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It is shown that the quantum master equation of the field-antifield quantization method at one-loop order can
be translated into the requirement of a superfield structure for the action. The Pauli-Villars regularization is
implemented in this BRST superspace and the case of anomalous gauge theories is investigated. The quantum
action, including Wess-Zumino terms, shows up as one of the components of a superfield that includes the
BRST anomalies in the other component. The example of W2 quantum gravity is also discussed.
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I. INTRODUCTION BRST superspace we will in general find constrained super-
fields. As will be discussed in Sec. Il, functional differentia-
The gauge-invariance principle is one of the basic ingretion with respect to superfields will be essential in finding a
dients in the search for a description of the fundamental prosuperspace version for the operator but for constrained
cesses involving elementary particles. Gauge invariance isuperfields we cannot find a general definition for functional
translated at the quantum level into the fermionic rigidderivatives. In order to overcome this obstacle we will con-
Becchi-Rouet-Stora-TyutitBRST) invariance[1] and is im-  sider an alternative derivation for the BV action proposed in
portant in the proof of unitarity and renormalizability of field [10]. In this so-called collective approach to BV, the set of
theories[2]. fields of the classical theory and also the ghosts, antighosts,
The path integral quantization of gauge-field theoriesand auxiliary fields associated with the original gauge sym-
poses some interesting problems. The naive integration ovemetries is trivially doubled. This leads to nevivial) shift
all the field configurations would lead to an overcounting ofsymmetries. These extra symmetries can then be gauge fixed
physically equivalent ones. A mechanism of factoring out(adding new ghosts, antighosts, and auxiliary figldssuch
this overcounting, at least for some special kind of gaugea way that the BV action is recovered after the extra fields
field theories was proposed by Faddeev and P¢Bav are integrated out. The antighosts of the trivial symmetries
The Batalin-Vilkovisky (BV) formalism [4—6], also are identified as playing the role of the associated antifields.
called field-antifield quantization, is a Lagrangian BRST pro-The transformations of the fields are chosen in such a way
cedure that generalizes the Faddeev-Popov mechanism atitht at least for the superfields that will be relevant in build-
also incorporates the idg&] of including sources of the ing the superspacg& operator the components will be inde-
BRST transformations as independent variables as an impopendent.
tant tool for deriving the Ward identities. The formalism is  In the present article we will investigate a superspace ver-
defined in an extended space that includes the fields and als@on of the field-antifield formalism at one-loop orderfin
the BRST sources, called antifields. In this space, the WartVe will find out that the master equation implies a certain
identities, representing the BRST invariance of the vacuunstructure for the superfield associated with the quantum ac-
functional, can be cast into a general expression, called #aon. We will also see that the Pauli-Villars regularization
master equation. One of the main goals of this general apzan be formulated in this BRST superspace. A well-defined
proach is that for the case of reducible gauge theories ineaning can thus be given to the superfield structure of the
furnishes a systematic way of building up the nontrivial quantum action. The example of W2 gravity will nicely il-
ghost for ghost structure. Also quantum corrections from theaustrate the formulation.
path integral measure, for anomalous gauge theories, can be The article is organized as follows. In Sec. Il we discuss
calculated as long as a regularization procedure is introducetthe superspace formulation for the BRST symmetry, explain-
[7]. ing why we use the collective field approach rather than the
It is known that superspace formulations for gauge-fieldusual BV. In Sec. Ill we review the superspace formulation
theories can be built up in such a way that the BRST transfor BV at classical level. In Sec. IV we present the general
formations are realized as translations in a Grasmannian cderm of the master equation and of the superfield associated
ordinate[8]. It has also recently been sho@ that the BV  with the quantum action at one-loop order. Section V is de-
formalism at classical levékero order ini) can also be cast voted to the Pauli-Villars regularization in superspace. In
in such a BRST superspace form. Sec. VI we show the form of the superfield action at one-
If we use the standard BV formulation, when we go to theloop order. The example of W2 gravity is discussed in Sec.
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VIl and Sec. VIII contains some concluding remarks. case of a field with vanishing BRST transformation, as for
example the ghost fields in QED. For the associated super-
Il. BRST SUPERSPACE field, with no & component, if we try to define a functional

) derivative satisfying Eq(5) we would arrive at the contra-
Superspace formulations for the BRST transformal®n  giction that the functional in Eq(6) vanishes and would
are obtained by associating with each fiel(ix) a (BRST) have a nonvanishing derivative.
superfield of the form In standard supersymmetry a similar situation happens
_ when one considers chiral or antichiral superfields. A func-
D(x,0)= b(x) + 05¢(X) (1) tional derivative can be defined for these special constrained
superfields but Eq5) is replaced by an appropriate version
htgat takes the particular constraint into account. It is however
impossible to define functional derivativéand also path
integration) for general constrained superfieldil].
J In order to have a general superspace version for the BV
6P (x,0)= —D(Xx,0). 2 master equation at one-loop order we should find a super-
20 . . -
space version of the operatar, that involves two functional

In order to apply this idea to the BV master equation atderivatives. As we have seen, jl_Jst substituting field_s by
one-loop order, it is crucial that we define in a very preciseBRST superfields would be meaningless unless one finds a
way functional derivatives with respect to superfields. Let ugeneral definition for their functional derivatives. An inter-

start considering a general bosonic superfield of the form ©sting way to overcome this obstruction is to use the so-
called collective field approach to BV. As we will see in the

where 6¢(x) is the BRST transformation ofs(x). The
BRST transformations are then realized as translations in t
6 variable:

A(X,0)=A(x)+ 6B(x), (3  following sections, the BRST algebra in this case will be
such that, at least for the fields that will be used in the
whereA(x) andB(x) are independent quantities: operator, condition$4) hold.
6B(x) SA(X)
——— =0, ——=0. (4) Ill. SUPERSPACE FORMULATION
SA(X) oB(x") AT CLASSICAL LEVEL
If we define a functional derivative so as to satisfy In Ref. [9] a superspace formulation for the collective
A field approach to the Batalin-Vilkovisky action at the order
2 (),("92 = S(x—x")8(0"— 0)=S(x—x")(0' — 6), zero in & was prgseqted for.the case of thg Yang-Mills
SA(X",0") theory. Here we will briefly review this formulation, present-
5 ing it in a general way for gauge theories with closed gauge
algebra.

we recover, for superspace functionals, the usual interpreta-

) ; . nsiderin -field theory characteriz las-
tion of the functional derivative, such as, for example, Considering a gauge-field theory characterized by a clas

sical actionSy[ ¢'] we introduce ghosts, antighosts, and aux-

S iliary fields associated to the original gauge invariance of
—f dx’f dO'[A(X",60")]°=2A(x,0). (6) Sy in the usual way. The new enlarged set of fields is then
OA(X,0) denoted asp”. These fields realize the BRST algebra repre-

It is important to remark that this superfield functional de—SentEOI as

rivative has a Grassmanian parity opposite to the associated 5 P—RA 9
field. We can also express the derivative with respect to the 0¢" =R ]. ©
superfield in terms of derivatives with respect to its compo-

nents: Then we introduce a new set of fields called collective

fields ¢” and replace everywherg” by ¢"— ¢*. This way
1) 6 1) we double the field content of the theory and at the same
SA(X,0) 5B(x)+ o SA(X) (7) " time associate with each field a new trivial shift symmetry.
In order to gauge fix these new symmetries we introduce
Considering now the BRST superfields of Efy), condi- new ghosts, antighosts, and auxiliary fields, represented re-
tion (4) of independent components clearly does not hold irspectively asz”, ¢*#, andB*. We have a large freedom in
general. Actually one-loop level corrections are just associchoosing the BRST transformations for this enlarged set of

ated with the contributions frortsingula) terms such as fields. Following[10] let us define the enlarged BRST alge-
bra as
O(OgrsT) ® _ _
8¢ sph=mt, S¢i=m"-Rip—¢], o7"=0,
We will thus be dealing in general with constrained super- s¢p*A=BA,6BA=0, (10
fields.

A simple way to realize that for the BRST superfields of and the total action as
Eq. (1) the naive application of superfield functional deriva- o _
tives would lead to contradictory results is to consider the Seo=So[ @' — ' 1— 8(p* A ™) + Syl ], (11)
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where ¢ ¢*] is a fermionic functional representing the i

gauge fixing of the original symmetrig¢9). The BV gauge- ex gSBv

fixed classical action is obtained if one functionally inte-

grates the vacuum functional associated w&tover 7, ~a A A N
'(ZA' andBA. =J D ¢"D ¢* D7 DB exp} Seot %tb ™.

Now, the BRST superspace formulation is obtained intro-
ducing the superfields

J
d)A’T:fA_l— QDA

(15

For ¢*=0 this reduces to the gauge-fixed BV action. For
DA(X, 0) = GA(X) + O7(X) =0 we get the non-gauge-fixed action.
IV. SUPERSPACE VERSION

BA(X, )= $A(X) + (A (x) — RA b — &), OF THE MASTER EQUATION

We will first investigate the BRST variation of the quan-
tum action in the standard field-antifield quantization
D*A(X,0) = p* A(x) + OBA(X). (12 method. Then we will see the corresponding behavior in the
collective field approach. We will consider the case of gauge
theories with closed gauge algebra. Anomalies may in gen-
We can also associate superfields with the ghosts and tisal have a nontrivial dependence on the antifi¢ld3; 14).
auxiliary fields of the shift symmetry but they would have a We will however consider here a regularization procedure

trivial structure:I1A(x, 8) = 7(x), BA(X, 6) = BA(x). that will only provide for the antifield independent part of
Considering the sdil2) we can define a superfield action AS. For gauge theories with closed algebras one can consis-
as tently consider this part separatdlys]. Recently proposed

nonlocal[16] or antifield dependentl7] regularization pro-
cedures are also out of the scope of our present superspace
o~ J - formulation.
Seo=So[P' = P'] - a—a{‘D*A‘I’A—‘I’[q’a]}- (13 The condition of gauge independence of the vacuum func-
tional

Iy

. . - i
This object actually has a trivial superspace structure as Z‘I’:J H D‘bAeXF{gW ¢A,¢*A: _A)
its & component is zerog,,= S, . It may thus seem mean- d¢
ingless at this stage to associate a superfield with the action. . .
We will see however in the next section that when higher-IS translated into the so calldduantur) master equation
order terms i are taken into account the situation is rather 1
different. At classical levelS,,, is BRST invariant, therefore E(W'W):iﬁAW, (16)
the associated superfield must have a zZeommponent, ex-
pressing what we will see in the next section to correspond to . . i
the zero-order term of the master equation. We will see in thg_vher)e(/ the Y/anufﬁr\agket X/ IS . def\l(r}ed I 5(¥{h)
next section that at higher order inthe quantum action is =(9:X19¢%) (Y139 %) = (9, XId$*%) (3 YId$%) an €

= a *
not BRST invariant and the associated superfield structur@Perator Delta ad=(d,/d¢%)(d/d¢z). o
will not be trivial. The quantum action can be expanded in a power series in

Concluding this section we remark that in the collective? a3SW(¢",¢**)=S(¢%,¢**) + Z7_17PM (6%, ¢*7). We
field approach of10], presented here, the fields*” that will be concerned here with just the first two terms, since we
play the role of antifields are substituted by the gauge-fixing?'® considering just one—I'oop corrections. In order to inves-
conditions, after integration over the auxiliary fields. In othertigate the behavior ofV with respect to BRST transforma-
words, we get the BV gauge-fixed action. One may howeveHONS, let us consider the BRST transformation for some
be interested in an action that still involves the antifields, agiuantityX in the standard BV languadé2]:
for example, if one wants to build up an effective action in _ ) _
terms of classical fields and antifielfls]. In order to show OX=(X,W)—i1hAX; (17)
that the collective field approach can also reproduce this non:

. f we chooseX=W and consider that we are dealing with a
completely gauge-fixed result we can add3g, the term : LI .
pietely gaug el nonanomalous theory such that the master equation is satis-

fied we get, from Eqgs(17) and(16),
d .
ﬁ(q)AQA):gDAﬂ_A, (14) SW=ihaAW. (18)

This condition is equivalent to the master equation.
Under our present assumption tiht does not depend on
where¢” are BRST invariant external fields with parity op- the antifields we havéup to one-loop order onjy
posite to that of¢”. Integration over the auxiliary fields
would recover the BV action with external antifields as 6S=0, OM;=iAS. (19
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Going now to the collective field case, we see from Eqg. At this point one could question the lack of an antibracket
(13) that the extended actidB,, is also BRST invariant. For structure in the present superspace approach. However, look-
the action of theA operator we get a similar result in the ing at Eqs(2) and(25) one realizes that the role of generator

collective field approach and in the standard one: of BRST transformations is essentially played by the differ-
entiation with respect t@. Therefore, enlarging the configu-
AS—AS _ g 9 s 20 ration space with the variablé, we are equipping it with
ol g R gp* ATl Grassmanian translations that reproduce the effect of the an-

tibrackets. So, this structure is not necessary and would be
It should be noted, however, that in the collective field caseedundant.
¢*” are not antifields but rather antighosts of the shift sym-

metry. Therefore, at one-loop order, we must build up a su- V. ONE-LOOP ORDER REGULARIZATION
perfield IN SUPERSPACE
M [ A= DA = M,[ A — AT+ 6i A S, (21) The Pauli-Villars regularization procedure is the most
suitable for the BV formalism at one-loop ordé,7,18,19.
and the general form of the superfield action will be We will consider, for simplicity, the case of just one Pauli-
_ Villars (PV) field associated to each field of the theory. In
W=W+6ifi AW. (22)  some cases one needs a set of PV fields but this modification

) ) ) o would not change the superspace structure, as will be seen in
Actually this expression for the superfiell is just for-  he example. In the present superspace formulation the field
mal, in the same way as the master equafi) itself. We  conient of the theory is enlarged by the addition of the col-
can only have a precise interpretation for terms involving thgetive fields and the gauge-fixing structure of the associated
operatorA, where two functional derivatives act on the samegpft symmetries. We will build up a Pauli-Villars superfield
space-time point if some regularization procedure is appliedction corresponding to a collective field version of the stan-

[7]. We will show in the next section how the Pauli-Villars y5,q pv action, or equivalently, to a PV partner of action
regularization procedure can be implemented in this SUpers_ of Eq. (13);

space.
Let us now define, in the collective field space, the opera- 1 _ _
tor Sev=5 (X=X (TO)ap(x*~X°)
A= | dx|[ déo| d¢’ i d (23) L A_~A B_~B\_ 0 xA=n
8= ) o SDA(X,0) SP*A(x,0")’ — oM =X Tas(x"—x )—ﬁ(zc* X").
where we have indicated explicitly the integrations over 27

space-time and Grassman variables, omitted in the previous o ] ] ] )
expressions, because of the nontrivial fofthe functional AS in [7], the matrixT is an arbitrary invertible one while
derivatives are taken in the same space-time point but if O'is
different Grassman coordinajes

. Looki_ng at Eq.(12) we see that the _superfields ilnvolved (TO)pg= ‘?lA aIBS,(q)A,a_"bA), (28)
in A satisfy Eq.(4). Therefore the functional derivatives are IP" IP d¢
well defined and we can also use the decomposition in com- ] ) o .
ponents(7) in order to calculate whereS' (DA, 9y 9¢™) is obtained from the original action
(11) after removing the collective fields:
AS.=A [ ax] dor- 26,03 x,0)] L y |
exg -S| A —=%| = f D ¢*D 7m*DB"exp —Scq| -
A f e fi
:f S (RA) 0
SPA(x)

In order to build up the PV superfields we must define
This is precisely the result that one obtains in the standartheir enlarged BRST algebra. We define the matrix
BV formalism if the A operator is naively applied to the
classical action. We have thus found a superspace represen- Ko J is 30
tation for this operator. ABT 5p*A gpB=rol (30
The master equation in superspace then reads
whereS is the action of Eq(13), which actually has n@

iw—'ﬁAW (25) component, and impose that the nonexten@eithout col-
aa—_' - lective fields BRST algebra for the PV fields reads
or order by order S X *=Kapx®. (32)
iS=O iM _iA 26 Following the steps of Sec. Il we find the enlarged algebra
a0= T 961 ' for the PV fields and build up the associated superfields:
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AX,(9: AX+0 [X]A, i

XX 0)=x"(x) + b AW+ = (W,W)=A=c"A,,.

YA TA [x]A B_~B 2h

X7(X,0)=x"(x)+ 0(m X" = Kag(x~ = x")),

The symmetries associated to the ghastsare said to be
broken by the anomalous behavior of the path integral mea-

As usual, the PV fields are defined formally in such a Way,[sﬁée;'olr?nthls case the BRST transformation for the action has

that their one-loop contributions have a minus sign relative
to the original fields. The action of the operathron the
regularized total action is, thus,

XA, 0)=x*A(x)+ oBIYA, (32

SW=ihAW—2i%CA,,.

s, 5 The superfield associated with the quantum action will then
é(§+§Pv)EJ de daf da’(5¢A(X 8) 57 Ax.07) look like
5, ) i W=W+ 0(iAAW—2iHc*A,). (37)
+ 5XA(X!0) 5X*A(X,(9’) (7+7PV)

It is interesting to discuss in our superspace formulation

=0. (33)  the mechanism of restoring gauge invariance by the inclu-

sion of additional degrees of freedom associated with the

The regularized form oAS in the nonsuperspace case (broken gauge group, proposed by Faddeev and Shatashvili
shows up in the violation of the zero-order master equatio20]. In the BV formalism this mechanism is implemented

associated with the presence of the mass term. In superspalg enlarging the field-antifield spa¢21] by including fields

this absence of BRST invariance of the tofetgularized  associated with the gauge group. This way one can find a

classical actiorsr= S+ Spy, is translated into the presence of description for a(potentially anomalous gauge theory in

a # component in the corresponding superfield: which the classical symmetries are realized at the quantum
level, at the cost of some of the gauge group degrees of
Sr=S+Spy=Sr+ 65Sr. (349 freedom becoming dynamical. In the present one loop level

superspace formalism this, so called Wess-Zumino mecha-
nism, corresponds to finding out a superfiélavolving the
additional field antifield pains

The general form obS; is

8Sr=M| (X=X TacK§(x®—X®)

M1:M1+ a(iAS)reg- (38)
1 ~ ~
+ E()(A—XA) STas(xB—%®) |. (35 such that the superfield action takes the nonanomalous form
(22) and one says that the anomalies have been canceled.
Integration over the fields'X)A, BIXIA, and¥A removes the As remarked ir{22], another interesting interpretation for

extended collective field structure, recovering the usual relNiS mechanism of canceling the anomalies in the original

sult as in[7], that corresponds in E¢35) just to the absence gauge symmgtries, is that.actually the anomalies are not can-
of the collective tilde fields. The next step would be to inte-C€!€d but shifted to a trivial sector of symmetries. One ar-

grate over the PV fields. We will not repeat this procedure/ V€S at this result considering that the extra fields that realize
here as it is widely discussed in the literat(i6e7,15,18,19 the Wess-Zumino mechanism are not present at the classical
Let us assume that a regularized form of the BRST change ilfV€! @nd one should thus include in the classical action a
the total action §Sr) ., Was calculated. Using E¢L8) up to gauge-fixing term associated with the invariance with respect
one-loop order terms we find the relation between the BRSO @ny shift in these fields. Taking this point of view, the

variation of the regularized action and the desired regularizel™™ ©f the superfield action, even after the Wess-Zumino
AS: term is included, is still as in Eq37); the only difference is

that the anomalies are shifted to extra ghafitsassociated
i71(AS) reg= (ST reg- (36)  with the (broken trivial shift symmetries of the additional
fields. This situation will be clarified in the example of the
VI. ANOMALOUS GAUGE THEORIES next section.
Genuine anomalies are characterized by a violation of the VII. EXAMPLE
master equatiofi7]. For these kind of theories, it is not pos- _ ) ) )
sible to find anM, term in the original space of fields and ~ Let us consider W2 gravity theory as an interesting ex-
antifields, such that the master equatia) is satisfied. As ample of an anomalous gauge theory that can be cast into the
already explained, in the present superspace formulation wRfesent superspace BV formulation. The classical theory is
are considering the particular case in which the regularizadescribed by
tion procedure provides just the antifield independent contri-
butions toAS. We will thus consider only antifield indepen-
dent anomalies and Wess-Zumino terms. Under this
assumption, the violation of the master equation is of the
form The BRST algebra associated to this theory is

1
SO:EJ d>x[9pd¢p—h(a¢)?].
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Sop=Cd¢, JSoh=dc—hdc+dhc, §oc=(ﬁc)c,(39) §M=—%M2j dle,zeaﬂ,_ 43

wherec is the ghost associated with the original gauge in-  The pv superfields involved in this action are
variance ofS;.

Now we follow the procedure of Sec. Il and enlarge x(X,8)= x(x)+ o7X)(x),
the field content of the theory introducing the collective -
fields associated withp, h, and c, represented by tilde Y(X,0)=%(X)+ 6(mX(x) = ¢’ (x)dx’ (X)),
fields, the ghosts, antighosts, and auxiliary fields. Then we =
build up the superfields ®(x,6),D(x,0),D*(x,0), X*(X,0)= x* (x)+ 6BIXI(x). (44)
H(x 0), H(x 0),H*(x,6), 7n(X,0) =c(x)+ 65c(x), -
7(x,6), 7% (x,0) as in Eq.(12). Defining now the total action as
We will adopt the notatiors’ =0 —o for all fields and
superfields in the rest of the section. The superfield action at Sr=S+Spy=Sr+ 605S5r (45
classical level is
we have
S=5+5,+S,, (40 L
_ 2 212 ’ ’ "
with the collective field version of the classical action, 55T‘ﬁf dXMx"[(1-a)ic’ —ad']e” “. (46)
1 = At this point i
_ = | 42 130 "2 point we arrive at the standafdonsuperspage
TJ AP 9P =H (907)7] results. Actually one needs a set of PV fiejdsin order to
o . regularize the above expression. They are, however, all of
the gauge fixing of the shift symmetry, the same form and, in our superspace formulation, will all
have actions like Eq41). The regularized resulgafter inte-
Si=-— %j dZX[(I)* &')_’_ H*ﬁ‘f‘ 77*%]1 grating out the PV fieldsis [19,22]
1.
and the gauge fixing for the original symmetry, 7 (10S7)reg= (AS)reg
=—f d?X W (P,H, 7). =Tom d2X[((1— a)dc’ — ad’)(9?h’
To realize the Wess-Zumino mechanism one includes an —a(&gp')—é(h’&p’))]. (47)
extra field p transforming according to the original gauge _ _ _ _
transformations associated with the ghostnd also with an The superfield action at one-loop order, using this regu-

additional shift symmetry associated with an extra ghigst larization will then have the general form
representing the absence of this field at classical [gV@&t )
Mi(a)=My(a)+ 0(i(AS)ed @) +A(a)),  (48)
6 p=dc+cdp+d.
0 where M (@) is the Wess-Zumino term. It is possible to
We introduce a collective field structure for this field, and €h00se this term in such a way that the anomaly is always
associate with it the superfieléﬁs(x,0),§(x,0),Q*(x,0) as shifted to the trivial symmetry associated to the ghhgEor

in Eq. (12). Usually one is interested in calculating the con- "€ @ =0 case the appropriate choice is

tributions from the matter fieldg only, considering the field 1 (1 _ 1

h as a background. Therefore we introduce, a§28], a Ml(a=0)=—( =00 90" — =H'(dQ")?>+H'3°Q’
Pauli-Villars field associated withy that will be represented 127 | 2 2

as y and define the PV superfield action, 1 [ 1 1 1
= ~p'ddp'+=p'dn dp’+ =p'h' &*p’
Spv=Spvot SpvitSu, (41 12| 2 2 2
with the first two terms analogous to the corresponding terms +h'9%p’ +gi( ¢’ a3h' +d'92h’
of the original fields,

. —d’adp’ —h'ad’ ap")

Spy 0= fdzx& "ax’ —H'(ax")? 42 A)

PV 0T 5 [ax"ax' —H"(ax")7], (42) =M+ 6(iAS+dA), (49
, with

§PV1___deX X

1 _
- 2h/ _ "+ 9h' "+h' 2 1 .
and the mass term 1277(& dop +Indp p’)
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Considering noww=1, it can be seen from E@47) that ries have not yet been considered in this context. The
in this case the regularization procedure itself leads to aBatalin-Vilkovisky procedure represents a very powerful
anomaly only in the trivial symmetry associateddtdNe can  framework for the quantization of this kind of theories. We
thus choose have shown that théormal) master equation of the BV for-

malism can be represented as the requirement (&ranal)
Mi(a=1)=0, (50)  superspace structure for the quantum action. At one-loop or-
der, using the collective field approach to BV, we have
shown that the Pauli-Villars regularization procedure can be
A(a=1)=—i(AS)fa=1) trgnslated to superspace and that the su_perf?eld associated
with the one-loop order term of the action involves the

and the anomaly will be

B anomalies and Wess-Zumino terms. An interesting point that
T 12 d™d'(a°h'=adp’+h'dp’). (5D remains as an object of future investigation is the extension
of this superspace formulation for the more general cases in
Integration over the auxiliary fields leads to the usual nonwhich anomalies and Wess-Zumino terms depend on the an-
superspace results, but it is important to stress that the supdifields.
space formulation requires the presence of the collective
fields and the associated gauge fixing structure. ACKNOWLEDGMENTS
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