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Bosonic description of spinning strings in 211 dimensions
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~Received 17 January 1996!

We write down a general action principle for spinning strings in~211!-dimensional space-timewithout
introducing Grassmann variables. The action is written solely in terms of coordinates taking values in the 211
Poincare´ group, and it has the usual string symmetries; i.e., it is invariant under~a! diffeomorphisms of the
world sheet and~b! Poincare´ transformations.@S0556-2821~96!00518-8#

PACS number~s!: 11.25.Sq, 11.10.Kk, 11.30.Cp
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It is well known that the classical spin of relativistic pa
ticles can be described by using either classical
pseudoclassical variables@1#. Although the description in
terms of pseudoclassical variables is commonly given,
description in terms of classical~or bosonic! variables has
the advantage that from it one can obtain all irreducible r
resentations of spinning particles upon quantization.

For the case of spinning strings, pseudoclassical desc
tions are well known, but a general description solely
terms of classical variables is not. We rectify the situation
this paper. It is hoped that, in analogy with the particle ca
the quantization of the system presented here will lead to
representations of spinning strings.

For reasons of simplicity, we shall examine strings
211 space-time only.~The string action has a particularl
elegant form in 211 dimensions due to the existence of
nondegenerate scalar product on the Poincare´ algebra
ISO~2,1! @2#.! Our system contains the general description
~spinless! strings due to Balachandran, Lizzi, and Spara
@3# as a special case.1 Furthermore, it can be generalized
an arbitrary number of space-time dimensions, and also
spinning membranes andp-branes. We shall discuss suc
generalizations in a later article@4#.

Analogous to the bosonic formulation of a spinning pa
ticle in 211 dimensions~cf. @5#!, the spinning string action
can be written on the~211!-dimensional Poincare´ group
manifold ISO~2,1!. That is, the string variables are map
from the two-dimensional world sheet to ISO~2,1!. We shall
express the action for strings in~211!-dimensional
Minkowski space in terms of these variables and their
rivatives. It will be seen to be invariant under~a! diffeomor-
phisms of the world sheet and~b! global Poincare´ transfor-
mations. The strings can be classified in terms of ISO~2,1!
orbits, and we shall find that certain orbits correspond
strings with a nonvanishing spin current. Lastly, we sh
show how to embed such strings in curved space-time,
resulting action being invariant under~a!, and now~b! local
Poincare´ transformations.

We begin with some mathematical preliminaries. We d
note the string variables byg. g can be decomposed into a

1Spinning strings were also considered in@3# using a Wess-
Zumino term. Here we shall show that there are more possibili
for including spin.
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SO~2,1! matrix L5$L j
i , i , j50,1,2% and an SO~2,1! vector

x5$xi , i50,1,2%. The latter will serve as the Minkowski co-
ordinates of the string. Under the left action of the Poinca´
group,g5(L,x) transforms according to the usual semidi
rect product rule:

g→h+g5~u,y!+~L,x!5~uL,ux1y!. ~1!

We let t i andui , i50,1,2 denote a basis for the Lie alge
bra ISO~2,1!. For their commutation relations we can take

@ t i ,t j #5e i jk t
k, @ t i ,uj #5e i jku

k, @ui ,uj #50, ~2!

where we raise and lower indices using the Minkowski me
ric @hi j #5diag~21,1,1!, and we define the totally antisym-
metric tensorei jk such thate01251.

A left invariant Maurer-Cartan form can be expanded i
this basis as follows:

g21dg5
1

2
e i jk~L21dL! i j tk1~L21dx! iui . ~3!

It is easy to check thatg21dg is unchanged under the left
action of the Poincare´ group ~1!. Under the right action of
the Poincare´ group,

g→g+h215~L,x!+~u21,2u21y!5~Lu21,x2Lu21y!,
~4!

and, consequently, the Maurer-Cartan form transforms
follows:

g21dg→h@g21dg#5
1

2
e i jk~L21dL! i j

h@ tk#

1~L21dx! i h@ui #, ~5!

where

h@ t i #5u j
i t j1e jklukiy jul ,

h@ui #5u i
j uj . ~6!

Here h[ t i ] and
h[ui ] denote basis vectors which are trans

formed under the adjoint action byhPISO~2,1!. They are
given explicitly for h5(u,y). These equations can be uti-
lized to define the adjoint actionv→h[v] by hPISO~2,1! on
any vectorv5a i t i1b iui in ISO~2,1!.
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Two scalar products exist on ISO~2,1! which are invariant
under the above defined adjoint action. We denote them w
angular brackets and parentheses. The former satisfies

^t i ,uj&5h i j , ^t i ,t j&5^ui ,uj&50, ~7!

and is nondegenerate. The latter satisfies

~ t i ,t j !5h i j , ~ui ,t j !5~ui ,uj !50, ~8!

and is degenerate. Thus for any two vectorsv and v8 in
ISO~2,1!, the invariance property implies that^h[v],h[v8] &
5^v,v8& and (h[v],h[v8])5(v,v8).

The nondegenerate scalar product^ & was utilized previ-
ously in writing down the action for a relativistic spinning
~or spinless! particle, which we now review@5#. The expres-
sion for the action is linear in the Maurer-Cartan form and
is therefore invariant under~left! Poincare´ transformations,
as well as diffeomorphisms of the particle world line. Th
action is just

Sparticle5E ^K,g21dg&, ~9!

where hereg is a function of the world line andK is a
constant vector in ISO~2,1!. The direction ofK in ISO~2,1!
determines whether the particle is massive, massless, o
chyonic, and whether it is spinning or spinless. Actually, f
this purpose, it is sufficient to specify the ISO~2,1! orbit on
which K lies. This is because bothK5K0 and K5h[K0],
hPISO~2,1!, lead to the same classical equations of motio
This follows from the invariance property of the scalar pro
uct ^ &:

^K,g21dg&5^h@K#,h@g21dg#&5^h@K#,g821dg8&,
~10!

where g85g+h21. Thus the action is invariant unde
K→h[K] and the change of coordinatesg→g8. Now to
specify an ISO~2,1! orbit we can use the two invariants
^K,K& and (K,K). Spin is associated with the former invari
ant, and we shall find an analogous result for strings as w

For the caseK5mt02ku0 , we end up with the known
@5# bosonic description of a massive spinning particle. Th
choice corresponds to both invariants being nonvanishi
^K,K&5mk and (K,K)52m2. For this case the integrand
in the action can be expressed according to

^K,g21dg&5mL0
i dxi1k~L21dL!12. ~11!

The equations of motion for the particle are easy to o
tain. Transformingg according to:g→(11e!+g, wheree is
an infinitesimal element of ISO~2,1!, induces the following
variation of the Maurer-Cartan form:

d~g21dg!5g21
@de#. ~12!

Then

dSparticle5E ^K,g
21

@de#&5E ^g@K#,de&

52E ^d~g@K# !,e&, ~13!
ith
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where we have used the invariance property of the sca
product. The equations of motion thus state th
g[K]5pit i2 j iui are constants of the motion. Upon onc
again choosingK5mt02ku0 , we get the following expres-
sions for these constants:

pi5mL 0
i , j i5me i jkxjLk01kL 0

i . ~14!

The former can be identified with the momenta of the pa
ticle, while the latter can be identified with the angular mo
menta, the first term being the orbital angular momenta a
the second being the spin. The spin is thus proportional tok
which is nonvanishing when̂K,K& is.

We now apply an analogous procedure to the descript
of spinning strings. Once again we shall express the action
terms of the Maurer-Cartan form, and consequently, it w
be invariant under~left! Poincare´ transformations. The action
should be quadratic ing21dg in order for it to also be in-
variant under diffeomorphisms of the world sheet. We th
take the tensor product of two such Maurer-Cartan forms a
write

Sstring5E ^K,g21dg^g21dg&. ~15!

Now K is a constant antisymmetric tensor with values
ISO~2,1!I^ ISO~2,1!I. Analogous to the particle case, it is suf

ficient to specify the ISO~2,1! orbit on whichK lies. This is
because bothK5K0 andK5h@K0#, hPISO~2,1! lead to the
same classical equations of motion, which is once again d
to the invariance property of the scalar product^ &:

^K,g21dg^g21dg&5^h@K#,h@g21dg# ^
h@g21dg#&

5^h@K#,g821dg8^g821dg8&,

~16!

where g85g+h21. Thus the action is invariant unde
K→h@K# and the change of coordinatesg→g8. Now to
specify the ISO~2,1! orbit we can use its invariants, amon
which are^K,K& and ~K,K!.

The string action~15! has already been studied@3# for the
caseK5e i jknkt i ^ t j . For that choice

^K,g21dg^g21dg&5e i jk~Ln! idxjdxk. ~17!

~The wedge product between the one formsdxj anddxk is
understood.! It remains to specify the constant vectorni . For
ni spacelike, lightlike, or timelike one recovers the Namb
string, the null string@3,6# or the tachyonic string, respec
tively. Thus to get the Nambu string we may writ
ni51/(4pa8)d i2. To see how this works we may extremiz
the action with repect to the variations ofL: dL i j
5e iklL

k
jz
l ,z l being infinitesimal. This leads to the equation

of motion

e i jkL j2Vk50, Vk5e i jkdx
idxj . ~18!

ThenVi is parallel toLi2. Upon fixing the normalization, we
get L i25Vi /AVjV

j . Substituting this result back into the
integrand~17! yields the usual form for the Nambu action:
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1

4pa8
E AVjV

j

5
1

2pa8
E d2sA~]0xW !2~]1xW !22~]0xW•]1xW !2,

~19!

wheres5~s0,s1! parametrize the world sheet and]05]/]s0
and]15]/]s1.

We now return to the general form for the string acti
~15!. The equations of motion are obtained in identical fa
ion as was done for the particle. Transformingg according to
g→(11e!+g, where e is an infinitesimal element o
ISO~2,1!I, once again induces the variation~12! of the

Maurer-Cartan form. Then

dSstring52E ^K,g
21

@de# ^g21dg&

52E ^g@K#,de ^dgg21&, ~20!

where we have used the invariance property of the sc
product and the identity

g21
@dgg21#5g21dg. ~21!

Upon integrating by parts we arrive at the equations of m
tion

d^g@K#,TA^dgg21&50, ~22!

where theTA’s denote the generators of ISO~2,1!. These
equations state that there are six conserved currents.
TA5ui , we have

]aPi
a50, Pi

a5eab^g@K#,ui ^ ]bgg
21&, ~23!

which we identify with the momentum current conservatio
~Here a,b,... denote world sheet indices.! For TA5t i , we
have

]aJi
a50, Ji

a5eab^g@K#,t i ^ ]bgg
21&, ~24!

which we identify with the angular momentum current co
servation.

We now examine the conserved currentsP i
a andJ i

a for
several choices ofK.

Case 1. K5K15e i jknk t i ^ t j . This is the case we consid
ered earlier which contains the Nambu string, as well as
null and tachyonic strings. It corresponds to the ISO~2,1!
orbit with ^K,K&50 and~K,K!522nin

i . Here we get that

g@K1#5e i jk~Ln!k t i ^ t j2e i jk~Ln! lx
lxk ui ^uj

1~Ln! lx
l~ t i ^ui2ui ^ t i !

1~Ln! ixj~ui ^ t j2t j ^ui !. ~25!

Using this and the expression for the right invariant Maur
Cartan form
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dgg215
1

2
e i jk~dLL21! i j tk1@dxi2~dLL21x! i #ui ,

~26!

we compute the currents

Pi
a5P~1!i

a 5eabS 12 emjk~]bLL21! jk@d i
m~Ln! lx

l2~Ln!mxi #

1e i jk@]bx
j2~]bLL21x! j #~Ln!kD , ~27!

Ji
a5J~1!i

a 52eab
„~]bLL21! i

j~Ln! lx
lxj

1@]bx
j2~]bLL21x! j #@d i

j~Ln! lx
l2~Ln! ix

j #….

~28!

These two currents can be shown to be related by

J~1!i
a 2e i jkx

jP~1!
ka 50. ~29!

We therefore argue that for such strings the angular mom
tum current consists only of an orbital term, and that no sp
is present. This is a well known result for the Nambu strin

Case 2. K5K251/2 x i j (ui ^ t j2t j ^ui). SinceK is anti-
symmetric with respect to the exchange of the two vect
spaces, this is the most general ansatz which is linear inui
and in t j . It corresponds to the ISO~2,1! orbit with
^K,K&5x i jx

i j and ~K,K!50. From it we get

g@K2#5 1
2 ~LxL21! i j ~ui ^ t j2t j ^ui !

1 1
2 @ trx xk2~LxL21! l kxl #e

i jkui ^uj . ~30!

We now obtain the currents

Pi
a5P~2!i

a 52
1

4
eabe jkl~L21]bL! jk~xL21! l i , ~31!

Ji
a5J~2!i

a 5
1

2
eab

„@Lx]b~L21x!# i

2@ trx ~]bLL21! j i1~Lx]bL21! j i #x
j
…. ~32!

Now the analogue of Eq.~29! is no longer true: i.e.,

Si
a5J~2!i

a 2e i jkx
jP~2!

ka Þ0. ~33!

We then conclude that a spin current is present in this ca
Case 3. K5K35e i jknk ui ^uj . Here both invariants van-

ish, ^K,K&50 and ~K,K!50. The currentsP i
a and J i

a are
trivially conserved in this case. This is because the integra
in Eq. ~15! can be expressed as an exact two form o
ISO ~2,1!:

^K,g21dg^g21dg&5
1

2
e i jk~L21dL! i j ~L21dLn!k

52de i jkn
k~L21dL! i j . ~34!
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Although this term does not contribute to the classical equ
tions of motion, it can affect the quantum dynamics. Furthe
more, it is known to be associated with theu vacua of string
theory @3,7#.

Case 4. K5K11K2. This defines the most general class
cal system with the string action given by Eq.~15!. It there-
fore contains the case of the Nambu string. Now both inva
ants can be nonzero,^K,K&5x i jx

i j and~K,K!522nin
i . The

conserved currents are now given by

Pi
a5P~1!i

a 1P~2!i
a , ~35!

Ji
a5J~1!i

a 1J~2!i
a . ~36!

For such strings, we can identify both an orbital and a sp
angular momentum current, i.e.,J i

a5L i
a1Si

a. The spin cur-
rentSi

a is defined in Eq.~33!, while the orbital angular mo-
mentumL i

a is given by

Li
a5J~1!i

a 1e i jkx
jP~2!

ka . ~37!

From the above discussion we conclude that a spin c
rent is present for the case of ISO~2,1! orbits with ^K,K&Þ0.
If we include a Wess-Zumino term as is done in Ref.@3# an
additional term of the forme i jke

ab(L21]bL) jk contributes
to the angular momentum current.

It is easy to embed our spinning strings in curved spac
time. For this the action should be invariant under local Poi
carétransformations:

g→hL+g, ~38!

where likeg,hL are functions on the two-dimensional world
sheet, taking values in ISO~2,1!. We recall that the action
~15! was instead invariant under global Poincare´ transforma-
tions. To elevate it to a local invariance, we replaceg21dg
by

g21Dg5g21dg1g21
@A#, ~39!

where A5v i t i1eiui are the connection one-forms for
ISO~2,1! evaluated on the string world sheet. Under Poinca´
gauge transformations~38!,

A→hL@A#2dhLhL
21, ~40!

and as a resultDgg21 is invariant. Then
a-
r-

i-

ri-
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ur-
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Sstring5E ^K,g21Dg^g21Dg& ~41!

is gauge invariant, and hence gives the string action
curved space-time.

The equations of motion obtained by varyingg now state
that the momentum and angular momentum currents are c
variantly conserved. To see this we can again use Eq.~12!
along withd(g

21
@A#)5g21

@A,e#. Then

dSstring52E ^K,g
21

@De# ^g21Dg&

52E ^g@K#,De ^Dgg21&, ~42!

where we have used the invariance property of the sca
product, De5de1[A,e] and the identity g21

@Dgg21#
5g21Dg. Upon integrating by parts we now arrive at the
equations of motion

d^g@K#,TA^Dgg21&2^g@K#,@A^ 1,TA^Dgg21#&50,
~43!

where theTA’s once again denote the generators of ISO~2,1!.
We then get the following generalizations of Eqs.~23! and
~24!:

]aPia1e i jkva
j Pak50, Pia5eab^g@K#,ui ^Dbgg

21&,
~44!

]aJia1e i jk~va
j Jak1ea

j Pak!50,

Jia5eab^g@K#,t i ^Dbgg
21&, ~45!

v a
j , ea

j andDbgg
21 denoting the world sheet components o

the one formsvj , ej , andDgg21, respectively. The currents
play the role of sources for the ISO~2,1! curvature. For this
we can take the Chern-Simons action@2# for the fields. Then
P i

a is a source for the SO~2,1! curvature, whileJ i
a-is a

source for the torsion.

We are grateful for discussions with R. Casadio. We we
supported in part by the U.S. Department of Energy und
Contract No. DE-FG05-84EP-40141.
@1# A. P. Balachandran, G. Marmo, B.-S. Skagerstam, and
Stern, Phys. Lett.89B, 199 ~1980!; Gauge Symmetries an

Fibre Bundles, Applications to Particle Dynamics, Lecture
Notes in Physics Vol. 188~Springer-Verlag, Berlin, 1982!.

@2# E. Witten, Nucl. Phys.B311, 46 ~1988!.
@3# A. P. Balachandran, F. Lizzi, and G. Sparano, Nucl. Ph

B263, 608 ~1986!; B277, 359 ~1986!; A. P. Balachandran, F
Lizzi, D. Sorkin, and G. Sparano,ibid. B287, 508 ~1987!.

@4# A. Stern, ‘‘Bosonization and current algebra of spinning
A.
d

ys.
.

strings,’’ Alabama Report No. UAHEP968~unpublished!.
@5# B.-S. Skagerstam and A. Stern, Int. J. Mod. Phys. A5, 1575

~1990!.
@6# A. Schild, Phys. Rev. D16, 1722 ~1977!; F. Lizzi and G.

Sparano, Phys. Lett. B232, 311 ~1989!; I. A. Bandos, D. P.
Sorokin, M. Tonon, and D. V. Volkov,ibid. 319, 445 ~1993!.

@7# P. O. Mazur and V. P. Nair, Nucl. Phys.B284, 146~1987!; V.
G. J. Rodgers, Mod. Phys. Lett. A7, 1001~1992!; J. Pawelc-
zyk, Phys. Lett. B311, 98 ~1993!; R. Efraty, ibid. 322, 84
~1994!.


