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Influence of the full vertex and vacuum polarization on the fermion propagator
in (2+1)-dimensional QED
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We investigate the influence of the full vacuum polarization and vertex function on the fermion propagator,
using the coupled Dyson-Schwinger equations for the photon and fermion propagator. We show that, within a
range of vertex functions, the general behavior of the fermion propagator does not depend on the exact details
of the vertex, both in the massless and in the massive phase. Independent of the precise vertex function, there
is a critical number of fermion flavors for dynamical mass generation in{2dimensional QED. A consis-
tent treatment of the vacuum polarization is essential for these regMts56-282196)02816-0
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[. INTRODUCTION guestion of whether there is a critical humber of fermion
flavors for dynamical mass generatif3,6—9. In this pa-
Quantum electrodynamics in 2 space and 1 time dimenPer we try to resolve this controversy.
sion, QED;, has several interesting features. It exhibits dy- USing the bare vertex approximation and the one-loop

namical mass generatigi—10 and confinemenf11-13,  Vacuum polarization, Appelquigt al. [2] have shown that

similar to QCD. Furthermore, it is superrenormalizable, so ittN€"€ IS a finite critical number of flavofs,, above which
; . . the chiral symmetry is restored. They found in Landau gauge
does not suffer from the ultraviolet divergences which are

: . T ! a critical value ofN.=32/7%=3.24. This approach is based
present in QEL. The coupling constant is dimensionful, and 5y 3 1N expansion, and including the next-to-leading-order

provides us with a mass scale, even if we consider masslegsyms[3], it was found that the critical number changes to
ferm|on_s. This energy sc_ale plays the role of the_ QCD scalgy_=128/37%~4.32.
Aqcp, in the sense that it sets the scale for confinement and However, such a simple treatment was criticized by Pen-
dynamical mass generation. Thus, it is a very interestingiington and co-worker$6], since the effects of the wave
model to study these nonperturbative phenomena. function renormalization were not taken into account. The
QED; also has some applications in condensed matteproblem is that formally the wave function renormalization
physics, where it can be regarded as an effective theory fdp of order I+ O(1/N), but in the infrared region, this wave
more realistic microscopic mode]é4,15. Especially, since function renormalization tends to vanish. Because of this
the discovery of hight. superconductivity and the fractional nonuniformity in the I expansion, an approximation based

guantum Hall effect, these kinds of models have attracte@” @n €xpansion n v m'ght not be very rellable.. Taking
more attention. into account wave function renormalization, Pennington and

. . . . co-workers found chiral symmetry breaking for all numbers
In this paper, we co_nS|der QEPwith N fermion flavors of fermion flavors. Howevgr, as w)é show, tr?eir approach also
of four-component spinors. Such a model of QEs has some inconsistenc
chirally symmetric in the absence of a bare fermion mass y.

y Syn There have been several attempts to resolve the problem,
term, moi¢, in contrast to the(2+1)-dimensional gauge by means of more sophisticatéchsaze for the full vertex
theory with two-component fermions, where we cannot de{7-10], and by use of a so-called nonlocal gauge function
fine chiral symmetry [1,2,16. Similar to the four- [18-2(@, but none of them are completely satisfactory. Also,
dimensional caskL7], the chiral symmetry of QEPmay be  other methods, such as the inversion metf@l, € expan-
broken spontaneously due to the dynamical generation of gion[22], and lattice calculationgs], have not given a final
fermion mass. The question whether or not chiral symmetryanswer to this question, although the lattice results favor the
is broken for all values oN, the number of fermion flavors, existence of a finite critical number of fermion flavggs23).
iS very interesting. The difficulty is that it is numerically very difficult to ob-

We address this question by analyzing the behavior of thgerve the exponential decrease of the dynamical mass for
full fermion propagator nonperturbatively, using its Dyson-increasingN found in[6,7].
Schwinger equation. However, this equation cannot be In our paper, the existence of a finite critical number of
solved without truncating the infinite set of Dyson- flavors is confirmed by analyzing theoupled Dyson-
Schwinger equations, since it involves the full photon propa-Schwinger equations, for both the fermion and the photon
gator and the full vertex function. Different ways of truncat- propagator, using several different approximations for the
ing this equation give rise to different results concerning thefull vertex. We show that, within a certain class of vertex
Ansdze there is a critical number of fermion flavors for
dynamical mass generation in QEDThis number does not
“Electronic address: maris@eken.phys.nagoya-u.ac.jp; present adepend very strongly on the precise form of the verex
dress: Physics Division, Bldg. 203, Argonne National Laboratory,satz Also, the general behavior of the fermion propagator
Argonne, IL 60439-4843. does not depend on the exact details of Armsatz The es-
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sential point is to take into account the full vacuum polariza- e? d3k 1

tion in a consistent way. A(p)= 1+52J 23 ZTf[leMS(k)Fv(p,k)Dﬂy(P—k)],
In the next section, we describe the formalism in more

detail, together with our truncation scheme. Before address- ©
ing the question of chiral symmetry breaking, we first ana- 3k

lyze the full fermion propagator in the massless phase, see B(p)=ezf 23 ZTr[ YuS(KT,(K,p)D ,,(p—K)].
Sec. lll. This already yields some nontrivial results, namely, (2m) (6)

that the structure of the massless full fermion propagator is

almost independent of ouknsatz In Sec. IV, we discuss The problems in analyzing this equation are the full vertex

dynamical mass generation, and show that there is a criticalnd full photon propagator. For the photon propagator we
number of fermion flavors for chiral symmetry breaking, also have a DS equation, namely,

N.=3.3, almost independent of our choice for the vertex.

Finally, we give some concluding remarks in Sec. V. 1 1 ) d3k
D,,(@)=Dg ,.(q)—e (ZT)sns(k)FV(k,p—k)
Il. FORMALISM X S(p—K) @
A. Three-dimensional QED with N massless fermion flavors ) ) ) ) )
. . . without introducing new unknown functions. It is more con-
hWe con3|de|r( QER W|I'tg N massless fermion ;‘]Ia\{ors, angl venient to write this last expression in terms of the vacuum
choose to work in Euclidean space, ignoring the issues 'Sf)olarization tensofl ,,(q):

cussed if13]. The Lagrangian in a general covariant gauge
is given by d3k
N H,w(q)=ezf Wwﬂs(k)Fy(k.p—k)S(p—k)- ®
T 12 1 2 i

£ igo ilidreA gtz FL Za(a"‘A”“) ' @ Since the longitudinal part of the photon propagator is not
affected by the interactions, because of gauge invariance, we
We use four-component spinors for the fermions, and accan write the full photon propagator in a general covariant
cordingly, a four-dimensional representation for thenatri-  gauge
ces. With such a representation we can define chirality just as
in four-dimensional QED. This chiral symmetry can be bro- D..(q)=— ( P
ken dynamically by generation of a mass for the fermions. In wy rr g2
this formulation, there can also be a parity-breaking mass o ]
term, which conserves the chiral symmetry, but it is knownWith the vacuum polarizatiobl(q) defined by
that such a mass is not generated dynamiddléj.

We haveN fermion flavors, and consider both the large I V(q):<5 — qﬂ?”)n(q)_ (10)
N limit, as well as the quenched limi | 0. In the quenched g Koog
limit, the mass scale is defined by the dimensionful couplin
constante?, and there are no free parameters. Outside th
guenched limitN, the number of fermion flavors is the only
free parameter. When using the lariyeexpansion 2], we
keep the producNe? finite, and it is most convenient to
define the mass scale by

1 4,9,
T

he vacuum polarization tensor has an ultraviolet diver-
gence, which can be removed by a gauge-invariant regular-
ization scheme. However, this divergence is only present in
the longitudinal part, so by contractirdd,,,(q) with

G26,,~ 325", @
Ne? q
a=—. (2) ) o ]
8 we can project out the finite vacuum polarizatidifq) [11].
So, the coupled DS equations for the photon and fermion
B. Dyson-Schwinger equations for the propagators propagator form a set of three coupled equations for three

: ) ) scalar functions, and the only unknown function is the full
The Dyson-SchwingeDS) equation for the fermion yertex function. Note that both the DS equation for the ferm-

propagator is given by ion propagator, and the one for the photon propagator, are
Sfl(p)=851(p)—e2J iksy S(K)T,(p,k)D ,,(p—K). ex?r?tbrinciple, we could write down a DS equation for the
(2m)> °H a full vertex function as well, but this will not lead to a closed

3 set of equations: the DS equation for the vertex involves a
] o ) four-point function, and so on. The full set of DS equations
Since parity is not broken dynamically, we can decomposgorms an infinite hierarchy of coupled integral equations for

the fermion propagator into the Green’s functions. In order to solve the DS equation for
L a particular Green'’s function, we have to truncate or approxi-
S (p)=A(p)p+B(p), (4)  mate this infinite set of equations. For calculating the propa-

gators, we must find a reasonable approximation for the full
and rewrite the DS equation into vertex function'#(p,k).
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C. Truncation scheme multiplicative renormalizability also restricts the full vertex,

Now, what is a reasonable approximation for the full ver-8Ven in & superrenormalizable theory such as QEEur-
tex function? The most simple, and in some sense “natural, {h€rmore, anyAnsatz should have the correct symmetry

approximation is to take the leading-order perturbative verProperties. However, all these constraints do not uniquely
tex determine the full vertex, they all leave parts of the vertex

undetermined. So, the results might depend heavily on the
L=y, (12)  particular choice for the vertex. Another disadvantage of us-

ing a vertexAnsatzis that it is not possible to improve the
This truncation is commonly used in studies of the fermionapproximation in a systematic way.
DS equation, and it is usually referred to as ladder or rain-
bow approximation, since it generates rainbow diagrams in
the fermion DS equation, and ladder diagrams in the Bethe-
Salpeter equation for the fermion-antifermion bound state In this paper, we use several differefsazefor the full
amplitude. In principle, there is a systematic way to improvevertex, including a bare vertex, and compare the results to
this truncation, namely, by taking the next-to-leading-ordersee how much influence these different choices have on the

D. Vertex Ansaze

vertex function, and so on. propagators. For the sake of simplicity, we consider the form
The obvious disadvantage of this approach is that it relies
on perturbation theory, whereas the DS equations are non- I',(p,K)=f(A(p),AK),A(p—K)) ¥, (15

perturbative equations. Until one performs the complete
next-to-leading-order calculation, one does not know howwith the restriction that foA(p)=1, the full vertex reduces
reliable the leading-order calculation is. Even after obtainingo the bare vertex. This automatically ensures that in the
such a next-to-leading order, there remains some doubt abowfeak coupling limit, the full vertex reduces to the bare one.
the validity of this approach, due to the nonuniformity of the Such anAnsatzhas the same tensor structure as the bare
1/N expansion. vertex, and by restricting ourselves to this tensor structure,
Furthermore, as a consequence, on the one hand, of usinge simplify the numerical integrations considerably. It is
a nonperturbative method to calculate some Green’s funcalso generally expected that this tensor structure plays the
tions, and, on the other hand, of employing perturbatiormost dominant role in the full vertex.
theory for other Green’s functions, one violates the Ward- To be more specific, we will analyze the coupled DS
Takahashi(WT) identities relating these Green’s functions, equations for the propagators, using the following choices
and loses gauge covariance. To be specific, the WT identitior ~ f(A(p),A(K),A(p—k)): (1) the bare vertex

relating the full vertex to the fermion propagator f(A(p),A(k),A(q))=1; (2) a simpleAnsatzinspired by the
. . Ball-Chiu vertex [Eq. (14)] [24], f=3A(p)+AK)]; (3)
%WLL=S 7P =Sk, 13 t=APAKIAQ); @ f=HAP+AKF; and ()

. . . . : f=A(p)A(K).
is an exact identity, which holds order-by-order in perturba- . . .
tion theory, but if one uses perturbation theory to approxi- Of these choices, only the first two are actually motivated

mate the full vertex, and the truncated DS equation to calcu?" physical arguments. The last one is primaril.y motivated
late the fermion propagator, one will, in general, violate '[hisby the fact that_the resulting t_runcated DS equations are easy
identity ’ ' ’ to solve analytically(at least in the symmetric phas&he

Instead of using a perturbative approximation for the verChoices 3 and 4 are merely added in order to see how much

tex function, one can also use other nonperturbative informat—he results depend on our particular choiesatz3 is based

tion to make amnsatzor the full vertex. The full vertex can  ©" Ansatzb, but linear in the wave function renormalization,
be decomposed into 12 different Lorentz structures, four o S it is supposed to be, wheredasatz4 is the quadratic

- : : . f Ansatz2. The last twoAnsdze are also inspired by
which are uniquely determined by the WT identi84]. So, orm o S ; -
by imposing the WT identity, we can write the full vertex as the suggestion i8] thgt the effectlvg vertex correction In

the fermion DS equation is quadratic in the wave function

1 1 A(p)—A(K) renormalization.
FMZE[A(p) +AK) Ty, + E('{H K)(p,+ kﬂ)ﬁpz_ K Finally, we have to choose a gauge, and since the Landau
gauge is the most convenient and commonly used gauge, we
B(p)—B(k) use it. Using theAnsatzfor the vertex we have just de-
—(Pptk)—o—7— "+, (14)  scribed, the DS equations for the propagators reduce to
pc—k
where the ellipsis represents the part of the vertex not con- 2e? d*k AK)(p-q)(k-q)
strained by the WT identity. Now, one can simply neglect A(p)=1+ ?J 2m)? AZK)KE+B(K)
that unconstrained part, and take the above expression as
Ansatz(usually called Ball-Chiu vertexfor the full vertex. f(A(p),A(k),A(q))
However, a perturbative calculation shows that the uncon- gX(?+11(q)) (16)

strained part is not zerf25], and by just neglecting it, one
never sees what one is throwing away. 3

The WT identity is not the only requirement one can im- o )=2e2f d°k B(k) f(A(p),A(k),A(q))
pose on the full vertex function. Other requirements are that "~ (27)% A%(k)k?>+B(k) q’+11(q) ’
it reduces to the bare vertex in the weak coupling limit, and (17
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d3k 6k-q 2a (= dq
= 2_Ak-gq— ~1(n)=1— 2_ 2
11(q) NeZJW(Zk k-0~ o~ A (p)=1 szwzj0q2+aq qQ°=p
A)  APF(A(P),AK),A(Q)) g‘=p* p+q
NI AR=Y v TR ; ———In——+], (25)
A“(kk“+B(k)  A%(p)p*+B*(p) 2pq " |p—a|
(18) whereas EQq.23) gives a nonlinear integral equation for
L A(p)
with g=p—k.
A-l(p) o1 2 J% dq
lll. SYMMETRIC PHASE (P =17 N2 )y A@ a7+ ad
First, we consider the massless fermion phase, so , q*-p* p+q
B(p)=0, which is always a solution of Eq17). This re- X 9P g In—lp—ql . (26

duces the problem to solving two coupled equations, one for
the wave function renormalizatioA(p), and the other for and thus gives an implicit relation for the wave function

the vacuum polarizatiohl (p). renormalization.
However, bothAnsdze lead to the same explicit expres-
A. Analytical results sion, if we make one further approximation, which is com-

monly used in this context. In the infrared regiop< «, the

With B(p)=0, the vacuum polarization reduces to vacuum polarization dominates: the denominators,

d*%k 2K2— 4k-q—6(k-q)/q? A(9)9%+ aq in Eq. (23), andg?®+ aq in Eq. (24), both be-
H(q)zNeZJ 2 5 5 have asaq, whereas for large momenta> «, the wave
(2m) k*(k+q) function renormalization is almost equal to one, and the con-
f(Ak+Q),AK),A(q)) triputic_m to these denominators qoming from the vacuum po-
AOAKTD) (190 larization can be neglected. So, in both cases the wave func-
q tion renormalization behaves as
We first considerAnsdze 3 and 5, because the vacuum po- 4 2a adq *dq
larization can then be calculated analytically. Withsatz3, A (p)=1- W fo a_q + o ?)

the vacuum polarization becomes
, , 4d'-p* p+g

T1(q) = Ne2q/(8A(q)) = ag/A(q), (20 x|d 2pq Mp—q]
whereasAnsatz5 leads to P P o’ 3p4+6p2a2—a4lr atp
N2 3p? 6p°a la—p|
I1(q)=Ne€?q/8=aq. (22) 4 |a2—p2|)
- =ln———. (27
In the massless phase, the equation for the wave function 3 P
renormalization becomes
B. Numerical results
A(p)=1+ 2_92 d*k f(A(p),AK),A(9)) We can also solve the integral equations for the wave
p? | (27)3 A(k)k? function renormalization and the vacuum polarization nu-
merically. Starting with bare propagators to calculate the
(p-q)(k-q) (220 vacuum polarization, we solve E@16) with this vacuum
q*(@*+1I(q))’ polarization. Using this solution for the wave function renor-
malization, we again calculate the vacuum polarization and
For theAnsdze 3 and 5, this can now be reduced to repeat this procedure until the solutions for béiiip) and
A(p) converge to a stable solution. In Fig. 1, we have plotted
d3k 1 (p-q)(k-q) the analytic sqlutions for .the wave function renormalization
A(p)—1+A(p)N—p2 2 AlQ) P+ aq k2P , as described in the previous section, together with our nu-

23) merical result. We see that they agree very well with each
other qualitatively, and that in the ultraviolet region the
A(p) is almost equal to one, as expected, whereas in the

A(p)=1+A(p) 16a ( dk 1 (p-q)(k-q) infrared region, it deviates considerably from the perturba-
W (27)° g%+ aq k’q®> tive value. In particular, it is important to notice that for

(29 pl0, the wave function renormalization vanishes, as also can
be seen from Eq27).
where we user=Ne?/8 rather thare? to define the energy For the other verteXAinsaze we cannot solve the integral
scale. This last equation can be solved exactly equations analytically. Numerically, we find a very similar
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et ey photon DS equations. However, tHeviationof the vacuum
polarization from the perturbative leading-order behavior

0.95

II(q)=aq, (28)
= 0.9
% does depend strongly on tisatz see Fig. ).
0.85 It can be explained that different verténsaze lead to
08 the same behavior for the wave function renormalization. In
' the symmetric phase, Eq&l.6)—(18) reduce to
075 | N
P nl L+ oe s aenl MY sl MR T 2 3
0.001 0.01 0.1 1 10 A(p)=1+ 2_e d°k f(A(p),A(k),A(q))
ple? p2 | (2m)® A(k)k?
FIG. 1. The numerical and analytical solutions for the wave (p-a)(k-q)
function renormalization in the massless phaselNer6, using the m, (29

Ansaze 3 and 5.

d3k
behavior for the wave function renormalization for all five H(q)=Ne2j W
different Ansdze as is shown in Fig. ). The vacuum po-
larization also seems to be quite insensitive to the vertex [2k?—4k-q—6(k-q)/g%]f(A(p),A(K),A(q))
Ansatz as can be seen from Fig(l. So, it turns out that the X A(K)A(p)k?p? :
exact form of theAnsatzs not very relevant for the behavior
of the fermion propagatoprovided that one uses a consis- (30

tent approximation schemeonsider the coupled equations In the ultraviolet region, the propagators, and also the full

for the fermion and photon propagator, and use the sam@,ices reduce to the bare ones, so the crucial region is the
approximation for the full vertex in both the fermion and the j¢ored region. In thefar) infrared region, the vacuum po-

larization dominates in the denominator of the kernel of Eq.
(29), g*>+11(q), so we can approximate this denominator by
IT(q). We can now observe that there is a cancellation in the
infrared region between different effects of the vertex-
satz the functionf enters the integral equation both in the

11 T T T T T T

i1k

a 0.9 - Ansatz 1 — 1 i oA . .
1 08 22225% . numerator, and, via the vacuum polarization, in thg denomi-
' o Ancats 4 o nator. The remaining equation for the wave function renor-
0.7 Ansatz 5 --- - malization resembles the Eq®3) and(24), which we have
06 Lot T analyzed in the previous subsection. This cancellation ex-
0.0001 0.001  0.01 0.1 1 10 plains why we get a very similar behavior for the wave func-
(@) ple? tion renormalization, using quite differetnsdze for the
10 — vertex.

Note that for such a cancellation, the vacuum polarization

Tt has to depend quite strongly on the precisgsatz and in

s 01 Fig. 2(c) we see that the deviation from the perturbative be-
= [ A .
0.01 E havior is indeed governed by the powers Afp) in our
001 I vertex Ansatz Using a bare vertex, the vacuum polarization
0. i 1 becomes quadratic in A/ with a vertex linear inA, the
00001 2wl o vacuum polarization becomes linear irAland with anAn-
) 0.0001 0001 001 O ! 10 satzwhich is quadratic in the wave function renormalization,
the vacuum polarization does not contain any powers of
18l ] and is(almos} equal to the perturbative one.
£ - . Finally, we show in Fig. 3 the wave function renormal-
2 161 i ization for several different numbers of fermion flavors. This
| . . .
= 14 ~ - shows that there is only a quantitative dependence on the
2 1ol i number of flavors, as long as we stay in the symmetric phase.
= L 4 The otherAnsazeyield a similar result.
1 " P | il L P | 2 P |
0.0001  0.001 0.01 0.1 1 10 C. Infrared behavior
) ple?

As can be seen from E@27), the wave function renor-
FIG. 2. The numerical solutions in the massless phase fofnalization vanishes in the infrared region, in contrast to what
N=6, using theAnsaze 1-5: (a) the wave function renormaliza- One might expect based on ordinary perturbation theory or
tion, (b) the vacuum polarization, an¢t) the deviation of the the 1N expansion. Such a vanishing behavior could very
vacuum polarization from the perturbative behavior. well be related to an anomalous dimension for the wave
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1.2 T T g —— parameter for this symmetry breaking is the chiral conden-
/,/;jff__, sate{ i), but it is more convenient to consider the infrared
1 seaness— value of B(p) as the order parameter.
_______________ Writing the full fermion propagator as
0.8 ==
_ e S (p)=A(p)p+B(p), (35)
Z 06

Ansatz2 —

a nonzero solution foB(p) implies a nonzero condensate,

04— anomalous dim. Eq. (32) -~ 4 and signals dynamical mass generation. The infrared value of
=2 the dynamical mass function defined by
02| 4 m(p)=B(p)/A(p), m(0)=B(0)/A(0) can also be used as
order parameter. Note we are not calculating the physical
o P Y S - mass, defined at the pole of the propagator; this physical
0.0001  0.001  0.01 ole? 0.1 1 10 mass is expected to be in the Minkowski region, at least for

observable particles, whereas we are performing our calcula-
FIG. 3. The wave function renormalization in the masslessions completely in Euclidean region. The question of the

phase forN=2, 4, 6, and 10, usind\nsatz2, together with the €Xistence of such a physical mass in the timelike region is

behavior based on the existence of an anomalous dimension. ~ Not addressed hefé3].

function renormalization as suggested &26€)]. It has been A. Existence of a critical number of flavors

argued that the naive perturbative behavior Based on bifurcation theory, we can show that, for deter-

mining the critical numbe(if there is a critical numberof
fermion flavors, it is sufficient to keep the terms which are
linear in the generated mass, assuming that there is a con-
tinuous phase transition. This means that we can use the
symmetric solutions for the vacuum polarization and wave

8
Aper P)=1+ 51— n(pl ), 3D

is the first term of the buildup of an anomalous dimension

p\7 function renormalization in the equation fBr. To avoid in-
A(p):(; ; (32)  frared problems, we replace the denominator
A?(k)k?+B2(k) by A%(k)k?+B?(0), andthus the equation
with for B reduces tb
8 B(D)=2 ZJ' dk B(k) f(A(p),A(k),A(q))
7 N2 (9 BP=2¢ | Grp Rk BA0)  ¢Prllg)

(36)
An expansion around the origin of the analytic solutj&.
(27)] gives as leading contribution

8
A(p)=1/(1—mln(p/a) .

So, although we do not find the anomalous behayigy.
(32)] explicitly, our result is in agreement with it to leading
order in 1N. Moreover, our solution vanishes pt 0, just
like the suggested solutiof82), and does not have the un-
physical behavior of the perturbative redig. (31)], which
diverges at small momenta.

The results with thé\nsatz2 confirm this anomalous be-
havior of the wave function renormalization very well. In
Fig. 3, we have also plotted the behavior E8R), together
with our numerical results using this Ansatz. This shows that
our numerical results are in good agreement with the expec-
tation of an anomalous dimension for the wave functionrespectively. We note that these equations are qualitatively
renormalization, at least in the infrared region. In the ultra-gimjjar: in the infrared region, the part coming from the
violet region, Eq.(32) is not expected to be valid. vacuum polarizationeq will dominate over the other part,
A(q)q? or g?, respectively, whereas in the ultraviolet region
A(g)=1. Thus, bothAnsazelead to almost the same equa-

or in terms of the mass function

B zf Bk mk FAP)LAK)LAQ)
M(P)=2€" | (53 15 m2(0) A(PAK) (@+TI(q)’
3

(34

with A andII as found in the previous section.
Consider first the Angae 3 and 5. They lead to

d®k  m(k)
(27)° K>+ m?(0) A(q)g°+aq’

m(p)=2¢€? (39)

d®k  m(k)
(27)° k*+m?(0) g°+aq’

m(p)=2¢€’ (39

IV. DYNAMICAL MASS GENERATION

One of the interesting features of QEs that a fermion
mass can be generated dynamically, breaking chiral symme-*Alternatively, we could neglect the mass function in the denomi-
try. Starting with massless bare fermions, they can acquire mator and introduce an infrared cutoff, which is generally identified
dynamical mass through nonperturbative effects. The ordewith the infrared value of the mass function.
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tion for the mass function. Note that EG9) is exactly the  f(A(p),A(k),A(q)), and the explicit appearance of this
same equation for the mass function as one would get bjunction in the integration kernel of Eq37). On these
using a bare vertex and neglecting the wave function renorgrounds, one might expect a critical number of fermion fla-
malization completely?2]. vors, independent of our choice for the vertex.

Using the fact that the essential region for dynamical Even if we relax our requirement that thesatzgoes to
mass generation is the infrared regjort a, we can use the the bare vertex in the ultraviolet region, we find a similar

scalea as an ultraviolet cutoff. This reduces both E(®8)  result: consider, for example, ttfanphysical vertex
and(39) to exactly the same equation: namely,

, 2 A(P)AK) y*. (45
8 [« dk k“m(k . . .
m(p)= zJ > m(2 ) _ (40)  This would lead to the following equation for the mass func-
N7~ ) o max p,k) k“+m=(0) tion
It is well known that this equation leads to a critical number ) d3k m(k) 2
of fermion flavors for dynamical mass generation. This is m(p)=2e (2m)° k*+m?(0) g°+2aq’ (46)
seen directly by reducing it to a second-order differential
equation which has an additional factor of 2. However, in the infrared
region, this factor of 2 cancels against the additional factor of
pZm(p) 2 which comes from the vacuum polarization, leading to the

pzm”(p)+2pm’(p)+m mzo' (41 same critical number as witAnsatz5s.

Note that it is crucial for such a cancellation to occur that
with boundary conditions. Below the critical number of we consider the vacuum polarization with full propagators;
fermion flavors N.= 32/7?=3.24, the solution is given by a using bare propagators in the loop for the vacuum polariza-
hypergeometric function tion is an inconsistent approximation. Formally, using such

bare fermions in the loop for the vacuum polarization is in
- p agreement with the I expansion, but as we have seen in
m(p)=m(0)zFy| a..a-,5; m2(0) )’ (42 the previous section, the wave function renormalization is

not of the order & O(1/N) in the infrared region. Therefore,
with we should use the full propagators when calculating the
. vacuum polarization. Even when using bifurcation theory to
E+l_ NIN=1 43) calculate the critical number of fermion flavors, one should
4—4V°¢ : use the full propagators in the vacuum polarization, or to be

more precise, the massless full propagators.
As N approaches the critical number of fermion flavors, the

2

at:

infrared value of the mass functian(0) decreases rapidly B. Numerical results
according to We can solve the coupled equations numerically for the
1 mass functiorm (or for B), the wave function renormaliza-
T tion A, and the vacuum polarizatidid in the broken phase.
= 5 + - . : . X i
m(0) aex;{/NC/N_l 3In2 27 (44 Starting with a trial function forB and the leading-order

contribution for the wave functiord(p)=1, we can evalu-
Above the critical number of flavors, the trivial solution ate the vacuum polarization and solve the coupled equations
m(p) =0 is the only solution. for A and B. Next, we calculate the vacuum polarization,
The equation for the dynamical mass function using theusing these numerical solutions, and iterate this procedure
otherAnsdzecannot so easily be obtained. However, using auntil all three functions converge to a stable solution.
simple counting argument, we can already expect that there For the quenched approximatioN=0, all five Ansaze
is a critical number of fermion flavors, independent of thelead to the same solution f@, since the vacuum polariza-
precise form of ourAnsatz In the infrared region, which is tion is zero in this case, and the wave function renormaliza-
essential for dynamical symmetry breaking, we can negledion equal to one. This mass function is almost constant in
g® with respect to the vacuum polarization in the denominathe infrared region, and decreases rapidly gs,14t large
tor q2+1I(q). Counting the powers oA, we see that this momenta, fop>e?. It agrees very well with earlier numeri-
vacuum polarization is roughly proportional f6A?, so the  cal studies of this approximatidi].
dependence of the integration kernel in E2j7) on the wave The typical behavior of the functions, B, andII is
function renormalization and the vertéwsatzmight cancel shown in Fig. 4 for several values &f. We note that the
out. This is similar to what we have already seen in thewave function renormalization decreases for small momenta,
previous section, namely, that the behavior of the wave funcbut does not vanish fop| O: its value at the origin is non-
tion renormalization is almost independent of the ve&x  zero, in contrast to the behavior in the symmetric phase.
satzwe use. Also, the behavior of the vacuum polarization is different: in
Therefore, although the behavior of the vacuum polarizathe broken phase, the vacuum polarization behavesfika
tion might depend on the verteknsatz we expect that, in the (far) infrared region, soll(p)/p? is finite at p|0,
fact, the fermion propagator is not very sensitive to the prewhereas in the symmetric phadd(p)/p? blows up at the
ciseAnsatz due to a cancellation in th@ar) infrared region  origin. The infrared behavior of the vacuum polarization is
between the implicit dependence Hf(g) on the function governed by the generated mass function: the smaller this
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FIG. 4. The functionsA(p), B(p), andII(p)/p? in the chirally

FIG. 5. The infrared values of the functio®g0), B(0), and
broken phase foN=0, 2, and 3, using\nsatz2.

lim,_oI1(p)/p? as functions oN at fixede?

mass function, the largdd (p)/p?. Finally, the mass func-
tion, or ratherB, is almost constant at small momenta, and
decreases rapldly_ for_ large momenta. However, in the_ UNat about 3.3, more or less independent of the veAagatz
guenched approximation, and especially close to the critic

; he Ansdze3, 4, and 5 give exactly the same critical behav-
number of fermion flavors, we sd®o relevant mass scales .

) ior, and alscAnsatz2 leads to almost the same results. Only
[20]: B(p) starts to decrease at the scale of the generate bare vertexAnsatzl, indicates a slightly higher value for

mass, but only beyond the energy scalgeit decreases as
1/p2. This phenomenon might be relevant for hierarchy prob-

infrared mass also decreases very rapidly for increabing
and the figure indicates a critical number of fermion flavors

lems in unified theories. e ' I I ]
To determine the critical number of fermion flavors, we - R 7
considem as a continuous parameter in the DS equations. In 001 E %ﬁi o .
Fig. 5, we show the infrared values of the wave function E‘\-ﬁioo _
renormalization, of the scalar functid and of the vacuum év‘ _ E‘\* . °o o ]
polarization, or rather ofl(p)/p?, as functions ofN. For E 1104 E Ansatz1 o B+ % 3
increasingN, we note thaB(0) decreases, and that the in- L nsaz2 - % A
frared value oflI(p)/p? increases rapidly. Both functions 108 L Ansatz 4 x X.\‘ + ]
indicate a critical value of the number of fermion flavors for i A,rg'z"f‘(tij o vt ]
dynamical mass generation, at whiBhvanishes, and where 3 Lo+ E
the limit p| 0 of I1(p)/p? diverges. Also, the wave function 1108 [ L ]
renormalization at the origin decreases quite rapidly close to ' ! ! L :
this critical number of flavors. ! 15 2 N 25 3 33

The dependence ah(0) as function ofN at fixed « is

shown in Fig. 6. For comparison, we also included the ana- FIG. 6. The infrared values of the mass functim(0) as func-
lytical result Eq.(44). We see very clearly that the generatedtion of N at fixed .



54 INFLUENCE OF THE FULL VERTEX AND VACUUM ... 4057

the critical number of flavors, but the general behavior is the We would like to stress that in order to solve the DS

same for all fiveAnsdze equation for the fermion propagator self-consistently, we
have to treat the fermion propagator nonperturbativedth
V. CONCLUSION in the fermion DS equatiorand in the equation for the

_ _ vacuum polarization, at least if we are using the unquenched
We have solved theoupledDS equations for the fermion ,55r6ximation. Also, one must use the same approximation
propagator and the vacuum polarization, both in the chirallqr the fyil vertex in both the fermion and photon DS equa-
symmetric and in the broken phase, using a certain class Qfon |t turns out that the effects of the wave function renor-
vertex functions. With this type of vertex, the behavior of the ,4jization through the vacuum polarization change drasti-
fermion propagator is almost independent of the exact forn&a"y the naive results obtained [5—9]. In contrast with

of the full vertex. We find a critical number for chiral Sym- a6 earlier results, our results are almost independent of the
metry breaking,N.= 3.3, below which there is dynamical qrtex Ansatz

mass generation; above this critical number, only the chirally g, studying the chiral phase transition, one can use bi-
symmetric solution exists. furcation theory and, therefore, neglect the dynamical mass
In the chirally symmetric phase, the wave function renor-function in the wave function renormalization. However, one
malization is approximately equal to one in the ultravioletshould keep in mind that bifurcation theory does not imply
region, but in the infrared regio®(p) vanishes, indicating that one can use bare propagators in the vacuum polarization:
an anomalous dimension. This nonuniform behavior of thesne should use the chirally symmetric full propagators. Of
wave function renormalization lies at the Origin of a ContrO'Course, if the wave function renormalization is equa| to one
versy about the existence of a critical number of fermion(as one often assumes in this kind of Ca|cu|at)owe can
flavors. Also, in the broken phasg(p) is not of the order 1, yse the bare propagators to calculate the vacuum polariza-
as one might expect naively, but considerably smaller: as thgon.
number of fermion flavors approaches the critical number, We have made 0n|y onhe approximation in our calculation:
A(0) tends to go to zero. These results will also be relevangeplacing the full vertex by ouAnsatz Eq. (15). Of course,
for studies of this model at finite temperaty&]. one could question this approximation, but our result is al-
Our main result, a finite critical number of fermion flavors most independent of the precise form of the functiorfrur-
for dynamical mass generation, confirms the assertions ohermore, it has been shown that a next-to-leading-order cal-
tained earlier by Appelquiset al. [2]. Their analysis was culation in the context of the Bl expansion also leads to a

based upon a bare vertex and neglect of the wave functiofinite critical number of fermion flavorg8]. Our result is also
renormalization. There have been several claims that includn good agreement with lattice calculatiofs.

ing the effects of the wave function renormalization leads to
a different result, namely, dynamical mass generation for all
numbers of fermion flavor§6,7]. These and other studies,
such ag8,9], show a crucial dependence on the behavior of
the full vertex; in general, a bare vertex or a vertex linear in | would like to thank Yoonbai Kim, Conrad Burden, K.
the wave function renormalization would lead to chiral sym-Yamawaki, and Y. Hoshino for stimulating discussions and
metry breaking for allN, whereas a vertex quadratic & comments. This work was financially supported by the Japa-
leads to a critical number of fermion flavors. However, all nese Society for the Promotion of SciendSPS Grant No.
these studies include the wave function renormalization an84146 and by a Grand-in-Aid for Scientific Research from
an Ansatzfor the full vertex in the fermion DS equation, but the Japanese Ministry of Education, Science, and Culture
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