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It is shown that the quantum master equation of the field-antifield quantization method at one-loop order can
be translated into the requirement of a superfield structure for the action. The Pauli-Villars regularization is
implemented in this BRST superspace and the case of anomalous gauge theories is investigated. The quantum
action, including Wess-Zumino terms, shows up as one of the components of a superfield that includes the
BRST anomalies in the other component. The example of W2 quantum gravity is also discussed.
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I. INTRODUCTION

The gauge-invariance principle is one of the basic ingr
dients in the search for a description of the fundamental p
cesses involving elementary particles. Gauge invariance
translated at the quantum level into the fermionic rig
Becchi-Rouet-Stora-Tyutin~BRST! invariance@1# and is im-
portant in the proof of unitarity and renormalizability of field
theories@2#.

The path integral quantization of gauge-field theori
poses some interesting problems. The naive integration o
all the field configurations would lead to an overcounting
physically equivalent ones. A mechanism of factoring o
this overcounting, at least for some special kind of gaug
field theories was proposed by Faddeev and Popov@3#.

The Batalin-Vilkovisky ~BV! formalism @4–6#, also
called field-antifield quantization, is a Lagrangian BRST pr
cedure that generalizes the Faddeev-Popov mechanism
also incorporates the idea@2# of including sources of the
BRST transformations as independent variables as an imp
tant tool for deriving the Ward identities. The formalism i
defined in an extended space that includes the fields and
the BRST sources, called antifields. In this space, the W
identities, representing the BRST invariance of the vacuu
functional, can be cast into a general expression, calle
master equation. One of the main goals of this general
proach is that for the case of reducible gauge theories
furnishes a systematic way of building up the nontrivi
ghost for ghost structure. Also quantum corrections from t
path integral measure, for anomalous gauge theories, ca
calculated as long as a regularization procedure is introdu
@7#.

It is known that superspace formulations for gauge-fie
theories can be built up in such a way that the BRST tran
formations are realized as translations in a Grasmannian
ordinate@8#. It has also recently been shown@9# that the BV
formalism at classical level~zero order in\) can also be cast
in such a BRST superspace form.

If we use the standard BV formulation, when we go to th
5456-2821/96/54~6!/4080~7!/$10.00
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BRST superspace we will in general find constrained sup
fields. As will be discussed in Sec. II, functional differentia
tion with respect to superfields will be essential in finding
superspace version for the operatorD, but for constrained
superfields we cannot find a general definition for function
derivatives. In order to overcome this obstacle we will co
sider an alternative derivation for the BV action proposed
@10#. In this so-called collective approach to BV, the set
fields of the classical theory and also the ghosts, antigho
and auxiliary fields associated with the original gauge sy
metries is trivially doubled. This leads to new~trivial! shift
symmetries. These extra symmetries can then be gauge
~adding new ghosts, antighosts, and auxiliary fields! in such
a way that the BV action is recovered after the extra fie
are integrated out. The antighosts of the trivial symmetr
are identified as playing the role of the associated antifie
The transformations of the fields are chosen in such a w
that at least for the superfields that will be relevant in bui
ing the superspaceD operator the components will be inde
pendent.

In the present article we will investigate a superspace v
sion of the field-antifield formalism at one-loop order in\.
We will find out that the master equation implies a certa
structure for the superfield associated with the quantum
tion. We will also see that the Pauli-Villars regularizatio
can be formulated in this BRST superspace. A well-defin
meaning can thus be given to the superfield structure of
quantum action. The example of W2 gravity will nicely il
lustrate the formulation.

The article is organized as follows. In Sec. II we discu
the superspace formulation for the BRST symmetry, expla
ing why we use the collective field approach rather than
usual BV. In Sec. III we review the superspace formulati
for BV at classical level. In Sec. IV we present the gene
form of the master equation and of the superfield associa
with the quantum action at one-loop order. Section V is d
voted to the Pauli-Villars regularization in superspace.
Sec. VI we show the form of the superfield action at on
loop order. The example of W2 gravity is discussed in S
4080 © 1996 The American Physical Society
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54 4081SUPERSPACE FORMULATION FOR THE MASTER EQUATION
VII and Sec. VIII contains some concluding remarks.

II. BRST SUPERSPACE

Superspace formulations for the BRST transformation@8#
are obtained by associating with each fieldf(x) a ~BRST!
superfield of the form

F~x,u!5f~x!1udf~x! ~1!

where df(x) is the BRST transformation off(x). The
BRST transformations are then realized as translations in
u variable:

dF~x,u!5
]

]u
F~x,u!. ~2!

In order to apply this idea to the BV master equation
one-loop order, it is crucial that we define in a very prec
way functional derivatives with respect to superfields. Let
start considering a general bosonic superfield of the form

L~x,u!5A~x!1uB~x!, ~3!

whereA(x) andB(x) are independent quantities:

dB~x!

dA~x8!
5 0,

dA~x!

dB~x8!
5 0. ~4!

If we define a functional derivative so as to satisfy

dL~x,u!

dL~x8,u8!
5d~x2x8!d~u82u!5d~x2x8!~u82u!,

~5!

we recover, for superspace functionals, the usual interpr
tion of the functional derivative, such as, for example,

d

dL~x,u!
E dx8E du8@L~x8,u8!#252L~x,u!. ~6!

It is important to remark that this superfield functional d
rivative has a Grassmanian parity opposite to the associ
field. We can also express the derivative with respect to
superfield in terms of derivatives with respect to its comp
nents:

d

dL~x,u!
5

d

dB~x!
1u

d

dA~x!
. ~7!

Considering now the BRST superfields of Eq.~1!, condi-
tion ~4! of independent components clearly does not hold
general. Actually one-loop level corrections are just asso
ated with the contributions from~singular! terms such as

d~dBRSTf!

df
. ~8!

We will thus be dealing in general with constrained sup
fields.

A simple way to realize that for the BRST superfields
Eq. ~1! the naive application of superfield functional deriv
tives would lead to contradictory results is to consider t
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case of a field with vanishing BRST transformation, as f
example the ghost fields in QED. For the associated sup
field, with no u component, if we try to define a functiona
derivative satisfying Eq.~5! we would arrive at the contra-
diction that the functional in Eq.~6! vanishes and would
have a nonvanishing derivative.

In standard supersymmetry a similar situation happe
when one considers chiral or antichiral superfields. A fun
tional derivative can be defined for these special constrain
superfields but Eq.~5! is replaced by an appropriate versio
that takes the particular constraint into account. It is howev
impossible to define functional derivatives~and also path
integration! for general constrained superfields@11#.

In order to have a general superspace version for the
master equation at one-loop order we should find a sup
space version of the operatorD, that involves two functional
derivatives. As we have seen, just substituting fields
BRST superfields would be meaningless unless one find
general definition for their functional derivatives. An inter
esting way to overcome this obstruction is to use the s
called collective field approach to BV. As we will see in th
following sections, the BRST algebra in this case will b
such that, at least for the fields that will be used in theD
operator, conditions~4! hold.

III. SUPERSPACE FORMULATION
AT CLASSICAL LEVEL

In Ref. @9# a superspace formulation for the collectiv
field approach to the Batalin-Vilkovisky action at the orde
zero in \ was presented for the case of the Yang-Mil
theory. Here we will briefly review this formulation, present
ing it in a general way for gauge theories with closed gau
algebra.

Considering a gauge-field theory characterized by a cl
sical actionS0@f i # we introduce ghosts, antighosts, and au
iliary fields associated to the original gauge invariance
S0 in the usual way. The new enlarged set of fields is th
denoted asfA. These fields realize the BRST algebra repr
sented as

d0f
A5RA@f#. ~9!

Then we introduce a new set of fields called collectiv
fields f̃A and replace everywherefA by fA2f̃A. This way
we double the field content of the theory and at the sam
time associate with each field a new trivial shift symmetr
In order to gauge fix these new symmetries we introdu
new ghosts, antighosts, and auxiliary fields, represented
spectively as,pA, f* A, andBA. We have a large freedom in
choosing the BRST transformations for this enlarged set
fields. Following@10# let us define the enlarged BRST alge
bra as

dfA5pA, df̃A5pA2RA@f2f̃#, dpA50,

df* A5BA,dBA50, ~10!

and the total action as

Scol5S0@f i2f̃ i #2d~f* Af̃A!1dc@fA#, ~11!
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where c@fA# is a fermionic functional representing th
gauge fixing of the original symmetries~9!. The BV gauge-
fixed classical action is obtained if one functionally int
grates the vacuum functional associated withS over pA,
f̃A, andBA.

Now, the BRST superspace formulation is obtained int
ducing the superfields

FA~x,u!5fA~x!1upA~x!,

F̃A~x,u!5f̃A~x!1u„pA~x!2RA@f2f̃#…,

F* A~x,u!5f* A~x!1uBA~x!. ~12!

We can also associate superfields with the ghosts and
auxiliary fields of the shift symmetry but they would have
trivial structure:PA(x,u)5pA(x), BA(x,u)5BA(x).

Considering the set~12! we can define a superfield actio
as

Scol5S0@F i2F̃i #2
]

]u
$F* AF̃A2C@Fa#%. ~13!

This object actually has a trivial superspace structure
its u component is zero (Scol5Scol). It may thus seem mean
ingless at this stage to associate a superfield with the ac
We will see however in the next section that when high
order terms in\ are taken into account the situation is rath
different. At classical level,Scol is BRST invariant, therefore
the associated superfield must have a zerou component, ex-
pressing what we will see in the next section to correspon
the zero-order term of the master equation. We will see in
next section that at higher order in\ the quantum action is
not BRST invariant and the associated superfield struc
will not be trivial.

Concluding this section we remark that in the collecti
field approach of@10#, presented here, the fieldsf* A that
play the role of antifields are substituted by the gauge-fix
conditions, after integration over the auxiliary fields. In oth
words, we get the BV gauge-fixed action. One may howe
be interested in an action that still involves the antifields,
for example, if one wants to build up an effective action
terms of classical fields and antifields@5#. In order to show
that the collective field approach can also reproduce this n
completely gauge-fixed result we can add toScol the term

]

]u
~FAwA!5wApA, ~14!

wherewA are BRST invariant external fields with parity op
posite to that offA. Integration over the auxiliary fields
would recover the BV action with external antifields as
e
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expH i

\
SBVFfA,

]c

]fA1wAG J
5E Df̃ADf*DpADBAexpHScol1 ]

]u
FAwAJ .

~15!

For wA50 this reduces to the gauge-fixed BV action. For
c50 we get the non-gauge-fixed action.

IV. SUPERSPACE VERSION
OF THE MASTER EQUATION

We will first investigate the BRST variation of the quan-
tum action in the standard field-antifield quantization
method. Then we will see the corresponding behavior in th
collective field approach. We will consider the case of gaug
theories with closed gauge algebra. Anomalies may in gen
eral have a nontrivial dependence on the antifields@13,14#.
We will however consider here a regularization procedur
that will only provide for the antifield independent part of
DS. For gauge theories with closed algebras one can cons
tently consider this part separately@15#. Recently proposed
nonlocal@16# or antifield dependent@17# regularization pro-
cedures are also out of the scope of our present superspa
formulation.

The condition of gauge independence of the vacuum func
tional

ZC5E ) DFAexpF i\ WS fA,f* A5
]c

]fAD G
is translated into the so called~quantum! master equation

1

2
~W,W!5 i\DW, ~16!

where the antibracket is defined as (X,Y)
5(] rX/]fa)(] lY/]f* a)2(] rX/]f* a)(] lY/]fa) and the
operator Delta asD[(] r /]fa)(] l /]fa* ).

The quantum action can be expanded in a power series
\ asW(fA,f* A)5S(fA,f* A)1(p51

` \pMp(f
A,f* A). We

will be concerned here with just the first two terms, since we
are considering just one-loop corrections. In order to inves
tigate the behavior ofW with respect to BRST transforma-
tions, let us consider the BRST transformation for some
quantityX in the standard BV language@12#:

dX5~X,W!2 i\DX; ~17!

if we chooseX5W and consider that we are dealing with a
nonanomalous theory such that the master equation is sat
fied we get, from Eqs.~17! and ~16!,

dW5 i\DW. ~18!

This condition is equivalent to the master equation.
Under our present assumption thatM1 does not depend on

the antifields we have~up to one-loop order only!

dS50, dM15 iDS. ~19!
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54 4083SUPERSPACE FORMULATION FOR THE MASTER EQUATION
Going now to the collective field case, we see from E
~13! that the extended actionScol is also BRST invariant. For
the action of theD operator we get a similar result in the
collective field approach and in the standard one:

DS5DScol5
] r

]fA

] l
]f* A

Scol . ~20!

It should be noted, however, that in the collective field ca
f* A are not antifields but rather antighosts of the shift sym
metry. Therefore, at one-loop order, we must build up a s
perfield

M1@FA2F̃A#5M1@fA2f̃A#1u iDScol , ~21!

and the general form of the superfield action will be

W5W1u i\DW. ~22!

Actually this expression for the superfieldW is just for-
mal, in the same way as the master equation~16! itself. We
can only have a precise interpretation for terms involving t
operatorD, where two functional derivatives act on the sam
space-time point if some regularization procedure is appl
@7#. We will show in the next section how the Pauli-Villar
regularization procedure can be implemented in this sup
space.

Let us now define, in the collective field space, the ope
tor

D[E dxE duE du8
d r

dFA~x,u!

d l
dF* A~x,u8!

, ~23!

where we have indicated explicitly the integrations ov
space-time and Grassman variables, omitted in the previ
expressions, because of the nontrivial form~the functional
derivatives are taken in the same space-time point but
different Grassman coordinates!.

Looking at Eq.~12! we see that the superfields involve
in D satisfy Eq.~4!. Therefore the functional derivatives ar
well defined and we can also use the decomposition in co
ponents~7! in order to calculate

DScol5DE dxE du@2F* A~x,u!F̃A~x,u!#

5E dx
d r„R

A~x!…

dfA~x!
. ~24!

This is precisely the result that one obtains in the stand
BV formalism if the D operator is naively applied to the
classical action. We have thus found a superspace repre
tation for this operator.

The master equation in superspace then reads

]

]u
W5 i\DW, ~25!

or order by order

]

]u
S50,

]

]u
M15 iDS. ~26!
q.
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At this point one could question the lack of an antibrack
structure in the present superspace approach. However, lo
ing at Eqs.~2! and~25! one realizes that the role of generato
of BRST transformations is essentially played by the diffe
entiation with respect tou. Therefore, enlarging the configu-
ration space with the variableu, we are equipping it with
Grassmanian translations that reproduce the effect of the
tibrackets. So, this structure is not necessary and would
redundant.

V. ONE-LOOP ORDER REGULARIZATION
IN SUPERSPACE

The Pauli-Villars regularization procedure is the mo
suitable for the BV formalism at one-loop order@6,7,18,19#.
We will consider, for simplicity, the case of just one Paul
Villars ~PV! field associated to each field of the theory. I
some cases one needs a set of PV fields but this modifica
would not change the superspace structure, as will be see
the example. In the present superspace formulation the fi
content of the theory is enlarged by the addition of the co
lective fields and the gauge-fixing structure of the associa
shift symmetries. We will build up a Pauli-Villars superfield
action corresponding to a collective field version of the sta
dard PV action, or equivalently, to a PV partner of actio
Scol of Eq. ~13!:

SPV5
1

2
~xA2x̃A!~TO!AB~xB2x̃B!

2
1

2
M ~xA2x̃A!TAB~xB2x̃B!2

]

]u
~x* Ax̃A!.

~27!

As in @7#, the matrixT is an arbitrary invertible one while
TO is

~TO!AB5
] l

]FA

] l
]FBS8S FA,

]c

]fAD , ~28!

whereS8(FA,]c/]fA) is obtained from the original action
~11! after removing the collective fields:

expF i\ S8S FA,
]c

]fAD G5E Df̃ADpADBAexpS i\ScolD .
~29!

In order to build up the PV superfields we must defin
their enlarged BRST algebra. We define the matrix

KAB5
] l

]F* A
] r

]FBScol , ~30!

whereS is the action of Eq.~13!, which actually has nou
component, and impose that the nonextended~without col-
lective fields! BRST algebra for the PV fields reads

d
0
xA5KABx

B. ~31!

Following the steps of Sec. II we find the enlarged algeb
for the PV fields and build up the associated superfields:
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4084 54EVERTON M. C. ABREU AND NELSON R. F. BRAGA
xA~x,u!5xA~x!1up@x#A,

x̃A~x,u!5x̃A~x!1u„p@x#A2KAB~xB2x̃B!…,

x* A~x,u!5x* A~x!1uB@x#A. ~32!

As usual, the PV fields are defined formally in such a w
that their one-loop contributions have a minus sign relat
to the original fields. The action of the operatorD on the
regularized total action is, thus,

D~S1SPV![E dxE duE du8S d r
dFA~x,u!

d l
dF* A~x,u8!

1
d r

dxA~x,u!

d l
dx* A~x,u8! D ~S1SPV!

50. ~33!

The regularized form ofDS in the nonsuperspace cas
shows up in the violation of the zero-order master equa
associated with the presence of the mass term. In supers
this absence of BRST invariance of the total~regularized!
classical actionST5S1SPV is translated into the presence
a u component in the corresponding superfield:

ST5S1SPV5ST1udST . ~34!

The general form ofdST is

dST5M S ~xA2x̃A!TACKB
C~xB2x̃B!

1
1

2
~xA2x̃A!dTAB~xB2x̃B! D . ~35!

Integration over the fieldsp@x#A, B@x#A, andx̃A removes the
extended collective field structure, recovering the usual
sult as in@7#, that corresponds in Eq.~35! just to the absence
of the collective tilde fields. The next step would be to in
grate over the PV fields. We will not repeat this procedu
here as it is widely discussed in the literature@6,7,15,18,19#.
Let us assume that a regularized form of the BRST chang
the total action (dST)regwas calculated. Using Eq.~18! up to
one-loop order terms we find the relation between the BR
variation of the regularized action and the desired regulari
DS:

i\~DS!reg5~dST!reg. ~36!

VI. ANOMALOUS GAUGE THEORIES

Genuine anomalies are characterized by a violation of
master equation@7#. For these kind of theories, it is not po
sible to find anM1 term in the original space of fields an
antifields, such that the master equation~16! is satisfied. As
already explained, in the present superspace formulation
are considering the particular case in which the regular
tion procedure provides just the antifield independent con
butions toDS. We will thus consider only antifield indepen
dent anomalies and Wess-Zumino terms. Under
assumption, the violation of the master equation is of
form
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i

2\
~W,W!5A5caAa .

The symmetries associated to the ghostsca are said to be
broken by the anomalous behavior of the path integral me
sure. In this case the BRST transformation for the action h
the form

dW5 i\DW22i\caAa .

The superfield associated with the quantum action will th
look like

W5W1u~ i\DW22i\caAa!. ~37!

It is interesting to discuss in our superspace formulati
the mechanism of restoring gauge invariance by the inc
sion of additional degrees of freedom associated with t
~broken! gauge group, proposed by Faddeev and Shatash
@20#. In the BV formalism this mechanism is implemente
by enlarging the field-antifield space@21# by including fields
associated with the gauge group. This way one can find
description for a~potentially! anomalous gauge theory in
which the classical symmetries are realized at the quant
level, at the cost of some of the gauge group degrees
freedom becoming dynamical. In the present one loop le
superspace formalism this, so called Wess-Zumino mec
nism, corresponds to finding out a superfield~involving the
additional field antifield pairs!

M15M11u~ iDS!reg, ~38!

such that the superfield action takes the nonanomalous fo
~22! and one says that the anomalies have been cancele

As remarked in@22#, another interesting interpretation fo
this mechanism of canceling the anomalies in the origin
gauge symmetries, is that actually the anomalies are not c
celed but shifted to a trivial sector of symmetries. One a
rives at this result considering that the extra fields that real
the Wess-Zumino mechanism are not present at the class
level and one should thus include in the classical action
gauge-fixing term associated with the invariance with resp
to any shift in these fields. Taking this point of view, th
form of the superfield action, even after the Wess-Zumi
term is included, is still as in Eq.~37!; the only difference is
that the anomalies are shifted to extra ghostsdb associated
with the ~broken! trivial shift symmetries of the additional
fields. This situation will be clarified in the example of th
next section.

VII. EXAMPLE

Let us consider W2 gravity theory as an interesting e
ample of an anomalous gauge theory that can be cast into
present superspace BV formulation. The classical theory
described by

S05
1

2pE d2x@]f]f2h~]f!2#.

The BRST algebra associated to this theory is
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d0f5c]f, d0h5 ]̄c2h]c1]hc, d0c5~]c!c,
~39!

wherec is the ghost associated with the original gauge
variance ofS0.

Now we follow the procedure of Sec. II and enlarg
the field content of the theory introducing the collecti
fields associated withf, h, and c, represented by tilde
fields, the ghosts, antighosts, and auxiliary fields. Then
build up the superfields F(x,u),F̃(x,u),F* (x,u),
H(x,u),H̃(x,u),H* (x,u), h(x,u)5c(x)1udc(x),
h̃(x,u),h* (x,u) as in Eq.~12!.

We will adopt the notations85s2s̃ for all fields and
superfields in the rest of the section. The superfield actio
classical level is

S5S01S11S2, ~40!

with the collective field version of the classical action,

S05
1

2pE d2x@]F8]F82H8~]F8!2#

the gauge fixing of the shift symmetry,

S152
]

]uE d2x@F* F̃1H* H̃1h* h̃#,

and the gauge fixing for the original symmetry,

S25
]

]uE d2xC~F,H,h!.

To realize the Wess-Zumino mechanism one includes
extra field r transforming according to the original gaug
transformations associated with the ghostc and also with an
additional shift symmetry associated with an extra ghosd,
representing the absence of this field at classical level@19#:

d
0
r5]c1c]r1d.

We introduce a collective field structure for this field, a
associate with it the superfieldsV(x,u),Ṽ(x,u),V* (x,u) as
in Eq. ~12!. Usually one is interested in calculating the co
tributions from the matter fieldsf only, considering the field
h as a background. Therefore we introduce, as in@22#, a
Pauli-Villars field associated withf that will be represented
asx and define the PV superfield action,

SPV5SPV 01SPV 11SM , ~41!

with the first two terms analogous to the corresponding te
of the original fields,

SPV 05
1

2pE d2x@]x8]x82H8~]x8!2#, ~42!

SPV 152
]

]uE d2xx* x̃,

and the mass term
in-

e
e

we

n at

an
e

d

n-

ms

SM52
1

2p
M2E d2xx8

2
eaV8. ~43!

The PV superfields involved in this action are

x~x,u!5x~x!1up@x#~x!,

x̃~x,u!5x̃~x!1u„p@x#~x!2c8~x!]x8~x!…,

x* ~x,u!5x* ~x!1uB@x#~x!. ~44!

Defining now the total action as

ST5S1SPV5ST1udST ~45!

we have

dST5
1

2pE d2xM2x82@~12a!]c82ad8#er8a. ~46!

At this point we arrive at the standard~nonsuperspace!
results. Actually one needs a set of PV fieldsx i in order to
regularize the above expression. They are, however, all
the same form and, in our superspace formulation, will a
have actions like Eq.~41!. The regularized result~after inte-
grating out the PV fields! is @19,22#

1

\
~ idST!reg5~DS!reg

5
1

12pE d2x@„~12a!]c82ad8…„]2h8

2a~]]r8!2]~h8]r8!…#. ~47!

The superfield action at one-loop order, using this reg
larization will then have the general form

M1~a!5M1~a!1u„i ~DS!reg~a!1A~a!…, ~48!

whereM1(a) is the Wess-Zumino term. It is possible to
choose this term in such a way that the anomaly is alwa
shifted to the trivial symmetry associated to the ghostd. For
thea50 case the appropriate choice is

M1~a50!5
1

12p H 12]V8]V82
1

2
H8~]V8!21H8]2V8J

5
1

12p H 2
1

2
r8]]r81

1

2
r8]h8]r81

1

2
r8h8]2r8

1h8]2r8J 1u
1

12p
~2c8]3h81d8]2h8

2d8]]r82h8]d8]r8!

5M11u~ iDS1dĀ!, ~49!

with

Ā5
1

12p
~]2h82]]r81]h8]r81h8]2r8!.
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Considering nowa51, it can be seen from Eq.~47! that
in this case the regularization procedure itself leads to
anomaly only in the trivial symmetry associated tod. We can
thus choose

M1~a51!50, ~50!

and the anomaly will be

A~a51!52 i ~DS!reg~a51!

5
1

12pE d2xd8~]2h82]]r81h8]r8!. ~51!

Integration over the auxiliary fields leads to the usual no
superspace results, but it is important to stress that the su
space formulation requires the presence of the collect
fields and the associated gauge fixing structure.

VIII. CONCLUSION

Although BRST superspace formulations for gauge the
ries have been known for a while@8#, anomalous gauge theo
7

an

n-
per-
ive

o-

ries have not yet been considered in this context. T
Batalin-Vilkovisky procedure represents a very power
framework for the quantization of this kind of theories. W
have shown that the~formal! master equation of the BV for
malism can be represented as the requirement of a~formal!
superspace structure for the quantum action. At one-loop
der, using the collective field approach to BV, we ha
shown that the Pauli-Villars regularization procedure can
translated to superspace and that the superfield assoc
with the one-loop order term of the action involves t
anomalies and Wess-Zumino terms. An interesting point t
remains as an object of future investigation is the extens
of this superspace formulation for the more general case
which anomalies and Wess-Zumino terms depend on the
tifields.
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