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Chiral symmetry at finite temperature: Linear versus nonlinear o models
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The linear ON) o model undergoes a symmetry-restoring phase transition at finite temperature. We show
that the nonlinear @{) o model also undergoes a symmetry-restoring phase transition; the critical tempera-
tures are the same when the linear model is treated in the mean field approximation and the nonlinear model
is treated to leading plus subleading order in the ®kpansion. We also carefully define and study the
behavior off . and the scalar condensate at low temperatures in both models, showing that they are indepen-
dent of field redefinition[ S0556-282196)00718-1

PACS numbgs): 11.10.Wx, 11.30.Rd, 12.38.Mh

[. INTRODUCTION the Lagrangian, ordered by the dimensionality of the coeffi-
cients or field derivative$5]. The goal is to construct an
The O(N) model as a quantum field theory th+1 di-  effective Lagrangian which describes the low energy proper-

mensions[1] is a basis or prototype for many interesting ties of QCD to the desired accuracy. This whole program
physical systems. The bosonic fied hasN components. really has its origins in the classic works of Weinb&6g7].
When the Lagrangian is such that the vacuum state exhibits Finally, the standard model of the electroweak interac-
spontaneous symmetry breaking it is known as anodel.  tions of Weinberg, Salam, and Glashow has anZdou-
This is the case of interest to us heredir= 3 space dimen- blet scalar Higgs boson field responsible for spontaneous
sions the linear- model has the potential symmetry breaking. If one neglects spin-1 gauge fields the
Higgs boson sector is also ar(4) field theory.

All of these limits are interesting to study at finite tem-
perature. Magnetic materials typically undergo a phase tran-
sition from an ordered to a disordered state. If quarks are
where\ is a positive coupling constant arfd is the pion massless, QCD is expected to undergo a chiral symmetry-
decay constant. The model is renormalizable. In the limit thatestoring phase transitid®,9]. This may have implications
A — the potential goes over to &function constraint on for high energy nucleus-nucleus collisions; see especially
the length of the field vector and is then known as a nonlin{10,11] in this respect. The electroweak theory is expected to
earo model. have a symmetry-restoring phase transition, too, at which

The classical limit of the field theory is obtained by ne- point the baryon number of the early Universe would have
glecting or freezing out the time variable, leaving a field been finally determinefil2].
theory ind dimensions. In this limit, only the zero Matsubara  The linearc model was studied in the classic papers on
frequency of the full @ + 1)-dimensional theory contributes relativistic quantum field theories at finite temperatLt8—
to the partition function, and the temperature acts like a coui5]. The usefulness of leaviny as a parameter arises from
pling constant. One then has a description of arNYD( the fact that there is only one other parameter in the problem,
Heisenberg magnet id dimensions which is a model for the quartic coupling constaiit (. just sets the scale and is
real material systems. This subject has a vast literd63. held fixed in our considerationsFor QCD at least, and per-

WhenN = 4 one has a model for the low energy dynam-haps for electroweak theory tathis is not known, it is re-
ics of quantum chromodynamidQCD). More explicitly, it  lated to the Higgs boson masshe appropriate limit seems
is essentially the unique description of the dynamics of veryto beA>1, possibly even infinity. This limit is the nonlinear
soft pions. This is basically because of the isomorphism bes model. The only proposed expansion parameter for this
tween the groups @) and SU2)XSU(2), the latter being modelis 1N. ForN = 4 the first few terms in this expansion
the appropriate group for two flavors of massless quarks imay not be guantitatively reliable but it is a good start. At
QCD. The linears model, including the nucleon, goes back least in the theoretical world we can imagiNeas large as
to the work of Gell-Mann and Levj4]. This subject also has we wish. Presumably, the physics does not change qualita-
a vast literature. In the last decade much work has been doniely with N as long as it is greater than one.
on chiral perturbation theorywhich starts with the nonlinear Our basic physical interest in this paper is QCD. Among
o model and adds higher order, nonrenormalizable terms tthe questions that are routinely asked are: Does QCD have a

finite temperature phase transition? If so, is it associated with
color deconfinement, or with the restoration of the spontane-

*On leave from INR, Russian Academy of Sciences, Moscowously broken chiral symmetry, or are they inextricably inter-
117312, Russia. twined? What would be the order of this phase transition?
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54 CHIRAL SYMMETRY AT FINITE TEMPERATURE . .. 4067
What would be its critical temperature? How do pions, thedependence of the “pion decay constant,” and the low tem-
Goldstone bosons of QCD, decouple as the temperature fgerature dependence of the “quark condensate.” The first of
raised? How do the quark and gluon condensates behave #ese involves folklore, and the answer, at least in the non-
functions of temperature? Restricting our attentiolNtcfla-  linear o model, is either obvious to the reader or else very
vors of massless quarks, there are strong arguni@rglsand ~ surprising. For the latter two we point out some popular mis-
numerical lattice computation§l6] which say that for conceptions and reproduce the existing resuitsenN = 4)
N;=2 there is a second order phase transition and fowhile showing that they are invariant under field redefinition.
N;=3 there is a first order phase transition. Lattice calcula- First consider the lineasr model. At zero temperature the
tions also suggest strongly that chiral symmetry is restoreéffective potential has a shape similar to the bottom of a
and color is deconfined at the same temperafli7g: wine bottle. It is minimized by a nonzero value of the field;

The QCD Lagrangian is invariant under Ni) X U(N;)  this is the condensate. As the temperature is increased, the
transformations. This is isomorphic to $(N;) X SUr(N;) radius of bottom of the potential shrinks, and goes to zero at
X U paryon (1) X U 4ia(1); that is, left- and right-handed chiral- a critical temperature of ;= y12/(N+2)f . It is a second-
ity transformations of the quark fields, baryon number con-order symmetry-restoring phase transition. In the nonlinear
servation, and the famous axial(1) symmetry. The axial o model|®|? is fixed at the valug?2 . Therefore, it would
U(1) is broken by quantum effects, particularly instantons.seem, chiral symmetry breaking is built into the Lagrangian
Baryons can be added to themodel if desired, but we shall and there is no possibility of restoring it at finite temperature.
not do so. The A{) o model has no vestige of the axial Another way of saying this is that there is no order parameter
U(1), although there do exist versions of themodel based which can go to zero at finite temperature. At least this is the
on other groups in which it can be incorporated. In generalfolklore in much of the nuclear and particle physics commu-
SU(N;) X SU(Ny) is isomorphic to OK?) only for Ny=2.  nity. On the other hand, the critical temperature in the linear
Otherwise, the interactions are different. This restricts anynodel is independent of in the mean field approximation,
potential quantitative results of our analysis of theN( S0 one can take the limt—c and still have a phase tran-
model to QCD toN=4. The very interesting issue of sition. The counter argument to this is that the phase transi-
whether the axial (1) symmetry is restored at high tempera- tion can go away in the limit and so nothing special happens
tures or not cannot be addressed HAi&. at the aforementioned value @i, in the nonlinear model.

One must be careful in understanding hownodels are We shall study the nonlinear model directly in Sec. Il at
being applied to the study of QCD at finite temperature. Atfinite temperature in the largd approximation. To leading
very low temperatures one may argue that the only degreeder inN we shall show quite straightforwardly that despite
of freedom which are excited are pions. One may then usthe constraint the nonlinear model has a second order phase
chiral perturbation theory to study the thermodynamic prop{ransition at a critical temperature equal to that of the linear
erties, as in the classic works of Leutwy[di9]. At the very  model. We shall show that this persists to the next-to-leading
lowest energies this is just the nonlineamodel. Note that order inN, although here we must make an additional high
in this domain one is really studying a fulB+1)-dimen-  energy approximation. The order parameter is identified as is
sional quantum field theory. On the other hand, near théhe nature of the two phases.
critical temperature one may argi(i&, 9] that the soft, long Next, we study what is meant by “the pion decay con-
wavelength modes of QCD are in the same universality classtant on finite temperature.” At zero temperature a common
as the @4) Heisenberg magnet in three spatial directions.definition is
Now, one is studying a classical field theory. The parameters
of the effective free energy functional near the critical tem- <0|Ai|ﬁb(p)>=ipru5‘ab, ()
perature may not be simply related to the parameters of the
o field theory model at a very low temperature. Support forwhich relates it to the matrix element of the axial vector
this point of view comes from lattice QCD computations current of QCD between the vacuum state and a one-pion
which show that critical exponents are consistent with thosétate of momentunp. It is difficult, though perhaps not im-
of the O4) Heisenberg magnet in three spatial dimensiongr0ssible, to generalize this definition to finite temperature.
[20]. Conversely, it has been pointed out that in certain modWithin the lineare model one sometimes sees in the litera-
els with composite bosons, these arguments might breakire f(T) identified with the thermal average of thefield,
down [21] because the compositeness is important near &a={o)=[(®)|, which is the radius of the bottom of the
second order phase transition. A particularly useful observegffective potential. In the nonlinear model this radius is
tion is that long range correlation functions may be domi-necessarily fixed af,. How then can one understand the
nated by the soft moddpions,c meson. . .) near the criti-  result of Gasser and Leutwylg24],
cal temperature but the equation of state itself is|@@8t18]; )
it is dominated by the myriad of other degrees of freedom f(T)=f [1_ &(T_)
(Hagedorn or Particle Data Book compendium of mesons m g 2 12ff,
and baryons or all of the colored quarks and glyons

We would like to shed some light on just a few of the which was obtained at low temperature in chiral perturbation
issues relating to the above discussibinst, from the outset theory?(At this order chiral perturbation theory and the non-
we restrict our attention to the linear and nonlinearmod-  linear o model are the sameThis issue is addressed care-
els in 3+1 dimensiong23]. Within these confines we ad- fully in Sec. lll.
dress three specific topics: the existence and nature of a chi- Finally, a quantity of much interest, especially for the
ral symmetry-restoring phase transition, the low temperaturapplication of QCD sum rules at finite temperature, is the
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temperature dependence of the quark condensate. Gasser amdthe mean field approximation. We briefly repeat that

Leutwyler [24] and also Gerber and Leutwyl¢R5] com-  analysis here as a warm-up and precursor to the study of the

puted this quantity at low temperature to be nonlinearo model which is not nearly as well studied. We
must emphasize that the direct quantitative applicability to

_ _ f— T? QCD is limited by at least two factors. The first is that these
(qa)=(0|qq|0)| 1~ N, | 1272 o models do not have quark and gluon degrees of freedom
i and so one can never describe high temperature quark-gluon
Nf—l T2 \2 plasma with them. In addition, the compositeness of the
- Z—N? 122 € bosons may even influence the phase transition if$lf.

The second is that the group SW) X SU(N;) is isomorphic

2 _ . . .
This is obviously a different temperature dependence thafP O(Nf) only for Ny=2 and this limits the analogy to two
that of f ,(T). In addition, one wonders how is it possible to flavors of massless quarks. Indeed, lattice computations of
obtain information on quark condensates from a theoryh€ nonlinearc model in three dimensions based on other

which has no explicit reference to quarks? These and relate@fOUps show first order behavif2]. _

topics are studied in Sec. IV. _The conventions and notation used here are consistent
Before beginning the technical part we remark that weWith those of{30].

will deal with vacuum loop divergences in a simple way: we

ignore them. Put another way, it is known that the partition A. Linear o model

function can be expressed in terms of the vacuum-scattering e Jineare model Lagrangian is

amplitudes, or S-matrix elements, for arbitrary reactions in-

volving n particles going in andnh particles coming ou26]. 1 A )

This is the relativistic virial expansion. Consider, for ex- L= E(ﬁ,ﬂ’)z—z(q’z—fﬁ)zy (4)

ample, a real scalar field with a quartic interactj@d]. The

One-loop contribution to the pal‘tition function is jUSt the freewhere)\ iS a positive Coup”ng constant. The bosonic f|e|d

Bose gas expression. The two-loop contribution correspondg hasN components. Rather arbitrarily, we define the first

to two-particle scattering with the amplitude evaluated at they—1 components to represent a pion fietdand the last

tree level. The three-loop contribution corresponds to twayth component to represent thefield. Since the O) sym-

particles in and four particles out, plus three particles in angnetry is broken to an @{—1) symmetry at low tempera-

three particles out, plus four particles in and two particlestures, we immediately allow for @ condensates whose

out, with all scattering amplitudes evaluated at the tree level g e is temperature dependent and yet to be determined. We
The three-loop contribution also has a part which correyite

sponds to a vacuum one-loop correction to the two-particle

scattering amplitudeBy dropping all vacuum loop divergen- O, (x,t)=m(xt), i=1,...N—1,
cies we are doing a virial expansion with tBamatrix evalu-
ated at the tree levellt is well known that a relativistic Dp(x,)=v+a(xt). (5)

guantum field theory is not defined until a prescription is
given for dealing with divergences. This is our way of defin-In terms of these fields the Lagrangian is
ing a nonrenormalizable field theory. L L N

The linearo model is renormalizable and vacuum loops , 2 2 2 2 2 2
can be computed. However, they do not change any of theZ™ 3 (%™t 5(0,0)"= 2 (V"= f7+2voto + )’
principal results at finite temperature since the physics is (6)
dominated by long wavelengths. The nonlinear model is not
renormalizable, and although one may consider it to be thdhe action at finite temperature is obtained by rotating to
A — o limit of the linear model, we do not know how to do a imaginary time,7=it, and integratingr from 0 to 8=1/T.
strong coupling expansion in anyway. The short distance (However, we keep the Minkowski metric; hence,
physics of these models in the context of QCD is not correct, = 9/ 9x* with do=d/dt=id/37.) The action is defined as
in any case.

An early syst_ematic study o_f _various approximation S=— E(fz—vz)zﬁvju JBdTJ d3x| 1[((9 m)2— M2 a7
schemes for the linear model at finite temperature [&8]. 47 0 v 20 F i
The nonlinear sigma model in+3l dimensions has been
studied atlow temperatures in the leading order of thé&l1/
expansion inM29] using an ultraviolet cutoff 708 A <1000
MeV to regulate divergences. An overall introduction to rela-
tivistic quantum field theory at finite ter_nperaturt_a[ﬁi)]. A _ 5(02+ ﬂ,z)z], @)
somewhat analogous study of the latticeNp(Heisenberg 4
model is[31].

A
+(<9M0')2—m(2,o'2]+ Ev(vz—fi)a'—)\vo'(ﬂz-i- a?)

where the effective masses are
Il. CHIRAL PHASE TRANSITION mi:)\(vz_fi),

It is well known that the linear Q{) ¢ model in 3+1 — 2 ¢2
dimensions has a second-order phase transition when treated m,=\(3v°—f7). ()
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At any temperature is chosen such thdt)=0. This elimi- s o N+2_

nates any one-particle reduciliePR diagrams in perturba- ve=f— I (13
tion theory, leaving only one-particle irreducib(&P]) dia-

grams. This result is easily understood. Going back to Ef. we

At zero temperature the potential is minimized whencan differentiate I# with respect tay with the result that
v="f_. The pion is massless and theparticle has a mass of

J2\f,.. The Goldstone theorem is satisfied. Lin and Serot v2=12-3(ag?) —(m?) (14)

[33] have argued that the meson should not be identified

with the attractives-wave interaction in ther— = interac-  as long as we choosgr)=0. For any free bosonic fielgp

tion, which is responsible for nuclear attraction. Rather, theywith massm

argue that ther meson should have a mass that is at least 1 3

GeV if not more. This means thatis on the order of 50 or <¢2>:f d”p E 1

greater. (2m)3 w ePo—1"
The simplest approximation at finite temperature is the

mean field approximation. One allows forto be tempera- Where w=+/p“+m=. In the limit that the temperature is

ture dependent; hence the effective masses are temperat@i@ater than the magg?)—T%/12. This yields directly Eq.

dependent as well. However, interactions among the particled-3).

or collective excitations are neglected. The pressure includes The condensate goes to zero at a critical temperature

only the contribution of the condensate and of the thermagiven by

motion of the independently moving particles. Thus,

(15

T2——12 f2 16

T N ) . C_N+2 T ( )
P= vanz - Z(f”_v )+ Po(T,m,)+(N=1)Po(T,m_).

(9) Above this temperature thermal fluctuations are too large to

allow a nonzero condensate. It is a straightforward exercise

The pressure of a free relativistic boson gas can be written itp show that the pressure and its first derivative is continuous

several ways: at T, but that the second derivative is discontinuous. This is

therefore a second-order phase transition.

d®p ~ Bo There are two major problems with the mean field

PO:_Tf (ZT)3|”(1_9 ) approximation as described. The first is that the pion has
a negative mass squared at every temperature greater

d*p p? 1 than zero. Not only is the Goldstone theorem not satis-

(10 fied, but there are tachyons as well. Theparticle also

gets a negative mass squared at temperatures above

This is a relatively simple but surprisingly powerful first ap- y8/(N+2)f_<T.. This violation of basic physical prin-
proximation that allows one to gain much insight into theciples is resolved by recognizing that the finite temperature
behavior of relativistic quantum field theories at high tem-corrections to the squared masses are proportionalTtg
perature. It was used in all the pioneering papers. and that one-loop self-energy corrections, not included in the

One expects that as the temperature is raised, thermalean field analysis, are of the same order. This can be un-
fluctuations will tend to disorder the condensate figldand  derstood with the following analysis.
at sufficiently high temperature it may even disappear. If At high temperatures, when the masses can be neglected
there is a second-order phase transition, then the correlatian the loops, the mean field result is obtained by combining
length should go to infinity, which is equivalent to the effec- Egs.(8) and (13):
tive o mass going to zero. With such an expectation one may

) 23w efo—1-

expand the free boson gas pressure about zero mass to obtain 2 N+2 NT2
4 12 ’
Po(T.m)= 7TZT“ T + T + 11
olT.M=g4 24 T1gm T (D

N+2
m2=2\f2— T)\TZ. (17)
Since the masses are proportional to the square rootiofs
generally inconsistent to retain the cubic terrminbecause  The full one-loop self-energies for pions and tiremeson

there exist loop diagrams that are not included in the meaare drawn in Figs. 1 and 2. If one chooges =0 then there
field approximation but that contribute to the same order inare no 1PR diagrams and the tadpoles should not be in-

\. Therefore, we take cluded; they are already included in the temperature depen-
5 N 2 dence ofv. One may check this by fixing=f_ and then

T s ﬁ ol g2 NTZ2_,1 ﬁ 4 computing the tadpole contributions to the effective masses.
P(T,0)=N 90-r * 2" o 12 T 4V (12) One gets precisely Eq.17). The diagrams involving the

four-point vertices contribute an amourlil ¢ 2)AT?%/12 to
where the pion and- masses have been expressed in term$oth the pion andr meson self-energies. When evaluated in
of N\, v, andf .. Maximizing the pressure with respectdo the high temperature approximation and at low frequency
gives and momentum the 1PI diagrams involving the three-point
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and aboveT,

N+2
mZ=mg=mg=—NZ+1lp=—-NT?=To). (19

The Goldstone theorem is satisfied, there are no tachyons,
and restoration of the full symmetry of the Lagrangian above
T. is evident.
(‘ = ':' i‘ # ') It must be recognized that the resulls’)—(19) are valid
212 seeEeeetees - 4 mmedaeetoe to ordern and cannot be extrapolatedXe-cc. At low tem-
perature, where pions scatter from each other sequentially
and there is essentially no propagation off mass shell be-
tween scatterings because of the low particle density, one
O may take the point of view that is a parameter to be ad-
T4 i 4 A justed to fit«r-7 scattering data and it doesn’t matter how
large \ is. This point of view cannot be taken at high tem-
perature where the pion number density is large, for then
FIG. 1. One-loop self-energy diagrams for the pion in the linearmultiple scatterings will occur and they cannot be factorized
o model. The dashed lines represent pions and the solid lines repnto independent scatterings. This means that multiloop self-
resente mesons. The three-point vertices aré.v and the four- energy diagrams will be important at high temperatupe i
point vertices are-\/4. The= and# indicate that the pion in the ot perturbatively small.
Iqop has the_same or. dif_ferent quantum number than the external The second major problem is that long wavelength fluc-
pion, respectively. I is fixed at its vacuum value df, then the 4 ,4inns very near the phase transition cannot be treated with
two tadpoles contribute. I is allowed to vary with temperature by - o hation theory because the self-interacting boson fields
maximizing the pressure then the tadpoles are not to be includedciﬁecome massless just at the transition. Although this is a
the self-energy; their effect is already included in the mean fiel . o ’ .
mass viao (T). well-known probler_n_ in the statistical m_echanlcs of sec_o_nd-
order phase transitions, exactly how it affects the critical
temperature is not known for the linear model in 3+ 1

vertices may be neglecte(lhis follows from power count- - ; C :
ing. These diagrams involve two propagators instead of c)med’|men3|ons. This is a topic for further study. The result pre-

and so are only logarithmically divergent in the UV in the sented here must be accepted for what it is: a one-loop esti-
vacuum. The other diagrams are quadratically divergenl‘,'nate of the critical temperature.
which leads to &2 behavior at finite temperatujéVhen all
contributions of ordek T2 are included, the pole positions of B. Nonlinear o model
the pion andr propagators move with the result that, below  The nonlineawr model may be defined by the Lagrangian
T.,

L=3(d,®)? (20)

together with the constraint

2 _—2 _ 2 2712
mi=m’+1I1,=2\f2(1—-T?TZ), 18
e=me+1l, w( o) (18) f2=®?(x,t). (21

The partition function is

_ 2 _ 42 B 3
z_j [ddD]5(f2— b )EXp[ deTde xc}. (22)

-6 L - 18 3 Because the length of the chiral field is fixed and cannot be
changed by thermal fluctuations it is often said that chiral
symmetry breaking is built into this model and, therefore,

there can be no chiral symmetry-restoring phase transition.
Q On the other hand, the linear model does undergo a
2 symmetry-restoring phase transition. Taking the quartic cou-
pling constantx to infinity essentially constrains the length
of the chiral field to be , just as in the nonlinear model. The
critical temperature, however, is independeniddt least in
_Q the mean field approximation. So it would seem that the
phase transition survives. If this is true, then one ought to be
able to derive it entirely within the context of the nonlinear
model. That is what we shall do, although it involves a lot
FIG. 2. One-loop self-energy diagrams for themeson in the more effort than treatment of the linear model in the mean
linear o model. See Fig. 1 for remarks. field approximation. Since the only parameter in the model is

4 ~ e
-/ — e -

1
I .
‘

-2 — = - B
‘s 4'
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f ., and we are interested in temperatures comparable to it, @
we cannot do an expansion in powers ff .. The only b b 5 b b
other parameter i8l, the number of field components. This + N OO
suggests an expansion in\L/ S

Begin by representing the field-constrainifigunction by
an integral.

FIG. 3. Contribution to the effective action at finite temperature
B . in the nonlinearr model corresponding to E¢R6); the wavy lines
_ ' 3 ’ 2_ g2 ’
Z_f [d®][db ]exp{ Jo deVd X[ L+ib"(P fﬂ)]}' represent the Lagrange multiplier figbd

23
@3 term proportional td? is not zero and is exponentiated, thus
As with the linear model, we define the fitst—1 compo- summing a whole series of contributions. The term propor-
nents of® to be the pion field and the last component to betional to b® is not zero either and it too may be exponenti-
the o field. We allow for a zero frequency and zero- ated, summing an infinite series of higher-order terms left
momentum condensate of tlefield referred to ap. Fol-  out of the ordeib? exponentiation. After making the scaling
lowing Polyakov[34], we also separate out explicitly the P—b/\2N, the effective action becomes

zero frequency and zero-momentum mode of the auxiliary 1

field b’. Integrating over all the other modes will giveusan ¢ __ = D24 D2+ mA T D.n)- 7 —Dp.—n

effective action involving the constant part of the fields. We et 2§n: Ep (wn*Pp JLa(p.n)-(=p. =)

will then minimize the free energy with respect to these con- 1

stant parts, which is a saddle-point approximation. Integrat- S OMF(—b.—n)]— = ul Tm

ing over fluctuations about the saddle point is a finite volume o(p.no(=p.—n)] 22;’ zp (p.y. T.m)
correction and of no consequence in the thermodynamic

2
limit. The Fourier expansions are E v Y NI
TN w2t premz|P(P2Wb(=p,—2n)
B I(X-p+wn7) =
. = 7. = — PTORT) 1 —_~
Pi(X, 7)=mi(x,7) \[v; Ep: e mi(p.n), + S mP(2-07) BV-+ O(B% \N). 26)
DX, 7)=v+0(X,7) Note that only even Matsubara frequencies contribute in the
b field: v,=2mnT. This may have been anticipated. There
=u+ éz 2 e xPrenn G n), appears the one-loop function
nop
I Tm=T> J ok :
o r—i™ b (Pon TM=T2 | G e, onZ+ (p- K2 P
(X,7)= > T .
X——>—. (27)
m? - = FHk2+m?
=i T g; % e!*Pt!7b(p,n). (24) i

The effective action is an infinite serieskin The coefficients
re frequency and momentum dependent, arising from one-
oop diagrams. The coefficient of the term quadratidim
SSeﬁ is illustrated schematically in Fig. 3. In addition, each
successive term is suppressed byN/compared to the pre-
vious one. This is the largd expansion.

The propagators for the pion amdfields are of the usual
form

One must remember to exclude the zero frequency and zer
momentum mode from the summations. The fiddnust be
periodic in imaginary time for the usual reasons, but there i
no such requirement on the auxiliary field, hence
w,=2mnT andv,=wnT. Since the field has dimensions
of inverse length squared we inserted another factar sb

as to make its Fourier amplitude dimensionless, as they a
for the other fields. The action then becomes

Dy X(p,wn,m)= w2+ p?+m? (28)
S= fﬁde d3x( 1[((9 m)2— M2+ (9,0)%— m2o?] with an effective massn yet to be determined. The propa-
o Jv 20 # K gator for theb field is more complicated, being
—ib(2vo+ 7P+ 0?) +£m2(f2—v2),3v (25) -1 _ 2 v’
2 T . Db (p,wn,m)—H(p,wn,T,m)—i-Nm. (29)

Note that terms linear in the fields integrate to zero becausghe value of the condensateis not yet determined either.
(mi)=(o)=(b)=0. Keeping only the terms up to ordé? in Sy (the rest

An effective action is derived by expanding ep(in  vanish in the limitN—) allows us to obtain an explicit
powers ofb and integrating over the pion andfields. The  expression for the partition function and the pressure. This
term linear inb vanishes on account @f(0,0)«<(b)=0. The includes the next-to-leading order it
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T 1 .., L, N d®p In the asymmetric phase the mass is zero. The constraint
P= v|nZ= >m (fr—v9)— ET; f 2n)? is satisfied by a temperature-dependent condensate:
2

X In[ B2+ 2+ m?) p2(T)= 12— % (39

1 d®p
- ETEH: f 2m)° In| II(p, w,, T, M) This condensate goes to zero at a critical temperature
N 2 v? 30 T2=1—2f2 (leading N approximatiof (37)

N ot pPrm?) (30 CNT

The second term under the last logarithm should and will bé\t €xactly T, the thermally averaged constraint is satisfied
set to zero at this order. It may be needed at higher order iRy the fluctuations oN massless degrees of freedom without
the largeN expansion to regulate infrared divergences. e help of a condensate. ,

The pressure is extremized with respect to the mass pa- N the symmetric phase the condensate is zero. The con-
rameterm. Therefore,dP/dm?=0. From the initial expres- straint is satisfied by thermal fluctuations alone:

sion forZ this is seen to be equivalent to the thermal average @*p 1 1
of the constraint: f2=N| ——5— —g—. (39
’T (2m)° w eP—1
f2=(®?) =02+ (7?) +(a?). (32)

Thermal fluctuations decrease with increasing mass at fixed

If an approximation to the exact partition function is made,temperature. The constraint is only satisfied by massless ex-
such as the larghl expansion, this constraint should still be Citations at one temperature, namely,. At temperatures

satisfied. It may, in fact, single out a preferred valuewof ~ T>T. the mass must be greater than zero. Near the critical

To leading order iN we may neglect the term involving temperature the mass should be small, and the flucutations

II entirely. The pressure is then may be expanded abont=0 as
2 2
P=1m?(f2—v?)+NPo(T,m). 32 p_npi_ M M my__m™ .. .
? =N o a7 8n2r2 ™ 4t~ Temere |
The pressure must be a maximum with respect to variations (39

in the condensate. This means that
As T approached, from above, the mass approaches zero

dPldv=—m?v =0, (33  like:

which is equivalent to the condition that)=0. There are
two possibilities.

(1) m=0: There exist massless particles, or Goldstone
bosons, and the value of the condensate is determined by tfiéis is a second-order phase transition since there is no pos-
thermally averaged constraint. This is the symmetry-brokesibility of metastable supercooled or superheated states.
phase. The mass must grow faster than the temperature at very

(2) v=0: The thermally averaged constraint is satisfiedhigh temperatures in order to keep the field fluctuations fixed
by a nonzero temperature-dependent mass. There are and equal td2 . Asymptotically, the particles move nonrela-
Goldstone bosons. This is the symmetry-restored phase. tivistically. This allows us to compute the fluctuations ana-

Evidently, there is a chiral symmetry-restoring phase tranlytically. We get

an
m(T)=3—T(T2—T§)+ e (40)

sition.

In the leading order of the larghl approximation the fzzN(l w\/ﬁe,mn (41)
particles are represented by free fields with a potentially g 2 '
temperature-dependent mass For any free bosonic field
o, This is a transcendental equation fo(T). It can also be

written as
o d®p 1 1
IPo(T,m)/dm"=(¢ >ZJW5W (34) i In( NT | mT) @2
= —\/—=.
2mf, N 27fs

with w=p?+m?. Thus, extremizing the pressure with re-
spect tom? is equivalent to satisfying the thermally averagedRoughly, the solution behaves as
constraint:
m~T In(T?/T?). (43
f2=02+(7?) +(o?). (35

It is rather amusing that, in leading order of the laige
Note, however, that the pion amdfields have the same mass approximation, the elementary excitations are massless be-
and thereford 72) = (N—1)(o?). Consider now the two dif- low T., become massive abovk,, and at asymptotically
ferent phases. high temperatures move nonrelativistically.
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The result to first order of the large expansion provides 1 d®p s 2o

good insight into the nature of the two-phase structure of the P|=§T2 j 2n)? In[ B*(wy+ p*+m)II]

nonlinearo model, but it is not quite satisfactory for two "

reasons. First, it predictd massless Goldstone bosons in the 1 d3p h(w2+ p?)(w3+ p?+m?)
broken symmetry phase when in fact we know there oughtto ~— ETE J 2m)3 In| — 2 T (2t ol '
be onlyN—1. Second, the square of the critical temperature " m ™ (opt o) (opt o)

is 12f2/N whereas it is 122/(N+2) in the linearc model (49)

in the mean field approximation; we expect them to be the . . )
same in the limith— . Both these problems can be rectified With the dispersion relations
by inclusion of the next-to-leading order termhh namely, 5
the contribution of theb field. wi=p’+2m?=2myp*+m?. (50)
It is natural to expect that thie field will contribute es- . ) ) ,
sentially one negative degree of freedom to THeterm in The interaction pressure can now be determined in the usual
the pressure so as to gite— 1 Goldstone bosons in the low Way to be
temperature phase. Therefore, we move one oNtliegrees 4
of freedom and put it together with thecontribution as P,= _TJ (2;; {In[1—e AP]+In[1—e AP

1 N—1 d3p
— T m2(f2 _ 2\ __ 2. 2 2

n

—In[1—e Ao+(P]—In[1—e Ao-P]}, (51)

Note thath;(m/T) has no effect within this approximation.

) 1 d3p 5, 2. 2. o Note also that in the broken symmetry phase wimetre0 the
+m7)]— ET; fm In[B%(wp+p=+m)I]. contribution of theb field cancels one of the massless de-
grees of freedom to givBl—1 Goldstone bosons.
(44) Now we are prepared to examine the behavior of the sys-

tem near the critical temperature with the inclusion of next-
The function IT(p,»,,T,m) can be reduced to a one- to-leading terms iM. We do an expansion im/T as before.

dimensional integral The pressure is, up to and including oraet,
2 N+2 1
_— fwdkkl k2+pk+A?] 1 4 p:(N_l)%th_szqumz(fi_vz)
“87%p)o @ |K2—pk+AZ|eFo—1’ (45)
+ N °T (52)
—m°T.
where 127

2 ap , 5 In the high temperature phase whare=0, maximization
_(op+p?)*tamiey with respect tom yields

2_ A2 _
A“=A“(p,w,,m) 4(wﬁ+p2)

(46)

(53

but unfortunately cannot be simplified any further. In any

case, to the order iN to which we are working, the pressure This gives the same critical temperature as in the mean field

1S treatment of the lineasr model:
P=1m2(f2—v2)+(N—1)Po(T,m)+P,(T,m). (47) o_ 12 - "
2 U oLt T Tc:mfﬂ (subleadingN approximation. (54)

This can be thought of, in the low temperature phase, a$he mass approaches zero from above like
N—1 Goldstone bosons with an interaction tebfmn

Because of the logarithm the main contribution to the in- w(N+2)
teraction pressure will come whéh is very small compared m(T)= T3NT
to one. This corresponds to very large values of the param-

eterA; in other words, to very high momentum, Matsubara\ye |eave it as an exercise for the reader to compute the
frequency, or mass. In this limit asymptotic behavior of the mass with the inclusion of the
subleading terms ilN.
1 odkk? 1 ha(m/T) T? The results obtained immediately above used an approxi-
- 4772A2,[o w ePo—1 4n2 A2 (48) mation forIl which we referred to as a high energy approxi-
mation. Relaxing this approximation can be done albeit at
the cost of a numerical calculation. We do not attempt that in
This may be thought of as a kind of high energy approxima-this paper. Of course, one should also go beyond the mean
tion, and we shall henceforth refer to it as such. Then field approximation in the linear model.

(T>-T32). (55)

IT
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. f, AT LOW TEMPERATURE

Consideration of correlation functions at finite tempera-
ture is more involved than at zero temperature. Lorentz in
variance is not manifest because there is a preferred frame
reference, the frame in which the matter is at rest. Thus,
spectral densities and other functions may depend on energy
and momentum separately and not just on their invarsant

ALEXANDER BOCHKAREV AND JOSEPH KAPUSTA 54

thatP{*”+ P%"= — (g*”—g*q"/q?). The pion, being a mass-
less Goldstone boson, is special. It contributes to the longi-
tudinal axial spectral density and not to the transverse one. In

giacuum
mV

q2

p"*(q)= -9 | pa(a®) +25(9®)g*q”.  (64)

Also, the number of Lorentz tensors is greater because therg,ig may be taken to be the definition of the pion decay

is a new vector available, namely, the veatgr = (1,0,0,0
which specifies the rest frame of the matter.

For a given four-momentury it is useful to define two
projection tensors. The first o is both three- and four-
dimensionally transverse,

(56)

with all other components zero. The second &f¢ is only
four-dimensionally transverse:

mAV
ST P . e

(57)

The notation id for longitudinal andT for transverse with

constant at zero temperature. In fact, one can write the pion’s
contribution as

t28(9%)g#q"=f2q°8(g*) P (65)
This cannot be taken as the definition of the pion decay
constant afinite temperaturdecause the contribution of the
pion to the longitudinal spectral density cannot be assumed
to be aé function in g%. In general, the pion’s dispersion
relation will be more complicated and will develop a width
at nonzero momentum. This smears out ¢h&unction into
something like a relativistic Breit-Wigner distribution. For-
tunately, the Goldstone theordi®8] requires that there be a
zero frequency excitation when the momentum is zé&for
a proof applicable to relativistic quantum field theories at
finite temperature sde&0].) This implies that the width must

respect tag. There are no other symmetric second-rank tenyo to zero atq=0, which results in as function at zero

sors that are four-dimensionally transverse.

frequency. Explicit calculations support this assertiga—

In the usual fashioh35,36], one may construct a Green 41). Therefore, it seems to make sense to define

function for the axial vector current

©

wy - © v
Gab(zrq) j pab(w!q)! (58)

—wW—Z

where the spectral density tensor is

v 1 3
Pis(©,0)= 72 (2m)°8(w—EntEn) (A= Pt Po)

X (e En/T—e~En/T)(n| A%(0)|m)

x(m|A5(0)[n). (59

2

__(edqg
f2(T)=2 |Imf —5 p5(G0,q=0).
e—0 qO

(66)

Physically, this means that the pion decay constant at finite
temperature measures the strength of the coupling of the
Goldstone boson to the longitudinal part of the retarded axial
vector response function in the limit of zero momentum.

We shall study the pion’s contribution to the spectral den-
sity only at temperatures small comparedftp. We shall
study both the nonlinear and the linearmodels. At low
temperatures the meson’s contribution as a material degree
of freedom is frozen out and one might expect the same

The summation is over a complete set of energy eigenstatedynamics to be operative in both models; in other words, one
The retarded, advanced, and Matsubara Green functions areay expect the result to be the same and so independent of

G (4o, ) =G4y (qo+ie,q), (60)
Gat"(do,a) =Gy (do—i€,0), (61)
Gab"(wn,0) =Ghy(iw,,0), (62)

wheree—07.

\. For temperatures approachifig, the problem is more
difficult and is left for future investigation.

A. Nonlinear o model

The nonlinearc model was defined at the beginning of
Sec. Il B. One can make a nonlinear redefinition of the field
without changing the physical content of the theory. Various

Because of current Conservation’ the Spectra| density te,{edefinitions may be found in the literature. We will first list
sor can be decomposed into longitudinal and transversé€ most common ones, and then we will compuf€T) for

pieces[37]:
PLY(A) = Sal pR(A) P+ pa(Q) PE"].

In general, the spectral densities dependg8rand q sepa-

(63

each of them, thereby illustrating that one always gets the
same result. It is interesting to see how this comes about; it is
also reassuring that it does.

A convenient way to express the and pion fields that
explicitly contain the constraint is

rately as well as on the temperature. In the vacuum we can

always go to the rest frame of a massive particle, and in that

o=f,coq¢/f,),

frame there can be no difference between longitudinal and

transverse polarizations, so that= pt=p. We also observe

a="f . psin($lf ), 67)
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where ¢=|¢| and &= ¢l $. The Lagrangian may then be
expressed in terms of the fields of choice:
' ) / )

1 1 A(;)‘ """"""" ®Ay) A(z).’""\:h‘{ “““ ®A(y)
L= E&Mﬂ'- M+ E&MO'&'“O'
—I, It 1 (- f?,m')(ﬂ" *m) FIG. 4. Vertex and self-energy contributions to the axial vector
oo oTmT fi_ i correlation function in the nonlinear model.
1 ffr N (7 d,77)
_E?S”‘F(E (9,u¢(?'u¢ AM:_O- ﬁﬂﬂ+ﬁ
it e 2 (24 0t (24)]-
+t35]1- gzs'”z(g) Iupd" . (68) =- ﬁsin< H) J,p— w:[ 1= 545 H) } ¢ 9,9
1 1 1 1
Another representation to consider is from Weinb S o —— += . .
who defineg | e et fr(1+ pz/4f§7)2[( fr=2P" )9+ 3P(P-0,P)
(73
fi' w° Every form of the axial vector current is an odd function of
p=2?< 1=y Z)™ ©®) e p);on field.

Obviously, it is not possible to compute the axial vector
) correlation function exactly. We will restrict our attention to
or inversely, low temperature. Roughly speaking, a loop expansion of the
correlation function is an expansion in powersTG!ffT with
each additional loop contributing one more such factor. To

T= % (70 one-loop order we need the axial vector current to third order
1+p/ats in the pion field:
2
In terms of Weinberg's field definition, the Lagrangian is A,=—f.d,m+ W_(gﬂﬂ._ —a(m d,m)
very compact: 2f, fr
2¢? 2
e 1 &Mp aﬂp 71 == fﬂ'a,u(b+ ST,,T(?M(ﬁ_ 3T7-r¢(¢ au(ﬁ)
T2 (1+pYaf2)? 71 2

=—f 3p ! 74
=- W&MDJFE%D—EP(D%D)- (74)

The (o,#) representation is cumbersome because of the
constraint, although it can be handled by the Lagrange mulWe will also need the Lagrangian to fourth order in the pion
tiplier method of Sec. Il. However, it is inconvenient for field:
exposing the physical particle content and for doing pertur-
bation theory in terms of physical particles. Among the three "
physical representations we choose to work with here, it is C4:ﬁ(""7uﬂ)(“'9 )
interesting to note the range of allowed values of the fields. i
The magnitude of the field can range from zero to infinity, 1 " ) "
the magnitude of ther field can range from 0 t6_., and the = grzl(&-9,8) (3" P) = %0, 0" ]
magnitude of theg field can range from O tarf_. This i
distinction is important when dealing with nonperturbative B 2 u
large amplitude motion; whether it makes any difference in =~ 272 P70up-9"p. (75
low orders of perturbation theory is not known to us. i

The first step in our quest tq extract 'ghe temperature detnhe correlation functior(AL(x)AL(y)) will have a zero-
pendence of ;. from the theory is to obtain the form of the |55, contribution from the 7-m correlation  function

axial vector current in terms of the chosen fields. Starting@ 7 (x)0 ﬂ_j(y)> a one-loop self-energy correction to the
143 v 1

from samem-m correlation function, and a one-loop contribution
from the correlation functiod,, 7' (x) 7! (y) m(y)a, ' (y))
A,=—cd,mt w0, (72) !nvo_lvmg four pions. These three contributions are illustrated
in Fig. 4.
The contribution of the bare pion propagag to the
one directly computes longitudinal spectral density is easily found to be
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pa(do,a)=f20%8(c?). (76)

At zero temperature this is just the definition of the pion
decay constant.
The one-loop pion self-energy may be computed by stan-  ¢.... ... . . Ve
dard diagrammatic or functional integral techniques. The re- A(z) AW) A(‘r)U
sults are

2

127 N

H']T(Q): -

2

— 2
Hp(q)_ (N=1) 242 a- FIG. 5. Vertex and self-energy contributions to the axial vector
m correlation function in the lineas- model. See Fig. 1 for remarks.

I 4(q)= I (q)+ %Hp(q). (77) Let us go back to the axial vector curramforeshifting
the o field:
These are quite dependent on the definition of the pion field.
Nevertheless, it is worth noting that the Goldstone theorem is A,=—0d, 7+ mi,0. (80)
satisfied on account of the fact that the self-energy is always
proportional tog?. After making the shifto—uv + o, the current takes the form
The final contribution comes from the correlation function
of a pion at pointx with three pions at poiny. Again, stan- A,=—vd,m—0d,m+m,0. (81)

dard diagrammatic or functional integral techniques may be
used. To express the answers, we gather together the contBy maximizing the pressur@ninimizing the effective poten-
butions from the bare propagator, from the one-loop selftial) with respect tov at each temperature, we effectively
energy, and from this correlation function, and quote thesum all tadpole diagrams, leaving only 1P| diagrams in any
coefficient of the ternf2q245(qg?) in the longitudinal part of  subsequent perturbative treatment. If this is done, one has the

the axial vector spectral density: inclination to identify v(T) with f_(T). This is wrong;
f -(T) has additional contributions, as we shall now see.
T2 T2 The first contribution tof,zT(T) does come fromv?(T)
m | 1- W}_( _3)F’ since it involves the cross term of, 7%(x) with 9,7%(y).
g g Following the analysis of Sec. Il A, but at low temperature
rather than high, we simply leave out the contribution of the
Nt T? 5\ T? heavyo meson. This gives
P |1+ (N=D oy 3)8f2’
] ? A N-1 A
N1 T4 22 2 % 4
i T2 - P(T,v)=(N—-1) 90T +Zv fe BT T 2V
© |1+ (N-2 —(N-2 . 2
¢ _ ( )ﬁzj ( )g—fz'7T (82
(78 Maximizing with respect ta gives
In all three cases the results are the same and amount to a N-1
temperature dependence of v3(T)= ffr_ 12 T2 (83)
N—2 T2 262 o I
ffT(-r):ffT 1- —— —|. (79 The T</f%, correction is identically the tadpole contribution
12 f2 to the vertex shown in Fig. 5.

There is another, nonlocal, contribution to the vertex
shown in Fig. 5, corresponding to the emission and absorp-
tion of a virtual @ meson. One might think that it is sup-
pressed by the large mass,m2=2\f2 but in fact this is
compensated by the coupling constanin the extra vertex.
Evaluation of this diagram gives a contribution B#/6f2 to

It is now not surprising to discover that the lineamodel ffT(T).
gives the same result far,(T) at low temperature as the Finally, there is a contribution coming from the dressed
nonlinear ¢ model. This is because the& meson is very pion propagator analogous to the nonlineanodel. The full
heavy at low temperature and cannot contribute materiallpne-loop 1PI pion self-energy diagrams were already shown
the way the pions do. However, the way in which it worksin Fig. 1. We know that the sum of the momentum-
out is very different. independent pieces is zero on account of Goldstone’s theo-

It agrees with Eq.2) for the only case that they can be
compared to:N?=N=4. The calculation of Gasser and
Leutwyler was verified by Eletsky and Koga#2].

B. Linear o model
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rem. We only need the contribution that is quadratic in thecombination of four-quark condensates change with tem-
energy and momentum of the pion. This can only arise fronperature? The temperature dependence of the four-quark
the so-called exchange diagram involving tewe 7 vertices, condensates at low temperatures was first calculat¢d3h

also shown in Fig. 5. In imaginary tim@&uclidean spagdat  with the help of the fluctuation-dissipation theorem. The con-

is tribution of pions alone was later discussed4#] using soft
P L pion techniques. Fro3,44 one can read off the two con-
Ay 252 densates separately:
Hex(wn,C{) 4\ fﬂ,Tzl j(z—ﬂ_)gm
_ T? _ T
X ! . (84 <(QQ)2>:[1_HZ}<O|(QQ)2|O>_EZ<O|(QVSTQ)2|O>
(04 0,)?+ (k+q)%+m2 m m (86)

SinceT<m,, it is easy to extract the piece quadratic in the
momentum. Analytically continuing to Minkowski space
(wn—iqo) itis q?T?/12f2 . T2

The residue of the pion pole in the axial vector correlation - 2y_|1— 0l(a 2|0
function can now be obtained by adding the vacuum contri- {(ays7a)9) [ 12ffT (0l(aysa)®0)
bution, the pion self-energy correction, and the tadpole and T2
nonlocal vertex corrections as _ W(0|(®)Z|O>- (87)

Therefore, there is no correction to this group invariant to
orderT?/f2 inclusive:

12 27672

1TT N—1T2 1T?

The final result, . _ . _
((aq)*—(ays7)?=(0[(qq)*— (qys7)?0). (89

(85) This result is consistent with our analysis of the nonlinear
o model in Secs. Il B and Il A.

Now let us return to the business of computing the tem-

this cannot be used to compute the critical temperature sinG@yo-loop order. In terms of the three representations used in

f2(T)=f2

1 N—2 T2
12 f2)

it was obtained under the condition the#f . Sec. lll A theo field is
IV. SCALAR CONDENSATE AT LOW TEMPERATURE v i (772)2
The scalar condensate is defined(@B)|. Our convention olfz=~/1= 277 212 8ft +

has been to allow the lasith component of the field to
condense, and to refer to this as either(if the field is _ p?2  (pH)?|M p2 |7t
shifted or (o) (if the field is not shifted In this section we B F“L 16f2 1
use the latter convention. " i
It is interesting to ask what happens to this condensate as 1 p_2 + ﬁ 4
a function of temperature in the nonlinear model. The con- ST 2f2 7 8f?
straint as an operator equationfi%z ®? and as a thermal & ()
average isf2=(®?); it is not f . =|(®)|. The condensate _ 4
indeed can change with temperature. In fact, we can quite =cod$/fn)=1 E";+ 24f7,, A 89
easily compute it to two-loop order. Before doing so, we first
discuss the connection of this condensate with the quark corFo second order in the pion field all three representations are
densatg/qq). the same. Using the free-field expression for the thermal av-
In two-flavor QCD, one oftentimes associates thend  €rage of the field squared we get
pion fields with certain bilinears of the quark fields:

+
4f2

w

— oo N T 90
qq~o, (=1 =z T (%0
iqysTq~ . For N=4, the only value for which we can quantitatively

compare with QCD, this agrees with the result of Gasser and
This association is made because the quark bilinears trankeutwyler as quoted in Eq3); it was also derived in an
form in the same way under $2)xXSU(2) as the corre- independent way by Eletsky}4].
sponding meson fields. The dimensions do not match so The coefficient of the term that is fourth order in the pion
there must be some dimensionful coefficient relating themfield differs in sign and magnitude among the three represen-
this coefficient could even be a function of the group-tations. It would be a miracle if the thermal average of
invariant o2+ m~ (qq)%— (qys79)2. Does this particular 1—@%/f2, cos@/f,) and the Weinberg expression were all
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the same. But regarding the ordéF?(12f2)? we must rec- transition by making use of the N/expansion. To leading
ognize that the term that is second order in the pion field getand subleading orders the critical temperature is even the
modified because of a one-loop self-energy. This was comsame as in the linear modéThis cannot be true in general;
puted for each representation in Sec. lll A and the resultgventually there must be some dependence in the linear
listed in Eq.(77). The term fourth order in the pion field can model on the value of the quartic coupling) This expan-
be evaluated using free fields. The result is sion was facilitated by the introduction of a Lagrange multi-
plier field. In this way we could see that there is a condensate
T2\2 at low temperature; this condensate decreases in just the right
<(¢2)2>=(N2—1)(1—2) ; (9D  way so as to conserve the constraint on the field vector.
There is one particular temperature for which the thermally
and is obviously representation independent. The contribuaveraged constraint is satisfied with no condensate and with

tions for each representation are all excitations massless. This is the critical temperature. We
had to make a mathematical approximation at the subleading
N—1/ T2 T2 N2—1/ T2 \2 order to get an analytical result. We referred to this as a

w 1- 5 (12f2)[1— 1272 }— 3 (121‘2) , “high energy approximation.” It is directly analogous to
G m m what one does in the mean field approximation to the linear

model. It would be interesting to relax this approximation;

N—1/ T? N-1/ T2 this is left as a future project.
pr1-— (12f2 I+ — (12f2” Another goal was to carefully define and show how to
i i compute the “pion decay constant” and the ‘“scalar quark
N2-1/ T2 \? condensate” at finite temperature within the scope of these
+ 8 12f72T ' models. The definitions also apply to full QCD but, of
course, the results will generally be different. Only at very
N—1[ T2 N—2/ T2 low temperatures and fod = 4 will the results be directly
& 1 ( 1+ ( ” applicable to QCD for the reasons discussed in the introduc-
2 12ffT 3 12ffT tion. Even within the context of thee models, however, it
NZ_1/ T2 \2 would be interesting to compute the next order correction to
—(_2) , (92 ffT(T) at low temperature. It would also be interesting to
24 1217 computeff,(T) nearT.. These computations are nhow under-

where the second term in each line comes from the squa?@‘ay'

of the pion field and the last term comes from the pion field .. In this paper we have not computed anything more com-
in fourth order. The sum of all terms is identical in all three plicated than a one-loop diagram. Even the calculation of the

representations. “scalar quark condensate” to'orderTfllszT)2 only re-
quired knowledge of one-loop diagrams. What other interest-
) ing physical quantities can the reader compute in these mod-
T - 2
<0>/fw:1_(N_l)(_2) els to one-loop order. _
24f < Natural extensions of these models to better approximate
) full QCD may be envisioned. Following the philosophy of
_(N_l)(N_3) T (93) chiral perturbation theory one may include higher derivative
2 24ff, terms in the Lagrangian. One may also add other mesonic
and baryonic fields, especially the vector mesons. However,
The miracle happens. It is a consequence of the fact thaio matter how many extra terms are added, one is still re-
physical quantities must be independent of field redefinitionstricted from discussing the quark-gluon plasma.
What is more, folN = 4 it agrees with the result of Gasser  If the Higgs particle turns out to have an exceptionally
and Leutwyler quoted in Eq3). However, we emphasize large mass, then a reasonable first approximation to the elec-
once more that this expression should not be used to infer @moweak phase transition might begin with a nonlinear ver-
critical temperature because it was derived under the asion of the Glashow-Weinberg-Salam model. Gauging the
sumption that the temperature is small compared_to nonlinearo model would be a step in this direction. This
topic is also under investigation.
We hope to have stimulated the reader to make further
V. SUMMARY AND CONCLUSION progress on these very interesting topics at finite tempera-

ture.
In this paper we have focused on the linear and nonlinear

versions of thes model based on the group BY) at finite

temperature. Models of this kind are prototypes for physical

theories, such as QCD and electroweak theory. Our main ACKNOWLEDGMENTS
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