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We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find
that the mass spectrum of such a system is boundegsyn<2M/uy, where u is the usual chemical
potential,M is an intrinsic dimensional scale parameter for the motion of an event in space timey asdn
additional mass potential of the ensemble. For the system including both particles and antiparticles, with a
nonzero chemical potential, the mass spectrum is shown to be boundetklfy=m<2M/u , and a special
type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation,
and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions
to a sector in which the boson mass distribution becomes sharp at a definitdags This phenomenon
provides a mechanism for the mass distribution of the particles to be sharp at some definite value.
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[. INTRODUCTION N bosons. This can no longer be true orlcem [10]; at
such temperatures quantum field theory requires consider-
There have been a number of papers in the phst],  ation of particle-antiparticle pair production.Nfis the num-
which discuss the properties of an ideal relativistic Bose gager of antiparticles, themN and N by themselves are not
with a nonzero chemical potential. Particular attention has .onserved buti— N is. Therefore, the high-temperature limit
been given to the behavior of the Bose-Einstein condensatiogy Eq. (1.1) is not relevant in realistic physical systems.
and the nature of the phase transitiordispace dimensions
[4,5]. The basic work was done many years ago bynau
[6], Glaser [7], and more recently by Landsberg and
Dunning-Davies[8] and Nieto[9]. These works were all

The introduction of antiparticles into the theory in a sys-
tematic way was made by Haber and Weld@0,11]. They
considered an ideal Bose gas with a conserved quantum
. A number(referred to as “chargej’Q, which corresponds to a
done in the framework of the usual on-shell relativistic Sta‘quantum mechanical particle number operator commuting
tistical mechanics. , _ with the HamiltoniarH.* All thermodynamic quantities may

To describe an ideal Bose gas in the grand canonical ¢ then obtained from the grand partition function
semble, the usual expression for the number of bodoirs Tr{exd —(H—uQ)/T]} considered as a function @V, and
relativistic statistical mechanics is © [12]. The formula for the conserved net charge, which

1 replaces Eq(1.1), read$ [10]
N:V; nk=V; m, (11) L L
Q=V>X 7 - 7 . (12
whereV is the system’s three volumé&,=JkZ+m?, and < eBHlT-1 eBrwiT—1

T is the absolute temperatup@e use the system of units in

which A=c=kg=1; we also wuse the metric Insuch a formulation a boson-antiboson system is described
g*’=(—,+,+,+)], and one must require that<=m in or- by only one chemical potentigk; the sign ofx indicates

der to ensure a positive-definite value for, the number of whether particles outnumber antiparticles or vice versa. The
bosons with momenturk. Here,N is assumed to be a con- requirement that both, andn, be positive definite leads to
served quantity, so that it makes sense to talk of a box ofhe important relation

*Electronic addresgBitnet): BURAKOV@QCD.LANL.GOV lin the manifestly covariant theory which we shall use in our
TOn sabbatical leave from School of Physics and Astronomy, Tektudy, this charge is naturally associated with particles and antipar-
Aviv University, Ramat Aviv, Israel. Also at Department of Phys- ticles which are distinguished by the off-shell structure, as in quan-
ics, Bar-llan University, Ramat-Gan, Israel. Electronic add(Bgs tum field theory{10].
net): HORWITZ@SNS.IAS.EDU 2The standard recipe according to which all additive thermody-
*Electronic addresgBitnet): WCS@MAIL.UTEXAS.EDU namic quantities are reversed for antiparticles is used.
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lul<m. (1.3y  world lines (Currie, Jordan, and Sudarshgi6] have dis-
cussed the difficulty of constructing a relativistic mechanics
The sum ovek in Eq. (1.2) can be replaced by an integral, on the basis of world lings
so that the charge densip=Q/V becomes The mass of particles in a mechanical theory of events is
necessarily a dynamical variable, since the classical phase
1 o0
pP= ﬁfo k?dk m_(“_’_“) .+ 14 time and energy-momentum coordinafes,t; ;p; ,E;}, with
no a priori constraint on the relation between theand the

space of the relativistic set of events consists of the space-
which is an implicit formula forx as a function ofp and  Ei» @nd hence, such theories are “off shell.” It is well

T, and in the regio>m it reduces to known from the work of Newton and Wign¢i7] that on-
shell relativistic quantum theories such as those governed by
uT? Klein-Gordon or Dirac-type equations do not provide local
p=—3 (1.5  descriptions(the wave functions corresponding to localized

particles are spread quffor such theories the notion of en-
sembles over local initial conditions is difficult to formulate.

For T above some critical temperatufe, one can always :
. ’ The off-shell theory that we shall use here is, however, pre-
find & (|u[<m) such that Eq(1.4) holds. BelowT, no cisely local in both its first and second quantized forms

suchu can be found, and Edq1.4) should be interpreted as [18,19
the charge density of the excited statps: p, wherepg is T
the charge density of the ground stdtE0] [with k=0;
clearly, this state is given with zero weight in the integral
(1.4)]. The critical temperaturd . at which Bose-Einstein
condensation occurs correspondsute = m (depending on
the sign ofp). Thus, one setfu|=m in Eq. (1.4) and ob-
tains, via Eq.(1.5) (provided thaf p|>m?3),

The phenomenologial predictions of on-shell theories,
furthermore, provide equations of state which appear to be
too rigid. ShuryaK20] has obtained equations of state which
are more realistic by taking into account the spectrum of
mass as seen in the resonance spectrum of strongly interact-
ing matter. We have showf21] that Shuryak’s “realistic”
equation of state follows in a natural way from the mass
distribution functions of the off-shell theory.

T = 3|p| We finally remark that the standard formulations of quan-
=\ — (1.6 Y o . !
m tum relativistic statistical mechanics, and quantum field
theory at finite temperature, lack manifest covariance on a
Below T, Eq. (1.4) is an equation fop—py, so that the fundamental level. As for nonrelativistic statistical mechan-

charge density in the ground state is ics, the partition function is described by the Hamiltonian,
which is not an invariant object, and hence, thermodynamic
po=p[1—(T/T)2]. (1.7  mean values do not have tensor properti@ne could con-

sider the invarianp,n* in place of the Hamiltoniarj22],

It follows from Eq. (1.6) that any ideal Bose gas will con- where n* is a unit four-vector; this constructiofsupple-
dense at a relativistic temperatur€.&m), provided that mented by a spacelike vector othogonalnt¢) implies an
|p|>m3. induced representation for spacetime. The quantity that takes

Recently, an analogous phenomenon has been studied the place of the parameteiis thenx,n*. This construction
relativistic quantum field theorf11,13—185. For relativistic  is closely related to the problem pointed out by Currie, Jor-
fields, Bose-Einstein condensation occurs at high temperatan, and Sudarshda6], for which different world lines are
tures and can be interpreted in terms of a spontaneous syrpredicted dynamically by the change in the form of the ef-
metry breakind 11]. fective Hamiltonian in different frameksSince the form of

In this paper we shall use a manifestly covariant form ofsuch a theory is not constrained by covariance requirements,
statistical mechanics which has more general structure thats dynamical structure and predictions may be different than
the standard forms of relativistic statistical mechanics, buthose for a theory which satisifies these requirements. For
which reduces to those theories in a certain limit, to be deexample, the canonical distribution of PalB] for the free
scribed precisely below. In fact, it is one of the principle Boltzmann gas has a high-temperature limit in which the
aims of this work to provide a mechanism for which this energy is given by BgT, which does not correspond to any
limit can be realized on a statistical level. The results that weknown equipartition rule, but for the corresponding distribu-
obtain are different from those of the standard theories ation for the manifestly covariant theory, the limit ikgT,
high temperatures. These theories, which are characteriz&wrresponding tg kgT for each of the four relativistic de-
classically by mass-shell constraints, and the use, in quantugrees of freedom. For the quantum field theories at finite
field theory, of fields which are constructed on the basis otemperature, the path integral formulatif24] replaces the
on-mass-shell free fields, are associated with the statisticdlamiltonian in the canonical exponent by the Lagrangian
treatment ofworld linesand hence, considerable coherencedue to the infinite product of factofg| 7) (transition matrix
(in terms of the macroscopic structure of whole world lineselement of the canonical field and its conjugate required to
as the elementary objects of the theoiy implied. In non-  give a Weyl-ordered Hamiltonian its numerical valudow-
relativistic statistical mechanics, the elementary objects oéver, it is thet variable which is analytically continued to
the theory are points. The relativistic analogue of this esserczonstruct the finite-temperature canonical ensemble, com-
tially structureless foundation for a statistical theory is the sepletely removing the covariance of the theoretical frame-
of points in spacetime, i.e., the so-calledents not the work. One may argue that some frame has to be chosen for
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the statistical theory to be developed, and perhaps even for dp# IK oV
temperature to have a meaning, but as we have remarked a9 a4
above, the requirement of relativistic covariance has dynami- Qin Qi

cal consequence®ote that the model Lagrangians used in|, the quantum theory, the generalized Sciimger equation
the noncovariant formulations are established with the crite-

1.9

rion of relativistic covariance in mindand we argue that the J

choice of a frame, if necessary for some physical reason, ia—Tl/fT(Ch,Ch, — 0N =KY(ag,0z, - 0N)

such as the definition and measurement of temperature, (1.10

should be made in the framework of a manifestly covariant ’

structure. describes the evolution of thél-body wave function
We consider, in this paper, a relativistic Bose gas withiny, (q,,q,, ... ,qy). To illustrate the meaning of this wave

the framework of a manifestly covariant relativistic statistical function, Consider the case of a Sing|e free event. In th|S case
mechanic§25-27. We obtain the expressions for character-(1.10) has the formal solution
istic thermodynamic quantities and show that they coincide
quantitatively, in the narrow mass-width approximation, with #(q)=(e o7yy)(q) (111
those of the relativistic on-shell theory, except for the value
of the average energiwhich differs by a factor 2/3, as re- for the evolution of the free wave packet. Let us represent
marked above We introduce antiparticles and discuss the,(q) by its Fourier transform, in the energy-momentum
high-temperature Bose-Einstein condensation in such &pace:
particle-antiparticle system. We show that it corresponds to a
phase transition to a high-temperature form of the usual on-
shell relativistic kinetic theory. In the following, we briefly
review the manifestly covariant mechanics and quantum me-
chanics which forms the basis of our study of relativisticwhere pZEp“pM, p-q=p*“q,, and y(p) corresponds to
statistical mechanics. the initial state. Applying the Ehrenfest arguments of station-

In the framework of a manifestly covariant relativistic sta- ary phase to obtain the principal contributiony#g(q) for a
tistical mechanics, the dynamical evolution of a system ofwave packet ap’, one finds[p% is the peak value in the
N particles, for the classical case, is governed by equationdistribution ¢4(p)]
of motion that are of the form of Hamilton equations for the
motion of N eventswhich generate the space time trajecto- u ps
ries (particle world line$ as functions of a continuous c=m”™ (1.13
Poincareinvariant parameter, called the “historical time”
[28,29. These events are characterized by their positiongonsistent with the classical equatiofis9). Therefore, the
g“=(t,q) and energy-momenta p“=(E,p) in  central peak of the wave packet moves along the classical
an 8N-dimensional phase space. For the quantum case, theajectory of an event, i.e., the classical world line.
system is characterized by the wave |n the case thap’=E.<0, we see, as in Stueckelberg’s
funcion  ¢.(q;,0z, ... .Gy eL*(R*™),  with  the  classical examplg28], that
measure d*q,d*qy- - -d*qn=d*"q, (g=aqf';»=0,1,2,3;
i=1,2,...,N), describing the distribution of events, which dt. E.
evolves with a generalized Schiinger equatior{29]. The ar M
collection of events(called ‘“concatenation”[30]) along
each world line corresponds to @article, and hence, the |t has been showf80] in the analysis of an evolution opera-
evolution of the state of th&-event system describea, tor with minimal electromagnetic interaction, of the form
posteriori, the history in space and time of ax-particle
system. [p—eA(q)]?

For a system oN interacting identical eveni{gnd, hence, K= oM !
particles, one takeg29]

1 .2 .
AZIT(Q):(ZT)zf dipe (P72M)7glP-ay(p), (1.12)

that theC P T-conjugate wave function is given by

Lo CPT, _ o+
K=EI plzf/lﬂ +V(Q1,Q2, . qu)1 (18) lpr (th) lrb‘r( t1 q)1 (114)

with e— —e. For the free wave packet, one has

whereM is a given fixed parametéan intrinsic property of cpr 1 4 i (p22M) ra—ip-q

the particlep with the dimension of mass, taken to be the (@)= (2m)° d’pe € Yo(P)-
same for all the particles of the system. The Hamilton equa- (1.195
tions are

The Ehrenfest motion in this case is
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if E.<0, we see that the motion of the event in theergy, through the mass-energy equivalence, that we observe
CPT-conjugate state is in the positive direction of time, i.e.,in the laboratory. This point is discussed in more detail in,

for example, Refs[31,32.
dt. _ E._|Ed

dr M M’ (1.19 Il. IDEAL RELATIVISTIC BOSE GAS
WITHOUT ANTIPARTICLES

and one obtains the representation of a positive energy ge- ) ) . _ _

neric event with the opposite sign of charge, i.e., the antipar- 10 describe an ideal gas of events obeying Bose-Einstein

ticle. statistics in the grand canonical ensemble, we use the expres-
It is clear from the form of Eq(1.10 that one can con- Sion for the number of events found [i5],

struct relativistic transport theory in a form analogous to that

of the nonrelativistic theory; a relativistic Boltzmann equa- N=V®D n=v@> 12 ,
tion and its consequences, for example, was studied in Ref. ke o e EmumpemI2MIT_q
[26]. 2.1

As a simple example of the implications of the classical

. . . . (4) )
dynamical equation&l.9), consider the problem of a relativ- Where Vi* is the system's four volume and

istic particle in a uniform external “gravitational” field, with mz_E - kz_: —k*k,,; pk is an additional mass potentie5],
evolution function which arises in the grand canonical ensemble as the deriva-
tive of the free energy with respect to the value of the dy-
p,p* namical evolution functiorK, interpreted as the invariant
K==y TMoz (.17 mass of the system. In the kinetic the¢Bp], ux enters as a

Lagrange multiplier for the equilibrium distribution fét, as

(the external potential breaks the invariance of the evolutio iS for N, and 1T for E. We shall see, in the following,

function, but that will not affect the illustrative value of the NOW ux plays a fundamental role in determining the struc-
example¢ with initial conditions t(0)=0, t(0)=a, ture of the mass distribution. In order to simplify subsequent

z(0)=h, 2(0)=0, resulting in the solution considerations, we shall take it to be a fixed parameter.
To ensure a positive-definite value fag., the number
1 density of bosons with four-momentuk#t, we require that
Z=——g7'2+h, t=ar+tg,
2 m2
M—pu— pug = =0. (2.2
E=Mc%a, p,=—Mgr. (1.18 2M

The invariant variable- replaces in describing the dynami- 1€ discriminant for the left-hand sidths) of the inequality
cal evolution of the system. The generator of the motion MUst bé non-negative, i.e.,
K

M
. . . . For suchu, Eg. (2.2) has the solution
as required. The total energy of the particle in this case, w EQ. (22

2 21~2
—E“/c 1 <
= I02—+mgz: ~Mc?a?= const, (1.19 K= 2 23
2M 2
mclu_dmg both increase of momentum and Qecreas_e of dy- M 21k M 2
namical mass, is constant also. The effective particle masg;,=—/| 1—\/1— M s=m<s—|1+\/1- 7
m is given by MK MK

1 gz 2
= 2_2_
m= E\/(E/c) —p;=May\/1- 2o’ (120 por smalluuy /M, the region2.4) may be approximated by
Expanding this out in the nonrelativistic lim¢—o, one Mgmgz_M (2.5
obtains[with 2=2(h—2)/g] Bk '

_ g One sees thatix determines an upper bound of the mass
m=Ma-—5(h-2), (1.2)  spectrum, in addition to the usual lower bount= u. In

fact, smallux admits a very large range of off-shell mass,
and we recogniz&g(h—z)/c? as the mass shift induced by and, hence, can be associated with the presence of strong
the potential term. The factar arises due to the choice of interactiong33]. .
initial conditions, i.e., forr=0m=Ma, and notM (for = _Replacing the sum ovee“ (2.1) by an integral, one ob-
sufficiently large, under this unbounded potential, the quant@ns; fo: the density of events per unit spacetime volume
tity in the square root could become negative, and the parﬂEN/V( ) [34],
ticle could become tachyonicNote that it is thenassof the 1 m .
particle which carries dynamical informatidithe total en- n= _3j dej dg
ergy is constant, but the mass is “redshifted” by the poten- 4 Jm, —o
tial) and that has the correspondence with nonrelativistic en- (2.6)

msintt 3

e(mcoslﬁ—,u—MKmZ/ZM WT _ 1 !
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wherem; andm, are defined in E¢(2.4), and we have used

the parametrizatiof26]
p®=m coshg,
pt=m sinh3 sind cosp,
p2=m sinh3 sind sing,
p3=m sinh3 co,
0=6o<m,

Os¢p<2m, —o<B<wx,

4033
m2 +1
f dmnt 2 /2 42
()= - s
(m my /+2 mg-mi T
dmm
my
In particular,
4 M MK
(W—g;( oM ) (2.15
M 2
(m2>=2(—) (1— ”“K) (2.1
K M

In this paper we shall restrict ourselves to the case of higlyiracting the joint distribution fog andm from Eq. (2.9)

temperature alone:

M
T>—.
MK

(2.7

It is then possible to use, for simplicity, the Maxwell-

Boltzmann form for the integrand, and to rewrite E2.6) in
the form

N

eM/T my 9 2
n= f m3d mf SinhZIBdIBe—mcoslﬁ/Te,uKm /2MT,
7T — 0

my
(2.8
which reduces, upon integrating 08t to [27]
Te’ulT mp (m) 2
n=——=| “dmnPK,| =|erkm72MT 2.9
4 fml nT 29

whereK ,(z) is the Bessel function of the third kin@nagi-
nary argument Sinceusm<m,<2M/pug,

m? 2M/ug)?>  2M
MK SMK( HK) _ <1, 2.10
2MT 2MT Tk
in view of Eq.(2.7), and also
pm_ M 21
—_<—_x <1. .
T T Tug 219

Therefore, one can neglect the exponentials in(E®), and
for K,(m/T) use the asymptotic formule5]

-V

1 z
K,,(Z)"“EF(V)(E) ,  z<l. (2.12

Then, we obtain

in the same way, we also obtain the average values of the
energy and the square of the energy for highThe average
energy is given by

m;
m*dmsini? 3 coshBd Be ™ meosB/T
my

m.
f “m?d msint? Bd e~ MeosB/T

(E)=(mcoshg)=

my
(2.17
Integrating out3, one finds
my
f dmnf[Ka(m/T)—K,(m/T)]
~ ml
(E)=4T ™ . (2.18
dmntK,(m/T)
my

It is seen, with the help of Eq2.12), that it is possible to
neglectkK; in comparison withK; in the numerator of Eq.
(2.18 and obtain, via Eq(2.12),

L mzdmrﬁ‘K3(m/T)
(B)= 7 o ~2T, (219
4Tf dmn?K(m/T)

in agreement with Ref§25—27. Similarly, one obtains

:2m5d msinhZBCOSﬁﬁdIBefmcosrﬁ/T
(E?)=(mPcoskp)="—

m:.
f “mdd msint? Bd Be ™ MeosB/T

my

m
f “dm mAK ,(M/T) + 3TmPK ,(m/T)]

m
_ —
T2 [my T2 (M\2 [ 2uux dmn?K (m/T)
[ p— _ — —_ m
n 4773J’m1dmm=2773(,u|<) 1 M 1
m.
(213 f 2dmmK ,(m/T)
m
From this equation, one can identify the high-temperature =3T mlz ~6T2. (2.20
mass distribution for the system we are studying, so that, dmn?tK(m/T)
now, my
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Let us assume, as is generally done, that the averagko interpret these results we calculate the particle number
(p*p*) has the form density per unit three-volume. The particle four current is

given by the formuld26]
(p*p”y=au*u’+hbg"’, (2.21

p!“
whereu#=(1,0) in the local rest frame. The values afand I =2 f dTM/I s'a—ai(r),  (2.29
: = i MK
b can then be calculated as follows: far=»=0 one has
0y2y : : : v
((p7)?)=a—b, while contraction of Eq(2.2) with g* which, upon integrating over a small space time volume and

gives —g*"(p,p,)=a—4b. The use of the expressions taking the average, reduces to
(220 for ((p%%=(E?», and Eq. (2.1 for

—g*"{p,p,)=(m?) yields T
( “w y=( > <J#>: AV n(p“); (2.30
M/
a—b=6T?, K
M \2 then
a—4b=2|—| (1— puux/M),
™ No=(3%) = 2% n(E) 231
= = n , .
so that 0 M/
2/ M\?2 so that
a=8T2—§(M—) (1—%), (2.22
K Tay M 2k
, No=Ng(p)=—75 —\/1— TT3, (2.32
2(M HprK T KK
b=2T?—=|—] | 1- ) (2.23
3\ uk M and we recover the ideal gas law
For T>M/u, it is possible to tak@=8T?, b=2T?, and p=N,T. (2.33
obtain, therefore,
Since, in view of Eq(2.4),
(p*p*)=8T2uru’+2TgH". (2.24
2M 2 pk
To find the expressions for the pressure and energy den- —\/1- M =Am
sity in our ensemble, we study the particle energy- KK
momentum tensor defined by the relati@f] is the width of the mass distribution around the value
DD M/uy, Egs.(2.28 and(2.32 can be rewritten as
LVl i Pi .
(=3 [ drptssa-an), (229 CTeAm.
p_ 217_3 T ’ p= 3p1
in which M/ug is the value around which the mass of the
bosons making up the ensemble is distributed, i.e., it corre- TavAm_,
sponds to the limiting mass-shell value when the inequality No=— =T (2.34

(2.3) becomes equality. Upon integrating over a small space
time volume AV and taking the ensemble average, Ed.|n Ref.[36] we obtained the formulas for thermodynamic

(2.29 reduces td26] variables, under the assumption of narrow mass width, which
T depend onT ,yAm as well; the requirement that these re-
w_ BV v sults coincide with those of the usual on-shell theories im-
THY) = n(p*p”). 2.2
() M/ g (PP (228 plies the relatioh

In this formula,T Ay is the average passage intervalritior TayAMm=21r. (2.39
the events which pass through the smafpical) four vol-
ume AV in the neighborhood of thR* point. The four vol- ~ One can understand this relation, up to a numerical factor, in
ume AV is the smallest that can be considered a macrovolterms of the uncertainty principlfrigorous in thel?(R*)
ume in representing the ensemble. Using the standarguantum theory AE-At=1/2. Since the time interval for
expression the particle to pass the volum&V (this smallest macro-
scopic volume is bounded from below by the size of the
(T*"y=(p+p)utu’+pg?, (2.27  wave packets At=E/M A7, and the dispersion & due to
the mass distribution i&nE~mAm/E, one obtains a lower
wherep andp are the particle pressure and energy densitybound forT ,,,Am of order unity.

respectively, we obtain Thus, with Eq.(2.35 holding, the formula$2.34) reduce
to
. _ Tav M 2 pk 4 .
p=p(M)—73—E I-——y 1T p=3p

(2.28 3In cgs units, this relation has a factbfc? on the right-hand side.
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T4 tive direction of time. At times later thaig, the total particle
P=—2, p=3p, (2.36  number is unaffected. At times earlier thiajy a particle and
an antiparticle are added to the total particle number. Since,
T3 as also assumed by Haber and Welfib@), the total particle
NO=?, (2.37 number is a conserved quantity, the antiparticle trajectory

must be counted with a sign opposite to that of the particle

which are the standard expressions for high temperé8fle ~ trajectory. The second term in E(3.1), counting antipar-
The formulas for characteristic thermodynamic quantitiediCléS must therefore carry a negative sign. We require that
and the equation of state for a relativistic gas of off-shellPOth Nk« terms in Eq.(3.1) be positive definite. In this way,
events have the same form as those of the relativistic gas §f€ oPtain the two quadratic inequalities,

on-shell particles. They coincide with themnder the con- 2

dition (2.35] in the narrow mass-shell limit, except for the m—M—MK1>0,

expression for the average energy which takes the value 2 2M

in the relativistic gas of events, in contrast t®,3as for the 5

high-temperature limit of the usual thed33]. Experimental m+M—MK1>0 3.2
measurement of average energy at high temperature can, 2M

therefore, affirm(or negat¢ the validity of the off-shell ] ) ) ) )
theory. There seems to be no empirical evidence which dis¥hich give the following relation representing the non-
tinguishes between these results at the present time. THEgativeness of the corresponding discriminants:
quantityo=Myc?/kgT, a parameter which distinguishes the M M

relativistic regime from the nonrelativistic reginisee, e.g. ——=us-—. (3.3
[25],) is very large forM, of the order of the pion mass, at 2k 2k

ordinary temperatures; the ultrarelativistic limit correspond-
ing to o small becomes a reasonable approximationTor
=10%K.

It then follows that we must consider the intersection of the
ranges of validity of the two inequalitie€.2). Indeed, if
each inequality is treated separately, there would be some
values ofm for which one and not another would be physi-
cally acceptable. One finds the bounds of this intersection

The introduction of antiparticles into the theory as theregion by solving these inequalities, and obtains

CPT conjugate of negative energy events leads, by applica-
M Asle M el
v =m=- v ,

IIl. ANTIPARTICLES AND CONDENSATION

tion of the arguments of Haber and Weldft0], or Actor
[38], to a change in sign of in the distribution function for  ug
antiparticles. We, therefore, write down the following rela- (3.4
tion which represents the analogue of the formul®):*

which for small| u| uk /M reduces, as in the no-antiparticle
1 case(2.5), to

e(E—u—ux m2/2M)/T _ 1

N=V®>
KM

=M= —. 35}
1 MK

(Bt p—pmE2M)T_ g

. (3.2

Replacing the summation in E¢3.1) by integration, we

. N . btain a formula for the number density:
With respect to the determination of the sign of the seconé') y

term, let us consider a space time picture in which we have 1 (m o

many world lines, generated by events moving monotoni- n=;,-3 m3dmf sink?Bdg
. " . . . . 7T Jm —o

cally in the positivet direction. The addition of a particle- 1

antiparticle pair which annihilates corresponds to the addi- 1

tion of a world line which is generated by an event initially
moving in the positive direction of time to some upper bound
to, where annihilation takes place, and returning in the nega- 1 }

e(meoshs— w— g M22M)IT _ 1

- e(mcosl'ﬁ+ }L*/J,KmZ/ZM)/T_ 1 (3'6)

4 it w“ " it
As for the nonrelativistic theory, the “free” distribution func- . . .
, : N neory . . - . _wherem; andm, are defined in Eq(3.4), which for large
tions describe quasiparticles in a form which takes interactions |ntol_
reduces, as above, to

account entering through the chemical potential. By definition, good

guasiparticles are not frequently emitted or absorbed; we, therefore, Ml T _g=nlT m, m ,
consider thgquasjparticles and antiparticles as two species. Since n= pp T dmn‘FKl(?> eMKkMEZMT
the particle number is determined by the derivative of the free en- m my

ergy with respect to the chemical potentialmust change sign for

the antiparticleg10]. Similarly, the average magsquaredl is ob-

tained by the derivative with respect o [25]; since the mass 5This is actually the solution of one of the inequaliti@?) (the
(squaredl of the antiparticle is positivew, does not change sign.  most restrictivg, depending on the sign qf.
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Now, using the estimates(2.10 and (2.1, and whereAt is the (average extent of the ensemble along the
sinh/T)=wT for u/T<1, we obtain[in place of Eq. q° axis[as in our discussion after E(R.35], one has
(2.13] the net event charge

No=nAt. (3.12
_1(M\? [ 2| pfpi - 3.7 The equation of motio1.9) for q° [with M/ , the central
=3 K Mo A ' value of the mass distribution, instead Mf, which corre-

sponds to a change of scale parameter in the expre€si®n
The pressure and energy density are obtained by the sum fdr the generalized Hamiltonial],
particle and antiparticle contributiongproportional to
exp(x u/T)], with the number density3.7). To second order 0 0
in (u/T)?, one finds dﬂ: Pi
dr  M/ug’

p=2p(|ul),  p=2p(|1l), upon averaging over the whole ensemble, reduces to

wherep(u) and p(u) are given by Eq(2.28 with u re-

placed byl «|. On the other hand, from Eq.31) and(3.7), At (E)
one finds —= , 3.1
Tav  Mlug 313
No— Tav M /1_ 2| p| T2 39 where T,y is the average passage intervaldrused in the
T m g Mo A ' previous consideration. Then, in view of Eq8.12 and
(3.13, one obtains the Eq2.31). L
where the factor of 2/T, as compared to Eq2.32), arises Since in the particle-antiparticle cadé,=N—N, where

from thedifferencebetween the factors exp(/T) (the sign N and N are the numbers of particles and antiparticles, re-
of u indicates whether particles or antiparticles predomi'spectively, is a conserved quantity, according to the argu-
natg. One then obtains the following expressions for thements of Haber and Welddii0] pointed out in Sec. I, and
Bose gas including both particles and antipartitlé®ere, o discussion abovéN,=N,/V is also a conserved quan-

Am is not necessarily smadl tity, so that it makes sense to talk|®f,.| bosons in a spatial
box of the volumeV. Therefore, in Eq(3.10), Ny is a con-
TpayAm 2T served quantity, so that, the dependencg @in temperature
=Y. =z P=3p (3.9 s defined by(we assume thall, is continuous at the phase
transition
TayAm 2T
NOZT el (3.10 27 7Ny

R=T Am 272 (3.14

We now wish to show that the dynamical properties of the
current, which follow from the relativistic canonical equa- For T above some critical temperature, one can always
tions of motion, are consistent with the thermodynamic relafind x satisfying Eq.(3.3) such that the relatio(8.14) holds;

tion no suchu can be found foll below the critical temperature.
N The value of the critical temperature is defined by putting
No=1/ (311D  |u|=M/2uk in Eq. (3.14. In the narrow mass-shell limit,

inserting Eq.(2.35, one obtains
whereN is the number of bosons in a three-dimensional box

of volumeV. Since the event-number densityis, by defi- [No|
nition, Te=m1\/ M7 (3.195
n= l: N For |u|=M/2uy , the width of the mass distribution is zero,
V@ VAL’ in view of Eqg. (3.4), and hence the ensemble approaches a

distribution sharply peaked at the mass-shell vallugu .
The fluctuationssm= \(m?) — (m)? also vanish. Indeed, as
bif we did not neglect indistinguishability of bosons at high tem- follows from Egs.(2.15 and (2.16 with u replaced by
perature, we would obtain, instead of Eq2.37 [36], |u|, and Egs(3.14) and(3.15,
No= (T¥/#?)Lis(e®'T), where Li(z2)==7_,2%s” is the polyloga-
rithm [39], so that, for the system including both particles and an- > 7
tiparticles, No= (T3 m2)[ Lis(e*T) — Lis(e~#'T)]. It then follows M _(Tc) _(Tc)

T

om T

from the properties of the polylogarithni89] that, for x=|u|/T  3uk
<1, Liy(e¥)—Liz(e ) =(w?/3)x, so that, we would obtain, in-

stead of Eq.(3.10, No=uT?/3, which coincides with Haber and so that, aff=T., dm=0. It follows from Eq.(3.16 that for
Weldon’s equatior(1.5). T in the vicinity of T, (T=T,),

(3.1
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6 responds to temperature350 MeV, in view of Eq.(2.37),
om=—\/—JT—-T,, (3.17  one getsT,~550 MeV=4m_ .

If wk is very small, it is difficult to satisfy E¢(3.19 and
the possibility of such a phase transition may disappear. This
case corresponds, as noted above, to that of strong interac-

as for a second order phase transition, for which fluctuationﬁOnS and is discussed in a succeeding pApet

go to zero smoothly.
We note that Eq(2.36 and Eq.(2.37 do not contain
explicit dependence on the chemical potential, and hence no IV. CONCLUDING REMARKS

phase transition is induced. In fact, at onver tempe_ra(ur_e We have considered the ideal relativistic Bose gas within
small uk), one or the other of the particle or antiparticle e framework of a manifestly covariant relativistic statistical
distribution dominates, and one returns to the case of thgechanics, taking account antiparticles. We have shown that
high temperature strongly interacting ga]. The remain- iy sych a particle-antiparticle system, at some critical tem-
ing phase transition is the usual low-temperature BoseperatureT,, a special type of relativistic Bose-Einstein con-

Einstein condensation discussed in the textbooks. ~ densation sets in, which corresponds to a phase transition
One sees, with the help of E¢B.4), that the expression from the sector of relativistic mass distributions to a sector in
for n (3.7) can be rewritten as which the boson mass distribution peaks at a definite mass.

The results which can be computed from the latter coincide
with those obtained in a high-temperature limit of the usual
1 M on-shell relativistic theory.
n=-——5—AmuT; (3.18 The relativistic Bose-Einstein condensation in particle-
27 pg antiparticle system considered in the present paper can rep-
resent (as for the Galilean limitc— [36]) a possible
mechanism of acquiring a given sharp mass distribution by
since afT=T., Am=0, it follows thatn=0 at all tempera-  the particles of the system, as a phase transition between the
tures belowT.. Therefore, the behavior of an ultrarelativis- corresponding sectors of the theory. Since this phase transi-
tic Bose gas including both particles and antiparticles, whichion can occur at an ultrarelativistic temperature, it might be
is governed by the relatiofB.14), can be thought of as a relevant to cosmological models. The relativistic Bose-
special type of Bose-Einstein condensation to a ground statginstein condensation considered in the present paper may
with p#p,,= — (M/ k)2 [this ground state occurs with zero also have properties which could be useful in the study of
weight in the integral(3.6)]. In such a formulation, every relativistic boson starf41]. These and other aspects of the
state with temperatur€>T,., given by Eq.(3.6), should be theory are now under further investigation.
considered as anff-shell excitation of the on-shell ground The extension and generalization of Bose-Einstein con-
state. AtT=T,, all such excitations freeze out and the dis-densation to curved spacetimes and spacetimes with bound-
tribution becomes strongly peaked at a definite mass, i.e., tharies, for which the work reported here may have construc-
system undergoes a phase transition to the on-shell sectaive application, have also been the subject of much study.
Note that, forn=0, Eq. (3.12 gives At=c. Then, since The nonrelativistic Bose gas in the Einstein-static universe
(E)~T, one obtains from Eq(3.13 that T,y=% [this re- was treated in Ref.l]. The generalization to relativistic sca-

lation can be also obtained from E(.35 for Am=0], lar fields was given in Ref$42,43. The extension to higher-
which means that in the mean, all the events become padimensional spheres was given in Rpf4]. Bose-Einstein
ticles. condensation on hyperbolic manifolf45], and in the Taub

As the distribution function enters the on-shell phase atuiniverse[46], has also been considered. More recently, by
T=T,, the underlying off-shell theory describes fluctuationscalculating the high-temperature expansion of the thermody-
around the sharp mean mass. This phenomenon providesnamic potential when boundaries are present, Kirgéefi
mechanism, based on equilibrium statistical mechanics, foexamined Bose-Einstein condensation in certain cases. Later
understanding how the general off-shell theory is constraine@ork of Toms[48] showed how to interpret Bose-Einstein
to the neighborhood of a sharp universal mass shell for eactondensation in terms of symmetry breaking, in the manner
particle type. At temperatures beloW, the results of the of flat space time calculatiori41,13. The most recent study
theory for the main thermodynamic quantities coincide withby Leeet al.[49] showed how interacting scalar fields can be
those of the usual on-shell theories. treated. Bose-Einstein condensation for self-interacting com-

In order that our considerations be valid, the relafiogn  plex scalar fields was considered in REB0Q]. It is to be
>M/ux must hold; this relation reduces, with E§.15, to  hoped that the techniques developed here can contribute to

the development of this subject as well.
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