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Influence of the full vertex and vacuum polarization on the fermion propagator
in „211…-dimensional QED
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Department of Physics, Nagoya University, Nagoya 464-01, Japan
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We investigate the influence of the full vacuum polarization and vertex function on the fermion propagat
using the coupled Dyson-Schwinger equations for the photon and fermion propagator. We show that, with
range of vertex functions, the general behavior of the fermion propagator does not depend on the exact de
of the vertex, both in the massless and in the massive phase. Independent of the precise vertex function,
is a critical number of fermion flavors for dynamical mass generation in (211)-dimensional QED. A consis-
tent treatment of the vacuum polarization is essential for these results.@S0556-2821~96!02816-0#

PACS number~s!: 11.10.Kk,11.15.Tk,11.30.Qc,11.30.Rd
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I. INTRODUCTION

Quantum electrodynamics in 2 space and 1 time dim
sion, QED3, has several interesting features. It exhibits d
namical mass generation@1–10# and confinement@11–13#,
similar to QCD. Furthermore, it is superrenormalizable, so
does not suffer from the ultraviolet divergences which a
present in QED4. The coupling constant is dimensionful, an
provides us with a mass scale, even if we consider mass
fermions. This energy scale plays the role of the QCD sc
LQCD, in the sense that it sets the scale for confinement
dynamical mass generation. Thus, it is a very interest
model to study these nonperturbative phenomena.

QED3 also has some applications in condensed ma
physics, where it can be regarded as an effective theory
more realistic microscopic models@14,15#. Especially, since
the discovery of high-Tc superconductivity and the fractiona
quantum Hall effect, these kinds of models have attrac
more attention.

In this paper, we consider QED3 with N fermion flavors
of four-component spinors. Such a model of QED3 is
chirally symmetric in the absence of a bare fermion ma
term, m0c̄c, in contrast to the~211!-dimensional gauge
theory with two-component fermions, where we cannot d
fine chiral symmetry @1,2,16#. Similar to the four-
dimensional case@17#, the chiral symmetry of QED3 may be
broken spontaneously due to the dynamical generation
fermion mass. The question whether or not chiral symme
is broken for all values ofN, the number of fermion flavors
is very interesting.

We address this question by analyzing the behavior of
full fermion propagator nonperturbatively, using its Dyso
Schwinger equation. However, this equation cannot
solved without truncating the infinite set of Dyson
Schwinger equations, since it involves the full photon prop
gator and the full vertex function. Different ways of trunca
ing this equation give rise to different results concerning

*Electronic address: maris@eken.phys.nagoya-u.ac.jp; presen
dress: Physics Division, Bldg. 203, Argonne National Laborato
Argonne, IL 60439-4843.
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question of whether there is a critical number of fermio
flavors for dynamical mass generation@2,3,6–9#. In this pa-
per we try to resolve this controversy.

Using the bare vertex approximation and the one-loo
vacuum polarization, Appelquistet al. @2# have shown that
there is a finite critical number of flavorsNc , above which
the chiral symmetry is restored. They found in Landau gau
a critical value ofNc532/p2.3.24. This approach is based
on a 1/N expansion, and including the next-to-leading-orde
terms @3#, it was found that the critical number changes t
Nc5128/3p2.4.32.

However, such a simple treatment was criticized by Pe
nington and co-workers@6#, since the effects of the wave
function renormalization were not taken into account. Th
problem is that formally the wave function renormalizatio
is of order 11O(1/N), but in the infrared region, this wave
function renormalization tends to vanish. Because of th
nonuniformity in the 1/N expansion, an approximation base
on an expansion in 1/N might not be very reliable. Taking
into account wave function renormalization, Pennington a
co-workers found chiral symmetry breaking for all numbe
of fermion flavors. However, as we show, their approach al
has some inconsistency.

There have been several attempts to resolve the proble
by means of more sophisticatedAnsätze for the full vertex
@7–10#, and by use of a so-called nonlocal gauge functio
@18–20#, but none of them are completely satisfactory. Also
other methods, such as the inversion method@21#, e expan-
sion @22#, and lattice calculations@5#, have not given a final
answer to this question, although the lattice results favor t
existence of a finite critical number of fermion flavors@5,23#.
The difficulty is that it is numerically very difficult to ob-
serve the exponential decrease of the dynamical mass
increasingN found in @6,7#.

In our paper, the existence of a finite critical number o
flavors is confirmed by analyzing thecoupled Dyson-
Schwinger equations, for both the fermion and the phot
propagator, using several different approximations for th
full vertex. We show that, within a certain class of verte
Ansätze, there is a critical number of fermion flavors for
dynamical mass generation in QED3. This number does not
depend very strongly on the precise form of the vertexAn-
satz. Also, the general behavior of the fermion propagat
does not depend on the exact details of theAnsatz. The es-
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4050 54P. MARIS
sential point is to take into account the full vacuum polariz
tion in a consistent way.

In the next section, we describe the formalism in mo
detail, together with our truncation scheme. Before addre
ing the question of chiral symmetry breaking, we first an
lyze the full fermion propagator in the massless phase,
Sec. III. This already yields some nontrivial results, name
that the structure of the massless full fermion propagato
almost independent of ourAnsatz. In Sec. IV, we discuss
dynamical mass generation, and show that there is a cri
number of fermion flavors for chiral symmetry breakin
Nc.3.3, almost independent of our choice for the verte
Finally, we give some concluding remarks in Sec. V.

II. FORMALISM

A. Three-dimensional QED with N massless fermion flavors

We consider QED3 with N massless fermion flavors, an
choose to work in Euclidean space, ignoring the issues
cussed in@13#. The Lagrangian in a general covariant gau
is given by

L5(
i50

N

c̄ i~ i ]”1eA” !c i1
1
4 Fmn

2 1
1

2a
~]mAm!2. ~1!

We use four-component spinors for the fermions, and
cordingly, a four-dimensional representation for theg matri-
ces. With such a representation we can define chirality jus
in four-dimensional QED. This chiral symmetry can be br
ken dynamically by generation of a mass for the fermions
this formulation, there can also be a parity-breaking m
term, which conserves the chiral symmetry, but it is know
that such a mass is not generated dynamically@16#.

We haveN fermion flavors, and consider both the larg
N limit, as well as the quenched limit,N↓0. In the quenched
limit, the mass scale is defined by the dimensionful coupl
constante2, and there are no free parameters. Outside
quenched limit,N, the number of fermion flavors is the onl
free parameter. When using the largeN expansion@2#, we
keep the productNe2 finite, and it is most convenient to
define the mass scale by

a5
Ne2

8
. ~2!

B. Dyson-Schwinger equations for the propagators

The Dyson-Schwinger~DS! equation for the fermion
propagator is given by

S21~p!5S0
21~p!2e2E d3k

~2p!3
gmS~k!Gn~p,k!Dmn~p2k!.

~3!

Since parity is not broken dynamically, we can decompo
the fermion propagator into

S21~p!5A~p!p”1B~p!, ~4!

and rewrite the DS equation into
-
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A~p!511
e2

p2E d3k

~2p!3
1

4
Tr@p”gmS~k!Gn~p,k!Dmn~p2k!#,

~5!

B~p!5e2E d3k

~2p!3
1

4
Tr@gmS~k!Gn~k,p!Dmn~p2k!#.

~6!

The problems in analyzing this equation are the full vert
and full photon propagator. For the photon propagator
also have a DS equation, namely,

Dmn
21~q!5D0

21
mn~q!2e2E d3k

~2p!3
gmS~k!Gn~k,p2k!

3S~p2k!, ~7!

without introducing new unknown functions. It is more con
venient to write this last expression in terms of the vacuu
polarization tensorPmn(q):

Pmn~q!5e2E d3k

~2p!3
gmS~k!Gn~k,p2k!S~p2k!. ~8!

Since the longitudinal part of the photon propagator is n
affected by the interactions, because of gauge invariance
can write the full photon propagator in a general covaria
gauge

Dmn~q!52S dmn2
qmqn

q2 D 1

q21P~q!
2a

qmqn

q4
, ~9!

with the vacuum polarizationP(q) defined by

Pmn~q!5S dmn2
qmqn

q2 DP~q!. ~10!

The vacuum polarization tensor has an ultraviolet div
gence, which can be removed by a gauge-invariant regu
ization scheme. However, this divergence is only presen
the longitudinal part, so by contractingPmn(q) with

q2dmn23
qmqn

q2
, ~11!

we can project out the finite vacuum polarizationP(q) @11#.
So, the coupled DS equations for the photon and ferm
propagator form a set of three coupled equations for th
scalar functions, and the only unknown function is the fu
vertex function. Note that both the DS equation for the fer
ion propagator, and the one for the photon propagator,
exact.

In principle, we could write down a DS equation for th
full vertex function as well, but this will not lead to a close
set of equations: the DS equation for the vertex involve
four-point function, and so on. The full set of DS equatio
forms an infinite hierarchy of coupled integral equations f
the Green’s functions. In order to solve the DS equation
a particular Green’s function, we have to truncate or appro
mate this infinite set of equations. For calculating the prop
gators, we must find a reasonable approximation for the
vertex functionGm(p,k).
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C. Truncation scheme

Now, what is a reasonable approximation for the full ve
tex function? The most simple, and in some sense ‘‘natura
approximation is to take the leading-order perturbative v
tex

Gm→gm . ~12!

This truncation is commonly used in studies of the fermi
DS equation, and it is usually referred to as ladder or ra
bow approximation, since it generates rainbow diagrams
the fermion DS equation, and ladder diagrams in the Bet
Salpeter equation for the fermion-antifermion bound st
amplitude. In principle, there is a systematic way to impro
this truncation, namely, by taking the next-to-leading-ord
vertex function, and so on.

The obvious disadvantage of this approach is that it re
on perturbation theory, whereas the DS equations are n
perturbative equations. Until one performs the compl
next-to-leading-order calculation, one does not know h
reliable the leading-order calculation is. Even after obtain
such a next-to-leading order, there remains some doubt a
the validity of this approach, due to the nonuniformity of th
1/N expansion.

Furthermore, as a consequence, on the one hand, of u
a nonperturbative method to calculate some Green’s fu
tions, and, on the other hand, of employing perturbat
theory for other Green’s functions, one violates the Wa
Takahashi~WT! identities relating these Green’s function
and loses gauge covariance. To be specific, the WT iden
relating the full vertex to the fermion propagator

qmGm5S21~p!2S21~k!, ~13!

is an exact identity, which holds order-by-order in perturb
tion theory, but if one uses perturbation theory to appro
mate the full vertex, and the truncated DS equation to ca
late the fermion propagator, one will, in general, violate th
identity.

Instead of using a perturbative approximation for the v
tex function, one can also use other nonperturbative inform
tion to make anAnsatzfor the full vertex. The full vertex can
be decomposed into 12 different Lorentz structures, four
which are uniquely determined by the WT identity@24#. So,
by imposing the WT identity, we can write the full vertex a

Gm5
1

2
@A~p!1A~k!#gm1

1

2
~p”1k” !~pm1km!

A~p!2A~k!

p22k2

2~pm1km!
B~p!2B~k!

p22k2
1•••, ~14!

where the ellipsis represents the part of the vertex not c
strained by the WT identity. Now, one can simply negle
that unconstrained part, and take the above expressio
Ansatz~usually called Ball-Chiu vertex! for the full vertex.
However, a perturbative calculation shows that the unc
strained part is not zero@25#, and by just neglecting it, one
never sees what one is throwing away.

The WT identity is not the only requirement one can im
pose on the full vertex function. Other requirements are t
it reduces to the bare vertex in the weak coupling limit, a
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multiplicative renormalizability also restricts the full vertex
even in a superrenormalizable theory such as QED3. Fur-
thermore, anyAnsatz should have the correct symmetry
properties. However, all these constraints do not unique
determine the full vertex, they all leave parts of the verte
undetermined. So, the results might depend heavily on
particular choice for the vertex. Another disadvantage of u
ing a vertexAnsatzis that it is not possible to improve the
approximation in a systematic way.

D. Vertex Ansätze

In this paper, we use several differentAnsätzefor the full
vertex, including a bare vertex, and compare the results
see how much influence these different choices have on
propagators. For the sake of simplicity, we consider the for

Gm~p,k!5 f „A~p!,A~k!,A~p2k!…gm , ~15!

with the restriction that forA(p)[1, the full vertex reduces
to the bare vertex. This automatically ensures that in t
weak coupling limit, the full vertex reduces to the bare on
Such anAnsatzhas the same tensor structure as the ba
vertex, and by restricting ourselves to this tensor structu
we simplify the numerical integrations considerably. It i
also generally expected that this tensor structure plays
most dominant role in the full vertex.

To be more specific, we will analyze the coupled D
equations for the propagators, using the following choic
for f „A(p),A(k),A(p2k)…: ~1! the bare vertex
f „A(p),A(k),A(q)…51; ~2! a simpleAnsatzinspired by the
Ball-Chiu vertex @Eq. ~14!# @24#, f5 1

2@A(p)1A(k)#; ~3!
f5A(p)A(k)/A(q); ~4! f5 1

4†A(p)1A(k)‡2; and ~5!
f5A(p)A(k).
Of these choices, only the first two are actually motivate

on physical arguments. The last one is primarily motivate
by the fact that the resulting truncated DS equations are e
to solve analytically~at least in the symmetric phase!. The
choices 3 and 4 are merely added in order to see how mu
the results depend on our particular choice;Ansatz3 is based
onAnsatz5, but linear in the wave function renormalization
as it is supposed to be, whereasAnsatz4 is the quadratic
form of Ansatz2. The last twoAnsätzeare also inspired by
the suggestion in@8# that the effective vertex correction in
the fermion DS equation is quadratic in the wave functio
renormalization.

Finally, we have to choose a gauge, and since the Land
gauge is the most convenient and commonly used gauge,
use it. Using theAnsatz for the vertex we have just de-
scribed, the DS equations for the propagators reduce to

A~p!511
2 e2

p2 E d3k

~2p!3
A~k!~p•q!~k•q!

A2~k!k21B~k!

3
f „A~p!,A~k!,A~q!…

q2„q21P~q!…
, ~16!

B~p!52 e2E d3k

~2p!3
B~k!

A2~k!k21B~k!

f „A~p!,A~k!,A~q!…

q21P~q!
,

~17!
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P~q!5Ne2E d3k

~2p!3 S 2k224k•q2
6k•q

q2 D
3

A~k!

A2~k!k21B2~k!

A~p! f „A~p!,A~k!,A~q!…

A2~p!p21B2~p!
,

~18!

with q5p2k.

III. SYMMETRIC PHASE

First, we consider the massless fermion phase,
B(p)[0, which is always a solution of Eq.~17!. This re-
duces the problem to solving two coupled equations, one
the wave function renormalizationA(p), and the other for
the vacuum polarizationP(p).

A. Analytical results

With B(p)[0, the vacuum polarization reduces to

P~q!5Ne2E d3k

~2p!3
2k224k•q26~k•q!/q2

k2~k1q!2

3
f „A~k1q!,A~k!,A~q!…

A~k!A~k1q!
. ~19!

We first considerAnsätze3 and 5, because the vacuum p
larization can then be calculated analytically. WithAnsatz3,
the vacuum polarization becomes

P~q!5Ne2q/„8A~q!…5aq/A~q!, ~20!

whereasAnsatz5 leads to

P~q!5Ne2q/85aq. ~21!

In the massless phase, the equation for the wave func
renormalization becomes

A~p!511
2 e2

p2 E d3k

~2p!3
f „A~p!,A~k!,A~q!…

A~k!k2

3
~p•q!~k•q!

q2„q21P~q!…
. ~22!

For theAnsätze3 and 5, this can now be reduced to

A~p!511A~p!
16a

Np2E d3k

~2p!3
1

A~q!q21aq

~p•q!~k•q!

k2q2
,

~23!

A~p!511A~p!
16a

Np2E d3k

~2p!3
1

q21aq

~p•q!~k•q!

k2q2
,

~24!

where we usea5Ne2/8 rather thane2 to define the energy
scale. This last equation can be solved exactly
so

for

o-

tion

A21~p!512
2a

Np2p2E
0

` dq

q21aq S q22p2

2
q42p4

2pq
ln
p1q

up2qu D , ~25!

whereas Eq.~23! gives a nonlinear integral equation fo
A(p)

A21~p!512
2a

Np2p2E
0

` dq

A~q!q21aq

3S q22p22
q42p4

2pq
ln
p1q

up2qu D , ~26!

and thus gives an implicit relation for the wave functio
renormalization.

However, bothAnsätze lead to the same explicit expres
sion, if we make one further approximation, which is com
monly used in this context. In the infrared region,q!a, the
vacuum polarization dominates: the denominato
A(q)q21aq in Eq. ~23!, andq21aq in Eq. ~24!, both be-
have asaq, whereas for large momenta,q@a, the wave
function renormalization is almost equal to one, and the co
tribution to these denominators coming from the vacuum p
larization can be neglected. So, in both cases the wave fu
tion renormalization behaves as

A21~p!.12
2a

Np2p2 S E
0

adq

aq
1E

a

`dq

q2 D
3S q22p22

q42p4

2pq
ln
p1q

up2qu D
512

1

Np2 S 12
a2

3p2
2
3p416p2a22a4

6p3a
ln

a1p

ua2pu

2
4

3
ln

ua22p2u
p2 D . ~27!

B. Numerical results

We can also solve the integral equations for the wa
function renormalization and the vacuum polarization n
merically. Starting with bare propagators to calculate t
vacuum polarization, we solve Eq.~16! with this vacuum
polarization. Using this solution for the wave function reno
malization, we again calculate the vacuum polarization a
repeat this procedure until the solutions for bothP(p) and
A(p) converge to a stable solution. In Fig. 1, we have plott
the analytic solutions for the wave function renormalizatio
as described in the previous section, together with our n
merical result. We see that they agree very well with ea
other qualitatively, and that in the ultraviolet region th
A(p) is almost equal to one, as expected, whereas in
infrared region, it deviates considerably from the perturb
tive value. In particular, it is important to notice that fo
p↓0, the wave function renormalization vanishes, as also c
be seen from Eq.~27!.

For the other vertexAnsätze, we cannot solve the integra
equations analytically. Numerically, we find a very simila
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behavior for the wave function renormalization for all fiv
differentAnsätze, as is shown in Fig. 2~a!. The vacuum po-
larization also seems to be quite insensitive to the ve
Ansatz, as can be seen from Fig. 2~b!. So, it turns out that the
exact form of theAnsatzis not very relevant for the behavio
of the fermion propagator,provided that one uses a consi
tent approximation scheme: consider the coupled equation
for the fermion and photon propagator, and use the sa
approximation for the full vertex in both the fermion and t

FIG. 1. The numerical and analytical solutions for the wa
function renormalization in the massless phase forN56, using the
Ansätze3 and 5.

FIG. 2. The numerical solutions in the massless phase
N56, using theAnsätze 1–5: ~a! the wave function renormaliza
tion, ~b! the vacuum polarization, and~c! the deviation of the
vacuum polarization from the perturbative behavior.
e

tex

r
-
s
me
e

photon DS equations. However, thedeviationof the vacuum
polarization from the perturbative leading-order behavior

P~q!5aq, ~28!

does depend strongly on theAnsatz, see Fig. 2~c!.
It can be explained that different vertexAnsätze lead to

the same behavior for the wave function renormalization.
the symmetric phase, Eqs.~16!–~18! reduce to

A~p!511
2 e2

p2 E d3k

~2p!3
f „A~p!,A~k!,A~q!…

A~k!k2

3
~p•q!~k•q!

q2„q21P~q!…
, ~29!

P~q!5Ne2E d3k

~2p!3

3
@2k224k•q26~k•q!/q2# f „A~p!,A~k!,A~q!…

A~k!A~p!k2p2
.

~30!

In the ultraviolet region, the propagators, and also the f
vertices, reduce to the bare ones, so the crucial region is
infrared region. In the~far! infrared region, the vacuum po
larization dominates in the denominator of the kernel of E
~29!, q21P(q), so we can approximate this denominator b
P(q). We can now observe that there is a cancellation in
infrared region between different effects of the vertexAn-
satz: the function f enters the integral equation both in th
numerator, and, via the vacuum polarization, in the deno
nator. The remaining equation for the wave function ren
malization resembles the Eqs.~23! and~24!, which we have
analyzed in the previous subsection. This cancellation
plains why we get a very similar behavior for the wave fun
tion renormalization, using quite differentAnsätze for the
vertex.

Note that for such a cancellation, the vacuum polarizat
has to depend quite strongly on the preciseAnsatz, and in
Fig. 2~c! we see that the deviation from the perturbative b
havior is indeed governed by the powers ofA(p) in our
vertexAnsatz. Using a bare vertex, the vacuum polarizatio
becomes quadratic in 1/A, with a vertex linear inA, the
vacuum polarization becomes linear in 1/A and with anAn-
satzwhich is quadratic in the wave function renormalizatio
the vacuum polarization does not contain any powers ofA,
and is~almost! equal to the perturbative one.

Finally, we show in Fig. 3 the wave function renorma
ization for several different numbers of fermion flavors. Th
shows that there is only a quantitative dependence on
number of flavors, as long as we stay in the symmetric pha
The otherAnsätzeyield a similar result.

C. Infrared behavior

As can be seen from Eq.~27!, the wave function renor-
malization vanishes in the infrared region, in contrast to w
one might expect based on ordinary perturbation theory
the 1/N expansion. Such a vanishing behavior could ve
well be related to an anomalous dimension for the wa
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4054 54P. MARIS
function renormalization as suggested in@8,26#. It has been
argued that the naive perturbative behavior

A pert~p!.11
8

3Np2 ln~p/a!, ~31!

is the first term of the buildup of an anomalous dimension

A~p!.S pa D h

, ~32!

with

h5
8

3Np2 . ~33!

An expansion around the origin of the analytic solution@Eq.
~27!# gives as leading contribution

A~p!51YS 12
8

3Np2 ln~p/a! D . ~34!

So, although we do not find the anomalous behavior@Eq.
~32!# explicitly, our result is in agreement with it to leading
order in 1/N. Moreover, our solution vanishes atp↓0, just
like the suggested solution~32!, and does not have the un
physical behavior of the perturbative result@Eq. ~31!#, which
diverges at small momenta.

The results with theAnsatz2 confirm this anomalous be-
havior of the wave function renormalization very well. I
Fig. 3, we have also plotted the behavior Eq.~32!, together
with our numerical results using this Ansatz. This shows th
our numerical results are in good agreement with the exp
tation of an anomalous dimension for the wave functio
renormalization, at least in the infrared region. In the ultr
violet region, Eq.~32! is not expected to be valid.

IV. DYNAMICAL MASS GENERATION

One of the interesting features of QED3 is that a fermion
mass can be generated dynamically, breaking chiral symm
try. Starting with massless bare fermions, they can acquir
dynamical mass through nonperturbative effects. The or

FIG. 3. The wave function renormalization in the massle
phase forN52, 4, 6, and 10, usingAnsatz2, together with the
behavior based on the existence of an anomalous dimension.
-

n
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ec-
n
a-

e-
e a
der

parameter for this symmetry breaking is the chiral cond
sate^c̄c&, but it is more convenient to consider the infrare
value ofB(p) as the order parameter.

Writing the full fermion propagator as

S21~p!5A~p!p”1B~p!, ~35!

a nonzero solution forB(p) implies a nonzero condensat
and signals dynamical mass generation. The infrared valu
the dynamical mass function defined b
m(p)5B(p)/A(p), m(0)5B(0)/A(0) can also be used a
order parameter. Note we are not calculating the phys
mass, defined at the pole of the propagator; this phys
mass is expected to be in the Minkowski region, at least
observable particles, whereas we are performing our calc
tions completely in Euclidean region. The question of t
existence of such a physical mass in the timelike region
not addressed here@13#.

A. Existence of a critical number of flavors

Based on bifurcation theory, we can show that, for det
mining the critical number~if there is a critical number! of
fermion flavors, it is sufficient to keep the terms which a
linear in the generated mass, assuming that there is a
tinuous phase transition. This means that we can use
symmetric solutions for the vacuum polarization and wa
function renormalization in the equation forB. To avoid in-
frared problems, we replace the denomina
A2(k)k21B2(k) by A2(k)k21B2(0), andthus the equation
for B reduces to1

B~p!52 e2E d3k

~2p!3
B~k!

A2~k!k21B2~0!

f „A~p!,A~k!,A~q!…

q21P~q!
,

~36!

or in terms of the mass function

m~p!52 e2E d3k

~2p!3
m~k!

k21m2~0!

f „A~p!,A~k!,A~q!…

A~p!A~k!„q21P~q!…
,

~37!

with A andP as found in the previous section.
Consider first the Ansa¨tze 3 and 5. They lead to

m~p!52 e2E d3k

~2p!3
m~k!

k21m2~0!

1

A~q!q21aq
, ~38!

and

m~p!52 e2E d3k

~2p!3
m~k!

k21m2~0!

1

q21aq
, ~39!

respectively. We note that these equations are qualitativ
similar: in the infrared region, the part coming from th
vacuum polarizationaq will dominate over the other part
A(q)q2 or q2, respectively, whereas in the ultraviolet regio
A(q).1. Thus, bothAnsätze lead to almost the same equ

1Alternatively, we could neglect the mass function in the denom
nator and introduce an infrared cutoff, which is generally identifi
with the infrared value of the mass function.
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tion for the mass function. Note that Eq.~39! is exactly the
same equation for the mass function as one would ge
using a bare vertex and neglecting the wave function ren
malization completely@2#.

Using the fact that the essential region for dynami
mass generation is the infrared regionp!a, we can use the
scalea as an ultraviolet cutoff. This reduces both Eqs.~38!
and ~39! to exactly the same equation: namely,

m~p!5
8

Np2E
0

a dk

max~p,k!

k2m~k!

k21m2~0!
. ~40!

It is well known that this equation leads to a critical numb
of fermion flavors for dynamical mass generation. This
seen directly by reducing it to a second-order differen
equation

p2m9~p!12pm8~p!1
8

Np2

p2m~p!

p21m2~0!
50, ~41!

with boundary conditions. Below the critical number
fermion flavors,Nc532/p2.3.24, the solution is given by a
hypergeometric function

m~p!5m~0!2F1S a1 ,a2 ,
1

2
;

p2

m2~0! D , ~42!

with

a65
1

4
6
i

4
ANc /N21. ~43!

As N approaches the critical number of fermion flavors, t
infrared value of the mass functionm(0) decreases rapidly
according to

m~0!5aexpF 22p

ANc /N21
13ln21

1

2
pG . ~44!

Above the critical number of flavors, the trivial solutio
m(p)50 is the only solution.

The equation for the dynamical mass function using
otherAnsätzecannot so easily be obtained. However, usin
simple counting argument, we can already expect that th
is a critical number of fermion flavors, independent of t
precise form of ourAnsatz. In the infrared region, which is
essential for dynamical symmetry breaking, we can neg
q2 with respect to the vacuum polarization in the denomi
tor q21P(q). Counting the powers ofA, we see that this
vacuum polarization is roughly proportional tof /A2, so the
dependence of the integration kernel in Eq.~37! on the wave
function renormalization and the vertexAnsatzmight cancel
out. This is similar to what we have already seen in
previous section, namely, that the behavior of the wave fu
tion renormalization is almost independent of the vertexAn-
satzwe use.

Therefore, although the behavior of the vacuum polari
tion might depend on the vertexAnsatz, we expect that, in
fact, the fermion propagator is not very sensitive to the p
ciseAnsatz, due to a cancellation in the~far! infrared region
between the implicit dependence ofP(q) on the function
by
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f „A(p),A(k),A(q)…, and the explicit appearance of thi
function in the integration kernel of Eq.~37!. On these
grounds, one might expect a critical number of fermion fl
vors, independent of our choice for the vertex.

Even if we relax our requirement that theAnsatzgoes to
the bare vertex in the ultraviolet region, we find a simil
result: consider, for example, the~unphysical! vertex

2A~p!A~k!gm. ~45!

This would lead to the following equation for the mass fun
tion

m~p!52 e2E d3k

~2p!3
m~k!

k21m2~0!

2

q212aq
, ~46!

which has an additional factor of 2. However, in the infrar
region, this factor of 2 cancels against the additional factor
2 which comes from the vacuum polarization, leading to t
same critical number as withAnsatz5.

Note that it is crucial for such a cancellation to occur th
we consider the vacuum polarization with full propagato
using bare propagators in the loop for the vacuum polari
tion is an inconsistent approximation. Formally, using su
bare fermions in the loop for the vacuum polarization is
agreement with the 1/N expansion, but as we have seen
the previous section, the wave function renormalization
not of the order 11O(1/N) in the infrared region. Therefore
we should use the full propagators when calculating
vacuum polarization. Even when using bifurcation theory
calculate the critical number of fermion flavors, one shou
use the full propagators in the vacuum polarization, or to
more precise, the massless full propagators.

B. Numerical results

We can solve the coupled equations numerically for t
mass functionm ~or for B), the wave function renormaliza
tion A, and the vacuum polarizationP in the broken phase.
Starting with a trial function forB and the leading-order
contribution for the wave function,A(p)51, we can evalu-
ate the vacuum polarization and solve the coupled equat
for A and B. Next, we calculate the vacuum polarizatio
using these numerical solutions, and iterate this proced
until all three functions converge to a stable solution.

For the quenched approximation,N50, all five Ansätze
lead to the same solution forB, since the vacuum polariza
tion is zero in this case, and the wave function renormali
tion equal to one. This mass function is almost constant
the infrared region, and decreases rapidly as 1/p2, at large
momenta, forp.e2. It agrees very well with earlier numeri
cal studies of this approximation@4#.

The typical behavior of the functionsA, B, and P is
shown in Fig. 4 for several values ofN. We note that the
wave function renormalization decreases for small momen
but does not vanish forp↓0: its value at the origin is non-
zero, in contrast to the behavior in the symmetric pha
Also, the behavior of the vacuum polarization is different:
the broken phase, the vacuum polarization behaves likep2 in
the ~far! infrared region, soP(p)/p2 is finite at p↓0,
whereas in the symmetric phase,P(p)/p2 blows up at the
origin. The infrared behavior of the vacuum polarization
governed by the generated mass function: the smaller
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mass function, the largerP(p)/p2. Finally, the mass func-
tion, or ratherB, is almost constant at small momenta, a
decreases rapidly for large momenta. However, in the
quenched approximation, and especially close to the crit
number of fermion flavors, we seetwo relevant mass scale
@20#: B(p) starts to decrease at the scale of the genera
mass, but only beyond the energy scalea, it decreases as
1/p2. This phenomenon might be relevant for hierarchy pro
lems in unified theories.

To determine the critical number of fermion flavors, w
considerN as a continuous parameter in the DS equations
Fig. 5, we show the infrared values of the wave functi
renormalization, of the scalar functionB, and of the vacuum
polarization, or rather ofP(p)/p2, as functions ofN. For
increasingN, we note thatB(0) decreases, and that the in
frared value ofP(p)/p2 increases rapidly. Both function
indicate a critical value of the number of fermion flavors f
dynamical mass generation, at whichB vanishes, and where
the limit p↓0 of P(p)/p2 diverges. Also, the wave function
renormalization at the origin decreases quite rapidly close
this critical number of flavors.

The dependence ofm(0) as function ofN at fixeda is
shown in Fig. 6. For comparison, we also included the a
lytical result Eq.~44!. We see very clearly that the generate

FIG. 4. The functionsA(p), B(p), andP(p)/p2 in the chirally
broken phase forN50, 2, and 3, usingAnsatz2.
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infrared mass also decreases very rapidly for increasingN,
and the figure indicates a critical number of fermion flavo
of about 3.3, more or less independent of the vertexAnsatz.
TheAnsätze3, 4, and 5 give exactly the same critical beha
ior, and alsoAnsatz2 leads to almost the same results. On
a bare vertex,Ansatz1, indicates a slightly higher value fo

FIG. 5. The infrared values of the functionsA(0), B(0), and
limp→0P(p)/p2 as functions ofN at fixede2

FIG. 6. The infrared values of the mass functionm(0) as func-
tion of N at fixeda.
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the critical number of flavors, but the general behavior is t
same for all fiveAnsätze.

V. CONCLUSION

We have solved thecoupledDS equations for the fermion
propagator and the vacuum polarization, both in the chira
symmetric and in the broken phase, using a certain class
vertex functions. With this type of vertex, the behavior of th
fermion propagator is almost independent of the exact fo
of the full vertex. We find a critical number for chiral sym
metry breaking,Nc53.3, below which there is dynamica
mass generation; above this critical number, only the chira
symmetric solution exists.

In the chirally symmetric phase, the wave function reno
malization is approximately equal to one in the ultraviole
region, but in the infrared region,A(p) vanishes, indicating
an anomalous dimension. This nonuniform behavior of t
wave function renormalization lies at the origin of a contro
versy about the existence of a critical number of fermio
flavors. Also, in the broken phase,A(p) is not of the order 1,
as one might expect naively, but considerably smaller: as
number of fermion flavors approaches the critical numbe
A(0) tends to go to zero. These results will also be releva
for studies of this model at finite temperature@27#.

Our main result, a finite critical number of fermion flavor
for dynamical mass generation, confirms the assertions
tained earlier by Appelquistet al. @2#. Their analysis was
based upon a bare vertex and neglect of the wave funct
renormalization. There have been several claims that inclu
ing the effects of the wave function renormalization leads
a different result, namely, dynamical mass generation for
numbers of fermion flavors@6,7#. These and other studies
such as@8,9#, show a crucial dependence on the behavior
the full vertex; in general, a bare vertex or a vertex linear
the wave function renormalization would lead to chiral sym
metry breaking for allN, whereas a vertex quadratic inA
leads to a critical number of fermion flavors. However, a
these studies include the wave function renormalization a
anAnsatzfor the full vertex in the fermion DS equation, bu
not in the vacuum polarization.
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We would like to stress that in order to solve the D
equation for the fermion propagator self-consistently, w
have to treat the fermion propagator nonperturbativelyboth
in the fermion DS equationand in the equation for the
vacuum polarization, at least if we are using the unquenc
approximation. Also, one must use the same approxima
for the full vertex in both the fermion and photon DS equ
tion. It turns out that the effects of the wave function reno
malization through the vacuum polarization change dra
cally the naive results obtained in@6–9#. In contrast with
these earlier results, our results are almost independent o
vertexAnsatz.

For studying the chiral phase transition, one can use
furcation theory and, therefore, neglect the dynamical m
function in the wave function renormalization. However, o
should keep in mind that bifurcation theory does not imp
that one can use bare propagators in the vacuum polariza
one should use the chirally symmetric full propagators.
course, if the wave function renormalization is equal to o
~as one often assumes in this kind of calculations!, one can
use the bare propagators to calculate the vacuum polar
tion.

We have made only one approximation in our calculatio
replacing the full vertex by ourAnsatz, Eq. ~15!. Of course,
one could question this approximation, but our result is
most independent of the precise form of the functionf . Fur-
thermore, it has been shown that a next-to-leading-order
culation in the context of the 1/N expansion also leads to
finite critical number of fermion flavors@3#. Our result is also
in good agreement with lattice calculations@5#.
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