/96/54~6!/4121~10!/$10.00
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quantity in the O~3! nonlinears model. This observation is
supported by results of semiclassical approximations@5,6#,
where the instanton size distribution is divergent for sma
instanton sizes.

In CPN21 models withN.2, however, the semiclassical
approximation indicates that there is no dominance of sma
instantons. Furthermore, forN.3 dislocations are sup-
pressed even for the standard lattice action@4#. It should
therefore be possible, to determine unambiguously the top
logical susceptibility in these models. On the other han
there were several recent determinations of the topologic
susceptibility in the CP3 model, using different discretiza-
tions of the action and the topological charge@7–11#, but the
results of these determinations are partly in plain contradi
tion with each other. The situation is, therefore, by no mean
clear. We suggest to use the same concepts and method
order to determine the topological susceptibility as was pr
posed in Ref.@3#.

This paper is organized as follows. In Sec. III we con
struct a classical perfect lattice action for the CP3 model
along the same lines as in Ref.@1#. We define a RG trans-
formation and determine the FP with analytical and numer
cal methods. We give a parametrization of the FP action, th
works reasonably well even for coarse grained fields. In Se
IV we define a FP topological charge along the lines of i
Ref. @3#. In order to use the FP charge in numerical simula
tions, we construct a parametrization of the dependence
the fine field on a coarse input field. In Sec. V we discuss th
topological susceptibility and the influence of a lattice regu
larization on its measurement. Finally, we present the resu
of numerical simulations using the FP action and the F
charge.

II. CP N21 MODELS

Two-dimensional CPN21 models are an important testing
ground for methods in quantum field theories because
their similarities with four-dimensional non-Abelian gauge
theories. Important common properties are asymptotic fre
dom, dynamical mass generation, confinement of non-gaug
invariant states and a nontrivial topology. Despite these com
mon features, two-dimensional spin models are much eas
to handle both analytically and numerically.

The CPN21 model ~in the continuum! consists of a
N-component complex spin fieldzi(x) which satisfies the
4121 © 1996 The American Physical Society
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4122 54RUDOLF BURKHALTER
constraintz̄(x)z(x)51. The action has a global SU(N) sym-
metry and a local U(1)~gauge! symmetry. The gauge field,
however, is not independent and can be expressed in
basic fieldz(x). Only after quantization, the gauge field be
comes dynamical, and gives rise to a confining potential,
is explicitly seen in the large-N limit @12#. In the following it
will sometimes prove useful, not to use the basic fie
z(x), but the gauge invariant composite operat
P(x)5z(x)^ z̄(x). ForN52 the CPN21 model is equivalent
to the O~3! nonlinears model andP(x) can be written in
terms of the usual O~3! covariant spinsS(x) as P(x)
5 1

2„11s•S(x)…. Heres are the usual Pauli matrices. In th
notation with the composite operators the continuum acti
for CPN21 assumes the form

NbAcont5
Nb

2 E d2x tr$]mP~x!]mP~x!%. ~1!

One has several possibilities to discretize the continuu
theory, and to put it on a lattice@13#. If one approaches the
continuum limit, each of it will give the same results. W
choose for this study a discretization, which does not use
explicit gauge field. The standard lattice action witho
gauge fields assumes the form

NbAST5Nb(
n,m

$12uz̄n1m̂znu2%. ~2!

ForN52 this goes over to the standard lattice action of t
O~3! nonlinears model, which is not the case if one would
use a formulation with an explicit gauge field. The param
etrization of the FP action will be a generalization of th
standard action, taking into account couplings between t
spins, that are more distant than nearest neighbor and
multispin couplings between up to four spins.

III. FIXED POINT ACTION

A. Equation for the fixed point action

We consider the CPN21 model on a two-dimensional
square lattice with variableszn at each lattice siten. Then we
perform an exact RG transformation. For this we split th
lattice into 232 blocksnB and with each block we associat
a block spinznB. We define the~gauge-invariant! RG trans-
formation as an averaging over the fine spins in one blo
that has the form

e2Nb8A8~z!5E
z
N~z!expH 2NbA~z!

1kNb(
nB

(
nPnB

uznBz̄nu
2J . ~3!

Here,k is a free parameter of the RG transformation, and t
normalizing factorN(z) assures, that the partition function
does not change under the RG transformation

N~z!215E
z
expH kNb(

nB
(
nPnB

uznBz̄nu
2J . ~4!
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The form of the RG transformation in Eq.~3! was chosen,
such that for the CP1 model it corresponds to the one use
for the O~3! nonlinears model in Ref.@1#. In order to com-
pute the normalizing factorN(z), consider the unitary matrix

MnB
5 (

nPnB
zn^ z̄n . ~5!

It is just the sum of the composite operatorsPn at every site
of a block. Let the Hermitian matrixMnB

have eigenvalues

lnB
i and eigenvectorswnB

i . BecauseMnB
is gauge invariant,

also its eigenvalues and eigenvectors do not depend on
gauge. Using these eigenvalues and eigenvectors, we can
write one term in Eq.~3!

(
nPnB

uznBz̄nu
25 z̄nBMnB

znB5(
i

lnB
i uznBw̄nB

i u2. ~6!

In the limit b→` we perform a saddle point approximation
We get to lowest orderN(z)215exp(kNb(nB

l̂nB), where

l̂nB is the largest eigenvalue ofMnB
. The FP of the RG

transformation~3! is determined in this limit by the implicit
equation~FP equation!

AFP~z!5min$z%$AFP~z!1T ~z,z!%, ~7!

with the transformation kernel

T ~z,z!5k(
nB

S l̂nB2 (
nPnB

uznBz̄nu
2D . ~8!

The kernelT (z,z) is gauge invariant in a strong sense:
does not change under independent gauge transformation
either the coarseor on the fine spins. This is more than
would be needed: in a general case it would be sufficie
that the kernel is gauge invariant under a combined gau
transformation on the coarseand the fine spins. The gauge
invariance of the kernel assures, that if the actionAFP(z) of
the fine field is gauge invariant, then also the actio
AFP(z) of the coarse field after the RG transformation
gauge invariant.

The FP equation~7! determines the value of the FP actio
for a given input configuration$z%. One may solve this equa-
tion iteratively, leading to a minimization on a multigrid o
lattice configurations with the configuration$z% on the coars-
est level, and withk finer configurations$z(k)% on successive
levels:

A~k!~z !5min$z~1!,z~2!, . . . ,z~k!%$A~0!~z~k!!1T ~z~k21!,z~k!!

1•••1T ~z,z~1!!%. ~9!

On each successive level the spin configurations beco
smoother and smoother, hence one may choose for the ac
A(0)(z(k)) on the finest configuration$z(k)% any lattice dis-
cretization of the continuum action. The FP actionAFP(z) is
then obtained in the limitk→` of A(k)(z). For practical
purposes, however, only a few levels are needed, and, st
ing from the standard action on the lowest level, the FP va
is reached soon. This iterative method can be used to so
the FP equation numerically. One can, however, make so
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54 4123FIXED POINT ACTION AND TOPOLOGY IN THE CP3 MODEL
important statements even without explicitly solving Eq.~7!.
This will be done in the next section.

B. Classical solutions

As in the O~3! nonlinears model we can show the fol-
lowing important statement concerning classical solutio
~e.g., instanton solutions!.

Statement. If the coarse configuration$z% satisfies the FP
classical equations of motion~i.e., the classical equation
corresponding toAFP), and therefore is a local minimum o
AFP(z), then the configuration$z(z)% on the fine lattice,
which minimizes the right-hand side of Eq.~7!, satisfies the
equations of motion as well. In addition, the value of t
action remains unchanged:AFP„z(z)…5AFP(z).

Proof. Since$z% is a solution of the FP classical equation
of motion, it is a stationary point ofAFP(z), and it satisfies
dAFP/dz50. The transformation kernel is positive:

TnB5l̂nB2 z̄nBMnB
znB>0. ~10!

The minimizing configuration$z% must fulfill TnB50, other-

wise we could find another coarse configuration$z%, that
fulfills this equation and lowers therefore the value
AFP(z); which would be in contradiction to the assumptio
that $z% is a stationary point. Hence we have a~albeit not
unique! relation between the given coarse field$z% and the
minimizing fine field$z(z)%

MnB
znB5l̂nBznB, ~11!

in other words,znB is the eigenvector corresponding to th

largest eigenvalue of the matrixMnB
defined in Eq.~5!.

T (z,z) is zero~that means, at its absolute minimum! for the
minimizing fine field$z(z)%; hence$z(z)% is also a station-
ary point ofAFP and $z(z)% satisfies the classical FP equ
tions of motion. Furthermore, the value of the action is t
same:AFP„z(z)…5AFP(z) h.

Note, that the reverse statement is not always true. If
fine configuration$z% is a solution of the equations of mo
tion, then the coarse configuration obtained from Eq.~11! is
a local minimum, but it need not be the absolute minimu
that has to be found at the right-hand side of the FP equa
~7!. This mechanism prevents the existence of arbitra
small instantons on the lattice~see below!.

Using the above statement, we can now construct ins
ton configurations on the lattice@see also Ref.@3# for the
corresponding construction in the O~3! nonlinears model#.
We consider instanton configurations of the continuum o
torus. On a torus, however, there exists no exact o
instanton configuration@14#. In order to clearly separate cut
off effects from finite size effects, we have to fall back up
exact two-instanton configurations. The two-instanton c
figurations of CP1, embedded into CPN21, have the form

z~w!5N FuW 1)
i51

2
s~w2ai !

s~w2bi !
vW G , ~12!

w5x1 iy ,uW 5~1,0,0, . . .!,
ns
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vW 5~0,1,0, . . .!,(
i51

k

ai5(
i51

k

bi ,

wheres(n) is the Weierstrasss function and the factorN
ensures the correct normalization. The vectorsuW and vW are
N-component CPN21 vectors which specify the orientation
of the instantons in ‘‘color space.’’ The four complex param
etersa1, a2, b1, andb2 specify the size of the instantons an
their position and orientation on the torus. We choose th
in the form

a15~L/22r!i , a25L/21~L/21r!i , ~13!

b15~L/21r!i , b25L/21~L/22r!i ,

wherer is the instanton size andL the size of the torus. The
actionAcont of the configuration~12! is equal 232p irre-
spective of the sizer of the instantons. Next we want to
construct lattice two-instanton configurations of differe
sizes. We first discretize the continuum two-instanton co
figuration on a very fine lattice, so that the cutoff effects c
safely be neglected. Then we performk block transforma-
tions using Eq.~11!. Under a block transformation the size o
the instantons is halved. Choosing the numberk of block
transformations and the initial sizer, one can get any final
size r22k on a coarse lattice. The above statement sho
that the action remains the same, unless the size of the
stantons is too small, and they fall through the lattice.

We have numerically performed the above program
the CP3 model, and have measured several quantities on
finally blocked configurations. On the coarse configurati
itself we measured the geometric charge, the standard ac
the Symanzik improved action and the parametrization of
FP action presented in Sec. III C. Performing a minimizati
on a multigrid with three finer levels, we measured the ex
FP action and on the finest level the FP charge~cf. Sec. IV!.
Because instantons in CP3 are embedded CP1 instantons, it is
clear, that the results presented in Fig. 1 are practically id
tical to the ones obtained in the O~3! nonlinears model@3#.
The results show, that it is possible to obtain a parametri
tion of the FP action that performs very well for instanto

FIG. 1. Actions and charge of instantons with radii of the ord
of one lattice spacing.
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4124 54RUDOLF BURKHALTER
configurations down to the smallest possible size on the
tice. In contrast, the standard action and also the Syma
improved action perform quite bad, especially for small
stantons. It is worth mentioning, that the range of instan
sizes, where the geometric charge differs from the FP cha
is quite narrow. For instanton configurations, the geome
charge seems to be as good as the FP charge. For ge
configurations created in a Monte Carlo~MC! simulation,
however, there is a noticeable difference between the
charges~cf. Sec. VI!.

C. Parametrization of the FP action

If we want to use the FP action in practical numeric
simulations, we must construct a parametrization, that c
sists of a not too large set of local operators. Our parame
zation has the form

AFP
par~z!52

1

2(n,r r~r !un,n1r
2 1 (

ni ,nj , . . .
coupling

3 products ofuni ,nj
2 , ~14!

where uni ,nj5arccos(uz̄niznj u) is the angle between two

spins. Note, that in CPN21 models the maximal angle be
tween two spins isp/2; z and2z is the same spin, differen
only by a gauge transformation. There are two reasons wh
is useful to use the angleuni ,nj instead of (12uz̄niznj u

2): For
solutions of the equations of motion of the form
z(n)5(cosun0,sinun0,0, . . . ), theu dependence of the ac
tion is exactlyu2. Moreover, if one rotates a single spin in
trivial background with all spins pointing in the same dire
tion, theu dependence of the action is more likeu2 rather
than 12cos2(u). Figure 2 shows how well the minimized F
action is approximated even by the two first terms~nearest
neighbor, diagonal! of the lowest order of the parametriza
tion in Eq. ~14!. In contrast, the standard action perform
very bad for large angles.

We can calculate the coefficientsr(r ) of the lowest order
analytically. The coefficients of the higher orders can be
termined in a numerical fitting procedure.

FIG. 2. Actions of configurations with one spin rotated agains
trivial background.
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1. Lowest order, determination ofr

The analytic result for the lowest order term in the FP
action will be valid for allN, as long asN.1. Consider on
the coarse level a smooth configuration, which is weakl
fluctuating around the first direction

znB5SA12uXnB
u2

XnB
D , ~15!

whereXnB
has (N21) components, anduXnB

u!1. With this
choice we have fixed the gauge by imposing, that the firs
component is real and positive. Then the minimizing fine
configuration will also fluctuate around the first direction
and, using the same gauge fixing prescription, we make th
ansatz

zn5SA12uVnu2

Vn
D , ~16!

with uVnu!1. Putting these expansions and the parametriz
tion of the action~14! in the FP equation~7! and keeping
only terms up to quadratic order inX and V, we get the
equation

1

2 (
nB ,r B

r~r B!Re~X̄nB
XnB1r B

!

5min$V%H 12(n,r r~r !Re~V̄nVn1r !

12k(
nB

UXnB
2
1

4 (
nPnB

VnU2J . ~17!

This equation can be solved forr most easily by using the
same technique as described in Ref.@1#. Taking into account
the fact, that for the CP1 model the RG transformation goes
over to the one used for the O~3! nonlinears model, it is not
astonishing, that the resultingr is exactly the same as in Ref.
@1#. Consequently, in order to have a most local action, w
will also choose the free parameterk52 in the RG transfor-
mation Eq.~3!.

2. Higher orders for the CP3 model

In order to have a reasonably good parametrization of th
lattice action which performs well also for coarse configura
tions, we include higher order terms in the parametrizatio
~14!. The coefficients of these higher order terms will depen
on the chosen model, and are different for eachN. We de-
termined them numerically for the CP3 model. To do this, we
first produced about 300 configurations of lattice size 3 with
a Monte Carlo program using the standard action. The co
figurations ranged from ones with small actions and fluctua
tions with small amplitudes to strongly fluctuating ones. We
also included some two-instanton configurations with radii o
the order of one lattice spacing~cf. Sec. III B!. For every
configuration we calculated the value of the FP action b
minimizing the FP equation on a multigrid. Then we deter
mined the coefficients of 30 higher order operators chose

t a
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FIG. 3. Scatter plot of the actions of the configurations used
the fit.
because of their locality. Their value was determined so t
the average difference between minimized and parametr
FP action was minimal.

Figure 3 illustrates the quality of the parametrization. T
relative deviation from the minimized FP action is only lar
for very coarse configurations with large actions. For co
parison, we also plot the standard action for the same c
figurations. Note, that here the relative deviation of the st
dard action from the FP action is not small, even f
configurations with small amplitude fluctuations.

The resulting 32 coefficients of the parametrization~14!
are given with a graphical notation of the corresponding
erators in Table I. A line with two dots •—• means that th
angleun1 ,n2

2 between the two spins at positionsn1 andn2 of

the dots enters into the parametrization. A graph consis
of several lines represents just the multiplication of the c
responding angles. Coefficients No. 1 and No. 4 are the o
analytically calculated ones, all the other couplings were
termined by the fitting procedure. The locality of the acti

for
TABLE I. Couplings used for the FP action.
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4126 54RUDOLF BURKHALTER
is expressed in the fact, that it is possible to construct a g
parametrization with operators consisting of spins, that
only within a 232 section of the whole lattice. On the oth
hand, the parametrization seems to be not as local as the
found in the O~3! nonlinears model. Some couplings o
operators of higher order have quite a large value. Never
less, one should not give too much attention to the ac
value of the couplings. A large coupling for a higher ord
operator does not mean, that the action is less local. S
combinations of couplings can be changed without much
fecting the quality of the parametrization. In principle o
would not need to keep all 32 operators in the parametr
tion, we just did so for reasons of completeness. Using
operators for an action in a MC simulation may seem to b
lot. However, compared with the expected benefit of us
such an action, the additional computational effort nee
seems to be reasonable.

IV. FIXED POINT TOPOLOGICAL CHARGE

A feature of CPN21 models common with gauge fiel
models is the existence of topologically nontrivial solution
In the continuum theory the topological chargeQ may be
defined as the integral

Q5
i

2pE d2x«mntr @P~x!]mP~x!]nP~x!#. ~18!

The action is related to the charge through the inequality

Acont>2puQu. ~19!

For instantons the equality holds. They minimize the acti
and are therefore solutions of the equations of motion.

On the lattice, however, this concept breaks down beca
continuity is lost. In the continuum the topological secto
are clearly separated, but on the lattice one may continuo
transform a field from one topological sector to another. F
thermore, when using the standard lattice action, the s
invariance of instanton solutions is violated. The action
creases with decreasing instanton size, and configurat
that violate the inequality~19! — so called ‘‘dislocations’’
— are possible.

In Refs. @1,3# it was shown that the FP action admi
stable instanton solutions. Furthermore, it was shown how
construct a correct charge — the FP charge — which d
not admit dislocations. In this section we will proceed alo
the same lines as in these works, in order to construct the
charge for the CP3 model.

A. Definition of the FP charge

We define the FP charge by means of the iterated solu
of the FP equation~9!. Under a RG transformation in th
limit b→`, an operatorO(z) transforms intoO8(z) on the
coarse lattice as

O8~z!5O„z~z!…, ~20!

where the spin configuration$z(z)% is the solution of the FP
equation~7!. The FP topological charge is obtained in t
limit of infinitely many RG transformations:
ood
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QFP~z!5 lim
k→`

Q„z~k!~z !…, ~21!

where$z(k)% is the solution of the iterated FP equation~9! on
the lowest level in ak level multigrid. As the configurations
get smoother on each successive level, one may choose
the chargeQ on the lowest level any lattice discretization o
the topological charge. In this paper we will use the geom
ric charge@15#, because it is stable against small variation
of the field, if the field is sufficiently smooth, and because
always gives an integer number.

In Ref. @3# it was shown, that the combination FP actio
and FP topological charge always obeys the inequality

AFP~z!>2puQFP~z!u. ~22!

Hence there are no dislocations.
In numerical simulations it is very time consuming t

minimize a multigrid for every configuration. One needs
parametrization of the solution$z(z)% of the FP equation.
This will be done in the next section.

B. Fixed point field

The FP field is the fine fieldz(k) in the multigrid solution
of the iterated FP equation~9! as k goes to infinity. If the
functional dependence of the solution on the first fine lev
z(1) on z is known, the FP field can be evaluated by iteratio
Below we give an expression for the fieldz(1)5z(1)(z). ~In
the limit k→` the solution$z(1)% of the iterated FP equation
is identical to the solution$z% of the FP equation.!

We make the expansions~15! and~16! for the coarse and
the fine configuration. Then the solution of the FP equati
leads in lowest order to the relation

Vn5(
nB

a~n,nB!XnB
~23!

with a the same as for the O~3! s model @1–3,16#.
To obtain this result, we have fixed the gauge in a spec

way. However, we want a relation between$z% and$z%, that
does not depend on the choice of the gauge fixing presc
tion. Furthermore, for coarse configurations we have to
clude higher order terms, that parametrize the dependenc
$z% on $z%. For this we construct the gauge-invariant com
posite operatorsPnB

5znB^ z̄nB on the coarse lattice. On the

fine lattice we build matricesQn by summing over the coarse
composite operators including the next to leading ord
terms,

Qn5(
nB

a~n,nB!PnB
1 (

nB

mB ,mB8

b~n,nB ,mB ,mB8 !umB ,mB8
2

PnB
,

~24!

and define the fine field variablezn as the eigenvector of
Qn with largest eigenvalue. In next order enters the ang
umB ,mB8
2

between the coarse spins at sitesmB andmB8 , respec-

tively. In order to determine the coefficientsb, we used the
same'300 configurations like for the parametrization of th
action, minimized the FP equation~7! and stored the
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TABLE II. Coefficients of the parametrization of the fine field.
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resulting fine lattices. The coefficients were then determin
by minimizing the difference between the minimized fin
spins and the parametrization~24!.

The numerical values of the coefficientsa and b are
given in Table II with a graphical notation of the correspon
ing operators. We chose a set of 17 operators mainly beca
of their compactness. Numbers 1–6 are the analytically
termined coefficientsa, Nos. 7–17 are the numerically de
termined coefficientsb. The meaning of the graphical nota
tion of the operators is the following: The dashed line
represent a 333 section of the coarse lattice grid. The cros
1 in between indicates the positionn of the matrixQn in
Eq. ~24!. The little squareh denotes the positionnB of the
coarse composite operatorPnB

, the two connected dots •—•

are the positionsmB and mB8 of the spins whose angle
umB ,mB8
2

enters into the parametrization. Graphs obtained

trivial symmetry transformations are not drawn separately

V. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility is defined as the ratio

x t5
^Q2&
V

, ~25!

whereQ is the topological charge andV is the space–time
volume. In CPN21 models it is a dimension two quantity
that vanishes to all orders in the weak coupling expansi
ed
e

-
use
e-
-
-
s
s

by

.

n.

From the perturbative renormalization group it is expected
scale according to the two loopb function

x t}~ 1
2 pNb!4/Nexp~2pNb!, ~b→`!. ~26!

In order to check the continuum limit, a scaling behavior
more important to observe than the above asymptotic sc
ing. One additionally measures a second quantity, e.g.,
correlation lengthj, and builds the dimensionless produc
x tj

2, which should go to a constant in the continuum lim
j→`.

In general, cutoff effects can originate from two source
from the discretization of the action and from the discretiz
tion of an operator. The topological charge is an operat
that strongly exhibits lattice cutoff effects, as was demo
strated in Sec. IIIB: instantons with a radius smaller tha
about 0.7a fall through the lattice and are lost in a Monte
Carlo simulation. This fraction is large at correlation length
of the same order as the lattice spacing, and gets smalle
the correlation length grows. One therefore expects a scal
violation, which is determined by the small instanton siz
distribution.

One may estimate the behavior of the expected scal
violation by using the results of a semiclassical expansio
and performing a kind of dilute instanton gas approximatio
In CP3 the probability density to find a field configuration
with topological chargeQ51 in a sphere with radiusR is @5#
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TABLE III. Results of MC simulations.

Nb L j ^Qcoarse
2 & ^Qmin 1st level

2 & ^Qpar 1st level
2 & ^Qpar 2nd level

2 & xmin 1st level
t j2 xpar 1st level

t j2

1.4 6 0.9972~27! 1.0981~66! 1.008~17! 0.0278~5!

2.1 12 2.0085~68! 1.8950~98! 1.758~22! 0.0492~7!

2.45 18 3.044~14! 2.270~13! 2.157~28! 2.121~26! 2.114~44! 0.0617~10! 0.0607~9!

2.45 34 2.9500~71! 8.235~46! 7.794~44! 0.0587~4!

2.7 24 4.267~19! 2.272~16! 2.152~31! 0.0680~12!
3.0 36 6.422~27! 2.373~16! 2.282~34! 0.0726~12!
3.0 54 6.241~23! 5.477~39! 5.208~37! 0.0696~7!

3.0 76 6.244~21! 11.01~11! 10.51~11! 0.0709~9!

3.2 48 8.569~26! 2.414~17! 2.360~42! 2.277~24! 0.0752~14! 0.0726~9!

3.5 74 13.063~71! 2.410~31! 2.304~29! 0.0718~12!
3.5 94 12.897~73! 3.945~49! 3.786~48! 0.0713~12!
3.79 110 19.945~83! 2.217~23! 2.138~36! 0.0703~13!
3.79 200 19.43~13! 7.61~13! 7.29~12! 0.0688~15!
3.95 150 24.92~15! 2.607~35! 2.528~34! 0.0698~13!
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D1~R!5K1~4!LMS
4 R2ln2~LMSR!, ~R→0!, ~27!

where LMS is the perturbative L parameter and
K1(4)536.2995 results from the integration over the insta
ton parameters. This result is valid for small volumes, so
can use it to estimate the probability of loosing a charge-o
configuration that falls through a small lattice mesh.

We denote the charge measured on the lattice withQ and
the lost charge withq. If we assume thatQ andq are inde-
pendent, then the topological susceptibility measured on
lattice is

x t
lat5

^Q2&
V

5x t
cont2

^q2&
V

. ~28!

We make a kind of dilute gas approximation by assum
that within each lattice mesh there can be independently
instanton or an antiinstanton. The result is

^q2&
V

52D1 . ~29!

IdentifyingR with the minimal sizer5ca of an instanton on
the lattice (c.0.7) provides

x t
lat5x t

cont22K1~4!LMS
4 c2a2ln2~LMSca!, ~a→0!

~30!

which can be compared with the results of a Monte Ca
simulation.

VI. NUMERICAL RESULTS

We performed Monte Carlo simulations in the CP3 model
using the parametrized FP action given in Eq.~14!. In order
to reduce critical slowing down, we implemented a hyb
overrelaxation algorithm similar to the one described in R
@9#. The mass gapm5j21 was obtained from the long dis
tance fall off of the correlation function projected to ze
spatial momentum. We made a minimalx2 fit to the corre-
lation function with the functionc(e2mx1e2m(L2x)) in the
interval xP@xmin ,L/2# for different xmin . The value ofm is
n-
we
ne

the

ing
an

rlo

rid
ef.
-
ro

taken at an expected plateau atxmin*j.
In order to avoid finite size effects, one has to make me

surements in large enough volumes. We made measurem
for all b values in volumes with the ratioL/j.5.526 kept
approximately constant. These volumes are usually lar
enough to totally avoid any finite size effects. In CPN21

models, however, the basicz particles are subject to a con-
fining potential. Thus the resulting bound states may have
radius that is larger than the correlation length. For this re
son we also made measurements for someb values in even
larger volumes~with ratiosL/j up to 12!.

The masses that are determined in the ‘‘small’’ volum
L/j.5.6 are about 3% below the ones measured in ‘‘infi
nite’’ volume, as can be seen in Table III. The magnitude
this finite size effect fits nicely with the one observed i
Refs.@8,17#. Furthermore, we observed, that in the large vo
umes the determination of the mass gap showed a nice p
teau behavior. Such a plateau was sometimes not v
clearly seen in the small volumes. Nevertheless, we may u
the results obtained in the small volume in order to look fo
a scaling behavior inx tj

2. The actual values are spoiled by
finite-size effects, but sinceL/j is constant, these effects are
the same for every point.

We checked asymptotic scaling of the mass gap accord
to the perturbative lattice scale in two-loop approximation

LL
~2!5~ 1

2 pNb!2/Nexp~2 1
2 pNb!. ~31!

In Fig. 4 we show the ratiom/LL
(2) versus the correlation

length, with masses determined in ‘‘small’’ volumes
L/j.5.6 and also some measurements in ‘‘large’’ volume
The most striking observation is that the ratio approaches
constant valuem/LL

(2)58.1(1) ~this value is obtained in
‘‘large’’ volumes!, and that its final value is attained alread
at a quite short correlation length. Such a precocious asym
totic scaling has not been stated for other lattice action
With the standard action, for example, one does not even
an asymptotic scaling at correlation lengthsj;50 @9,10#.
Note that the asymptotic scaling behavior for the FP action
a purely phenomenological observation that has not been
pected theoretically. The FP action was constructed nonp
turbatively in order to reduce cutoff effects. That the ma
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gap scales with the perturbativeL parameter is just an addi-
tional, unexpected benefit. We furthermore observe, that
value of the ratiom/LL

(2) is remarkably small. From this we
conclude, thatLFP is much closer to the continuum scal
thanLST.

We determined the topological charge, using both t
geometric definition and the definition of the FP charg
given in Sec. IV. For the measurement of the FP charge
used the geometric charge on a finer lattice of the multig
with the Monte Carlo generated lattice as coarsest level.
order to determine the configurationz(z) on the first finer
level, one can either minimize the FP equation~which is very
time consuming! or use the parametrization of the depen
dence onz, given in Sec IVB. We denote the correspondin
chargesQcoarsefor the geometric charge and, e.g.,Qpar 1.level
for the charge measured on the first finer level using t
parametrization of the fine field.

For someb values we compared the results of using th
parametrization on a finer level and of minimizing on a mu
tigrid. The results were found to be consistent within th
statistical errors, as is reported in Table III. This shows, th
the parametrization performs well for typical configuration
occurring in a Monte Carlo simulation. We wanted to b
sure, that it is sufficient to measure the charge only on
first finer level. As a test we calculated for oneb value also
the charge on the second finer level. The result presente
Table III shows that the values on the first and the seco
finer level were found to be consistent within the statistic
errors. This means that the process of going to a lower le
is already stable at that stage, and that it is sufficient
calculate the fine field only on the first finer level. This is n
unexpected, since we use a geometric definition of the to
logical charge at a lower level. Therefore, we always get
integer number for the charge, and the charge has to cha
abruptly when going to a finer level. The field on the fir
finer level is then~in most cases! smooth enough to yield
already the FP topological charge.

Table III shows the effect of using different definitions o
the lattice topological charge. On the coarse level the va
of ^Qcoarse

2 & is higher than the one obtained with the F
charge~on the first finer level!. This can be explained with
dislocations which contribute to the geometric charge. Th

FIG. 4. Asymptotic scaling test for the mass in the CP3 model.
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have the effect that one overestimates the amount of to
logical excitation.

In Fig. 5 we show the results of the scaling test for th
dimensionless quantityx tj

2, measured in volumes with a
ratio L/j.5.6. One clearly sees the expected raise at sm
correlation lengths, which is due to lost small instantons
this region. At correlation lengthj.10 this effect is already
saturated. The measurements in ‘‘small’’ volumes using t
FP charge~i.e.,Qpar 1.level) show the expected scaling platea
at a value of aboutx tj

2.0.071 ~cf. Fig. 5!. The measure-
ments using the geometric definition of the topologic
charge give somewhat larger values but they seem to c
verge to the value obtained from the FP topological char
for larger correlation lengths — these measurements do
show the same nice scaling behavior as the measurem
using the FP charge. This is also what is to be expected
the CP3 model if dislocations contribute to the geometri
charge. In the continuum limit the effect of these dislocation
is suppressed, but they still contribute at the considered c
relation lengths.

We can now use the four measurements in ‘‘large’’ vo
umes, withQpar 1.levelfor the topological charge and perform
a fit to the data with Eq.~30!, in order to extrapolate to the
continuum value. We obtain the valuex tj

250.070(2).
Let us compare our numerical value with previous dete

minations and with results from the largeN expansion@4#.
To leading order in 1/N one gets

x tj
25

3

4pN
1O~1/N5/3!.0.06 ~ for N54!. ~32!

This value is comparable with the value we got at the scali
plateau. However, the correction to the leading order is lar
in Eq. ~32! and the agreement with numerical results occu
at chance atN54. The numerical results of Ref.@8# ~who
use actions with an explicit gauge field! — quoting
x tj

2.0.06 with an uncertainty of 10–20% — are in quite
good correspondence with our result. Measurements us
the standard action and the geometric definition of the top

FIG. 5. Scaling test for the topological susceptibility. These a
the results measured in ‘‘small’’ volumesL/j.5.6. The larger error
bars at some results from the first finer level are due to the fact t
we performed less measurements where we also measured the
charge.
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logical charge~Refs.@9,10#! lead to a value roughly twice a
large as ours, but with large scaling violations at large c
relation lengths — this is probably the effect of dislocatio
which still contribute at the considered correlation length

VII. CONCLUSIONS

In CPN21 models it is possible to define a FP action an
FP topological charge. The FP action is the fixed point of
exact RG transformation. It is a classically perfect action
possesses scale invariant instanton solutions. The defin
of the FP topological charge is based on the FP field op
tor. Both, the FP action and the FP field can be evaluate
any precision desired on a sufficiently large multigrid. It c
be shown that the FP topological charge together with the
action have no lattice defects.

It is profitable to use the FP action and the FP topolog
charge in numerical simulations. For this purpose, we h
parametrized for the CP3 model the FP action and the fie
s
or-
ns
s.

d a
an
and
ition
era-
d to
an
FP

ical
ave
ld

solution of the FP equation which is iterated to obtain the FP
field. We used these parametrizations in MC simulations o
the CP3 model. We find two main results. First, the mass gap
unexpectedly scales according to the perturbative lattic
scale. Second, the dimensionless quantityx tj

2 raises as ex-
pected at small correlation lengths, and reaches a scalin
plateau atx tj

250.070(2).
For the future, it would be interesting and profitable to use

the parametrized FP action for further MC simulations, for
example in order to investigate the spectrum of CPN21 mod-
els.
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