PHYSICAL REVIEW D VOLUME 54, NUMBER 6 15 SEPTEMBER 1996

Three-gluon vertex in arbitrary gauge and dimension
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One-loop off-shell contributions to the three-gluon vertex are calculated, in an arbitrary covariant gauge and
in arbitrary space-time dimensions, including quark-loop contributfaith massless quarkslt is shown how
one can get the results for all on-shell limits of interest directly from the general off-shell expression. The
corresponding general expressions for the one-loop ghost-gluon vertex are also obtained. They allow for a
check of consistency with the Ward-Slavnov-Taylor identi§0556-282(96)05818-3

PACS numbgs): 11.15.Bt, 11.10.Kk, 12.38.Bx

[. INTRODUCTION case, but restricted to the Feynman gaud. Later, various
on-shell results were also given, by Brandt and FreXRE)

The three-gluon coupling is perhaps the most obvioug14], restricted to the infrared-singular parts oitig an ar-
manifestation of the non-Abelian aspect of quantum chromobitrary covariant gauge and by Nowak, Praszatowicz, and
dynamics[1] (see also the review2,3]). Implicitly, it has  Stominski (NPS [15], who also gave the finite parts for the
been studied experimentally through the observed running afase of two gluons being on shéih the Feynman gauge
the coupling constari4]. The associated Casimir invariant An overview of these results is given in Table I.
has even been measured directly in studies of four-jet events From Table | one can see that, even if we consider the
at the CERNe" e~ collider LEP[5], the SU3) group being results in(or around four dimensions, there are still several
consistent with the data. “white spots.” They correspond not only to the most general

Apart from being a standard object of consideration incase(the lower left corner but also to some other cases
textbooks on quantum field theory and QCBee, e.g., Wwhen the results are missing, either for quark loop contribu-
[6-8]), the perturbative corrections to gluonic vertices aretions or for the finite parts. The aim of the present paper is to
also very important in real physical calculations, such asoverall such remaining spot§or the case when massless
multijet production at the hadron collidefsee, e.g.[9,3] quarks are consideredMoreover, we present results which
and references therginAt the present level of accuracy, one are valid for amarbitrary value of the space-time dimension.
needs to perform not only calculations with on-shell externalApart from the three-gluon vertex itself, we also consider the
particles; there are also contributions where general off-shefjhost-gluon vertex and two-point functions, to be able to
results are needed. check that all these expressions obey the Ward-Slavnov-

One of the original reasons the three-gluon vertex wadaylor identity for the three-gluon vertex.
studied was the belief that its infrared properties might shed At the one-loop level, the simple and well-known Lorentz
light on the mechanism of confinement. In these studies, difstructure of the lowest-order coupling gets modified. In the
ferent approaches were used, some of which are discusseddeneral case, six tensor structuf@snd their permutations
the review[10] (and references thergin are needed to decompose the three-gluon véitdk Thus,

For special cases, the one-loop results for the three-gluosix scalar functions multiplying these tensor structures are to
coupling have been known for many years. Celmaster anbie calculated. These scalar functions depend on the gauge
GonsalvesCG) presented in 197911] the one-loop result parameter, the space-time dimension, and the kinematical in-
for the vertex, for off-shell gluons, restricted to the symmet-variants 2, p3, p3).
ric case,pf= p§= pg, in an arbitrary covariant gaudeBall There are several reasons why the one-loop results calcu-
and Chiu(BC) then in 1980 considered the general off-shelllated in arbitrary gauge and dimensiorare of special inter-

est: (i) Knowing the results in arbitrary gauge, one can ex-
plicitly keep track of gauge invariance for physical
“Permanent address: Institute for Nuclear Physics, Moscov@luantitiesyii) if one is interested in the two-loop calculation
State University, 119899, Moscow, Russia. Electronic address?f the three-gluon coupling, one should know one-loop con-
davyd@vsfys1.fi.uib.no tributions in more detail{iii) results in arbitrary dimension

Electronic address: Per.Osland@fi.uib.no make it possible to consider all on-shell limitwhen some

‘On leave from Joint Institute for Nuclear Research, 141980,pi2=O) directly from these expressionsee Sec. 1Y, and
Dubna, Russia. Present address: IfH, DESY-Zeuthen, Platanenallégis is impossible if one only has the results valid around
6, D-15738 Zeuthen, Germany. Electronic address: tarasov@ifh.dour dimensions;(iv) QCD is also a theory of interest in

The result of[11] was also confirmed by Pascual and Tarrachthree and two dimensionésee, e.g.[16] and the review
[12]. [17]); and(v) as we shall see, the results for arbitrary dimen-

0556-2821/96/5¢6)/4087127)/$10.00 54 4087 © 1996 The American Physical Society



4088 A. I. DAVYDYCHEYV, P. OSLAND, AND O. V. TARASOV 54

P3 o as (3 P3 das s
i '
AN
7/ AY
7 AY
s AY
/ AN
4 *

/ \

/ A

Ve A

/7 A\
7/ AN
2\l TSPy P €T oo \('Ei)z
ay f az f2 ay fa az fo
D3 o A3 U3 P3 o @3 U3 P3 i, a3 U3
' ! !
FIG. 1. One-loop three-gluon
vertex diagrams.
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sion are not much more cumbersome than those considerathell limit p§:O in an arbitrary gaugéAppendix B, and
around four dimensiongin some respects, they are even glso some results fqﬁ:p%:o (Appendix B.
more transparent and instructjve
We note that in several papers the one-loop three-gluon
vertex in axial-type gaugesncluding the light-cone gauge Il. PRELIMINARIES

was considerefil8] (mainly divergent parts and special lim- ¢ Yang-Mills term of the QCD Lagrangian yields the

its have been studigdThe three-gluon vertex in the back- fgjlowing well-known expression for the lowest-order three-
ground field formalism was considered in REE9], while gluon vertex:

the gauge-invariant vertex was studied in R&0]. More-
over, there were some lattice calculations of the three-gluon igfaaaas _ 4 B
vertex; see, e.g., Reff21]. We shall not address these issues 'g (90101, (P17P2) g+ Gpppug (P2~ P3) g
here, but concentrate instead on ®tandardvertex in an _
arbitrary covariantgauge. gy (P3P, ] @D

The paper is organized as follows. In Sec. I, we introduce
the notation for the two- and three-point functions to be conwherep;, p,, andp; are the momenta of the gluons, all of
sidered, and discuss their decomposition in terms of scalawhich are ingoingp;+p,+ps=0. In Eq.(2.1), the f#1%2%3
functions as well as the corresponding Ward-Slavnov-Tayloare the totally antisymmetric color structures corresponding
identity. In Sec. lll, we present the most general off-shellto the adjoint representation of the gauge grédmhey can
results for the three-gluon vertex. Section IV contains thebe extracted from the general three-gluon vertex by deffning
corresponding expressions for all on-shell limits of interest.
In Sec. V, we conclude with a summary and a discussion of
the results. Then, we have several appendixes where soméAlthough the standard QCD Lagrangian corresponds to the
further results and technical details are presented, such as tt&J(3) group, our results are valid for an arbitrary semisimple
formulas used to decompose the three-gluon vegpen-  gauge group.
dix A), relevant results for the scalar integrals invol\@g- 3In fact, also completely symmetric color structungs®23 might
pendix B, results for the self-energig¢éppendix Q and the be considered, but they do not appear in the perturbative calculation
ghost-gluon verteXAppendix D, expressions for the on- of QCD three-point vertices at the one-loop level.
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TABLE I. Kinematics and gauges considered in other studies.

All momenta off-shell Some momenta on-shell
General case p3=p3=p3 p3=0 pa=p3=0
Feynman IE:_;;: %3;) special case special case NPS[15],
gauge no quarks of CG[11] of BF [14] Appendix B
. BF [14], BF [14],
ﬁgsgﬂzt CGI11], Eq. (25), Eq. (30),
Lage Eq. (14 no quarks, no quarks,
guag no finite parts no finite parts
212233 (. 1 na)=—igfaiddsl (P1,P2,P3). When one calculates radiative corrections to the three-
Maikaks Hikiaks gluon vertex(the corresponding one-loop diagrams are pre-

(2.2 sented in Fig. J, other tensor structures arise, in addition to
) ) the lowest-order expressid@.1), and the general tensor de-
Since the gluons are bosons, and since the color structurggymposition should be considered. If we take into account
f81%2%3 are antisymmetricl’,, ., ,..(P1,P2,P3) must also be  momentum conservatiofnly two of the external momenta
antisymmetricunder any interchange of a pair of gluon mo- are independeht14 independent tensor structures carrying 3

menta and the corresponding Lorentz indices. Lorentz indices exist, and in geneta), , .. can be written
The lowest-order gluon propagator is as a sum of these tensors multiplied by scalar functises
Appendix A). This decomposition is useful for extracting the
1 Pu,Pu, corresponding scalar functions from the result of a calcula-
66‘1""2F 9”1”2_§T , (2.3  tion. Although bosonic symmetry of the vertex puts some

conditions on the corresponding scalar functions, the explicit
) ) symmetry of the expression is broken, because one of the
where ¢ is the gauge parameter corresponding to a generghomenta was substituted in terms of two others.

covariant gauge, defined such th&#0 is the Feynman To avoid this, one can use a more symmetric decomposi-
gauge. Here and henceforth, a causal prescription is undetion of the general three-gluon vertex, proposed by Ball and
stood, 1p?>—1/(p2+i0). Chiu* [13]:

T oig(P1:02,03) = A(PE,05:03) 9,0, (P1= P2) 1y B(PE.P3:P3) G, (P17 P2) — C(PT.P3: 03 [(P1P2) Yy,
~P14,P20, 1(P1=P2) iyt 3 S(PF,P5.P5) (P1u,P2u,P3u,* Pru,P2u,Pau,) + F(PT.P5:P3)
X[(P1P2) Gy, Pu,P2su 1P 1, (P2P3) = P2suy(P1P3) 1+ H(PT,P3.P5{ ~ 0, [P1.,(P2P3)

~ P2u,(P1P3) ]+ %(plﬂgpzﬂlpauz_ P1,.,P2,P3,)}

+{cyclic permutations of(py, 1), (P2, 42),(P3. 43)}- (2.4

Here, theA, C, andF functions are symmetric in the first the zero-loop-order contribution & and the one-loop-

two arguments, thél function is totally symmetric, and the order contribution aX®. In this paper, as a rule,

B function is antisymmetric in the first two arguments, while

the S function is antisymmetric with respect to interchange X=X 18 4 x(1a), (2.5

of any pair of arguments. Note that the contribution contain-

ing theF andH functions is tOta||y transverse; i.e., it giVeS Wherex(lvg) denotes a contribution of g|uon and ghost |oops

zero when contracted with any of, , P2,,,, Of Pa,,- in a general covariant gaug®.3) (in particular,X*9 corre-
Now, before proceeding further, we introduce some notasponds to the Feynman gauges 0), while X9 represents

tion. For a quantityX (e.g., any of the scalar functions con- the contribution of the quark loops.

tributing to the propagators or the vertitewe shall denote For example, from Eg2.1) one can see that at the “zero-
loop” level all the scalar functions involved in Ed2.4)

vanish, except thé function, which is

4Another general decomposition of the three-gluon vertex was
considered in Ref[22]. AO=1, (2.6)



4090 A. I. DAVYDYCHEYV, P. OSLAND, AND O. V. TARASOV 54

p— P> P> o=~ P p— pP—
ap Hi Qg 2 ay 1 S~ -7 G2 U2 fAavors ay Ha Qg 2
(&) FIG. 2. (a) Gluon polarization

operator diagrams an¢b) ghost

P MP—» self-energy diagram.

In what follows, we shall also need to use some othelAt the “zero-loop” level,
QCD Green functions, including those involving the
Fadde.ev—Popov ghosts. As in E(Q..4) we define the corre- FLOLS—QMW (2.11
sponding scalar structures following the notation of Ref.
[13].

The gluon polarization operator is defined as and therefore all the scalar functions involved in E2.10

vanish at this order, except or&?=1. We shall also need
13122 (p)= — §%182( p2 _ 2 the one-loop-order results for the ghost-gluon vertex in an
le‘z(p) TP Gy, = PruyPu I (P (27 arbitrary galljgeéthe corresponding di%:lgramgs are presented in
Fig. 3. We have calculated one-loop contributions to all
scalar functions occurring on the right-hand si@RHS) of
ﬁalaz(pz):galazpze(pz)_ 2.9 Eq. (2.10; they are presented in Appendix D.

We needl“w3 with two Lorentz indices, because this is
The lowest-order results ar#@®=G(®=1. The one-loop what enters the Ward-Slavnov-Taylor identity for the three-
contributions toniizz(p) and ﬁalaz(pZ) are presented in gluon vertex, which, in the covariant gauge, has the form

Fig. 2 and can easily be calculated. The rest(iitsarbitrary (see, e.g., in2,13))

space-time dimensigrcan be found, e.g., in Ref8]. For ) ) )
completeness, we collect the relevant formulas in Appendix P3°T uyuuy(P1:P2.P3) = = I(P) G(P3)(9,, P31
C.

while the ghost self-energy is

The ghost-gluon vertex can be represented as = P1, P10, (P1,P3;P2)

T2%2%(py Dy ps) = —igf%2%p, 4T, , (P1,P2iPs), +3(p3)G(P3)(9,.,2P3

(2.9 —pzﬂzpzm)fﬂsﬂl(pbpsipl)-

wherep; is the out-ghost momenturp, is the in-ghost mo- 2.12

mentum, ancp; and u3 are the momentum and the Lorentz

index of the gluon(all momenta are ingoingForI',, we |t is easy to see that the andH functions from the three-

adopt the following decomposition, also used 113]: gluon vertex(2.4), as well as the ande functions from the
ghost-gluon vertex2.10 do not contribute to this identity.

fﬂﬂs(pl,pz;|O3)=gw3a(p3,p2,p1)— P3.P2,,0(P3.P2,P1) Below, we are going to use E.12 as a nontrivial check
on the results for the longitudinal part of the three-gluon

+ P1,P3,,C(P3.P2,P1) vertex.
To conclude this section, we would like to present the
*+P3uP1,,d(Ps,P2,P1) notation we use for the integrals occurring in the one-loop
calculations. We define the integral corresponding to the tri-
+P1,P1,,8(P3,P2,P1)- (210 4ngle diagram as
P3 o s U3
{
A FIG. 3. One-loop ghost-gluon vertex dia-
’ » grams.
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X ) J d"q pendix A. In the Feynman gauge, the basic set of scalar
V1,V2,V3)= EPRVAT 222\ V3’ integrals (2.13 includes the four integralsJ(1,1,1),
[(P2=@)71"1(P1+ a)"]™(a") (213 9(0.1,1),3(1,0,1), andJ(1,1,0) only, since massless inte-

' grals with two nonpositive powers; vanish in dimensional
wheren=4—2¢ is the space-time dimensidin the frame- regularizatio 23]. For arbitrary, we also get integrals with
work of dimensional regularizatidri23]). A brief overview  some of the powers of the denominators equal to 2; see Eq.
of relevant results for such integrals indimensions is pre- (2.3). However, with the help of the integration-by-parts
sented in Appendix B. It should be noted that all such intetechniqug27] these integrals can be algebraically reduced to
grals occurring in the present calculation can be algebraicallthe above basic sdsee Ref.[28]). While performing the

reduced to one nontrivial integral calculations, th&keDUCE system[29] was heavily employed.
o s 2 o Before presenting the results, let us define two totally
J(L,1,)=i7m"ne(p1,P2,P3), (2.14  symmetric combinations of the invariants formed from the

2 .2 2 . . ) external momenta:
whereo(p1,p3,P3)=¢ is a totally symmetric functiorisee

Appendix B for details and three two-point integrals B 12 o o
J(0,1,1),3(1,0,1), andJ(1,1,0), which can be expressed in Q=(p1P2) +(P1P3) +(P2Ps) =~ 2 (P1F P2+ P3),

terms of a powerlike function (R
(P =kim — 2 (-t K=pip3—(PiP2)*=PIp5— (P1P3)*=P3p3—(P2P3)’
! : (n=3)(n—4) !
L =(P1P2)(P1P3) + (P1P2)(P2P3) +(P1P3)(P2P3)

_ A2\ —¢

~o1i=20) 7P (2.19 =~ 1 [(pD*+(pH)+ (p3)>—2pZps—2pip3—2p3p3].
as, e.g., (3.2

3(1,1,()):i77n/27],((p§), (2.16 From the last line of Eq(3.2), one can recognize the struc-

ture —4K as the Kélen function of p7, p3, and p3; see,
and similarly forJ(0,1,1) andJ(1,0,1), where, instead of e.g., Ref[30].
k(p3)= K3, We should use<(p3)=k, and k(p3)= Ky, re-
spectively. In Eqs(2.14) and(2.16),  denotes a factor con-

) A. Results in the Feynman gauge
structed ofl’ functions, y gaug

Let us consider the one-loop contributions to the three-

_ I'*(n/2-1) n\ T'%1-e) gluon vertex(2.4) in the Feynman gaugé & 0), without the
T="Tm-3 \°> 2 :mr(lJrs)' quark loops(the results for the latter are presented in Sec.
(2.17 [l C). We shall use the standard notatiop for the Casimir
constant,
IIl. OFF-SHELL RESULTS facdgbed_ CA5ab [Ca=N for the SUN) groug],
The set of Feynman diagrams yielding one-loop contribu- (3.3

tions to the three-gluon vertex is presented in Fig. 1.

When calculating the diagrams, we used the standard@hereas the factor; occurring in the results is defined by
technique of tensor decompositfof24], reducing the result Eq. (2.17).
to combinations of scalar integrals multiplying the tensor The one-loop results for the scalar functio(s4), for
structures constructed from the external momeste Ap-  arbitrary value of the space-time dimensionare

g’y 1
AT (p,P2iP) = 4 m2Cagin= 1y (N~ DIPE+ 3(P1P2) IP3(P1P2) ¢+ (P1P3) K1+ (PoPs) ot P3rs]

+4(n=DK[(p1p2) ¢+ k3] = (3n—2)K[ k1 + k]}, (3.9

9’7 1
BO(p1,p3:P) =~ 72 Cagm—yic (PLP2)| (N~ DL(P1Ps)(PoPs) @+ (P1P3) 1+ (P2P3) K+ Piks]

SFor simplicity, we put the dimensional-regularization scalgz=1. Otherwise, all one-loop expressions for dimensionally regularized
quantities should have been multiplied bydz)?°. In the final results, expanded aroune:4 and renormalized, this scale can easily be
restored by insertingepg in all nondimensionless arguments of the logarithms, in order to make them dimensionless. See also Sec. Il E
where the renormalization is discussed.

SAn alternative way to decompose triangle integ@<.3 with tensor numerators was used[25]. It was based on a formula frof26].
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K17~ K2
+(4n=3)K5——=1, (3.5
P1—pP3
10) _ g n 1 2
(p2,p3;:p3)= (4 )n/2CA4(n DK 3(n—1)[P5(P1P2) @+ (P1P3) k1+ (P2P3) Ko+ P3K3]— 2 (4n— 3)/Cp |
(3.6
S*9(pf.p3.p3)=0, (3.7

9°7 c
(4m)"27R4(n—-1)K3

FLO(pZ,p3;p3) = 2[(n?=1)(p1p2)(P1P3)(P2Ps) +2(n—2)p3K— (n—T7)(p1p2) K]

X[P3(P1P2) @+ (P1P3) k1+ (PaP3) o+ P3ka]+ 2K (N+1)(N—4)(p1p3) (P2Ps) — (5n—11)K]
X[(p1p2) @+ k3]+2p5K[(N+1)(p1ps)(PaPs) + (N—3) Ko+ (4n—T) K[ K1+ ko] + K{2(n+1)

X (PaP2) (P2 p2)2+ (4n—3)K[ P2+ p2—2(pypa) ]} 2_32 3.8

97 1
H(lo)(pl,pz,pg)—(4 )nIZCAZ(n 1)IC3((n —1)(P1P2)(P1P3) (P2P3) [ (P1P2)(P1P3)(P2P3) @+ (P1P2)(P1P3) K1

+(P1P2) (P2P3) k2t (P1P3) (P2P3) k3] —3(N—1)(P1P2) (P1P3) (P2P3) K[ Qe+ K1+ Ko+ k3]
+2(n—1)K3p+(n— 2)K{ pi[ pi( P2P3) + (P1P2)(P1P3) 1K1+ pg[ p%( P1P3) + (P1P2)(P2P3) 1«2
+p3P3(P1P2) + (P1P3) (P2P3)Ik3}). (3.9

When expanded arouri=4, these formulas coincidawith the results presented {13]. We shall see that the result
S=0 is valid also in an arbitrary gauge. It should be noted that presenting the results in arbitrary dimension does not spoil their
compactness, as compared with the formulas expanded arcandd

B. Results in arbitrary covariant gauge

In an arbitrary gauge, the results for the scalar functions of the three-gluon v2réare obviously less compact than
those in the Feynman gauge. We list them below, also for arbitrary value of the space-time dimension:

9?7

1
A(p,p5:03) = e Caggzgz| (PIPEK(IB—46—(n=2)(n=3)&1p5+ 2[12+4(n=3)é+ (=)&) (P12}

+E[(N—4)E+41KQ[(N—3)(p1po) Q— (N—4) K]+ &[(n—3)é+2](n— 1) papap3(p1P2) Q) P3(P1P2) @
+(p1P3) K1+ (PaP3) Ko+ P3rs] — K([(N—4)é+41K{[(n—4)£—8]p2p5+ ¢Q[(n—2)p5—2(n—3)
X(p1p2) 1t —E[(n—3) €+ 2](n—2)p2p3p3 Q) (P1p2) @+ K3l + Ko (€[ (n—4) é+41K{(2n—7)pip3p3

K
+ QLPI(P1P3) + P3(P2Pa) I} + E[(n—3) €+ 2]pip3p3 P5Q— 2(n—4)K])— ~—7 {PiPZK[8(3n—2)

+4(n—1)(5n—17)é—3(n—1)(n—4) 2]+ £[(n—4)é+4](n—1)KQ?

+¢(n—3)¢+2](n—1)pIp3p3 Qi k1 + k2], (3.10

"Up to the definition of the renormalization scheme cons@ui [13], which we find to beC= — y—In#+2 rather tharC= — y—In.
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9’y 1 22 2.2 2 2
(477)”’2CA327C2p§p§p§(p1_ P3)| (—P1P5P3K[8—126—(n+2)(n—3) &7 ]+ E[(N—4)E+4]KQ{(n

—2)K+(n—3)(p1p2)[P3+ (p1p2) 1} + [ (n—3) ¢+ 2]p3p2{2KQ+ (n— 1) p3(p1p2) [ P3+ (P1P2) 1))
X[P3(P1P2) @+ (P1Ps) K1+ (P2P3) Ko+ P3ks]+(N—4) K&l (n—4) ¢+ 4]K(p3Q+ p2p3) + £[(n—3)¢
+2]p3p3pal P2+ (p1p2) 1} — Kp3e{p2p3K[8-+4(n—5) £~ (3n—10) 2]+ £[(n—4)é+ 41K Q% & (n

2.2 20 2 K ki=k2. 55,
—3)§+2]p1p2p3[p3+(plpg)]}—mm{plpngK[8(4n—3)+4(n—1)(5n—19)§—(n—1)

X (5n—18) 2]+ £[(n—4) £+ 4](n— 1)K Q[ p2(p1ps) + P2(P2Ps)]

—¢[(n—=3)&+2](n—1)pip3(pi—p2)AP5+ (P1p2) 1}, (3.11
9’7

1
CHO(PL.P2:P3) = gy CargrznZzoz | {2PIPaPAKI6+(2n=5)¢ +(n=3) &1+ ¢l(n—4)¢+4]

FO(p2,p2;p3)=

P1P2P3
X QK[ K+ (n—3)p3(p1p2) 1+ & (n—3)&+2](n— 1) p2p3(p3)A(p1P2) L P3(P1P2) @+ (P1P3) K1
+(Popa) kot Paks]+ (N—4)KpHE[(N—4) £+ 41O+ [ (n—3) £+ 2]pap2p3t (P1p2) ¢+ k3]
IC —
+KpSe{£L(n—4) &+ 41K(p2p3— 01+ El(n—3)&+ 21p3pd(pd)% — — ~3—
P1—=P3
X {2p2p3p3k[4(4n—3)+2(n—1)(5n—18)&—(n—1)(2n—7) &2+ ¢[(n—4)é+4](n—1)

X KCQP3(P1Ps) + P3(P2Ps)]— [ (n—3)&+2](n—1)pip2pa(pi—p3)3 |, (3.12
S (pt,p3,p3)=0, (3.13
9°7 1 2.2 2
(477)“’20A32(n—1)lc3p§p§p§ 2(p1p2P31(P1P2) (P1P3)(P2P3)(N—1)[8(n+1)+8(n—3)¢

+(3n2—38n+63)£2— (n—3)(7Tn—13)&3]-2KQ[8(n—2)+8(n—1)é+(n—1)(3n— 14) ¢?
—2(n=1)(n=3)&%]+K(p1p,)[8(n+3)—(n—1)(n*~4n+23) £~ 7(n—-1)(n—3) &}

— &g (n=4)E+4](n—1){[(n=3)&+2](n—3)(P1P2)*(P1P3)*(P2P3) *+[(N—3)é+n—1]

X K(p1P2)2(p1P3)(P2Ps) —[(n—3)&+3n—7]K2pip3+3(n—4) K3 p3(p1p2) ¢+ (P1P3) k1
+(P2Ps) k2 + P3ral+ 2K (pIp5p3 (P1P3) (P2Ps) (N—4)[8(N+1) +8(n—1)é+(n—1)(3n—23) ¢
—5(n—1)(n—3)&]-K[8(5n—11) +4(n—1)(5n—11)é+(n—1)(n®+4n—10)£2+n(n—1)
X(n=3)&—&l(n—4)é+4](n—1)(n—4){[(n—3) £+ 2](P1P2) (P1P3)*(P2P3)* + K(P1P2) (P1P3)
X(P2P3) = 3K2(p1P2) DL(P1P2) ¢+ ksl + 2K e (pip3(p3) A [(n—1)[ 16+ 166+ (5n—32) ¢~ 6

X (n=3)&%]+p3(p1p2)[8(N+1)+8(N—1)&+(n—1)(3n—23 &~ 5(n—1)(n—3) &3} - & (n—4)¢
+4](n—1)(P1P3)(P2Pa){[(N—3) £+ 2]p3(P1P2) (P1P3) (P2Ps) +[(N—3)é+3]Kp3(Pap2)
+E(N—4)K2)+ K?p2p2p3[8(4n—T7)+4(n—1)(5n—11)é+ (n—1)(13n—30) €2+ 2(n—1)(n—2)

Ki1—K

><(n—3)§3][K1+K2]+/CFp§ pZp3p3(KIp5—4(p1p2)1[8(4n—3)+4(n—1)(5n—17)¢

—(n=1)(3n—10)£2]+ 2(p1p2) (P~ p3)*(n+ 1){8—(n—1) £} (n—3)£+3]})

—2§[<n—4>§+41<n—1)K{K[pi<p1p3)+p%(p2p3>]—[(n—3>§+21<p1p3><p2p3><p%—p%)Z}H,

(3.14
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H€(pT,p2.P3)= ¢ 49;;,ZCA16K3;§D§F)§ (PEP3P5(P1P2) (P1P3) (P2P3)[B(N+1) +14(N—1)é+4(n—1)(n—7)&
—5(n=1)(n—3)&% - £(n—4)£+41{(n—1)[(n—3)+3](p1P2)*(P1P3) *(P2P3)*+3(n—4) K%}
—(N=1)&2-&)(PD (P2 *(P2)(P1P2) (P1P3)(P2P3) ¢+ (P1P2)(P1P3) K1+ (P1P2) (P2P3) k2
+(P1P3) (P2P3) kgl + K{ — pip3P5(P1P2) (P1Ps) (P2P3)[ 24+ 38E+4(3n— 16) &%~ 9(n—3) &%)
+3E(N—4)£+4][(n—3) &+ 3](p1P2) 2(P1Ps)X(P2Ps) >+ E(2— £)(p5)2(p3) A5 Qo+ Kyt Ko+ i3]

+ K3 p{p2p3apa 16+ 4(3n—8)¢— (n—2)£2— (n—2) 5] — €[ (n—4) é+4](n—4)(P1P,) (P1P3) (P2P3)}

IC 2,.2.2 2 3
+m{2p1p2p3[4(n—2)+6(n—1)§+(n—1)(2n—9)§ —(N—=1)(n=3)&]—€£[(n—4)é+ 4]
X[(n=3)&+3](n—1)(p1P2)(P1P3)(P2P32) HPZLP2(PaPs) + (P1P2) (P1P3) 11+ PAL P3(P1P3) + (P1P2)

X(P2P3) Ko+ PALP3(P1P2) + (P1P3) (P2P3) 1K} |- (3.19

One of the main technical problems we met in this calcu-containingp?, p3, or p3 in the denominator disappear not
lation was how to bring the results for arbitragyto a rea-  only if we put&é=0 (Feynman gaugebut also in a “singu-
sonably short form. The origin®EDUCE output for the nu-  lar” (in four dimensionsgauge® é= —4/(n—4). Having no
merators of the scalar functiorig.4) was really huge. Then, p? in the denominator is especially convenient when one
the problem was how to organize the result and which basegonsiders on-shell limits, i.e., when some of the external mo-
to choose. The first basis we needed was one in the “spacementa squared vanish; otherwise, one needs to expand the
of the scalar functiongp and «;. It was possible to get a scalar integrals in the vanishing momenta squaseg Sec.
better factorization of the coefficients by considering notjv). Second, many terms vanish fée= —2/(n—3), which
these functions themselves but certain linear combinationgould be considered am-dimensional generalization of the

Moreover, not all “convenient” combinations happened t0 Fried-Yennie gaug¢31] (see also Ref[32] and Appendix
be the same for the different functions; see E@10- ).

(3.195. Then, the coefficients multiplying these combinations
of ¢ and k; are polynomials ing, n, and the momentum
invariants. Trying to write the latter only gs;, p3, and C. Contributions of the quark loops

2 . . . . 3 3
p3, we were still getting rather long expressions. The next | et us consider the quark loop contributions to the func-
idea was to try to use in some cases also the scalar producigns (2.4). We assume that there axg quarks which are all

(P1P2), (P1P3), and (,ps), together with the notatio(8.1)  massless, and we define
and(3.2) for symmetric combinations. These trickas well

as looking for proper combinations éfandn) allowed us to Tr=2%Tr(l)= %[ if Tr(1)=4], (3.16

write the expressions in a much shorter form. However, this

part of the work could not be completely automatized since

pi2 and the scalar productpifp;) are linearly dependent. wherel is the “unity” in the space of Dirac matrices.
There are some special values of the gauge paranjeter The quark loop contributions do not depend énThe

we would like to point out. First of all, we see that the termsresults of the calculation are

2
(O 7] n—-2

ATO(pL,p3:P3) = g e NiTrp =g LK1t ], (317
2
g9°n n—-2

B9 (p%,p3;p3) = @) NfTRn_l[Kl_Kz]a 318
927‘7 n—2 K1~ Ko

C1(p? p3:pd)= 2N To—— , 3.1

(P1,P2;P3) @mm NTRy T 72 319

81t is not clear whether the second choice could be of use in realistic calculations, since a singukaiitfafr dimensions requires extra
care in renormalizing, etc.
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St9(p?,p3.p5)=0, (3.20

2

1
FOO(p1p2ips) = 4977)71,2 N TR =T =23 | 2L(N*~ D (P1P2) (P1P3) (PoPs) +2(n=2)p3K— (= 7)(p1p2) K]

X[P3(P1P2) @+ (P1P3) K1+ (P2P3) Ko+ Pakal+2(N+1)(N—4)Kp3(p1p2)[(P1P2) ¢+ K]

Ki1— K
+2D5Cel(N+1)(P1P3)(PoPs) +(N=3)KT+ (=K w1+ 2] + K7
1 2

X{2(n+1)(p1p2)(Pi—p3)2+(n—2)2K[pi+p5—2(p1p2) 1} |, (3.20

a2 o2 gz 97 1 ((n2_
HY(p1,p3,p3) (47T)n/22NfTR(n_l)(n_2)K3\(n 1)(p1P2) (P1P3)(P2P3)[(P1P2)(P1P3) (P2P3) ¢+ (P1P2)

X(Pp1P3) k1t (P1P2)(P2P3) K2+ (P1P3) (P2P3) k3] —3(N—1)(P1P2) (P1P3) (P2P3) K[ Qe+ k1 + kot k3]
+(n—1)(n—2)K3p+ (n—2) K{pIL p2(poPs) + (P1P2) (P1Ps) 1k1+ P P3(P1P3) + (P1P2) (P2P3) 12
+p3[P3(P1P2) + (P1P3) (P2P3) 1k3}). (3.22

D. Symmetric limit and comparison

Now, we would like to compare to our results with those by Celmaster and Gondgdlt¢gsFor their study of
renormalization-prescription dependence of Green functions, they evaluated the three-gluon vertex function to one loop at the
symmetric point:

pi=p3=pi=p>=—M% (323

In this case, we getpip,) = (pP1Ps) = (P2Ps) = — 3 p>= 3 M2. At the symmetric point, the vertex function simplifies consid-
erably. First of all, because of their antisymmetry, Bi@nd S functions(2.4) must be zero,

B(p?,p%p?) =S(p? p? p?)=0. (3.24

Furthermore, in this limit, the number of independent tensor combinations in the three-gluon vertex reduces to 3, and the
vertex function can be written, in the notation usedid], as

T 1 iyus(P1:P25P3) = Go(PA G111, (P1 = P2) iy + Gy (P2~ P3) oy + G iy (Pa— P1) 1,1~ Ga(P?) (P2 P3) i, (P3— P1) (P2
- p2),l1.3+ GZ( pZ)( pl,u.3p2,ulp3,u.2_ pl,u2p2,u.3p3,u.l)l (325)

with the threeG; functions related to the scalar functions in Eg.4) through

Go(p?)=A(p?,p%p?) + 3 P2C(p%,p% P + 1 (PH2F(p?,p%p?) + 3 p?H(p? p?,p?), (3.26
G1(p?) =C(p%p%p?) + 3 pF(p?,p%p?), (3.27
G,(p?)=C(p%p?%p?) + 3 p?F(p%p%p?) +H(p? p% p?). (3.28

We note that two of these relations may be expressed more compactly as

G2(p?)=Gy1(pH)+H(p%p2%p?), Go(p?)=A(p?p?p?)+ 3 p?Gy(p?). (3.29

From our results, we obtain the following expressions for@edunctions(in arbitrary gauge and dimensipn

2 1
G (p?) = (ET;QCA@{DZQD[S-F 12£(14n—51) + 6£3(n?>—18n+60) — £3(n—4)(n—12)]— 6k[ 32+ 36£(2n—7)

+6£2(n—4)(n—6)—&3(n—4)(n—3)1}, (3.30

°The counterterm contribution is omitted.
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2 1
G (p?)=— ( 4gw)7’n,2cA 34567 [ p2[ 64(n—20) — 144£(7n—26) — 246%(n?— 18n+ 50) + £3(n°— 24n2+ 20— 384)]

—6K::‘11[64(n—2)—144§(n—1)—12§z(n—1)(2n—7)+§3(n—1)(n—3)(n—20)]], (3.30

2 1

GY9(p?)= —r(4gw)"n ZCAW[ p2p[ 128+ 6£(29n—114) + 6£2(n?— 180+ 60) — £3(n—4)(n—12)]
—GK::i[8+30§(n—1)+6§2(n—1)(n—5)—§3(n—1)(n—3)]], (3.32
2 2(3n—8)
GH(PD) =~ TN Ty (207034, (333
2 4 n—4
GE(p?) =~ 4 NfTRszszwsxn_l], (3.34
2 4 n—4

Gy (p?)=—¢ 4gﬂ;7n/z NfTRg(n_z)pz[2p2¢(3n—8>—3f<m}, (3.39

where o= ¢(p?,p?,p?) and k= k(p?). Expanding these re- contributions? as well as the quark loop contibutions in the
sults aroundn=4 and keeping the divergent and finiim  massless limit. However, our result for the Feynman-gauge
e=(4—n)/2) terms only, we arrive agxactlythe same re- part is different. So we daot confirm Eq.(6) of [33].
sults as Celmaster and Gonsalves; see Bdk), (14b), and
(140 of [11].10
In Ref. [33] the QCD renormalization has been consid-
ered at an asymmetric point: In the limit n—4 (¢—0), the only function which may
have an ultraviolet singularity is th& function, since this is
the only function which does not vanish at the *“zero-loop”
pi=pi=p?=—-M?, p3=4zp’=-4zM? (3.3 level; see Eq.(2.6). In arbitrary gauge, the ultraviolet-
singular part of théA function follows from Eq.(3.10),

E. Renormalization

In particular, the three-gluon vertex was studied at this Y g’y , s . Uy

point, including quark loop contributiongwith massive At ):m[—CAG + 38+ 5NTRI«WY),
quarkg. The tensor structures used to decompose the three- (3.37
gluon vertex are presented in Eq8) and (4) of [33]. Of ) _ _

the scalar functions multiplying the seven tensor structure¥/herex®¥)=1/s+ ... is the ultraviolet-singular part of the

defined by Eq(5) of [33], an explicit result is presented for « function(2.19. Therefore, the divergent part of the coun-
the functionF, only; see Eq(6) of [33].1 In terms of the terterm contribution should be equal to minus the RHS of

scalar functions (2.4, one finds the correspondence Eq. (3.37. This counterterm contribution can be writterts

Fo— —A(p?,4zp°p?) — B(p? 42, p?). o &
Calculating this combination of th& andB functions for Al ’Cn=(4w)2

the case(3.36, we find coincidence of thet and &2

1
4R
&

[CAG+ 26— IN(TR]

9’7
= W[CA@ + 36— IN(TR]

©Their transcendental constant is nothing but our (3.39
p2e(p% p%p?)|n-a [see Eq.(B10)] which can be expressed in
terms of Clausen’s function as (43) Cl(#/3).

"wWe note some misprints if83]: (i) In the definition of thep 12n [33], b is the same as ouj. The integrall (0,2) from [33] is
function[Eq. (8)], x in the denominator of the expression under therelated, in the limit (3.3, to our J(1,1,1) as
square root should rear] (i) before Eq.(7), the definition of 12 1(02)=—(i7?)"M2J(1,1,1).
should read &= 2/(D —4)+ y+In[Q¥(4mA)] (the sign before the  3n commonly used notation, expressi¢®.38 corresponds to
logarithm should be changged (Z,—1) at the one-loop order.

1
—+R) +0(e),
e
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where R is a constant corresponding to the choice of 2_ 102, 2
renormalization scheme, whereasg’=g%e "°(4m)° Ps=0. (pip2) 2 (PLFP2),

=g2exple[— y+In(4m)]} is the “rescaled” coupling con-

stant. Such a redefinition @f? is usually performed in the (p1p3)=— %(pi—p%),

context of the modified minimal subtractioME) renormal-

ization schemg34] which corresponds to the choi¢&=0 1,2 9

[for R=0, Eq.(3.38 corresponds to Eq15) of Ref.[11]]. (P2P3) = 2 (P1=P2)- 4.
The second line of Eq3.38 is more convenient for dealing

with the expressions obtained in the present paper, since one

can keepg®7/(4m7)"? as an overall factor. Here, we have

used the fact that Note that now we should consider the scalar functions
A, B, C, andF from Eq.(2.4) with permuted arguments as
well.
p=e "[1— Hm2e2+0(e3)]. (3.39 The result for the triangle integré®.14) simplifies in this
limit:

The &2 term in Eq.(3.39 is not relevant for the ultraviolet
renormalization at theneloop level. However, it yields fi-
nite contributions when one hase#/infrared (on-shel) sin- \](11171)|p§=0:i7727877§D(p%1p310)
gularities(see Sec. IV ¢

If we now recall the existence of the dimensional-
regularization scale parametgipg (which we usually put 1
equal to 1; see footnote at the end of Seg,. We shall see =im? gy —
that, as opposed to other one-loop-order contributions, the €
counterterm(3.38 should not be multiplied by the factor
(npr)?%; see also in Refl11].

Examining Eq.(3.37), it is interesting to note that for

(—pd)e—(—pd)°
pPi—P3

, 4.2

where 7 is defined by Eq(2.17). Moreover, in the frame-
work of dimensional regularizatiof23],

2N T
To_y)

Eln=a=&0= g( Cn (3.40

. . L J(1,1,0]2-0=0, 4.3
we do not have any ultraviolet singularity in the one-loop 3

contribution to the three-gluon vertex. If we substitute
Ni=6, Cp=3, andTr= %, we geté,= g_

while the results forJ(1,0,1) andJ(0,1,1) remain un-
changed. As to the factord? in Eq. (4.2), one power ok is
canceled by the expansion of the numerator, while another

power of & survives and corresponds to the infrarguh-

There are two main on-shell cases of interest: when one Qfye|) singularity which arises in the scalar integral in the
two of the external momenta squared are zero. However, it ig;t p2=0.

also instructive to consider, as a separate case, the limit when For the Feynman gaugg=0 [and also for the singular
one external momenturtmot only its squargvanishes. gaugeé=—4/(n—4)], it is enough to perform the above
) ) substitutions to get the answer. In the case of arbitéary
A. One external momentum squared is zerop3=0 however, the situation is more tricky, due to the presence of
p3 in the denominators of the scalar functions. Here, in order
In this case, we should substitute in the expressions for afio get a correct answer, one needs to expand the integral
scalar functions J(1,1,1) inp3 and keep the term of ordes3:

IV. ON-SHELL LIMITS

_ 1((—phH*—(—p3)® p3
J(1,1,D],2 g=im2"® _
(4L Bgg-o=lm ’7?’ i FERSIrY

(—pD' - (=P
(1—8)[(—pd)~*+(—pd) ~*]+2—— 2 2

X +0((p3)?). 4.4

1 2
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To present the results obtained for the scalar functiongp?,p3;0) and (Op?;p3). The results for the third set of
(2.4) in this limit, it is convenient to introduce arguments corresponding to the cyclic permutations in Eq.
2 2 (2.4, (p5,0;p%), can be obtained from the functions of
= % 4.5  (0,p};p3) by using the symmetrgfor theA, C, andF func-

P1t P2 tions) or antisymmetry(for the B function) with respect to

In this section, we present such results for the three-gluoH1e f|.rst tW,O arguments, and mterchangm@a p%. The H .
scalar functions in the Feynman gauge, and also for th&/nction with permuted arguments does not change, while
quark loop contributions. The expressions for an arbitrarythe S function is zero(at one loop.

covariant gauge are listed in Appendix E. We present the The results for the gluon and ghost contributions to the
results for theA, B, C, andF functions of the arguments three-gluon scalar functions in the Feynman gauge are

512

2 1
A<1’°)<p%,p§;0>=—(4977)’7,1,ch4(“_1)(”_4){(n—4><3n—2>[x1+xz]—n<n—1)(512>*1[K1—Kz]}, (4.6

2 1
AO(0,pF;p3) =~ (4gw)’7n/ch4(n_1)(n_4)(p§_pg){(n—4>xl[<2n—1)pi—<4n—3)p§]—2<n—1><512>‘1[f<1—f<2]
X(2p5-3p3)}, (4.7)
9’y
BHO(p1,p2:0) =~ G meCagrmn=y =gy (40~ 21+ 14 k1~ o], 4.8
BO(0,pi;p3)=— il C {—(n—4)(p%-p3)x1[(6n—5)pi—(4n—3)p3]
P1:P2 (4™ A4(n—1)(n—4)(pi—p§)2 P1—P3) K1 Py P2
+2(n—1)pil k1~ k][ (N—3)p5—(n—5)p3]}, 4.9
9’7
1,0 2 2. — —
C*O(pi,p3;0)= (4w)”/ZCA2(n—1)(p§—p§) N[ k1~ k2], (4.10
C(l,o)(o 2. 2):_ gz'y] C 1 {(n_4)( 2_ 2)K [n 2_(4n_3) 2]
P1:P2 (4™ A2(n—1)(n—4)p§(p§—p§)2 P1—P2) ki[NP P2
+6(n—1)p3p3l k1~ 1}, (4.12)
(1.0 2 2 9°n 1 _1
= (plvpzio)z_(4W)n/2CA(n_1)(n_4)(p§_p§)2(4n—7){(n_4)[’<1+Kz]_2(512) [k1—rol}, (412
FO0,p;p3)=— Ll C ! {(n=4)(pI—p3) k1l (3n+1)— (N+2)(1p) 1= 6(812) 2]
P1:P2 (4™ A(n—l)(n—4)pf(pf—p§)2 P1—=P2) k1 1 1
+2p3[ k1~ ko l[(NP =120+ 17)+ 4(n—4)(81) 1 +6(51) 21}, (4.13
2
H%(p3,p3;0)= ~ (4977;7”,20;\(”_1)(n_4)(pi_p§){3<n—4>(512)1[K1+K2]+[K1—Kz][(nz—zn—2>—6<512>2]}.
(4.19
The quark loop contributions in the Iimﬂ§=0 are
2 n—-2
ALO(p?,p2:0) = (497T;7n/2NfTRn_1[K1+ K51, (4.15
g? n—2
A(0pT:p3) = 5N T =g K. (4.16

2
g7 n—2
BEO(p1,p2:0)= g smeNi TRy =l k1 K2, (417
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g n n—-2
BU(0PT;p2) =~ gy NiTry =7 ¢ (4.18
CHa(p2,p2 0)——rg77 ON Tar 2 K17 %2 (4.19
v (4" "Rn—1pZ-p2’ '
Cu0p2:pd) = T N T2 K (4.20
vp17p2 (4 )n/2 Rn 1p27 .
9?7 n
FL9(p2 p2:0)= (—)n,—4N TR(n D(n=2)(p2= 2{(n B[ K1+ ko] —2(810) Y r1— k5], (4.21)
1
9’7 1

F9(0,p7;p3)= {(n—4);<1[(n2—5n+8)—(512)1(n+2)—6(512)2]

@m™ N TR T (n=2)(n-2)p2(p2—p2)

p1p2 } 4.22

+16(—)[K1—K21[<n—1>pi—<n—4>p§] ,

g’y !
HL9(p2 p2:0)= ——1 0 4N, T
(p1,P2;0) (4)"2 R(n—1)(n—2)(n—4)(p—p3)

—6(012) ?1[ k1~ Ko} (4.23

{3(N—4)(81p) YKyt K]+ [(N—2)(N?—5n+7)

We note that there is an interesting relation between the one-loop contributions #oahd B functions of permuted
arguments?

(p3+p3) AN (p?,p2;0)— p2AM(0,p%;p3) — psAY(0,p3;p?) + p2BM(0,p3; p3) + psBY(0,p2;p3)=0.  (4.24

This relation is also satisfied by the expressions for arbitéagiven in Appendix E.

The infrared 1¢ singularities of the results for gluon and ghost contributi@iso in arbitrary gauge; see Appendixfiave
been compared with the results given[it4], Eqgs. (24)—(25). The functionsG' defined in[14] are proportional to our
functionsZ;;, (see Appendix Awhich can be represented as linear combinations of the scalar fun@idpsincluding those
with permuted arguments. To get renormalized results, the countei3e381 was added to alh functions. In theMS scheme,
the obtained results coincitfewith those presented in Refl4], Eq. (25).

B. One external momentum is zerop;=0

In this casep,=—p,=p (p§= p§= p?), and the proper limit of Eq(4.2) yields
P _1-
ILLDp,—o=im® *p_(=p?) 7", (4.29

Actually, we get some powers opf— pg) in the denominator from th&'s, Eq. (3.2), sinceX=— —(p1 pz)2 in this limit.
Therefore, we should be careful taking the |irp§t—> pf and expand the numerator up to higher powers of
5= pi—p%_ 261,
127 p? 1+ 6,

(4.2

Starting from the result for the ca$§=0, we need to express, as «; times an expansion if;,. This can easily be done
using

p3

P1

J(1,0,0= J(ow( ) —J<011>2 © )J<612>’ (4.27)

“This is also valid for the zero-loop functions, sind&)=1 andB(®=0.
Up to a misprint in Eq.(25¢) of [14] where, in the term proportional ta (their A is nothing but our¢), the contribution
I(1+ 11/4+ 2f2) should read (1+ 11/4f+2f2).
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In practice, we need the terms up t8;§)> only. It is interesting that in this special case we do not neecb@wterm of the
expansion of)(1,1,1) [like in Eqg. (4.4)] since it cancels in all contributions.

In this limit, there are only three independent tensor structures left, and the coefficients multiplying these structures can be
expressed in terms of the “surviving” scalar functiong®s

Ty pig(Ps = D0 =20, . P [A(P?,p%0) + P?C(P2,P%0) ] (Gpy P, T GuyusPr IA(OP%p?) —B(0,p% p?)]

— 2P, Ppu,Pu.C(P?,p%0). (4.28
The one-loop contributions to the scalar functions appearing if4£88 are
[A19)(p?,p?;0) + p?C ¥ (p?,p2%0)]= — o' Cax (8(3n—4)+12£(n—1)(n?~4n+2)

p=,pP p PP (477)n/2 32( 1)1

—&(n—1)(n—4)(n+2)}, (4.29
(A0 %) BUH0(0p2ip2) =A% 020) = Ty O a0 7+ 4) 2~ 1yan- 13

+E(n—1)(n—4)}, (4.30
C9(p?,p?0)= 97 Caln )218n+4§(n—1)(3n—8)—§2(n—1)(n—2)}, (4.3D

" (4m)"™32(n—1)p

9’7 (n—2)2
[A(l,q)(p2,p2;0)+pZC(l,C])(pZ,pZ;O)]:(47T)n/2NfTR n—1 K, (432
2 _
[AT9(0,p%p?) —BH(0,p%p?) =AM (p?,p? 0)—(—)nr2N TR —K (4.33
9°n (n=4)(n—=2) «
C(l,q)(pZ’pZ;o) (4 )n/2N TR n—1 F’ (434)

where k= k(p?).
We note that, according to Eq&L.30 and (4.33), the following relation holds for the zero-momentum case:

A1 (p?,p%0) - AP (0,p% p?) +BY(0,p%p?) =0. (4.35

This also follows from Eq(4.24). The relation(4.35 is valid for arbitrary values of and¢. Using Eq.(4.35, we can reduce
the number of tensor structures in H4.28 from 3 to 2: namely’

(1) (
HiMot3

—P.0)=(20 1Py~ G yisPry~ YuosagPr ) A (P2 %0) + 2P, (P°T ., P, Pi,) C M (D7, P%0),
(4.36

where the results for the scalar functions are given in Eqs. We have also compared the renormaliz@a the MS

(4.30, (4.31), (4.33, and(4.34. Note that the first tensor schemg version of Eq.(4.36 with the one-loop results pre-

structure on the RHS of E¢4.36 coincides with the “zero-  sented in Ref[35], Eq. (A10). According to Eq{(4.36) there

loop” vertex structure, given by Eq2.1). should be the following correspondence between the func-
To make the complete comparison of our expressionsions T; and T, used in[35] andA™") andC(1):

(4.29—-(4.31) [contributing to the three-gluon vertex at

p3=0, Eq.(4.28] with Eq. (20) of [14], we need to renor-  T;(p?)—AY(p?,p%0), Ty(p?)«— —2p>CV(p?p?0).

malize our coefficient$4.29 and(4.30 by adding the coun- (4.37

terterm(3.38 to all A functions involved and putting=4.

Performing this in theM'S schemeli.e., atR=0), we find  RenormalizingA®)(p?,p?,0) [given by the sum of Egs.

that our results give the same as E2Q) of [14]. (4.30 and (4.33] and puttingn=4, we arrive at the same

This corresponds to the decomposition used in Ref], Eq. This corresponds to the decomposition used in &%), Eq.
(20). (A2).
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result forT, as given in Eq(A10) of Ref.[35].8 The result momentum squared equal to zero. In the corresponding ex-

for T, is finite asn—4 and should correspond to the sum of pressiongsee Appendix E all p? occurring in the denomi-

our Egs.(4.31 and(4.34) taken ah=4. However, our result nators are always accompanied by the corresponding

for T, is different from the one given in EGAL0) of [35].°  «;=«(p?) in the numerator, which should be put equal to
zero whenp? vanishes.

C. Two external momenta squared are zerop>=p5=0 (i) First, we putJ(1,0,1)=J(0,1,1)=0. Since the result-
ing expressions did not have singularities tnﬁz pg, the
next step was to putp1 p2—p0 Then, the integral

pi=p3=0, p3=p? (P1P2)=3pP% (P1Ps)=(P2P3) J(1,1,1) was expanded ip3/p?, keeping the terms up to
(p3/p?)2. And, finally, the limitp3—0 was taken. The fol-

In this case, we substitute

=—3p% (4.38  lowing formula was used to expardg1,1,1):
J(1,1,D)|2- p2_o=i7% °5¢(0,0,p%)
|pl P2=0 7 P 111)| im2e 1 E 13 +e 4pé
B PR Pl T 2 2 g | B )
=—im o (—-p)
(4.39 (4.4)
J(1,0,9]p2-p2-0=3(0,1,D[p2-p2-0=0,  (4.40 13 +e|4p; 4p3\’ (3 +e), P5
L L 2F V)& \ W) @i, %
: _ 1+2¢| P° ) =0\ P ) (1+2e); p
while the result forJ(1,1,0) remains unchanged, E§.16.
Note that now, when two external lines are on shell, the n-7 pg 2
infrared singularity inJ(1,1,1) is stronger and gives&f) n-6 F LRRRE (4.42
Eq. (4.39.

Again, it is enough to make the above substitutions to get
the result in the Feynman gaugé=0) and in the singular The results obtained in these two ways coincide, and the
gauge[ (= —4/(n—4)], but the S|tuat|on is more tricky for expressions obtained for the scalar functi¢®s) are pre-
arbitrary ¢ since we havep1 and p2 in the denominators of sented below. Because of the symmetry properties, the func-
the scalar functions. To solve this problem, we need to contionsA, C, andF of the arguments (p2,0) are equal to the

sider the expansion af(1,1,1) inp? andp2. corresponding functions of the argumengg,0,0), while the
Two independent ways were used to get the results for thB function with these arguments permuted changes sign. The
scalar functions in this limit. H function is the same for all permutations.

(i) We take the expressions for one of the momenta The resulting one-loop contributiongwithout quark
squared equal to zer@ee Sec. IV A, and put the second loops to the scalar function§2.4) in arbitrary gauge are

97
( )n/2 A32(n 4)

A9(0,0;p2) = k{48—8£(n—3)(n—6)+ £3(n—4)2, (4.43

A9 (p?0:0)=— (49 ;,ZCAGM Dn=a) k{16(2n°—13n+8)+4&(n—1)(2n—9)(5n—16)—5£%(n—1)(n—4)2},
(4.44
B*9(0,0;p%) =0, (4.45
g2
B)(p2,0;0)=— (477)77“’2CA64(n—1)(n—4) k{16(4n%—2In+14)+4£(n—1)(10n°—79n+ 152 —5£%(n—1)(n—4)?},

(4.49

8The gauge parameter used85] corresponds to our1 £. To avoid confusion, we shall call their parameggr =1— £. Their constant
T corresponds to ouN;T. The results presented [85] are taken ap?= — u?, whereu? corresponds to ou,azDR (see the discussion in
Sec. I). Thus, puttingp?= — u? formally corresponds to omitting the terms containing-ipf) [which appear due to the expansion of
k(p?) in €] in the renormalized expressions.

Their result forT, is proportional tof (— 3+ &g )Ca+ 5 T], Whereas our expressions yidlt— 32+ 2 &g + 5 £2)Ca+ 3 T]. So the
quark contribution is the same while the sum of gluon and ghost contributiofis tis different. Note that in the Feynman gauge
(ég.=1) our results coincide and yie[d- %CA+ %T]. Thus the disagreement does not influence the one-loop part of the two-loop result
presented in the Feynman gauge, B¢) of [35].
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9’y

1
Cc19(0,0;p?) = (472 CA4(n— 4)(n—6)p

5 k{12(n—6)+2£(n?— 11n+36) — £(n—3)(n—8)}, (4.47

g 1
Cc19(p?,0;0)=— (477)77,1,2c,\32(n_1)(n_4)|o2 k{16n(N—4)+4&(n—1)(6n°>—41In+72)— 3&2(n—1)(n—4)?},
(4.48
F19(0,0;p%) = 97 C ! k{4(n—=3)(n—6)(n—13)—2&(n—1)(3n>—20n+18)+ &2(n—1)
w (4m)"27A2(n—1)(n—4)(n—6)(p?)?
X (n3—16n2+74n—78)— £&(n—1)(n—3)(n—8)}, (4.49
g%y 1
F(18(p2,0;0)=— (4W)n/2CA16(n_1)(n_4)(n_6)(p2)2K{16(n—6)2(4n—7)+4§(n—1)(n—6)(1()r12—87n+ 152
+&(n—1)(5n*—94n2+504n— 624) — 8£3(n—1)(n—3)(n—8)}, (4.50
9?7 1
H9(0,0,p%) = — (477)”’2CA16(n—1)(n—4)(n—6)p2 k{16(n—4)(N—6)(n+5)+24¢(n—1)(Nn—6)(n*—6n+12)
—&(n—1)(7n®*—11M2+ 53— 696)+ 4£3(n—1)(n—3)(n—8)}. (4.51)

The quark loop contributions yield

A9(0,0;p%)=B1%9(0,0;p%) =C19(0,0;p%) =0, (4.52
9’y n—2
A9 (p?.0;0)=B19(p2,0;0)= (4w)n,2NfTRn_l K, (4.53
(L) 2 9°7 n—2 «
C . (p 1010): (47T)n/2 2NfTRn_1 F! (454)
F09(0,0p%) =~ 7 6an,T ! K 45
(0090 = G SN TR =T (n=2) (272 (459
2
g7 n(n—=6) K
1A ("2 0-0) —
F (p ,0,0) (47T)n/2 4NfTR(n_1)(n_2) (p2)2! (45@
2 n2—3n+8
H(19(0,0,p%) = 97 “ (4.57

@m™ N TR (n-2)p>

Since in the Iimitp§= p§=0 the scalar functions may depend;uéwzp2 only, the independent tensor structutespressed
in terms ofp, and p,) can be chosen antisymmetric with respect to the permutapemnu(;)«— (p,,u»). The three-gluon
vertex can in this limit be written as

T pioiig(P1:P2.P3) | 02=p2=0= G a1, (P17 P2) U1 (P?) + 901 105P 110, ~ G pegP2s, U 2(P?)

+ [gp’lMszMZ_ g,u,2,u3p1,ul]U3( p2) + ply,lpZ,u,z(pl_ p2)M3U4( pz)

+P1u,P2u, (P1~ P2) 1 Us(P?) +[P1u,P1yu,P1u,~ P2u,P2s,P2u,]Us(P)

P14, P14,P20,~ p2M1p2M2p1#3]U7(p2). (4.58
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This decomposition is analogous to E9) of [14], and the  logarithms of vanishing momenta squared. The only restric-
functionsU; are proportional to the functiorts; used in[14]  tion we used in our calculations was that in the quark loop

(we have different numbering; see in Appendix F contributions the quarks were taken to be massfess.

The following representations of thé functions in terms To calculate the vertex, we used the decompositihd)
of scalar functions corresponding to the decompositd)  (adopted from Ref[13]) and considered the six scalar func-
can be derived in this limit: tionsA, B, C, S, F, andH, which completely define the

three-gluon vertex. One of these functions, namely, $he
U,(p?) =A(0,0;p) — 1 p2C(0,0;p2) - L (p?)2F(0,0;p?) function, was found to be identically zero at the one-loop
order?! see Eqgs(3.13 and (3.20. We have also checked

+ 1 p2H(0,0,p?), (459  thatS=0 when massive quarks are considered. It is not clear

whether it vanishes also at the two-loop level. For the five
remaining functionsA, B, C, F, andH, the general off-
shell results are given in Eg8.4)—(3.9 (Feynman gauge
Egs.(3.10—(3.15 (arbitrary gaugg and Eqs(3.17)—(3.22
Us(p?) = —A(p2,0;0)— B(p2,0;0) — £ p2C(p2,0;0) (quark loop contributions They involve only one nontrivial
function ¢(p?,p3,p3) [see Eq.(2.14 and Appendix B,

+ 1 (p?)%F(p?,0;0)+ % p?H(0,0,p%), (4.61)  which is related to the scalar one-loop triangle diagram. For
special cases, we have successfully compared our results
with those from Refs[11,13 (for details, see Sec. )

U,4(p?)=C(p%0;0)— 5 p?F(p?,0;0), (4.62 Starting from general expressions and putting some exter-
nal momentazsquared equal to zero, we considered the on-
N . oy 12 2 shell casesp3=0 (Sec. IVA), p;=0 (Sec. IVB, and
Us(p®)=2C(p~0;0)+C(0,0:p7) + 2 p°F(0,0:p%) pi=p3=0 (Sec. IV Q. For all these cases, the results in

—H(0,0,p%), (4.63 arbitrary gauge and dimension were presented; see Sec. IV

and Appendixes E and F. For special cases, our results have

been compared with those presented in Reff4,15. Thus,

we can see that Table | from the Introduction is completely

filled in. Moreover, all results are valid for an arbitrary value
U,(p?)=—C(p?,0;0)+ % p2F(p2,0;0)+H(0,0,p?). of the space-time 'dimension. Thus, the only thing which at

(4.65 the one-loop level is left for the future is to allow for nonzero
quark masses in the quark loops.

The explicit results for thaJ; functions are presented in Furthermore, we have obtained general results for the

Appendix F. The infrared-divergent contributions were suc-ghost-gluon vertex2.10; see Eqs(D7)—(D11) in Appendix

cessfully compared with Eq30) of [14], where the corre- D. Employing these results, together with two-point contri-

sponding contributions toF; are presented. Note that butions listed in Appendix C, we have checked that the

U,, Us, Ug, andU; can be directly compared witfl4],  Ward-Slavnov-Taylor identity2.12) for the three-gluon ver-

while the expressions fdt,;, U,, andU; (containing the tex is exactly (i.e., for arbitraryn and ¢) satisfied by the

A function) should be renormalized by adding the contertermexpressions obtained, as it has to. This was another nontrivial

Ua(p?)=—2A(p%,0;0)— p?C(p3,0;0),  (4.60

Ug(p?) =2C(p?,0;0), (4.64)

contribution(3.38 to all A functions involved. check on the longitudinal part of the verteA,( B, C and
The result for the three-gluon vertex in the FeynmanS functions.
gauge(for p%zp%zO) is available in Appendix B of Ref. We note that techniques have recently become available

[15]. Itis expanded around=4, and the divergent and finite [36,37] to study the off-shell massless vertices at the two-
(in &) parts are presented. In this limit, our expressions yieldoop level, at least in the Feynman gauge. Here, the main

the same as the results [df5]. difficulty is integrals with higher powers of irreducible nu-
meratorg 37].
In the future, the one-loop quark-gluon vertex can also be
V. CONCLUSIONS considered in a similar way. For the case of massless quarks,

one can use the same approach as in this paper. For massive

In this paper, we have presented results for the one-looguarks, one should study in more detail what the correspond-
three-gluon vertex valid for arbitrary values of the space-ing scalar integrals in arbitrary dimension &fa&Ve note that
time dimensionn, and the covariant-gauge parameteiWe
have considered the general off-shell cagarbitrary
p3, p3, andp3; see Sec. I), as well as all on-shell cases of  2°This restriction does not affect any of the results for the gluon
interest(Sec. V). Moreover, having the results in arbitrary and ghost loop contributiorishe functions marked ()] which are
dimension, it was possible to get all on-shell expressions jushdeed the most general ones.
by considering the corresponding limits of the genéodi- 2lin the Feynman gauge and four dimensions, this result was ob-
shel) results. This would be impossible if one started fromtained in[13].
the off-shell results expanded aroune-4, because in this  ??This is also the reason why we did not consider massive quark
case the infraredon-shel) divergences would appear as loops in this paper.
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some results for the quark-gluon vertéand also for the
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to Bergen where this work was initiated, and to the Univer-

QED vertex which formally corresponds to one of the twosity of Bergen for hospitality. A.D.’s and P.O.’s research was

diagrams contributing to the quark-gluon veitesan be
found, e.g., in38,35.
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APPENDIX A:
DECOMPOSITION OF THREE-GLUON VERTEX

The authors are indebted to J.S. Ball and T.-W. Chiu for

useful communications and, in particular, for confirming two

If we expressp; in terms of the two other momenta,

minor misprints in[13] mentioned in Sec. Il A and Appen- ps;=—p;—PpP,, we get the following decompostion of the
dix D. O.T. is grateful to NORDITA for supporting his visit three-gluon vertex2.2):

Uy ions(P1:P2:P3) =0 1P11, 2001+ Dty 10gP 14,2010 By gP1, 2100 Dty 1, P 24052002 9y 5P 20,2020 D pag P21, Z200

F P14, P1,P1u L1117 P2y, P2y, P2, 2220 P1yuy P1yu,P2ug 2112 Py, P2u,P1ugZi21

P24, P1,P 14, L2117 P1yu P2, P2psZ122 P2py P1u,P2usZ212F P2y, P2, P1uyZ221s

where Z;,, are scalar functions depending oﬁ pg, and
2

P3-
Comparison with the decompositiof2.4) used in[13]

gives the following representations @fs in terms of the

functions(2.4) used by Ball and Chii13]:

Zoo1=A(P3.P5;P3) — (P1P2) C(p3,p3;p3) +B(p%.p3:p3)
+(p1P2) (P2P3)F (p3,03:Pp3) — (P2p3)H, (A2)
Zooz= —A(P3.p3:p3) + (P1P2) C(P3,p3;p3) + B(pi.p3:p3)
—(P1P2)(P1P3)F(P1,P3:P3) + (P1Pa)H, (A3)

Z100=A(P3,p3:p3) — (P2P3)C(p3,p3;p?) — B(p3,p3;:pd)

+(P1P2)(P2P3)F(P2.P3:P3) — (P1P2)H, (A4)
Z00= 2A(P3,P5:P3) — 2(Pp2P3) C(p3,p5:P2)
—p5(p2P3)F(p3,p5:p) +piH, (A5)
Z016= — 2A(P5.%:3) +2(p1Ps) C(P5.P3:p3)
+p3(P1P3)F(p3.p3:p) —p3H, (AB)

Zooo= —A(P3,p2;p3) + (p1p3)C(P3,p2;p3) — B(p3,p%; p3)

—(P1P2)(P1P2)F(P3.PT:p32) + (P1P)H, (A7)
Z117=2C(p5.p%:p5) +P5F(P3.p3;p3),  (A8)
Zy95=—2C(p3,p3;p5) —piF(p3,p3;p3),  (A9)

Z11= —C(p3,p3;p3) + (p1p2) F(p3.p3:p1) +H-S,
(A10)
Z11=C(p3,p?;p3) — (p1p2)F(P3.p%;p3), (All)

Z12= —C(p3,p3:p3) + (p1p2) F(P3,p5:p3), (A12)

(A1)

Z51=C(p?,p3;p3) +2C(p3,p3;p3) — (P2P3)F(p?,p3;p3)
+p3F(p3,p3;p3)—H-S, (A13)

Zy15= — C(pZ,p3;p3) —2C(p3,p3:pd)
+(p1p3s)F(p2,p3;p3) — p2F(p3.p3:p3) +H-S,
(A14)

Z521=C(p3,p2;p3) — (p1p2) F(p3,p%;p3) —H-S,
(A15)

whereH=H(p{,p3,p3) andS=S(p7,p3,p3).
Solving these equations we get the following results for

the scalar function$2.4), including those with permuted ar-
guments, in terms af’s:

S(pZ,p3.,P3) = 3{— Z110+ Z1o1+ Z195— Z5p1}, (AL6)
(A17)

H(p$,p3,03) = ${Z110%+ Z121— Z105— Zo1},

A(p?,p3; pg) =3 {(P1P)[ — Z111+ Zooot+ Zo11— Z17)
+Z 01— Zooz— (P + P3)H}, (A18)

A(p3, p% 1P = 3{— (P2P3) Zogot+ Zooo— PIH},
(A19)

A(p3,p%;p3) = 3{(P1P3)Z111+ Zoso— P5H},  (A20)

B(p%.P3:P3) =3 {P3[Z110— Zaool + Pl — Z1o1+ Z201]
—(P1P2)[Z111+ Zo2o— Zo11— Z212l + Zom
+Zoozt P35S}, (A21)



54 THREE-GLUON VERTEX IN ARBITRARY GAUGE AND . ..

B(p3, p% 1P = 3{— (P2P3) (Zozo— 22199 + Z 00— 2Z100
+(p3—pHH}, (A22)
B(p3,pT:P3) = 3{— (P1P3)(Z111— 2Z120) + Zo10— 2Zo20
+(p3—pH}, (A29)
2 2.2 1
C(P1,P2:P3) = 2 —2{(P1P3)[ 2111~ Zo11— Zaor+ Z221]
P1— P2
+(P2P3)[ 22221 Z112— Z120— Z214l}
(A24)

1
C(pgipg?pi):m{(plpz)zzzﬁ PiZ1o3, (A25)
2~ P3

1
C<p§,p§:p%>=—z—zp3_p {(P1P2)Z111+ P3Z121}, (A26)
1

1
F(pi.p3;p3)= W{Znﬁ' Loyt 2115~ 211~ Zo11— Z122
17 P2

—Zy10t o1}, (A27)
2 2.2 1
F(p3.P3:P1) =—7—21Z220— 22123}, (A28)
P2—P3
2 2.2 1
F(p3,p1;P2)=—= {2111~ 22154} (A29)

P3— p%

APPENDIX B: SCALAR INTEGRALS

4105

0, the integral(B1) corresponds to a two-point function.
Therefore, it is proportional to a power of the external mo-
mentum squared times sorhefunctions with arguments in-
volving n and »'s. We mainly need the result for two re-
maining»’'s equal to 1e.g.,J(1,1,0)] which is given by Egs.
(2.195 and(2.16), in which case thid" factor is nothing but
7, Eq. (2.17).

Then, the integrals with one negativecan easily be re-
duced to integrals with the correspondingequal to O, for
example,

J(1,1,-1)=—(p1P2)J(1,1,0, (B2)

1 2 2.2
J(lila_z):m[n(plPZ) _plpZ]‘](]-!lrQ! (83)

1 2 2.2
J(1,1,-3)=- m[(n—l-Z)(plpz) —3p1p3]

X(p1p2)‘](lallq

Thus, the only nontrivial function which occurs in our
calculations is¢ which is related to the triangle integral
J(1,1,1) [cf. (2.14)] via

J(1,1,)=i7"2ne(p?,p3,p3),

where 7 is defined by Eq(2.17).

In fact, the general results.e., for arbitraryn, v;, and
p?) for the integrals(B1) are available[39]. They can be
represented in terms of Appell’s hypergeometric function of
two variablesF,. As dimensionless variables, one can use

(B4)

(BS)

2 2
P1 P2
X=— and y=—. B6)
p3 73 (

As mentioned in Sec. I, the results for the scalar func-
tions occurring in Eqs(2.4) and(2.10 can be represented in Whenv,=v,=v3=1, all theF, functions can be reduced to
terms of the following Feynman integrals, corresponding to a,F; Gauss hypergeometric functions of more complicated

scalar one-loop triangle diagram:
d"q

J(Vl’vz’%)zf [(p2— )21 (p1+)7]"2(q?) "3’
(B1)

wheren=4-2¢ is the space-time dimension.

When we perform calculations in the Feynman gauge and

arguments, by using reduction formulas fBy functions
(see, e.g., Ref4Q]). One can also derive a one-dimensional
integral representatiofsee Eq.(26) of [37]] which is valid
for arbitrarye = (4—n)/2 and, therefore, for arbitrany,

im2 %y 1 (idoo *[(yo) *—(xlo) ?]
_(—p?,,)l“Ejo[y02+(1—x—y)o+><]l8’
(B7)

J(1,1,)=

express the scalar numerators in terms of the denominators,

the powers of the denominators,, can be 1, 0, or even

with x andy defined by Eq(B6).

negative. In an arbitrary gauge, the integrals may have pow- Another way to get the result for arbitraryis to use the

ers of ; equal to 2, due to the presence @f) 2 in the £
term of the gluon propagator, E@2.3). Nevertheless, by
using the integration-by-parts technigL#?] these integrals
can be reduced to those wiilis equal to 1 or 0. The corre-
sponding algorithm for the integral81) is described in de-
tail in [28].2°

Then, if two or threev's are nonpositive integers, the

dimensionally regularized integréB1) vanisheq 23], since
it corresponds to a massless tadpole. When one of'thés

2The main formula to be used is E€@.4) of [28]. Some explicit
results for the integrals witly,=2 are also presented [28].

connection41] between massless triangle integrals and the
two-loop massive vacuum integral§yq,v,,v3). In particu-
lar, according to Eq(40) of [41], for arbitraryn the integral
J(1,1,1) can be relate@ip to trivial leftovers$ to the integral
1(1,1,1), in such a way that one of the integrals is taken in
4—2¢ dimensions, and the other intR¢ dimensions. Us-
ing this connection, and also known results f¢f,1,1) in
arbitrary dimensiof42—44], one can reproduce the result for
J(1,1,1). It can be written in terms ofF; functions(see,
e.g., Eq.(4.12 of [44]).

The result forJ(1,1,1) in four dimensions is well known
[45,13 (see also Ref$28,36) and can be presented in terms
of dilogarithms,
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s 9 o 1 _ . The gluon and ghost loop contributions to theand G
@(p11p21p3)|n=4:Tp x| 2L Lia(=px)+ Lia(=py)] function in an arbitrary covariant gauge yield
3
y 1+py 2 J(l'g)(pz)z—ﬂ,—i{4(3n—2)+4§(n—1)(2n
+In=In +In(px)In(py)+ = ¢, (B8) (4m)"2 8(n—1)
X 1+ px 3
—7)—&(n—1)(n—4)}x(p?), (Cy
where
2
g°n Ca
2 (L&) n2) = Arot g(n— 2
M) =T x—y 7=y, p(xy)= G e g 2N, (€D

1-X—y+\’

(B9 while the guark loop contribution to th& function is
or, in terms of the Clausen function lsee, e.g., Eq19) 9%y n—2
of [41]; similar representations are also giver42,4€]]. In JAD(p?)= TP 2NfTRT1K(p2) (C3
particular, in the symmetric cageee Sec. Il (4) n

(there is no quark contribution to th& function). The coef-

J 1,1, B B - :' 2 2, 2’ 2 _
( ])|p§_p§_p§=p2 17 (P%P%P ) n=s ficients 5, C,, andTg are defined by Eq€2.17), (3.3), and

n-e (3.16, respectively. The functionc(p?) is given by Eq.
im? 4 T (2.19. . . .
=— _C|2(_), The ultraviolet divergences of Eq&C1)—(C3) are given
P 3 713 by
(B10) ,
producing the same constant as the ddenoted asl) J<1'UV)=g—77[—CA(§+ 36+ 3 NTRIYY),

; (4m)%¢
used in [11]. The transcendental number ,Ck/3)

=1.014 941 7... corresponds to the maximum of Clausen’s 927
integral and appears frequently in two-loop calculations with GIWi=_= - _C,3(2+¢&)«YY, (C4)
massegsee, e.9.[47,42), the connection with the massless (4)
triangle diagrams being clear fropd1].

If one is interested in expanding #and calculating the
integralJ(1,1,1) up to ordek, one can use Eq29) of [37]

where k(W =1/e+ - .. is the divergent part ok(p?), Eq.
(2.15. The corresponding counterterms are

or Egs.(16) and(20) of [41]. 97 1
In three dimensions, the result for the integiél,1,1) is J<1*Cﬂ=4ﬁ[CA(% +15-4N(TR]| - +R
very simple[48] and proportional to [§2p3p3) ~Y2. To get (4) €
the result around two dimensions, E¢4.3) of [41] can be 9’7y - .
used®* The corresponding two-dimensional integral has in- = WE[CA(§ +38)—3 NfTR](g+R +0(e),
frared singularities which can be regularized by the same
e. However, the only nontrivial function is the same as in the P C 1
four-dimensional case. The same equatié®) of [41] can GLCh=— s 2248 =+R
also be used to get the results for higher values.of (4m)” 4 &
When some of the external momenta squared vanish, the g’n Cj 1
integral J(1,1,1) (considered in four dimensionslevelops =~ Gmr 7 (29[ +R]+0(e), (CY

infrared(on-shel) singularities. The corresponding limits are

considered in Sec. IV. where g?=g%e **(47)° and R is the renormalization-

scheme constant chosen in such a way tRat0 in the
APPENDIX C: TWO-POINT FUNCTIONS MS schemesee also Sec. IIl E

To check whether our results are consistent with the Note thatin the Fried-Yennie gau?ﬁe[Sl],_ §=-2, the
Ward-Slavnov-Taylor identity for the three-gluon vertex 9host self-energy is finite as—4. Moreover, if one chooses
(2.12), we need expressions for the functions contributing tofh® n-dimensional  generalization of this gauge as
the gluon polarization operator and the ghost self-energy. §=—2/(n—3) [50], then the one-loop correction to the

The corresponding scalar functiodép?) and G(p?) are ghost _self—energy vanishes. This is con_nected with t_he trans-
defined in Eqs.(2.7) and (2.8, respectively. The lowest- Versality of the gluon propagato2.3) in the coordinate
order results ard@=G@=1. At the one-loop order, the SPace(at this value off). o
results can be found, e.g., [8]. We present them here for ~ 1he gluon polarization operator is finite when
completeness and also to show the proper normalization of AN.T
the functions. One-loop contributions to these functions are Eln_a=&0=12 ( fR _5)_ (C6)
presented in Fig. 2. Ca

2*This is a special case of a more general result presentetdjn 25This gauge was also used in RE32].
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For N;=6, Tr= %, andC,=3, this value is&,= — 2. ghost-gluon vertex at the one-loop level. The definition of
the ghost-gluon vertex and the decomposition in terms of
scalar functions is given in Eg$2.9 and (2.10, respec-

APPENDIX D: tively. The lowest-order expression is given by E211). In
RESULTS FOR THE GHOST-GLUON VERTEX one-loop expressions, we use the notationdork;, and »
which can be found in Eq$2.14), (2.15, and(2.17), respec-
There are two one-loop contributions to the ghost-gluontively. K and Q denote the symmetric scalar combinations
vertex which are shown in Fig. 3. Here, we present the mostonstructed from the external momenta, E§s2) and(3.1).
general results for the scalar functions contributing to the At the one-loop levelin the Feynman gaugeve get

9’y
FE},L(Z(pl-pz?ps) WCAMC(QWBK[(ZM P3) @+ K1 — 2Ky~ K3]+lep1M3[p2(plp3)€D+(p1p2)Kl+p2K2

+(P2pP3) k3] — 2pzﬂp2M3[p1(p2p3) @+ piKy+(P1P2) kot (P1P3) K3l + plupzﬂs{ —[pi(p2p3)
+P3(P1P3) 1@+ (P1P3) k1t (P2P3) K2+ P3Ka}+ P2,P1 {[P5(P1P3) +2(P1P2) (P2P3) @+ 3(P1p2) k1
+3p3K,+3(P2P3) k3}). (D1)

For the scalar function€.10, Eqg. (D1) yields

2

9°7 1
a(l'o)(p3,p2,p1)=—WCAZ{(Zpi—p%)go+xl—2K2—K3}, (D2)
927
b%(p3,p,,p1) = (4—),1/-CAZ,C{pl(p2p3)cp+p1K1+(p1p2)K2+(p1p3)K3} (D3)
9 n
™ (P3.P2.P1) =~ (e CA4K{(p1 P3)(P1P2) ¢~ [PI— (P1P2) 1k +[P5—(P1P2) kot (PI—P3) K3}, (D4)
(1,0 _ 9’7 1. 5 2
d= (psypz,pl)—WCAR{[pz(plps)+2(P192)(Pzps)]¢+3(P192)K1+3p2K2+3(p2p3)K3}a (D5)
2
(1,0 _ g7 1., 2
e (p3yp2vp1)__WCAR{pa(plpz)@"i'(plpS)Kl+(p2p3)K2+p3K3}' (D6)

In the limit n—4, the expressions for all scalar functiofid2)—(D6) have been compared with the corresponding results
presented if13], taking into account the erratufwhich affects the results for the d, ande functions. The comparison was
successful, with the exception of two minor things. One of them is related to the definition of the renormalization-scheme
constant and was already mentioned before; see footnote in Sec. Ill A. The second one is that in thg E8fahersign of
the termb(P4,P,,P3) in the expression for thd function is changed from minus to plgsee p. 2554 of13]). However, the
comparison is successful if we keep the original sign, which is nfifus.

Furthermore, the results which follow from E@D1) (contracted withpf) for two infrared-divergent casegj)
p2=p3=0 and(ii) p5=p3=0 have been compared with those presented in Table B.Il of[R&}. The latter were obtained
in the Feynman gauge and expanded in the limit4, keeping the finit¢in £ =(4—n)/2] terms. To consider the limit of our
expressions, we used formulas presented in Sec. IV C. We found that our results coincide in this limit with thdd&jrom

Now, we present the results for the scalar functi@@®40 in arbitrary covariant gauge:

a0 P pe) = g (2KTE(2N5) 20+ €L (n— )6+ 210 papa) 6~ 2P3(paPa N paPa) )

+{(£—2)(4K—£p3p3) + £[(n—3) £+ 2]1p3(PoP3a) L (P1P3) ¢+ Kol +{(E—2)[(E+2)K— Ep3(P2Pa)]
+E[(N—3) €+ 2](p2P3) 2} (P1P2) ¢+ K3l + E(PaPs) e{(—2)[ K+ 2p3(p1p2)]
+[(n—3)&+2][K—2(p1p2)(P2p3) 1)), (D7)

26These misprints were confirmed by the author§1d.
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9’y

1
0P P2, P1) = = (75w Ca g [(EL(N=4) £+ 41(N=3)(p1p2) (PoPa) K+ [(N—3) -+ 2]pip32(6~2)K

— &(N—1)(P1P2) (P2P3) 1+ E(£—2)p5{(n—1)pIp3(P1P2) + KL Pi—2(n—3)(P1P2) 1L (P2Ps) ¢ + k1]
+(— [(n—4) £+4](n—3)(p1p,) (P2P3) K+ £(£~2)p3[ (n— 1) pip3p5+(n—2)KQ]

+[(n—3)&+2]p3{ K[ £p5+ (3E—4)(P1p2) ] — E(N—1)(P1P2) A(P2P3) DI (P1P3) @+ k2]

+ (= E(n—4) £+ 41(n—4)(P1P3) (P2Pa) K+[(N—3) £+ 2]p5{&(p2P3) [K— (n—1)(P1p2) (P1Ps)]
+2(£=2)K(p1pa)} + E(E—2)p3{(n—1)(P2P3) (P1P3) >~ KI5+ (P1P3) INL(P1P2) ¢ + k3]

+ @(2&[(n—4) £+4]1(n—3)(p1P2) (P1P3) (P2P3) K+ [ (N—3) E+2]p3{2&(n— 1)(p1p2) A(P1P3)

X (P2P3) = 2K(P1ps)[2(£—2)(P1P2) + £P5] — €K%} + E(E—2)p3[2(n—2) K(P1P2) (P2P3)
—2(n=1)pip3(P1P2)(P2P3) + K7D, (D8)

9’7 1

¢ (p3,pa.p1)=— (@) 16’C2p2{[[(n_ 3)&+2](&(N—1)(p1p2)(P1P3)?— K{4(pD)2+ (p1pa)[(£+2)p3

1

+3E(p1p2) 1) — E(E—2) (P1pa){(N—1)(P1P2) (P1P2) 2+ K[2p5+3(p1p2) I (P2ps) ¢+ k1]
+([(N—=3)&+2J{&(P1P3) (P2Pa)[ (N—1)(P1P2) 3+ 2K ]+ 2Kp3[ p5— (p1P2) T} + (£~ 2)(p1P3)
X[pIK—(n—3)KQ~(n—1)pZp5p3])(P1Ps) ¢+ k2] +[[(N—3)E+2](£(N—1)(p1py)

X (p1P3)2(P2P3) — K{(£—2)pi(p5— p3) + £(p2p3)[2(p1p3) — PIIH+ &(6—2)(P1P3) (P2P3)[ (N—3)K
—(n=1)pZp3]IL(P1p2) @+ k3] +2¢{—[(N—3)&+2](p1p2)[ 2pF(Pi— P K+ E(N—1)(p1py)
X(P1P3)2(P2P3) 1+ E(P1P3) (P2P3)[(E—2)(N—1)(P1p2)(P1P3)2+ E(N—2)K(p5—p3) 1}, (D9)

9°n

1
d%(pa.p2.P1) = = gy Ca g [T (N = 4) £+ 41(P1p2) (P1P)[ (= 3) (P1P3) (P2Pa) P3(P1P2)]

—[(n—3)&+2]p3{ £(p2pa)[PP5— (N—2)(P1P2)(P1P3) ]+ 6(P1P2) K} + E(£—2) P5(P2P3) [ PA(P2Ps)
—(N=2)(P1P2)*DI(P2P3) @+ k1]+ (E[(N—4) E+4](n—3)(P1P2) (P1P3)(P2P3)?

+[(n—3) &+ 2]p5{ £(p1P2) (P2P3)[(N—3)(P2P3) — 2p5] — 4p5K} — (£~ 2) p3{£(P2Ps)
X[PIp3+(N—1)p3(P1P2) +(P1P2) 1+ (= 2)P3KHI(P1Pa) ¢+ ko] +{E[(N—4)é+41(N—4)(P1ps)
X(P2P3) K+ E(6—2)p3(p1p2)[(N—1)P5(P2Ps) — K1 —[(n—3)é+2]p3(p2ps)[£(N— 1) p5(P1ps)
+(£+6)KI[(p1p2) @+ kgl + 20(—[(n—4) £+ 4](p1p2) (P2P3) K[ £(N—3)(pyps) + (£~ 2)p3]
+[(n=3)&+2]p5{£(P1P2) (P2P3)[ 2K+ NP5(P1P3) ]~ 2(p3)2(P1P3) 2+ (£~ 2)P3(P1P2) (P1P3) (P2P3)
X[&(n—=1)(p1p2) +2(£~1)p3])], (D10)

9’y 1

e¥(ps,pz,p1)=— 4™ CA 160707 [([(n—3)&+2]{— &Nn—1)p3(p1p2)(P1Ps) + KpT2(p1pa) — £p31}

1

+E(€—-2)(N—1)p3(P1p2) (P1Ps)*+ E4(N—2) Kp3[2pT+3(P1p2) DI(P2Pa) ¢ + Ky ]+ ([(N—3)é+2]
X(P2pa){— é(n—1)pip3ps+ KL E(N—3)p3+2piT}+ &(¢—2)p3{(n—1)pipsp3+KI(N—3)Q
—pIINL(P1Pa) ¢+ r2]+ ([(N—3) &+ 2]){ — &(n— 1) pZpsp3+ K[(£+2)ps — (n—3)EQT}+ E(4—2)(p2P3)
X[(N=1)(p1pa)?+2KDP3L(P1P2) @+ k3] + 2(p2Ps) @{[(n—3) &+ 2] (p1Pa) [E(N—1)p3(P1py)?
—2Kpi]— &(6—2)(n—1)p5(p1p2) (P1P3)?— £2(n—2) Kp5(p3—p3)}]. (D1D)



54 THREE-GLUON VERTEX IN ARBITRARY GAUGE AND . .. 4109

From the expression®7)—(D11), one can see that again, as in the three-gluon functi®i$)—(3.15, the valuest=0
and {é&=—4/(n—4) are distinguished. Putting=0, we get rid of the momenta squared in the denomindimnty I may
remain; cf. Eqs(D2)—(D6)], while for £= —4/(n—4) one of the momenta squarqnif,, still survives in the denominators of
the ¢ function, Eq.(D9), and thee function, Eq.(D11). This does not matter, sin€g the ¢ ande functions do not contribute
to the Ward-Slavnov-Taylor identity for the three-gluon vertex, ql2, and(ii) for the proper ghost-gluon vertex, E.9),
we get an extrapf in the numerator as a result of contracting witjt [since the tensor structures corresponding tocthed
e functions contairp, ,; see Eq(2.10]. If one wants to put some of the momenta squared equal to zero in other gauges, one
should carefully consider the appropriate limit and expand the functions in the numerator, in exactly the same way as it was
described in Sec. IV for the case of the three-gluon vertex.

In the limit n—4, the only divergent function in the one-loop ghost-gluon vertex isatienction (D7), also since this is
the only function which is present at the zero-loop level, q11). The ultraviolet-divergent part of the function (D7) is

2
w97 -1 a W) D12
a (477.)2—8 AZ( g)K ) ( )

where, as in Eq(3.37), k("W)=1/e + - - - corresponds to the divergent part of the functigrEq. (2.15. Therefore, by analogy
with (3.38), the counterterm contribution is given ¥y

9’y Ca

9> Ca 1 o)
s TRI=~ @z 2 (179

A=z 5 705

%+R)+O(s), (D13)

whereg?=g2e™ "*(4m)® andR is the renormalization-scheme constaRt=0 in the MS scheme, which is achieved by a
suitable extraction of the overall factor in E@R13)]. In particular, there is no singularity in the one-loop ghost-gluon vertex
in the Landau gaugeéE1); see, e.g., Ref2].

APPENDIX E: RESULTS FOR p§=0 IN ARBITRARY GAUGE
For arbitraryé, the results for the gluon and ghost loop contributions to the scalar fund@ofsare?®

p;  ps

927] Kt K
T2RK1T oK
Pt P2

B (477)“’2CA64(n—1)(n—4)

AE(p1,p3;0)=

|(n—1)(n—4)§[4+(n—4)§]

+(N—4)[16(3n—2)+4£(n—1)(10n—33) —52(n—1)(n—4) ][ K1+ ko] — 16(n—1)

X[n+(n_3)§](512)l[Kl_Kz]]: (ED
A(1’§>(O p2- 2y _ g27] 1 p_g - — — — _ —
) l’pZ) (47T)HIZCA64(I’1—1)(n—4)(n—6) piKl(n 1)(n 4)(n 6)5[44—(” 4)§]+Kl(n 4)(n 6)

X[16(3n—2)+4&(n—1)(100—33)—5£2(n—1)(n—4) ]+ 2k5(n—1)(n—4)(n—6) & 4(n—3)
—(N—4)£]-8(n—1)(N—4) kx{(512) " H(N—=6)[2+(N—3)£]+(81p) 2&[n+(n—3)&]}—4(n—1)
X[ k1= k2 [{(812) " H(N—6)[4(n+1)+ £(5n—18)— EX(n—3)]+ (1) 4+ (n—4)&][(n—3)é—n+6]

—2<512>3§[n+<n—3)§]}], (E2)
g? 1 p; P
B (pf,p3;0)=— (4W;7n,ch64(n_l)(n_4)(n_6)((n—1)(n—4><n—6>§[4+<n—4>§] P

—8(N—1)(N—4)[ K1+ Kk,](81p) L[N+ (N—3)&E]+[ k1 — k2 1{16(n—6)(4n?—21n+ 14)
+4£(n—1)(n—6)(10n%—77n+152) — £2(n—1)(n—6)(5n%—48n+ 104) + 16( 5,) 2

X(n—l)f[n+(n—3)§]}J. (E3)

2’See also the discussion pfr, g2 etc., in Sec. Il E.
2%Ne also consider nonequivalent permutations of the arguments.
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2 2
Py

2 1
7 B§K1+2—2K2}—8(n—1)
P1 P2

— g C

(4m)"? 264 n—1)(n—4)(n—6)
X(N=4) ko{(N=6)[2+(N—3)E][1+ (512 1]+ (510 2En+(n—=3)&E]}—(N—4)(N—6) k[ 16(4n—3)
+20¢(n—1)(2n—=7)=5&4(n—1)(n—4)]+4(n—1)[ k1~ k2 {(812) "1 (N—6)[4+3&(N—2)+ 4 (n—3)]

B4(0p1;p3) = —(n=1)(n=4)(n=6)& 4+ (n—4)£]

—(512)‘2[4+(n—4)§][(n—3)§—n+6]+2(512)‘3§[n+(n—3)§]}], (E4)

(n=1)(n=4)é[4+(n—4)&]+[ k1~ «o]

9’7y c 1 Hpg p
— K1— K
(4m)"2~A32(n—1)(n—4)(p?—p3) | | p?"* P32

C*9(pf,p3:0)=
><[16n(n—4)+4§(n—1)(6n2—41n+72)—3§2(n—1)(n—4)2]] , (E5)

9’y 1

(1,¢) 2..2 - _
C T ORIR) = g ) (- 4)(n- )PP3- D)

[ 8(n—1)pilx1—kol{—(N—6)[6+(n—5)¢]

+(N=6)(81) [6+E(N—7)—E(n—3)]-2(81p) 2N+ (n—3) €1} +8(n—1)(n—4)(5;) ~*

p3)2
- p% (N—1)&[4+(n—4)&]+16np2— (4n—3)p3]

X(p3+p3)kié[n+(n—3)€]+(n—4)(n—6) K,

(E6)
+2§<n—1>[<1m—38>p%—4(5n—mp§]+§2<n—1><n—4><—3p§+4p§>}],
9’y 1 1
(L&) (n2 2 — . _ _ _
P P20 <4w>“’zc‘\16(n—1>(n—4><n—6><|o%—p%)”pi"1 p3 2| (N DT AAT (T
2
X[4§(n_3)_5(n—6)]+m{(n_‘l)['ﬁ*’Kz]_2(512)71[K1_Kz]}[s(n_G)(4n_7)
+4§(n—1)(n—6)(5n—11)+§2(n—1)(5n2—6m+108)—2§3n(n—1)(n—3)]}, (E7)
97 1 2 (p3)? (p?)?
(1,¢€) 2.2 - _ _ _ _ _
PO <4w>“’2CA32(n—1>(n—4)<n—6>p§(pi—p%){ pi—p%[(” T

X(N—4)&4+(n—4)E]+(n—4)k{[32(n—6)(3n+1) +4&(n—1)(n—6)(20n—63) — 3£2(n—1)(n—4)
X(N+2)—4&(n—1)(n—3)(n—4)]—(81,) " {32(n—6)(n+2)+4&(n—1)(7n+30)+ £%(n—1)
X (3n2+50n—24)—4£3(n—1)(n—3)(n—16)]— 24(51,) " [8(n—6)+8&(N—1)+ &2(n—1)

K17 Ko
X(3n—2)+2&(n—1)(n—3)]}+ 16hW{[4(n—6)(n2—121+ 17)—2&(n—1)(n—6)(3n—10)
1 2

+&(n—1)(n—=5)(n?—6n+12)+2£3(n—1)(n—3)(N—5)]+ (1) 16(n—4)(n—6)+4&(n—1)
X(4n—15)+ £2(n—1)(n—4)(5n—3)+3&3(n—1)(n—3)(n—4)]+3(51p) " [8(n—6)+8¢&(n—1)

+&(n—1)(3n—-2)+2&3(n—1)(n—3)]} ¢, (E8)
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9’7 1 P2 p:
H18(p2 p2 [ C — — _ _ _ —
(P1.p2,0) (4m) ™ ~A16(n—1)(n—4)(n—6)(p> p%)[ _Zplkl _2p2 Kz}(n 1)(n=4)é[4+(n—4)£][26(n—3)

—=3(n=6)]+2(81)  H(n—4)[ K1+ kp]=2(812) k1~ ko 1}[24(n—6) +2E(N—1)(n+ 12+ £%(n—1)
X(1In—12)+6£3(n—1)(n—3)]+[ k1 — ko][16(N—6)(N>—2n—2)+ 4&(n—1)(n—6)(6n?—37n+ 60)

—&(n—1)(7n®-88n2+376n—552) —8&3(n— 1)(n—3)(n—5)]] , (E9)

WhereKiEK(piz) [see Eq{(2.15], while the coefficients; andC, are defined by Eq€2.17) and(3.3), respectively.

APPENDIX F: RESULTS FOR pZ=p3=0 IN AN ARBITRARY GAUGE

The scalar functiond); corresponding to the decomposition of the three-gluon vertex in this limit are defined 4. &5).
Using the expressions for the one-loop contributions to AheB, C, F, andH functions, Eqs.(4.43—(4.57), and the
representation&4.59—(4.65, we get the following results for the one-loop contributions to thdunctions:

2
U9 (p2)=— (4977)7{1,2@8(”_1)(”_4) «{4(2n?>—15n+19)+2£(n—1)(n—3)(4n—17)— £2(n—1)(n—4)?}, (F1)
2
ust9(p?)= (4gw;7n,ch4(n_1)(n_4) k{2(3n?—17n+8)+ &(n—1)(n—4)(8n—27)— £(n—1)(n—-4)%},  (F2)
2
Us-(p?) = (4gw;’n/ch16(n_1)(n_4) k{4(n—4)(n—5)+2&(n—1)(2n2— 190+ 36) — £4(n—1)(n?— 8n+20)},
(F3
U9 (p?) = g’ C ! x{6(n—2)(n—6)(n—7)+ &(n—1)(n—6)(2n?—23n+40)
4 (4m)"V27A4(n—1)(n—4)(n—6)p?
+£4(n—1)(n—2)(n*—15n+57)— £&(n—1)(n—3)(n—8)}, (F4)
UL p2) = 9*7 424 En—1)(n—
(p )_ (477)”’2CA4(I’1—1)(n—4)p2K{4(n 4) +§(n 1)(” 6)}' (F5)
g2
UHd(p2)=— (47r;7”/ZCA16(n—1)(n—4)p2 r{16n(N—4)+4£&(n—1)(6n°>—41In+72)—3&%(n—1)(n—4)?%}, (F6)
2
Uite(p?)=-— (4gw;7’"2CA16(n—1)(n—4)p2 x{8(5n%—25n+2)+4&(n—1)(8n?—59n+112)
—&(n—1)(3n?-24n+40)}, (F7)
@ o 97 n(n-—3)
Ug.lq)(pz)_ (47T)n/2 2NfTR(n_1)(n_2) K, (F8)
2 -2
US(p2)= — il AN T (F9
2
a2 97 1
U(31q (p2)_ (47T)n/2 4NfTR(n_1)(n_2) K, (Flo)
2
(1) 97 n+2
U4 a (pz)_W4NfTR(n_l)(n_2)p2K1 (Fll)
9’7 n—4
(L) - _
U5 a (pz)_ (477)n/2 4NfTR(n_1)(n_2)p2K! (F12)



4112

2

Ug ¥(p?) = W/z ANTR =52

2

g7
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n-2 (F13
)p
n2—4n+6
(F14)

where, as usuals= k(p?). Comparison with the definition of the functiofg given in Eq.(29) of [14] shows that the
functionsU,, U,, Uj, U,, Us, Ug, andU; are proportional td=,, F3, F1, Fg, F5, F4, andF-, respectively.
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