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Chiral symmetry at finite temperature: Linear versus nonlinear s models
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The linear O(N) s model undergoes a symmetry-restoring phase transition at finite temperature. We
that the nonlinear O(N) s model also undergoes a symmetry-restoring phase transition; the critical temp
tures are the same when the linear model is treated in the mean field approximation and the nonlinear
is treated to leading plus subleading order in the 1/N expansion. We also carefully define and study th
behavior off p and the scalar condensate at low temperatures in both models, showing that they are in
dent of field redefinition.@S0556-2821~96!00718-7#
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I. INTRODUCTION

The O(N) model as a quantum field theory ind11 di-
mensions@1# is a basis or prototype for many interestin
physical systems. The bosonic fieldF hasN components.
When the Lagrangian is such that the vacuum state exh
spontaneous symmetry breaking it is known as as model.
This is the case of interest to us here. Ind 5 3 space dimen-
sions the linears model has the potential

l

4
~F22 f p

2 !2,

wherel is a positive coupling constant andf p is the pion
decay constant. The model is renormalizable. In the limit t
l→` the potential goes over to ad-function constraint on
the length of the field vector and is then known as a non
ears model.

The classical limit of the field theory is obtained by n
glecting or freezing out the time variable, leaving a fie
theory ind dimensions. In this limit, only the zero Matsuba
frequency of the full (d 1 1!-dimensional theory contribute
to the partition function, and the temperature acts like a c
pling constant. One then has a description of an O(N)
Heisenberg magnet ind dimensions which is a model fo
real material systems. This subject has a vast literature@2,3#.

WhenN 5 4 one has a model for the low energy dynam
ics of quantum chromodynamics~QCD!. More explicitly, it
is essentially the unique description of the dynamics of v
soft pions. This is basically because of the isomorphism
tween the groups O~4! and SU~2!3SU~2!, the latter being
the appropriate group for two flavors of massless quarks
QCD. The linears model, including the nucleon, goes bac
to the work of Gell-Mann and Levy@4#. This subject also has
a vast literature. In the last decade much work has been d
on chiral perturbation theorywhich starts with the nonlinea
s model and adds higher order, nonrenormalizable term
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the Lagrangian, ordered by the dimensionality of the coef
cients or field derivatives@5#. The goal is to construct an
effective Lagrangian which describes the low energy prop
ties of QCD to the desired accuracy. This whole progra
really has its origins in the classic works of Weinberg@6,7#.

Finally, the standard model of the electroweak intera
tions of Weinberg, Salam, and Glashow has an SU~2! dou-
blet scalar Higgs boson field responsible for spontaneo
symmetry breaking. If one neglects spin-1 gauge fields t
Higgs boson sector is also an O~4! field theory.

All of these limits are interesting to study at finite tem
perature. Magnetic materials typically undergo a phase tr
sition from an ordered to a disordered state. If quarks a
massless, QCD is expected to undergo a chiral symme
restoring phase transition@8,9#. This may have implications
for high energy nucleus-nucleus collisions; see especia
@10,11# in this respect. The electroweak theory is expected
have a symmetry-restoring phase transition, too, at wh
point the baryon number of the early Universe would ha
been finally determined@12#.

The linears model was studied in the classic papers o
relativistic quantum field theories at finite temperature@13–
15#. The usefulness of leavingN as a parameter arises from
the fact that there is only one other parameter in the proble
the quartic coupling constantl ( f p just sets the scale and is
held fixed in our considerations!. For QCD at least, and per-
haps for electroweak theory too~this is not known, it is re-
lated to the Higgs boson mass!, the appropriate limit seems
to bel@1, possibly even infinity. This limit is the nonlinear
s model. The only proposed expansion parameter for t
model is 1/N. ForN 5 4 the first few terms in this expansion
may not be quantitatively reliable but it is a good start. A
least in the theoretical world we can imagineN as large as
we wish. Presumably, the physics does not change qual
tively with N as long as it is greater than one.

Our basic physical interest in this paper is QCD. Amon
the questions that are routinely asked are: Does QCD hav
finite temperature phase transition? If so, is it associated w
color deconfinement, or with the restoration of the spontan
ously broken chiral symmetry, or are they inextricably inte
twined? What would be the order of this phase transitio

w
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54 4067CHIRAL SYMMETRY AT FINITE TEMPERATURE: . . .
What would be its critical temperature? How do pions, t
Goldstone bosons of QCD, decouple as the temperatur
raised? How do the quark and gluon condensates behav
functions of temperature? Restricting our attention toNf fla-
vors of massless quarks, there are strong arguments@8,9# and
numerical lattice computations@16# which say that for
Nf52 there is a second order phase transition and
Nf>3 there is a first order phase transition. Lattice calcu
tions also suggest strongly that chiral symmetry is resto
and color is deconfined at the same temperature@17#.

The QCD Lagrangian is invariant under U(Nf)3U(Nf)
transformations. This is isomorphic to SUL(Nf)3SUR(Nf)
3Ubaryon~1!3Uaxial~1!; that is, left- and right-handed chiral
ity transformations of the quark fields, baryon number co
servation, and the famous axial U~1! symmetry. The axial
U~1! is broken by quantum effects, particularly instanton
Baryons can be added to thes model if desired, but we shal
not do so. The O(N) s model has no vestige of the axia
U~1!, although there do exist versions of thes model based
on other groups in which it can be incorporated. In gene
SU(Nf)3SU(Nf) is isomorphic to O(Nf

2) only for Nf52.
Otherwise, the interactions are different. This restricts a
potential quantitative results of our analysis of the O(N)
model to QCD toN54. The very interesting issue o
whether the axial U~1! symmetry is restored at high temper
tures or not cannot be addressed here@18#.

One must be careful in understanding hows models are
being applied to the study of QCD at finite temperature.
very low temperatures one may argue that the only degr
of freedom which are excited are pions. One may then
chiral perturbation theory to study the thermodynamic pro
erties, as in the classic works of Leutwyler@19#. At the very
lowest energies this is just the nonlinears model. Note that
in this domain one is really studying a full~311!-dimen-
sional quantum field theory. On the other hand, near
critical temperature one may argue@8,9# that the soft, long
wavelength modes of QCD are in the same universality cl
as the O~4! Heisenberg magnet in three spatial direction
Now, one is studying a classical field theory. The parame
of the effective free energy functional near the critical te
perature may not be simply related to the parameters of
s field theory model at a very low temperature. Support
this point of view comes from lattice QCD computation
which show that critical exponents are consistent with tho
of the O~4! Heisenberg magnet in three spatial dimensio
@20#. Conversely, it has been pointed out that in certain m
els with composite bosons, these arguments might br
down @21# because the compositeness is important nea
second order phase transition. A particularly useful obser
tion is that long range correlation functions may be dom
nated by the soft modes~pions,s meson, . . . ! near the criti-
cal temperature but the equation of state itself is not@22,18#;
it is dominated by the myriad of other degrees of freedo
~Hagedorn or Particle Data Book compendium of meso
and baryons or all of the colored quarks and gluons!.

We would like to shed some light on just a few of th
issues relating to the above discussion.First, from the outset
we restrict our attention to the linear and nonlinears mod-
els in 311 dimensions@23#. Within these confines we ad
dress three specific topics: the existence and nature of a
ral symmetry-restoring phase transition, the low temperat
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dependence of the ‘‘pion decay constant,’’ and the low tem
perature dependence of the ‘‘quark condensate.’’ The first
these involves folklore, and the answer, at least in the no
linear s model, is either obvious to the reader or else ve
surprising. For the latter two we point out some popular mi
conceptions and reproduce the existing results~whenN 5 4!
while showing that they are invariant under field redefinition

First consider the linears model. At zero temperature the
effective potential has a shape similar to the bottom of
wine bottle. It is minimized by a nonzero value of the field
this is the condensate. As the temperature is increased,
radius of bottom of the potential shrinks, and goes to zero
a critical temperature ofTc5A12/(N12) f p . It is a second-
order symmetry-restoring phase transition. In the nonline
s model uFu2 is fixed at the valuef p

2 . Therefore, it would
seem, chiral symmetry breaking is built into the Lagrangia
and there is no possibility of restoring it at finite temperatur
Another way of saying this is that there is no order parame
which can go to zero at finite temperature. At least this is t
folklore in much of the nuclear and particle physics comm
nity. On the other hand, the critical temperature in the line
model is independent ofl in the mean field approximation,
so one can take the limitl→` and still have a phase tran-
sition. The counter argument to this is that the phase tran
tion can go away in the limit and so nothing special happe
at the aforementioned value ofTc in the nonlinear model.
We shall study the nonlinear model directly in Sec. II a
finite temperature in the largeN approximation. To leading
order inN we shall show quite straightforwardly that despit
the constraint the nonlinear model has a second order ph
transition at a critical temperature equal to that of the line
model. We shall show that this persists to the next-to-leadi
order inN, although here we must make an additional hig
energy approximation. The order parameter is identified as
the nature of the two phases.

Next, we study what is meant by ‘‘the pion decay con
stant on finite temperature.’’ At zero temperature a comm
definition is

^0uAm
a upb~p!&5 i f ppmdab, ~1!

which relates it to the matrix element of the axial vecto
current of QCD between the vacuum state and a one-p
state of momentump. It is difficult, though perhaps not im-
possible, to generalize this definition to finite temperatur
Within the linears model one sometimes sees in the litera
ture fp(T) identified with the thermal average of thes field,
v5^s&5u^F&u, which is the radius of the bottom of the
effective potential. In the nonlinears model this radius is
necessarily fixed atfp . How then can one understand th
result of Gasser and Leutwyler@24#,

f p~T!5 f pF12
Nf

2 S T2

12f p
2 D 1•••G , ~2!

which was obtained at low temperature in chiral perturbatio
theory?~At this order chiral perturbation theory and the non
linear s model are the same.! This issue is addressed care
fully in Sec. III.

Finally, a quantity of much interest, especially for th
application of QCD sum rules at finite temperature, is th
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4068 54ALEXANDER BOCHKAREV AND JOSEPH KAPUSTA
temperature dependence of the quark condensate. Gasse
Leutwyler @24# and also Gerber and Leutwyler@25# com-
puted this quantity at low temperature to be

^q̄q&5^0uq̄qu0&F12
Nf
221

Nf
S T2

12f p
2 D

2
Nf
221

2Nf
2 S T2

12f p
2 D 21•••G . ~3!

This is obviously a different temperature dependence th
that of f p(T). In addition, one wonders how is it possible to
obtain information on quark condensates from a theo
which has no explicit reference to quarks? These and rela
topics are studied in Sec. IV.

Before beginning the technical part we remark that w
will deal with vacuum loop divergences in a simple way: w
ignore them. Put another way, it is known that the partitio
function can be expressed in terms of the vacuum-scatter
amplitudes, or S-matrix elements, for arbitrary reactions i
volving n particles going in andm particles coming out@26#.
This is the relativistic virial expansion. Consider, for ex
ample, a real scalar field with a quartic interaction@27#. The
one-loop contribution to the partition function is just the fre
Bose gas expression. The two-loop contribution correspon
to two-particle scattering with the amplitude evaluated at th
tree level. The three-loop contribution corresponds to tw
particles in and four particles out, plus three particles in an
three particles out, plus four particles in and two particle
out, with all scattering amplitudes evaluated at the tree lev
The three-loop contribution also has a part which corr
sponds to a vacuum one-loop correction to the two-partic
scattering amplitude.By dropping all vacuum loop divergen-
cies we are doing a virial expansion with theSmatrix evalu-
ated at the tree level.It is well known that a relativistic
quantum field theory is not defined until a prescription
given for dealing with divergences. This is our way of defin
ing a nonrenormalizable field theory.

The linears model is renormalizable and vacuum loop
can be computed. However, they do not change any of t
principal results at finite temperature since the physics
dominated by long wavelengths. The nonlinear model is n
renormalizable, and although one may consider it to be t
l→` limit of the linear model, we do not know how to do a
strong coupling expansion inl anyway. The short distance
physics of these models in the context of QCD is not corre
in any case.

An early systematic study of various approximatio
schemes for the linears model at finite temperature is@28#.
The nonlinear sigma model in 311 dimensions has been
studied atlow temperatures in the leading order of the 1/N
expansion in@29# using an ultraviolet cutoff 700,L,1000
MeV to regulate divergences. An overall introduction to rela
tivistic quantum field theory at finite temperature is@30#. A
somewhat analogous study of the lattice O(N) Heisenberg
model is@31#.

II. CHIRAL PHASE TRANSITION

It is well known that the linear O(N) s model in 311
dimensions has a second-order phase transition when trea
and
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in the mean field approximation. We briefly repeat th
analysis here as a warm-up and precursor to the study of
nonlinears model which is not nearly as well studied. W
must emphasize that the direct quantitative applicability
QCD is limited by at least two factors. The first is that the
s models do not have quark and gluon degrees of freed
and so one can never describe high temperature quark-g
plasma with them. In addition, the compositeness of
bosons may even influence the phase transition itself@21#.
The second is that the group SU(Nf)3SU(Nf) is isomorphic
to O(Nf

2) only for Nf52 and this limits the analogy to two
flavors of massless quarks. Indeed, lattice computations
the nonlinears model in three dimensions based on oth
groups show first order behavior@32#.

The conventions and notation used here are consis
with those of@30#.

A. Linear s model

The linears model Lagrangian is

L5
1

2
~]mF!22

l

4
~F22 f p

2 !2, ~4!

wherel is a positive coupling constant. The bosonic fie
F hasN components. Rather arbitrarily, we define the fir
N21 components to represent a pion fieldp and the last
Nth component to represent thes field. Since the O(N) sym-
metry is broken to an O(N21) symmetry at low tempera-
tures, we immediately allow for as condensatev whose
value is temperature dependent and yet to be determined
write

F i~x,t !5p i~x,t !, i51, . . .N21,

FN~x,t !5v1s~x,t !. ~5!

In terms of these fields the Lagrangian is

L5
1

2
~]mp!21

1

2
~]ms!22

l

4
~v22 f p

212vs1s21p2!2.

~6!

The action at finite temperature is obtained by rotating
imaginary time,t5 i t , and integratingt from 0 to b51/T.
~However, we keep the Minkowski metric; henc
]m5]/]xm with ]05]/]t5 i ]/]t.! The action is defined as

S52
l

4
~ f p

22v2!2bV1E
0

b

dtE
V
d3xH 12 @~]mp!22m̄p

2p2

1~]ms!22m̄s
2s2#1

l

2
v~v22 f p

2 !s2lvs~p21s2!

2
l

4
~s21p2!2J , ~7!

where the effective masses are

m̄p
25l~v22 f p

2 !,

m̄s
25l~3v22 f p

2 !. ~8!
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54 4069CHIRAL SYMMETRY AT FINITE TEMPERATURE: . . .
At any temperaturev is chosen such that^s&50. This elimi-
nates any one-particle reducible~1PR! diagrams in perturba-
tion theory, leaving only one-particle irreducible~1PI! dia-
grams.

At zero temperature the potential is minimized wh
v5 f p . The pion is massless and thes particle has a mass o
A2l f p . The Goldstone theorem is satisfied. Lin and Se
@33# have argued that thes meson should not be identifie
with the attractives-wave interaction in thep2p interac-
tion, which is responsible for nuclear attraction. Rather, th
argue that thes meson should have a mass that is at leas
GeV if not more. This means thatl is on the order of 50 or
greater.

The simplest approximation at finite temperature is t
mean field approximation. One allows forv to be tempera-
ture dependent; hence the effective masses are temper
dependent as well. However, interactions among the parti
or collective excitations are neglected. The pressure inclu
only the contribution of the condensate and of the therm
motion of the independently moving particles. Thus,

P5
T

V
lnZ52

l

4
~ f p

22v2!21P0~T,ms!1~N21!P0~T,mp!.

~9!

The pressure of a free relativistic boson gas can be writte
several ways:

P052TE d3p

~2p!3
ln~12e2bv!

5E d3p

~2p!3
p2

3v

1

ebv21
. ~10!

This is a relatively simple but surprisingly powerful first ap
proximation that allows one to gain much insight into th
behavior of relativistic quantum field theories at high tem
perature. It was used in all the pioneering papers.

One expects that as the temperature is raised, the
fluctuations will tend to disorder the condensate fieldv, and
at sufficiently high temperature it may even disappear.
there is a second-order phase transition, then the correla
length should go to infinity, which is equivalent to the effe
tive s mass going to zero. With such an expectation one m
expand the free boson gas pressure about zero mass to o

P0~T,m!5
p2

90
T42

m2T2

24
1
m3T

12p
1•••. ~11!

Since the masses are proportional to the square root ofl, it is
generally inconsistent to retain the cubic term inm because
there exist loop diagrams that are not included in the m
field approximation but that contribute to the same order
l. Therefore, we take

P~T,v !5N
p2

90
T41

l

2
v2F f p

22
N12

12
T2G2

l

4
v4, ~12!

where the pion ands masses have been expressed in ter
of l, v, and fp . Maximizing the pressure with respect tov
gives
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v25 f p
22

N12

12
T2. ~13!

This result is easily understood. Going back to Eq.~7! we
can differentiate lnZ with respect tov with the result that

v25 f p
223^s2&2^p2& ~14!

as long as we choosês&50. For any free bosonic fieldf
with massm

^f2&5E d3p

~2p!3
1

v

1

ebv21
, ~15!

where v5Ap21m2. In the limit that the temperature is
greater than the mass^f2&→T2/12. This yields directly Eq.
~13!.

The condensate goes to zero at a critical temperatu
given by

Tc
25

12

N12
f p
2 . ~16!

Above this temperature thermal fluctuations are too large
allow a nonzero condensate. It is a straightforward exerci
to show that the pressure and its first derivative is continuo
at Tc but that the second derivative is discontinuous. This
therefore a second-order phase transition.

There are two major problems with the mean fiel
approximation as described. The first is that the pion h
a negative mass squared at every temperature grea
than zero. Not only is the Goldstone theorem not sati
fied, but there are tachyons as well. Thes particle also
gets a negative mass squared at temperatures ab
A8/(N12) f p,Tc . This violation of basic physical prin-
ciples is resolved by recognizing that the finite temperatu
corrections to the squared masses are proportional tolT2,
and that one-loop self-energy corrections, not included in t
mean field analysis, are of the same order. This can be u
derstood with the following analysis.

At high temperatures, when the masses can be neglec
in the loops, the mean field result is obtained by combinin
Eqs.~8! and ~13!:

m̄p
252

N12

12
lT2,

m̄s
252l f p

22
N12

4
lT2. ~17!

The full one-loop self-energies for pions and thes meson
are drawn in Figs. 1 and 2. If one chooses^s&50 then there
are no 1PR diagrams and the tadpoles should not be
cluded; they are already included in the temperature depe
dence ofv. One may check this by fixingv5 f p and then
computing the tadpole contributions to the effective masse
One gets precisely Eq.~17!. The diagrams involving the
four-point vertices contribute an amount (N12)lT2/12 to
both the pion ands meson self-energies. When evaluated i
the high temperature approximation and at low frequen
and momentum the 1PI diagrams involving the three-poi
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vertices may be neglected.~This follows from power count-
ing. These diagrams involve two propagators instead of o
and so are only logarithmically divergent in the UV in th
vacuum. The other diagrams are quadratically diverge
which leads to aT2 behavior at finite temperature.! When all
contributions of orderlT2 are included, the pole positions o
the pion ands propagators move with the result that, belo
Tc ,

mp
25m̄p

21Pp50,

ms
25m̄s

21Ps52l f p
2 ~12T2/Tc

2!, ~18!

FIG. 1. One-loop self-energy diagrams for the pion in the line
s model. The dashed lines represent pions and the solid lines
resents mesons. The three-point vertices are2lv and the four-
point vertices are2l/4. The5 andÞ indicate that the pion in the
loop has the same or different quantum number than the exte
pion, respectively. Ifv is fixed at its vacuum value off p then the
two tadpoles contribute. Ifv is allowed to vary with temperature by
maximizing the pressure then the tadpoles are not to be include
the self-energy; their effect is already included in the mean fie
mass viav(T).

FIG. 2. One-loop self-energy diagrams for thes meson in the
linears model. See Fig. 1 for remarks.
ne,
e
nt,

f
w

and aboveTc ,

mp
25ms

25mF
2 52l f p

21PF5
N12

12
l~T22Tc

2!. ~19!

The Goldstone theorem is satisfied, there are no tachyo
and restoration of the full symmetry of the Lagrangian abo
Tc is evident.

It must be recognized that the results~17!–~19! are valid
to orderl and cannot be extrapolated tol→`. At low tem-
perature, where pions scatter from each other sequentia
and there is essentially no propagation off mass shell b
tween scatterings because of the low particle density, o
may take the point of view thatl is a parameter to be ad-
justed to fitp-p scattering data and it doesn’t matter how
largel is. This point of view cannot be taken at high tem
perature where the pion number density is large, for th
multiple scatterings will occur and they cannot be factorize
into independent scatterings. This means that multiloop se
energy diagrams will be important at high temperature ifl is
not perturbatively small.

The second major problem is that long wavelength flu
tuations very near the phase transition cannot be treated w
perturbation theory because the self-interacting boson fie
become massless just at the transition. Although this is
well-known problem in the statistical mechanics of secon
order phase transitions, exactly how it affects the critic
temperature is not known for the linears model in 31 1
dimensions. This is a topic for further study. The result pr
sented here must be accepted for what it is: a one-loop e
mate of the critical temperature.

B. Nonlinear s model

The nonlinears model may be defined by the Lagrangia

L5 1
2 ~]mF!2 ~20!

together with the constraint

f p
25F2~x,t !. ~21!

The partition function is

Z5E @dF#d~ f p
22F2!expH E

0

b

dtE
V
d3xLJ . ~22!

Because the length of the chiral field is fixed and cannot
changed by thermal fluctuations it is often said that chir
symmetry breaking is built into this model and, therefore
there can be no chiral symmetry-restoring phase transitio
On the other hand, the linears model does undergo a
symmetry-restoring phase transition. Taking the quartic co
pling constantl to infinity essentially constrains the length
of the chiral field to befp just as in the nonlinear model. The
critical temperature, however, is independent ofl at least in
the mean field approximation. So it would seem that th
phase transition survives. If this is true, then one ought to
able to derive it entirely within the context of the nonlinea
model. That is what we shall do, although it involves a lo
more effort than treatment of the linear model in the mea
field approximation. Since the only parameter in the model
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54 4071CHIRAL SYMMETRY AT FINITE TEMPERATURE: . . .
f p , and we are interested in temperatures comparable to
we cannot do an expansion in powers ofT/ f p . The only
other parameter isN, the number of field components. Thi
suggests an expansion in 1/N.

Begin by representing the field-constrainingd function by
an integral.

Z5E @dF#@db8#expH E
0

b

dtE
V
d3x@L1 ib8~F22 f p

2 !#J .
~23!

As with the linear model, we define the firstN21 compo-
nents ofF to be the pion field and the last component to b
the s field. We allow for a zero frequency and zero
momentum condensate of thes field referred to asv. Fol-
lowing Polyakov @34#, we also separate out explicitly the
zero frequency and zero-momentum mode of the auxilia
field b8. Integrating over all the other modes will give us a
effective action involving the constant part of the fields. W
will then minimize the free energy with respect to these co
stant parts, which is a saddle-point approximation. Integr
ing over fluctuations about the saddle point is a finite volum
correction and of no consequence in the thermodynam
limit. The Fourier expansions are

F i~x,t!5p i~x,t!5Ab

V(
n

(
p
ei ~x–p1vnt!p̃ i~p,n!,

FN~x,t!5v1s~x,t!

5v1Ab

V(
n

(
p
ei ~x–p1vnt!s̃~p,n!,

b8~x,t!5 i
m2

2
1b~x,t!

5 i
m2

2
1TAb

V(
n

(
p
ei ~x–p1nnt!b̃~p,n!. ~24!

One must remember to exclude the zero frequency and z
momentum mode from the summations. The fieldF must be
periodic in imaginary time for the usual reasons, but there
no such requirement on the auxiliary fieldb, hence
vn52pnT andnn5pnT. Since the fieldb has dimensions
of inverse length squared we inserted another factor ofT so
as to make its Fourier amplitude dimensionless, as they
for the other fields. The action then becomes

S5E
0

b

dtE
V
d3xH 12 @~]mp!22m2p21~]ms!22m2s2#

2 ib~2vs1p21s2!J 1
1

2
m2~ f p

22v2!bV. ~25!

Note that terms linear in the fields integrate to zero becau
^p i&5^s&5^b&50.

An effective action is derived by expanding exp(S) in
powers ofb and integrating over the pion ands fields. The
term linear inb vanishes on account ofb̃(0,0)}^b&50. The
it,
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term proportional tob2 is not zero and is exponentiated, thu
summing a whole series of contributions. The term propo
tional to b3 is not zero either and it too may be exponent
ated, summing an infinite series of higher-order terms le
out of the orderb2 exponentiation. After making the scaling
b→b/A2N, the effective action becomes

Seff52
1

2(n (
p

~vn
21p21m2!@p̃~p,n!•p̃~2p,2n!

1s̃~p,n!s̃~2p,2n!#2
1

2(n (
p

FP~p,vn ,T,m!

1
2

N

v2

vn
21p21m2G b̃~p,2n!b̃~2p,22n!

1
1

2
m2~ f p

22v2!bV1O~ b̃3/AN!. ~26!

Note that only even Matsubara frequencies contribute in t
b field: nn52pnT. This may have been anticipated. Ther
appears the one-loop function

P~p,vn ,T,m!5T(
l
E d3k

~2p!3
1

~vn2v l !
21~p2k!21m2

3
1

v l
21k21m2 . ~27!

The effective action is an infinite series inb. The coefficients
are frequency and momentum dependent, arising from o
loop diagrams. The coefficient of the term quadratic inb in
Seff is illustrated schematically in Fig. 3. In addition, eac
successive term is suppressed by 1/AN compared to the pre-
vious one. This is the largeN expansion.

The propagators for the pion ands fields are of the usual
form

D0
21~p,vn ,m!5vn

21p21m2 ~28!

with an effective massm yet to be determined. The propa
gator for theb field is more complicated, being

Db
21~p,vn ,m!5P~p,vn ,T,m!1

2

N

v2

vn
21p21m2 . ~29!

The value of the condensatev is not yet determined either.
Keeping only the terms up to orderb2 in Seff ~the rest

vanish in the limitN→`) allows us to obtain an explicit
expression for the partition function and the pressure. Th
includes the next-to-leading order inN:

FIG. 3. Contribution to the effective action at finite temperatur
in the nonlinears model corresponding to Eq.~26!; the wavy lines
represent the Lagrange multiplier fieldb.
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P5
T

V
lnZ5

1

2
m2~ f p

22v2!2
N

2
T(

n
E d3p

~2p!3

3 ln@b2~vn
21p21m2!#

2
1

2
T(

n
E d3p

~2p!3
lnFP~p,vn ,T,m!

1
2

N

v2

vn
21p21m2G . ~30!

The second term under the last logarithm should and will
set to zero at this order. It may be needed at higher orde
the largeN expansion to regulate infrared divergences.

The pressure is extremized with respect to the mass
rameterm. Therefore,]P/]m250. From the initial expres-
sion forZ this is seen to be equivalent to the thermal avera
of the constraint:

fp
25^F2&5v21^p2&1^s2&. ~31!

If an approximation to the exact partition function is mad
such as the largeN expansion, this constraint should still b
satisfied. It may, in fact, single out a preferred value ofm.

To leading order inN we may neglect the term involving
P entirely. The pressure is then

P5 1
2 m

2~ f p
22v2!1NP0~T,m!. ~32!

The pressure must be a maximum with respect to variatio
in the condensatev. This means that

]P/]v52m2v50, ~33!

which is equivalent to the condition that^s&50. There are
two possibilities.

~1! m50: There exist massless particles, or Goldsto
bosons, and the value of the condensate is determined by
thermally averaged constraint. This is the symmetry-brok
phase.

~2! v50: The thermally averaged constraint is satisfie
by a nonzero temperature-dependent mass. There are
Goldstone bosons. This is the symmetry-restored phase.

Evidently, there is a chiral symmetry-restoring phase tra
sition.

In the leading order of the largeN approximation the
particles are represented by free fields with a potentia
temperature-dependent massm. For any free bosonic field
f,

]P0~T,m!/]m25^f2&5E d3p

~2p!3
1

v

1

ebv21
~34!

with v5Ap21m2. Thus, extremizing the pressure with re
spect tom2 is equivalent to satisfying the thermally average
constraint:

f p
25v21^p2&1^s2&. ~35!

Note, however, that the pion ands fields have the same mas
and thereforêp2&5(N21)^s2&. Consider now the two dif-
ferent phases.
be
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In the asymmetric phase the mass is zero. The constra
is satisfied by a temperature-dependent condensate:

v2~T!5 f p
22

NT2

12
. ~36!

This condensate goes to zero at a critical temperature

Tc
25

12

N
fp
2 ~ leading N approximation!. ~37!

At exactly Tc the thermally averaged constraint is satisfie
by the fluctuations ofN massless degrees of freedom withou
the help of a condensate.

In the symmetric phase the condensate is zero. The co
straint is satisfied by thermal fluctuations alone:

f p
25NE d3p

~2p!3
1

v

1

ebv21
. ~38!

Thermal fluctuations decrease with increasing mass at fix
temperature. The constraint is only satisfied by massless
citations at one temperature, namely,Tc . At temperatures
T.Tc the mass must be greater than zero. Near the critic
temperature the mass should be small, and the flucutatio
may be expanded aboutm50 as

f p
25NT2F 1122

m

4pT
2

m2

8p2T2
lnS m

4pTD2
m2

16p2T2
1••• G .

~39!

As T approachesTc from above, the mass approaches zer
like:

m~T!5
p

3T
~T22Tc

2!1•••. ~40!

This is a second-order phase transition since there is no p
sibility of metastable supercooled or superheated states.

The mass must grow faster than the temperature at ve
high temperatures in order to keep the field fluctuations fixe
and equal tof p

2 . Asymptotically, the particles move nonrela-
tivistically. This allows us to compute the fluctuations ana
lytically. We get

f p
25NS T

2p D 3/2Ame2m/T. ~41!

This is a transcendental equation form(T). It can also be
written as

m5T lnS NT

2p f p
A mT

2p f p
2 D . ~42!

Roughly, the solution behaves as

m;T ln~T2/Tc
2!. ~43!

It is rather amusing that, in leading order of the largeN
approximation, the elementary excitations are massless
low Tc , become massive aboveTc , and at asymptotically
high temperatures move nonrelativistically.
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The result to first order of the largeN expansion provides
good insight into the nature of the two-phase structure of th
nonlinears model, but it is not quite satisfactory for two
reasons. First, it predictsN massless Goldstone bosons in th
broken symmetry phase when in fact we know there ought
be onlyN21. Second, the square of the critical temperatu
is 12fp

2 /N whereas it is 12f p
2 /(N12) in the linears model

in the mean field approximation; we expect them to be th
same in the limitl→`. Both these problems can be rectified
by inclusion of the next-to-leading order term inN, namely,
the contribution of theb field.

It is natural to expect that theb field will contribute es-
sentially one negative degree of freedom to theT4 term in
the pressure so as to giveN21 Goldstone bosons in the low
temperature phase. Therefore, we move one of theN degrees
of freedom and put it together with theb contribution as

P5
1

2
m2~ f p

22v2!2
N21

2
T(

n
E d3p

~2p!3
ln@b2~vn

21p2

1m2!#2
1

2
T(

n
E d3p

~2p!3
ln@b2~vn

21p21m2!P#.

~44!

The function P(p,vn ,T,m) can be reduced to a one-
dimensional integral

P5
1

8p2pE0
`dkk

v
lnFk21pk1L2

k22pk1L2G 1

ebv21
, ~45!

where

L25L2~p,vn ,m!5
~vn

21p2!214m2vn
2

4~vn
21p2!

~46!

but unfortunately cannot be simplified any further. In an
case, to the order inN to which we are working, the pressure
is

P5 1
2 m

2~ f p
22v2!1~N21!P0~T,m!1PI~T,m!. ~47!

This can be thought of, in the low temperature phase,
N21 Goldstone bosons with an interaction termPI .

Because of the logarithm the main contribution to the in
teraction pressure will come whenP is very small compared
to one. This corresponds to very large values of the para
eterL; in other words, to very high momentum, Matsubar
frequency, or mass. In this limit

P→
1

4p2L2E
0

`dkk2

v

1

ebv21
5
h3~m/T!

4p2

T2

L2 . ~48!

This may be thought of as a kind of high energy approxima
tion, and we shall henceforth refer to it as such. Then
e

e
to
re

e

y

as

-

m-
a

-

PI5
1

2
T(

n
E d3p

~2p!3
ln@b2~vn

21p21m2!P#

'2
1

2
T(

n
E d3p

~2p!3
lnF h3p2

~vn
21p2!~vn

21p21m2!

~vn
21v1

2 !~vn
21v2

2 ! G ,
~49!

with the dispersion relations

v6
2 5p212m262mAp21m2. ~50!

The interaction pressure can now be determined in the u
way to be

PI52TE d3p

~2p!3
$ ln@12e2bp#1 ln@12e2bv~p!#

2 ln@12e2bv1~p!#2 ln@12e2bv2~p!#%. ~51!

Note thath3(m/T) has no effect within this approximation
Note also that in the broken symmetry phase wherem50 the
contribution of theb field cancels one of the massless d
grees of freedom to giveN21 Goldstone bosons.

Now we are prepared to examine the behavior of the s
tem near the critical temperature with the inclusion of ne
to-leading terms inN. We do an expansion inm/T as before.
The pressure is, up to and including orderm3,

P5~N21!
p2

90
T42

N12

24
m2T21

1

2
m2~ f p

22v2!

1
N

12p
m3T. ~52!

In the high temperature phase wherev50, maximization
with respect tom yields

f p
25T2FN12

12
2

N

4p

m

T G . ~53!

This gives the same critical temperature as in the mean fi
treatment of the linears model:

Tc
25

12

N12
f p
2 ~subleadingN approximation!. ~54!

The mass approaches zero from above like

m~T!5
p~N12!

3NT
~T22Tc

2!. ~55!

We leave it as an exercise for the reader to compute
asymptotic behavior of the mass with the inclusion of t
subleading terms inN.

The results obtained immediately above used an appr
mation forP which we referred to as a high energy approx
mation. Relaxing this approximation can be done albeit
the cost of a numerical calculation. We do not attempt tha
this paper. Of course, one should also go beyond the m
field approximation in the linear model.
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III. fp AT LOW TEMPERATURE

Consideration of correlation functions at finite tempera
ture is more involved than at zero temperature. Lorentz i
variance is not manifest because there is a preferred frame
reference, the frame in which the matter is at rest. Thu
spectral densities and other functions may depend on ene
and momentum separately and not just on their invariants.
Also, the number of Lorentz tensors is greater because th
is a new vector available, namely, the vectorum 5 ~1,0,0,0!
which specifies the rest frame of the matter.

For a given four-momentumq it is useful to define two
projection tensors. The first onePT

mn is both three- and four-
dimensionally transverse,

PT
i j[d i j2

qiqj

q2
, ~56!

with all other components zero. The second onePL
mn is only

four-dimensionally transverse:

PL
mn[2S gmn2

qmqn

q2
1PT

mnD . ~57!

The notation isL for longitudinal andT for transverse with
respect toq. There are no other symmetric second-rank te
sors that are four-dimensionally transverse.

In the usual fashion@35,36#, one may construct a Green
function for the axial vector current

Gab
mn~z,q!5E

2`

` dv

v2z
rab

mn~v,q!, ~58!

where the spectral density tensor is

rab
mn~v,q!5

1

Z(m,n ~2p!3d~v2Em1En!d~q2pm1pn!

3~e2En /T2e2Em /T!^nuAa
m~0!um&

3^muAb
n~0!un&. ~59!

The summation is over a complete set of energy eigensta
The retarded, advanced, and Matsubara Green functions

Gab
Rmn~q0 ,q!5Gab

mn~q01 i e,q!, ~60!

Gab
Amn~q0 ,q!5Gab

mn~q02 i e,q!, ~61!

Gab
Tmn~vn ,q!5Gab

mn~ ivn ,q!, ~62!

wheree→01.
Because of current conservation, the spectral density te

sor can be decomposed into longitudinal and transve
pieces@37#:

rab
mn~q!5dab@rA

L~q!PL
mn1rA

T~q!PT
mn#. ~63!

In general, the spectral densities depend onq0 andq sepa-
rately as well as on the temperature. In the vacuum we c
always go to the rest frame of a massive particle, and in th
frame there can be no difference between longitudinal a
transverse polarizations, so thatrL5rT5r. We also observe
-
n-
of
s,
rgy

ere

n-

tes.
are

n-
rse

an
at
nd

thatPL
mn1PT

mn52(gmn2qmqn/q2). The pion, being a mass-
less Goldstone boson, is special. It contributes to the lon
tudinal axial spectral density and not to the transverse one.
vacuum

rmn~q!5S qmqn

q2
2gmnD rA~q2!1 f p

2d~q2!qmqn. ~64!

This may be taken to be the definition of the pion deca
constant at zero temperature. In fact, one can write the pio
contribution as

fp
2d~q2!qmqn5 f p

2q2d~q2!PL
mn . ~65!

This cannot be taken as the definition of the pion deca
constant atfinite temperaturebecause the contribution of the
pion to the longitudinal spectral density cannot be assum
to be ad function in q2. In general, the pion’s dispersion
relation will be more complicated and will develop a width
at nonzero momentum. This smears out thed function into
something like a relativistic Breit-Wigner distribution. For-
tunately, the Goldstone theorem@38# requires that there be a
zero frequency excitation when the momentum is zero.~For
a proof applicable to relativistic quantum field theories a
finite temperature see@30#.! This implies that the width must
go to zero atq50, which results in ad function at zero
frequency. Explicit calculations support this assertion@39–
41#. Therefore, it seems to make sense to define

fp
2 ~T![2 lim

e→0
E
0

edq0
2

q0
2 rA

L~q0 ,q50!. ~66!

Physically, this means that the pion decay constant at fin
temperature measures the strength of the coupling of t
Goldstone boson to the longitudinal part of the retarded ax
vector response function in the limit of zero momentum.

We shall study the pion’s contribution to the spectral den
sity only at temperatures small compared tof p . We shall
study both the nonlinear and the linears models. At low
temperatures thes meson’s contribution as a material degre
of freedom is frozen out and one might expect the sam
dynamics to be operative in both models; in other words, o
may expect the result to be the same and so independen
l. For temperatures approachingTc , the problem is more
difficult and is left for future investigation.

A. Nonlinear s model

The nonlinears model was defined at the beginning o
Sec. II B. One can make a nonlinear redefinition of the fie
without changing the physical content of the theory. Variou
redefinitions may be found in the literature. We will first lis
the most common ones, and then we will computefp(T) for
each of them, thereby illustrating that one always gets t
same result. It is interesting to see how this comes about; i
also reassuring that it does.

A convenient way to express thes and pion fields that
explicitly contain the constraint is

s5 f pcos~f/ f p!,

p5 f pf̂sin~f/ f p!, ~67!
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wheref5ufu and f̂5f/f. The Lagrangian may then be
expressed in terms of the fields of choice:

L5
1

2
]mp•]mp1

1

2
]ms]ms

5
1

2
]mp•]mp1

1

2

~p•]mp!~p•]mp!

f p
22p2

5
1

2

f p
2

f2sin
2S f

f p
D ]mf•]mf

1
1

2 F12
f p
2

f2sin
2S f

f p
D G]mf]mf. ~68!

Another representation to consider is from Weinberg@6#,
who defines

p52
f p
2

p2S 12A12
p2

f p
2 D p, ~69!

or inversely,

p5
p

11p2/4f p
2 . ~70!

In terms of Weinberg’s field definition, the Lagrangian i
very compact:

L5
1

2

]mp•]
mp

~11p2/4f p
2 !2

. ~71!

The (s,p) representation is cumbersome because of t
constraint, although it can be handled by the Lagrange m
tiplier method of Sec. II. However, it is inconvenient for
exposing the physical particle content and for doing pertu
bation theory in terms of physical particles. Among the thre
physical representations we choose to work with here, it
interesting to note the range of allowed values of the field
The magnitude of thep field can range from zero to infinity,
the magnitude of thep field can range from 0 tof p , and the
magnitude of thef field can range from 0 top f p . This
distinction is important when dealing with nonperturbativ
large amplitude motion; whether it makes any difference
low orders of perturbation theory is not known to us.

The first step in our quest to extract the temperature d
pendence off p from the theory is to obtain the form of the
axial vector current in terms of the chosen fields. Startin
from

Am52s]mp1p]ms, ~72!

one directly computes
s

he
ul-

r-
e
is
s.

e
in

e-

g

Am52sF]mp1
p~p•]mp!

f p
22p2 G

52
f p
2

2f
sinS 2f

f p
D ]mf2 f pf̂F12

f p

2f
sinS 2f

f p
D Gf̂•]mf

52
1

f p

1

~11p2/4f p
2 !2 F S f p

22
1

4
p2D ]mp1

1

2
p~p•]mp!G .

~73!

Every form of the axial vector current is an odd function of
the pion field.

Obviously, it is not possible to compute the axial vector
correlation function exactly. We will restrict our attention to
low temperature. Roughly speaking, a loop expansion of th
correlation function is an expansion in powers ofT2/ f p

2 with
each additional loop contributing one more such factor. To
one-loop order we need the axial vector current to third orde
in the pion field:

Am52 f p]mp1
p2

2 f p
]mp2

1

f p
p~p•]mp!

52 f p]mf1
2f2

3 f p
]mf2

2

3 f p
f~f•]mf!

52 f p]mp1
3p2

4 f p
]mp2

1

2 f p
p~p•]mp!. ~74!

We will also need the Lagrangian to fourth order in the pion
field:

L45
1

2 f p
2 ~p•]mp!~p•]mp!

5
1

6 f p
2 @~f•]mf!~f•]mf!2f2]mf•]mf#

52
1

4 f p
2 p

2]mp•]
mp. ~75!

The correlation function̂Am
i (x)An

j (y)& will have a zero-
loop contribution from the p-p correlation function
^]mp i(x)]np j (y)&, a one-loop self-energy correction to the
samep-p correlation function, and a one-loop contribution
from the correlation function̂]mp i(x)p j (y)pk(y)]np l(y)&
involving four pions. These three contributions are illustrated
in Fig. 4.

The contribution of the bare pion propagatorD0 to the
longitudinal spectral density is easily found to be

FIG. 4. Vertex and self-energy contributions to the axial vector
correlation function in the nonlinears model.
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rA
L~q0 ,q!5 f p

2q2d~q2!. ~76!

At zero temperature this is just the definition of the pio
decay constant.

The one-loop pion self-energy may be computed by sta
dard diagrammatic or functional integral techniques. The
sults are

Pp~q!52
T2

12f p
2 q

2,

Pp~q!5~N21!
T2

24f p
2 q

2,

Pf~q!5 1
3Pp~q!1 2

3Pp~q!. ~77!

These are quite dependent on the definition of the pion fie
Nevertheless, it is worth noting that the Goldstone theorem
satisfied on account of the fact that the self-energy is alwa
proportional toq2.

The final contribution comes from the correlation functio
of a pion at pointx with three pions at pointy. Again, stan-
dard diagrammatic or functional integral techniques may
used. To express the answers, we gather together the co
butions from the bare propagator, from the one-loop se
energy, and from this correlation function, and quote t
coefficient of the termf p

2q2d(q2) in the longitudinal part of
the axial vector spectral density:

p: F12
T2

12f p
2 G2~N23!

T2

12f p
2 ,

p: F11~N21!
T2

24f p
2 G2SN2

5

3D T2

8 f p
2 ,

f: F11~N22!
T2

36f p
2 G2~N22!

T2

9 f p
2 .

~78!

In all three cases the results are the same and amount
temperature dependence of

fp
2 ~T!5 f p

2 F12
N22

12

T2

f p
2 G . ~79!

It agrees with Eq.~2! for the only case that they can be
compared to:Nf

25N54. The calculation of Gasser and
Leutwyler was verified by Eletsky and Kogan@42#.

B. Linear s model

It is now not surprising to discover that the linears model
gives the same result forf p(T) at low temperature as the
nonlinears model. This is because thes meson is very
heavy at low temperature and cannot contribute materia
the way the pions do. However, the way in which it work
out is very different.
n
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Let us go back to the axial vector currentbeforeshifting
thes field:

Am52s]mp1p]ms. ~80!

Aftermaking the shifts→v1s, the current takes the form

Am52v]mp2s]mp1p]ms. ~81!

By maximizing the pressure~minimizing the effective poten-
tial! with respect tov at each temperature, we effectivel
sum all tadpole diagrams, leaving only 1PI diagrams in a
subsequent perturbative treatment. If this is done, one has
inclination to identify v(T) with f p(T). This is wrong;
f p(T) has additional contributions, as we shall now see.
The first contribution tofp

2 (T) does come fromv2(T)
since it involves the cross term of]mpa(x) with ]npa(y).
Following the analysis of Sec. II A, but at low temperatur
rather than high, we simply leave out the contribution of th
heavys meson. This gives

P~T,v !5~N21!
p2

90
T41

l

2
v2F f p

22
N21

12
T2G2

l

4
v4.

~82!

Maximizing with respect tov gives

v2~T!5 f p
22

N21

12
T2. ~83!

The T2/ f p
2 correction is identically the tadpole contribution

to the vertex shown in Fig. 5.
There is another, nonlocal, contribution to the verte

shown in Fig. 5, corresponding to the emission and abso
tion of a virtual s meson. One might think that it is sup
pressed by the larges mass,ms

252l f p
2 but in fact this is

compensated by the coupling constantl in the extra vertex.
Evaluation of this diagram gives a contribution ofT2/6f p

2 to
f p
2 (T).
Finally, there is a contribution coming from the dresse

pion propagator analogous to the nonlinears model. The full
one-loop 1PI pion self-energy diagrams were already sho
in Fig. 1. We know that the sum of the momentum
independent pieces is zero on account of Goldstone’s th

FIG. 5. Vertex and self-energy contributions to the axial vect
correlation function in the linears model. See Fig. 1 for remarks.
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rem. We only need the contribution that is quadratic in t
energy and momentum of the pion. This can only arise fr
the so-called exchange diagram involving twospp vertices,
also shown in Fig. 5. In imaginary time~Euclidean space! it
is

Pex~vn ,q!524l2f p
2T(

l
E d3k

~2p!3
1

v l
21k2

3
1

~v l1vn!
21~k1q!21ms

2 . ~84!

SinceT!ms , it is easy to extract the piece quadratic in th
momentum. Analytically continuing to Minkowski spac
(vn→ iq0) it is q

2T2/12f p
2 .

The residue of the pion pole in the axial vector correlati
function can now be obtained by adding the vacuum con
bution, the pion self-energy correction, and the tadpole a
nonlocal vertex corrections as

F12
1

12

T2

f p
2 G2

N21

12

T2

f p
2 1

1

6

T2

f p
2 .

The final result,

fp
2 ~T!5 f p

2 F12
N22

12

T2

f p
2 G , ~85!

is identical to that of the nonlinears model. We remark that
this cannot be used to compute the critical temperature s
it was obtained under the condition thatT! fp .

IV. SCALAR CONDENSATE AT LOW TEMPERATURE

The scalar condensate is defined asu^F&u. Our convention
has been to allow the last,Nth component of the field to
condense, and to refer to this as eitherv ~if the field is
shifted! or ^s& ~if the field is not shifted!. In this section we
use the latter convention.

It is interesting to ask what happens to this condensat
a function of temperature in the nonlinear model. The co
straint as an operator equation isfp

25F2 and as a therma
average isf p

25^F2&; it is not fp5u^F&u. The condensate
indeed can change with temperature. In fact, we can q
easily compute it to two-loop order. Before doing so, we fi
discuss the connection of this condensate with the quark c
densatê q̄q&.

In two-flavor QCD, one oftentimes associates thes and
pion fields with certain bilinears of the quark fields:

q̄q;s,

i q̄g5tq;p.

This association is made because the quark bilinears tr
form in the same way under SU~2!3SU~2! as the corre-
sponding meson fields. The dimensions do not match
there must be some dimensionful coefficient relating the
this coefficient could even be a function of the grou
invariant s21p2;(q̄q)22(q̄g5tq)

2. Does this particular
he
m

e
e

n
tri-
nd

nce

as
n-

ite
st
on-

ns-

so
m;
-

combination of four-quark condensates change with te
perature? The temperature dependence of the four-qu
condensates at low temperatures was first calculated in@43#
with the help of the fluctuation-dissipation theorem. The co
tribution of pions alone was later discussed in@44# using soft
pion techniques. From@43,44# one can read off the two con-
densates separately:

^~ q̄q!2&5F12
T2

4 f p
2 G^0u~ q̄q!2u0&2

T2

12f p
2 ^0u~ q̄g5tq!2u0&

~86!

and

^~ q̄g5tq!2&5F12
T2

12f p
2 G^0u~ q̄g5tq!2u0&

2
T2

4 f p
2 ^0u~ q̄q!2u0&. ~87!

Therefore, there is no correction to this group invariant
orderT2/ f p

2 inclusive:

^~ q̄q!22~ q̄g5tq!2&5^0u~ q̄q!22~ q̄g5tq!2u0&. ~88!

This result is consistent with our analysis of the nonline
s model in Secs. II B and III A.

Now let us return to the business of computing the tem
perature dependence of the scalar condensate to one-
two-loop order. In terms of the three representations used
Sec. III A thes field is

s/ f p5A12
p2

f p
2 512

p2

2 f p
2 2

~p2!2

8 f p
4 1•••

5F12
p2

2 f p
2 1

~p2!2

16f p
2 G1/2F11

p2

4 f p
2 G21

512
p2

2 f p
2 1

~p2!2

8 f p
2 1•••

5cos~f/ f p!512
f2

2 f p
2 1

~f2!2

24f p
2 1•••. ~89!

To second order in the pion field all three representations
the same. Using the free-field expression for the thermal
erage of the field squared we get

^s&/ f p512
N21

2 S T2

12f p
2 D 1•••. ~90!

For N54, the only value for which we can quantitatively
compare with QCD, this agrees with the result of Gasser a
Leutwyler as quoted in Eq.~3!; it was also derived in an
independent way by Eletsky@44#.

The coefficient of the term that is fourth order in the pio
field differs in sign and magnitude among the three repres
tations. It would be a miracle if the thermal average
A12p2/ f p

2 , cos(f/fp) and the Weinberg expression were a
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the same. But regarding the order (T2/12f p
2 )2 we must rec-

ognize that the term that is second order in the pion field g
modified because of a one-loop self-energy. This was co
puted for each representation in Sec. III A and the resu
listed in Eq.~77!. The term fourth order in the pion field can
be evaluated using free fields. The result is

^~f2!2&5~N221!S T212D
2

, ~91!

and is obviously representation independent. The contri
tions for each representation are

p: 12
N21

2 S T2

12f p
2 D F12S T2

12f p
2 D G2

N221

8 S T2

12f p
2 D 2,

p: 12
N21

2 S T2

12f p
2 D F11

N21

2 S T2

12f p
2 D G

1
N221

8 S T2

12f p
2 D 2,

f: 12
N21

2 S T2

12f p
2 D F11

N22

3 S T2

12f p
2 D G

1
N221

24 S T2

12f p
2 D 2, ~92!

where the second term in each line comes from the squ
of the pion field and the last term comes from the pion fie
in fourth order. The sum of all terms is identical in all thre
representations.

^s&/ f p512~N21!S T2

24f p
2 D

2
~N21!~N23!

2 S T2

24f p
2 D 21•••. ~93!

The miracle happens. It is a consequence of the fact t
physical quantities must be independent of field redefinitio
What is more, forN 5 4 it agrees with the result of Gasse
and Leutwyler quoted in Eq.~3!. However, we emphasize
once more that this expression should not be used to infe
critical temperature because it was derived under the
sumption that the temperature is small compared tof p .

V. SUMMARY AND CONCLUSION

In this paper we have focused on the linear and nonlin
versions of thes model based on the group O(N) at finite
temperature. Models of this kind are prototypes for physic
theories, such as QCD and electroweak theory. Our m
goal was to understand, both conceptually and mathem
cally, whether the nonlinear model has a symmetry-restor
phase transition analogous to that of the linear model. W
did show that the nonlinear model has a second-order ph
ets
m-
lts

bu-

are
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ear
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ain
ati-
ing
e
ase

transition by making use of the 1/N expansion. To leading
and subleading orders the critical temperature is even
same as in the linear model.~This cannot be true in genera
eventually there must be some dependence in the lin
model on the value of the quartic couplingl.! This expan-
sion was facilitated by the introduction of a Lagrange mu
plier field. In this way we could see that there is a condens
at low temperature; this condensate decreases in just the
way so as to conserve the constraint on the field vec
There is one particular temperature for which the therma
averaged constraint is satisfied with no condensate and
all excitations massless. This is the critical temperature.
had to make a mathematical approximation at the sublea
order to get an analytical result. We referred to this a
‘‘high energy approximation.’’ It is directly analogous t
what one does in the mean field approximation to the lin
model. It would be interesting to relax this approximatio
this is left as a future project.

Another goal was to carefully define and show how
compute the ‘‘pion decay constant’’ and the ‘‘scalar qua
condensate’’ at finite temperature within the scope of th
models. The definitions also apply to full QCD but,
course, the results will generally be different. Only at ve
low temperatures and forN 5 4 will the results be directly
applicable to QCD for the reasons discussed in the introd
tion. Even within the context of thes models, however, it
would be interesting to compute the next order correction
f p
2 (T) at low temperature. It would also be interesting
computef p

2 (T) nearTc . These computations are now unde
way.

In this paper we have not computed anything more co
plicated than a one-loop diagram. Even the calculation of
‘‘scalar quark condensate’’ to order (T2/12f p

2 )2 only re-
quired knowledge of one-loop diagrams. What other intere
ing physical quantities can the reader compute in these m
els to one-loop order?

Natural extensions of these models to better approxim
full QCD may be envisioned. Following the philosophy
chiral perturbation theory one may include higher derivat
terms in the Lagrangian. One may also add other meso
and baryonic fields, especially the vector mesons. Howe
no matter how many extra terms are added, one is still
stricted from discussing the quark-gluon plasma.

If the Higgs particle turns out to have an exceptiona
large mass, then a reasonable first approximation to the e
troweak phase transition might begin with a nonlinear v
sion of the Glashow-Weinberg-Salam model. Gauging
nonlinears model would be a step in this direction. Th
topic is also under investigation.

We hope to have stimulated the reader to make furt
progress on these very interesting topics at finite temp
ture.
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