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Bosonic description of spinning strings in 21 dimensions
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We write down a general action principle for spinning strings2r-1)-dimensional space-timeithout
introducing Grassmann variable$he action is written solely in terms of coordinates taking values in the 2
Poincaregroup, and it has the usual string symmetries; i.e., it is invariant u@letiffeomorphisms of the
world sheet andb) Poincaretransformations[S0556-282(96)00518-9

PACS numbeps): 11.25.Sq, 11.10.Kk, 11.30.Cp

It is well known that the classical spin of relativistic par- sO(2,1) matrix A:{Aij, i,j=0,1,2 and an S@,1) vector
ticles can be described by using either classical of_i j—0 12 The latter will serve as the Minkowski co-
pseudoclassical variablgd]. Although the description in  grdinates of the string. Under the left action of the Poincare

terms of pseudoclassical variables is commonly given, thgyroup,g=(A,x) transforms according to the usual semidi-
description in terms of classicébr bosoni¢ variables has rect product rule:

the advantage that from it one can obtain all irreducible rep-
resentations of spinning particles upon quantization. g—heg=(6,y)°o(A,X)=(6A,6x+Yy). @

For the case of spinning strings, pseudoclassical descrip-
tions are well known, but a general description solely in We lett; andu;, i=0,1,2 denote a basis for the Lie alge-
terms of classical variables is not. We rectify the situation inPra 1SQ2,1). For their commutation relations we can take
this paper. It is hoped that, in analogy with the particle case, § o
the quantization of the system presented here will lead to all [t ]=ept®,  [tul=epu’ [ui,u]=0, (2
representations of spinning strings.

For reasons of simplicity, we shall examine strings in
2+1 space-time only(The string action has a particularly
elegant form in 21 dimensions due to the existence of a A left invariant Maurer-Cartan form can be expanded in
nondegenerate scalar product on the Poincalgebra this basis as follows:

ISO(2,1) [2].) Our system contains the general description of '

(spinles$ strings due to Balachandran, Lizzi, and Sparano 1

[3] as a special caseFurthermore, it can be generalized to g ldg= > e (ATTdA )t + (A HdX)'y; . ©)

an arbitrary number of space-time dimensions, and also to

spinning membranes angtbranes. We shall discuss such
generalizations in a later articld].

Analogous to the bosonic formulation of a spinning par-
ticle in 2+1 dimensiongcf. [5]), the spinning string action
can be written on th&2+1)-dimensional Poincargrou 1 -1 —1on 1 1
manifold 1SG2,1). That is, the string variables a?e mpaps g "= (A, )o(075 =07 y) = (A6 T x= A0 y)(,4)
from the two-dimensional world sheet to I801). We shall
express the action for strings in2+1)-dimensional ,hq consequently, the Maurer-Cartan form transforms as
Minkowski space in terms of these variables and their deg)ows:
rivatives. It will be seen to be invariant und@ diffeomor-
phisms of the world sheet ar®) global Poincardransfor-

where we raise and lower indices using the Minkowski met-

ric [n;]=diag—1,1,), and we define the totally antisym-
metric tensore;, such thate®?=1.

It is easy to check thag~'dg is unchanged under the left
action of the Poincargroup (1). Under the right action of
the Poincaregroup,

1
mations. The strings can be classified in terms of (50 g 'dg—"g 'dg]= 5 eM(ATdA);; "]
orbits, and we shall find that certain orbits correspond to
strings with a nonvanishing spin current. Lastly, we shall + (A" Ydx) "[u;], (5)

show how to embed such strings in curved space-time, the
resulting action being invariant undé&), and now(b) local  \here
Poincaretransformations.
We begin with some mathematical preliminaries. We de- [t ]= 9jitj+ Ejklgkiy]_ul . Mul=0 jin ) (6)
note the string variables hy. g can be decomposed into an
Here h[ti] and h[ui] denote basis vectors which are trans-
formed under the adjoint action byeI1SO(2,1). They are
ISpinning strings were also considered [iB] using a Wess- given explicitly for h=(6,y). These equations can be uti-
Zumino term. Here we shall show that there are more possibilitiedized to define the adjoint actian—"[v] by he1SO(2,1) on
for including spin. any vectorv = o't;+ 8'u; in 1SO(2,1).
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Two scalar products exist on I$8)1) which are invariant where we have used the invariance property of the scalar
under the above defined adjoint action. We denote them witproduct. The equations of motion thus state that
angular brackets and parentheses. The former satisfies  9[K]=p't;—j'u; are constants of the motion. Upon once

again choosind = mt,— xuy, we get the following expres-
(tiup=mj, (titj)=(u;,u;)=0, (7)) sions for these constants:

and is nondegenerate. The latter satisfies

(Gt =i, (W)= ) =0, ® The former can be identified with the momenta of the par-
and is degenerate. Thus for any two vectorand v’ in ticle, while the latter can be identified with the angular mo-
1ISO(2,1), the invariance property implies théit[v],"[v'])  menta, the first term being the orbital angular momenta and
=(v,v’) and (o], D =(v,v"). the second being the spin. The spin is thus proportional to

The nondegenerate scalar prod{gtwas utilized previ-  Which is nonvanishing whe(K,K) is.
ously in writing down the action for a relativistic spinning ~ We now apply an analogous procedure to the description
(or spinless particle, which we now revieys]. The expres-  Of spinning strings. Once again we shall express the action in
sion for the action is linear in the Maurer-Cartan form and itterms of the Maurer-Cartan form, and consequently, it will
is therefore invariant undefteft) Poincaretransformations, be invariant undefleft) Poincareransformations. The action
as well as diffeomorphisms of the particle world line. Theshould be quadratic ig~*dg in order for it to also be in-

p=mA'y, j'=melkxjA o+KA'y. (14)

action is just variant under diffeomorphisms of the world sheet. We then
take the tensor product of two such Maurer-Cartan forms and
_ write
Sparticle:f (K,g ldg>v (9)
where hereg is a function of the world line anK is a Sstring:f (K,g"*dgog~'dg). (15

constant vector in 1S@,1). The direction ofK in 1ISO(2,1)

determines whether the particle is massive, massless, or tRow K is a constant antisymmetric tensor with values in
chyonic, and whether it is spinning or spinless. Actually, forjso2, 1) 1S0(2,1). Analogous to the particle case, it is suf-
th|§ PUrpose, It IS syfﬁment to speme the Im)_o{\b't on ficient to specify the IS@,1) orbit on which/C lies. This is
which K lies. This is because botk=K, and K="[K], because botlc=K, and K ="[K,], heISO(2,1) lead to the
helSO(2,1), lead to the same classical equations of mation. 0 o, € ’

. . : same classical equations of motion, which is once again due
This follows from the invariance property of the scalar prod- ; .
to the invariance property of the scalar prod(izt

uct { ):
(K,g~*dg)=("IK],"g 'dg])=("[K],g’ “*dg’), (K,g~'dgeg tdg)=("[K],"[g"*dg]®"[g~'dg])
(10) :<h[’C],gr71dgr®g/71dg/>,
where g’=gech™. Thus the action is invariant under (16)

K—"K] and the change of coordinates—g’. Now to

specify an I1S@2,1) orbit we can use the two invariants where g’=geh™!. Thus the action is invariant under

(K,K) and (K,K). Spin is associated with the former invari- £ "] and the change of coordinates—g’. Now to

ant, and we shall find an analogous result for strings as welkpecify the 1IS@2,1) orbit we can use its invariants, among
For the caseK=mt,— kuy, we end up with the known which are(X,K) and (IC,K).

[5] bosonic description of a massive spinning particle. That The string actior(15) has already been studi¢8]] for the

choice corresponds to both invariants being nonvanishing[:;ase/c:Eiiknkti@)tj_ Eor that choice

(K,K)=mk and K,K)=—m?. For this case the integrand

in the action can be expressed according to (K,9”'dg® g~ tdg)= e (An) dxldx~. (17)

(K.g™'dg)=mAgdx+ k(A ™'dA)1,. (1D (The wedge product between the one fordxé and dx is

The equations of motion for the particle are easy to Ob_understooc].lt remains to specify the constant vector. For

tain. Transformingg according to:g— (1+ €jeg, wheree is n; spacelike, lightlike, or timelike one recovers the Nambu
an infinitesimal element of I1S@,1), induces the following string, the null string3,6] or the tachyonic string, respec-

o ) tively. Thus to get the Nambu string we may write
variation of the Maurer-Cartan form: - , . .
ni=1/(4ma’) 5;». To see how this works we may extremize

~14qy—9 L the action with repect to the variations ok: JA;j;
o(g "dg) [de]. (12 = AN ¢', ¢ being infinitesimal. This leads to the equations
Then of motion

. €MA;V =0, V=€ dxdx. (19

5Sparticle:f<K’g 1[d6]>:f <g[K]:dE> 2 <o

ThenV; is parallel toA;,. Upon fixing the normalization, we
RV N YAV ituti i i

= | Ak, e, (13) get A=Vl V_JV. Substituting this result back into th.e

integrand(17) yields the usual form for the Nambu action:
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1 1 ) )
SNambi= 7 7 f A% d99_1=§ e (dAA™ )t [dX = (dAA ™) Tu;,
1 (26)
_ 2 AT AR AR
7ra | ¢ o \(36)*(91X)° = (d0X- 92)", we compute the currents

(19 1
a_pa _ _ap| . —1yjkr om l_ my,.

whereo=(0y,0,) parametrize the world sheet arge= d/doy PI=PLi= ™| 2 emiddpA A DFLOT(AN) X =(AN) ]
We now return to the general form for the string action +eijk[0ﬁxj—(aﬁAA‘lx)i](An)k , (27)

(15). The equations of motion are obtained in identical fash-

ion as was done for the particle. Transformingccording to .

g—(1+eeg, where € is an infinitesimal element of I =301= — € P((dpAA Y (An)X'x;

ISO(2,1), once again induces the variatioil2) of the

Maurer-Cartan form. Then

+[ X = (9pAA %) 1L 8L (AN) X' = (An)xI]).
(28

— -1 -1
5Sstring_2f (K9 Tde]l®g™"dg) These two currents can be shown to be related by

a jpka _
zzf (9[K],de@dgg1), (20) It~ €’ P1)=0. (29

) ) We therefore argue that for such strings the angular momen-
where we have used the invariance property of the scalaf,n current consists only of an orbital term, and that no spin
product and the identity is present. This is a well known result for the Nambu string.

1 Case 2 K=K,=1/2 x"(u;®t;—t;®u;). Sincek is anti-
9 [dgg ']=g 'dg. (21)  symmetric with respect to the exchange of the two vector
spaces, this is the most general ansatz which is lineat in
Upon integrating by parts we arrive at the equations of moand in t;. It corresponds to the 1S@,1) orbit with
tion (K.Ky=xi;x" and (K,K)=0. From it we get
-1\ —
d<g[K]1TA®dgg >_01 (22) g[lCz]z % (AXAfl)ij(ui®tj_tj®ui)
where theT,’s denote the generators of 1801). These
equations state that there are six conserved currents. For
T,o=U;, we have

+ 3 [try xe— (AxA D lekueu;. (30

We now obtain the currents
9,P=0, P=e*P(K],ui®dzgg™ "), (23

1 .
a_pa _ _ — _af_. -1 jk =151
which we identify with the momentum current conservation. Pi=P&)i=—7 €A 79sA) " (xA™D)5, (3D
(Here a,3,... denote world sheet indicgsFor Tpo=t;, we
have 1
I=30y=5 €[ AxagA~ )],

9 7=0, I'=eP([LLti®dpgg Y, (29 _

_[trX (ﬁIBAAil)Jl +(AX&IBA71)“]XJ) (32)
which we identify with the angular momentum current con-

servation. Now the analogue of Eq29) is no longer true: i.e.,
We now examine the conserved curreRtS andJ{* for
i a a i pka
several choices of. S'=J0)i— €X' P2 #O0. (33

Case 1K=K;=€'*n, t;®t;. This is the case we consid-
ered earlier which contains the Nambu string, as well as thye then conclude that a spin current is present in this case.
nuII_ an_d tachyonic strings. It corresponds to the (3@ Case 3K=Ky= Eijkvk u;®u; . Here both invariants van-
orbit with (},K)=0 and(X,K)=—2n;n'. Here we get that ish, (K,K)=0 and (K,K)=0. The currents?® and J are
g _ ik ik | trivially conserved in this case. This is because the integrand
[KC1]= e (An) i@t — € (An) XX U@ in Eq. (15) can be expressed as an exact two form on
+(An X (teu —uet) 1SO (2.,3):
+(An)X(ueti—t;®u;). (25) 1 N
N (K,g"'dgeg 'dg)=5 ej(A~TdA)I(A~dAw)*
Using this and the expression for the right invariant Maurer- B
Cartan form = —de (A TdA). (34)
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Although this term does not contribute to the classical equa-

tions of motion, it can affect the quantum dynamics. Further- Sstring™ J (K,g"'Dg®g~'Dg) (41)

more, it is known to be associated with theacua of string

theory([3,7]. is gauge invariant, and hence gives the string action in
Case 4 K=K, +K,. This defines the most general classi- cyrved space-time.

cal system with the string action given by H45). It there- The equations of motion obtained by varyiggqnow state

fore contains the case of the Nambu string. Now both invarithat the momentum and angular momentum currents are co-
ants can be nonzer@t,KC)=x;; x"! and(K,K)=—2nn". The  variantly conserved. To see this we can again use(ER).

conserved currents are now given by along with 6(971[A])=971[A €]. Then
Pi=P{i+ P& (35 B
o a o 5Sstring:2f <K’g [D6]®971Dg>
=30tz (36)
For such strings, we can identify both an orbital and a spin zzf ([K],De®Dgg™Y), (42)
angular momentum current, i.d,;'=L *+ S{*. The spin cur-

rentS{* is defined in Eq(33), while the orbital angular mo- : .
@ e where we have used the invariance property of the scalar
mentumL {* is given by i e
' product, De=de+[A,e] and the identity 9 [Dgg ']
Li"=Jg’l)i+eijkaP'(‘§). (37 =g~ Dg. Upon integrating by parts we now arrive at the
equations of motion
From the above discussion we conclude that a spin cur-

rent is present for the case of IS01) orbits with (K,KC)#0. d(I[K],Ta®Dgg H—(I[K],[A®]1,T,®Dgg 1])=0,

If we include a Wess-Zumino term as is done in R&f.an (43
additional term of the forme;, e*#(A~9,A)% contributes

to the angular momentum current. where theT ,'s once again denote the generators of (S0.

It is easy to embed our spinning strings in curved spaceWe then get the following generalizations of E¢23) and
time. For this the action should be invariant under local Poin{24):
caretransformations: .
I P+ €@, P¥*=0, Pr=e"P(9[K],ui®Dggg 1),
g—h.eg, (38 (44)

where likeg,h, are functions on the two-dimensional world 0 T+ e (@ Tkt el Paky=0
sheet, taking values in 1S@,1). We recall that the action o T T i@ T 6P =0,
(15) was instead invariant under global Poinctrensforma-
tions. To elevate it to a local invariance, we replace'dg

by

J'=e*P(K],t®Degg ™), (45)

wl, el andDBg.g’l_ denoting thle world sheet components of
_ _ - !, &', andDgg ", respectively. The currents
1Ipg=g-ldg+9 } the one formsw', €/, andDgg™ -, resp y _
g "Dg=g "dg [ALL (39 play the role of sources for the 1329)1) curvature. For this
where A= (l)iti + eiui are the connection one-forms for We can take the Chern-Simons aCt[@i for the fields. Then

ISO(2,1) evaluated on the string world sheet. Under Poincaré”i* is @ source for the S@,1) curvature, whileJ{-is a

gauge transformation$8), source for the torsion.
A—M[A]-dh. h "%, (40) We are grateful for discussions with R. Casadio. We were
supported in part by the U.S. Department of Energy under
and as a resulbgg ! is invariant. Then Contract No. DE-FG05-84EP-40141.
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