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A family of type IIB superstring backgrounds involving Ramond-Ramond fields are obtained in ten dim
sions starting from aK model through a generalization of our recent results. The unbroken global SL(2R)
symmetry of the type IIB equations of motion are implemented in this context as a solution gener
transformation. A geometrical analysis, based on the tensor structure of the higher ordera8 terms in the
equations of motion, is employed to show that these backgrounds are exact.@S0556-2821~96!03716-2#

PACS number~s!: 11.25.Mj, 11.30.Ly
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I. INTRODUCTION

Recent advances in string theory have provided a glim
of their underlying nonperturbative structure. There no
seems to be a strong indication that the several distinct st
theories all arise from a yet unknown fundamental theory
11 dimensions, which has been called theM theory@1#. The
central guiding principle behind this unification has been
duality symmetries@2–5#. They includeT duality @2# which
is perturbative in the genus expansion and the conjectu
nonperturbativeS duality @3–5#. The latter relates electrica
charged perturbative states to magnetic charged solitons
weak to strong coupling regimes. As an example, we h
the type IIB string theory in ten dimensions@6,7#. These
possess a global SL(2,R) symmetry of the classical effective
field theory which is broken to the discrete SL(2,Z)
S-duality group in the quantum theory which relates Neve
Schwarz–Neveu-Schwarz~NS-NS! to the Ramond-Ramond
~R-R! sector.

In thes model approach to string theory@8#, one consid-
ers the propagation of a string in the background of its ma
less excitations. The evolution is described by a tw
dimensionals model in which the background fields appe
as couplings. Conformal invariance then requires the co
sponding perturbativeb functions for these couplings to van
ish, leading to the background field equations of motion. T
higher order terms@8# in these equations provide the string
corrections to the tree level theory and may be compu
perturbatively. However, for the type IIB string backgroun
this remains a nontrivial exercise owing to the presence
R-R fields which arise from the solitonic sector@9#. These
couple to the spin fields on the world sheet and make
corresponding perturbation theory intractable at higher
ders @9,10#. There exists, however, a large class of stri
backgrounds for the bosonic and heterotic cases, where
higher order contributions are identically zero@11–15#.
Hence the tree level equations of motion are exact to
orders in thes model couplinga8. Among these are the
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class of backgrounds with a covariantly constant null Killin
vector which are known asK models@11,13#. The simplest
example in this class is the plane wave string backgroun
For the bosonic and heterotic versions of these, it has b
shown that they are exact~in a8) through a purely geometri-
cal analysis based on the existence of the covariantly c
stant null Killing vector@12,16–18#.

Previously, in collaboration with Kar@19#, we have
shown that starting from such a plane wave background e
bedded trivially in a type IIB string theory~i.e., with vanish-
ing R-R fields!, it is possible to generate a nontrivial type IIB
background with R-R fields in ten dimensions. We furth
showed, through a geometrical analysis, that these type
backgrounds were also exact to all orders ina8. This method
avoids the complications arising from the world sheet co
plings of the R-R fields. In this article, we extend our anal
sis to a more general class ofK models with chiral couplings
on the world sheet@15#. On compactification to lower dimen-
sions, these couplings lead to background gauge fields. T
bosonic and the heterotic versions of theseK models de-
scribe strings propagating in a uniform magnetic field bac
ground@20# as one of the special cases. These can be form
lated as exact confornal field theories and illustrate a pha
transition at some critical value of the magnetic field whe
an infinite number of states becomes tachyonic. In low
dimensions they also describe charged black holes throu
the Kaluza-Klein mechanism@15#. We consider such aK
model in ten dimensions trivially embedded~i.e., without
R-R fields! in a type IIB background. Using the globa
SL(2,R) symmetry of the equations of motion, we generate
type IIB background with a nontrivial R-R field background
Subsequently, assuming a specific structure for the fi
strengths, we show that the backgrounds obtained are e
~in a8) through a geometrical analysis. In this context, unlik
our earlier work, we show that the geometrical conside
ations based on the covariantly constant null Killing vect
may be retranslated in the language of the index structure
the corresponding higher order tensors@17,19#. It is possible
that the present approach is applicable to a wider class
models. This article is divided into four sections. In Sec.
we present a brief review of the backgrounds obtained fro
3976 © 1996 The American Physical Society
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54 3977K MODELS AND TYPE IIB SUPERSTRING BACKGROUNDS
K models for the bosonic case and show that they are ex
Section III deals withK models embedded in a type IIB
theory and their SL(2,R) transformations. In this section w
also explicitly prove that these backgrounds are exact in
presence of R-R fields. We present the conclusions in S
IV.

II. STRING BACKGROUNDS FROM K MODELS

We begin with a description of the string backgroun
fields obtained from theK models. The Lagrangian for the
bosonicK model is given as@15#

L52]u]̄v1K~u,x!]u]̄u12Ai~u,x!]u]̄xi

12Āi~u,x!]̄u]xi1~Gi j1Bi j !~u,x!]xi]xj

1R~2!f~u,x!. ~1!

We specialize to the case whereGi j5d i j , Bi j50, and
f5f(u). For this case we have the metric

ds252dudv12Ai
1~u,x!dudxi1K~u,x!du21dxidxi

~2!

and the antisymmetric tensor field

Bmn5S 0 1 Ai
2

21 0 0

2Ai
2 0 0

D . ~3!

The greek indices (m,n) run over (0, . . .,9), (u,v) are the
light-cone coordinates, and the latin indices (i , j )
5(2, . . . ,9) run over the transverse space coordinatesxi . We
also have

Ai
65Ai6Āi . ~4!

The v independence of the metric leads to a Killing vect
lm5(0,1,0,. . .,0). It is possible to express the metric in
compact form in terms oflm which eases subsequent com
putations. Explicitly, we have

Gmn5Mmn1Klml n , ~5!

whereMmn is a 10310 symmetric matrix,

Mmn5S 0 1 Ai
1

1 0 0

Ai
1 0 I 8

D , ~6!

and I 8 is a 838 unit matrix. The inverse metric is obtaine
as

Gmn5S 0 1 0

1 2K1Ai
12 2Ai

1

0 2Ai
1 I 8

D . ~7!

The only nonzero connections areGuu
i , Guu

v , Gui
v , Gui

j , and
G i j
v . Using these connections, it is easy to show that the n
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Killing vector is covariantly constant. We therefore have
Dml

n50 andDml n50. The curvature tensor for the back-
grounds~7! may be obtained as

Rlmnk5Rlmnk
~M ! 12l @l]m]]@nKl k] . ~8!

Notice that the only nonzero independent components o
Rlmnk areRuiu j andRui jk . These are

Ruiu j5
1
2 ] i] jK2 1

2 ]u@] iAj
11] jAi

1#2 1
4 G

mn~] jAm
12]mAj

1!

3~] iAn
12]nAi

1! ~9!

and

Rui jk5
1
2 ] i@]kAj

12] jAk
1#. ~10!

We get the expressions for the corresponding components
the Ricci tensor by appropriate contractions of the Rieman
tensor as

Ruu5
1
2 ] i] iK2]u]

iAi
12 1

4 ~F jm1F̄ jm!~F jm1F̄ jm!,
~11!

Ruk52 1
2 ]m~Fkm1F̄km!, ~12!

where

Fi j5~] iAj2] jAi !, F̄ i j5~] i Ā j2] j Āi ! ~13!

are thefield strengthsassociated with the couplingsA and
Ā. Next we consider the antisymmetric tensor field strengt
which is given in the standard form as

Hlmn5~]lBmn1]mBnl1]nBlm!. ~14!

The only nonzero independent component ofHlmn is

Hui j52~Fi j2F̄ i j !. ~15!

We now proceed to obtain the background field equation
at the tree level. As mentioned earlier, these are provided b
the one-loopb functions of the couplingsGmn , Bmn , and
f. Using standard expressions for these equations@8#, we
obtain three independent equations of motion@15#:

] jFi j50, ] j F̄ i j50, ~16!

and

2 1
2 ] i]

iK1] i]
uAi

11Fi j F̄
i j12]u

2f50. ~17!

After obtaining the background field equations of the genera
K models, we now specialize to the case where the fie
strengthsFi j andF̄ i j are constant in the transverse directions
but arbitrary functions ofu. A subclass of these, namely, the
ones which are constant inu as well, describe the propaga-
tion of closed strings in uniform magnetic field backgrounds
@20#. They have been shown to be represented by exact co
formal field theory models. The heterotic generalizations o
these models have also been found. The chiral couplings
this case are

Ai52 1
2Fi j ~u!xj , Āi52 1

2 F̄ i j ~u!xj . ~18!
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3978 54ALOK KUMAR AND GAUTAM SENGUPTA
As a consequence, we have, for the curvature ten
Rui jk50 and

Ruiu j5
1
4 ] i] jK2 1

4 G
mn~F jm1F̄ jm!~Fin1F̄ in!

2 1
2 ]u„Fi j ~u!1F̄ i j ~u!…. ~19!

In this case, the first two background field equations in E
~16! are trivially satisfied. For the metric equation we hav

2 1
2 ] i] iK~u,x!1Fi j F̄

i j ~u!12]u
2f~u!

2 1
2 ]u„Fii ~u!1F̄ ii ~u!…50. ~20!

ThereforeK must be a quadratic function of thexi in order to
satisfy Eq.~20!.

We now proceed to show that this background is exac
all orders ina8. For this, we first note that Eq.~20! is a
second rank tensor equation. So we must consider all p
sible higher order second rank tensor contributions obtai
from the background field configuration. The only possib
covariant tensor components available for this purpose
Duf, Ruiu j , and its covariant derivatives with respect
Du andDk , Hui j , and its covariant derivative with respect t
Du . One also has the corresponding contravariant com
nents which are consistent with the form of the metric~2!.

We first examine the terms involving a single Riema
tensor with the structureDlDnRlmnk . An explicit evaluation
provides the identities

DuDuRuiu j5DiD jRui ju5DuDiRu jiu

5DiDuRiuu j50, etc., ~21!

which implies

DlDnRlmnk50. ~22!

It is apparent now that to construct second rank tensors w
Ruiu j and its derivatives, it is required to contract at least t
indices ofR with anotherR or its appropriate derivatives
Potentially nonzero contributions may come from the co
tractions of covariant indices (u,i ) and contravariant indices
(v,i ). However, this requires a covariant indexv or contra-
variant indexu, which are unavailable and contractions o
derivatives have been shown to be zero. Hence we conc
that it is impossible to construct nonzero second rank tens
from contractions ofRlmnk and its derivatives@17,19#. Thus
all such higher order contributions are vanishing. Simila
notice that terms of the formDlfRlmnk require contraction
of the covariant indexu and hence it is also zero.

We proceed to consider higher order contributions fro
the field strengthH and its derivatives. Notice that the onl
nonzero component ofH is Hui j and the only nonzero cova
riant derivative isDuHui j . It is obvious that all terms involv-
ing only derivatives ofH require contraction of the covarian
index u which, as we showed earlier, was not possib
Hence these terms are all identically zero. Higher order c
tributions of the schematic form (DR)H and (Df)H may be
proved to be identically zero from similar considerations.
is also possible to show that all scalars constructed fr
these covariant objects are also vanishing. Hence we c
clude that the string background obtained from theK models
or,
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are exact to all orders ina8. In the next section we show how
these backgrounds may be considered to be trivially emb
ded in a type IIB string background and generate nontriv
type IIB backgrounds involving R-R fields.

III. TYPE IIB BACKGROUNDS
AND RAMOND-RAMOND FIELDS

In this section we now proceed to first show how th
backgrounds defined in Eqs.~2! and ~3! andf can be em-
bedded in a type IIB string theory with vanishing R-R fields
We subsequently present the action of the global SL(2,R)
transformations on a type IIB background. Utilizing thes
transfromations, we then generate a nontrivial type IIB bac
ground involving R-R fields. The field content of a type IIB
string background consists of the following: the string fram
metric Gmn , two three-form field strengthsHlmn

(k) where
k5(1,2), two scalarsx and f from the NS-NS and R-R
sectors, respectively, and a five-form field strengthFlmnkr .
The two scalarsx andf may be combined to form a com-
plex scalarl5x1 ie2f. So we may consider the back-
ground obtained from theK model defined byf(u), and
Eqs.~2! and~3! to be a special case of a type IIB backgroun
which hasHlmn

(2) 50, x50, andF550. As shown in@6,7#,
type IIB strings inD510 have a global SL(2,R) symmetry
at the level of the equations of motion@7,21#. This acts on
the type IIB background fields as

Gmn8 5ucl1duGmn , ~23!

l85
al1b

cl1d
, ~24!

and

Hlmn8~k!5LHlmn
~k! , ~25!

whereL is an SL(2,R) matrix such that

L5S d c

b aD , ~26!

with ad2bc51.
Implementing the transformations outlined in Eqs.~23!–

~25!, we generate a nontrivial type IIB background with R-R
fields starting from the trivial type IIB configuration obtained
from theK models@cf. Eqs.~2! and ~3!# andf(u). Explic-
itly, we have

Gmn8 ~u,x!5 f ~u!Gmn~u,x!, ~27!

where f (u)5@d21c2e22f(u)#1/2 and

l85
iae2f1b

ice2f1d
, ~28!

with l85x81 ie2f8 and l5 ie2f. We then have the final
expressions for the type IIB scalars as

x8~u!5
1

f ~u!2
@db1ace22f#, ~29!
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54 3979K MODELS AND TYPE IIB SUPERSTRING BACKGROUNDS
f8~u!5f~u!12lnf ~u!. ~30!

For the three-form field strengthH (k), k51,2, we have

Hlmn8~1!5dHlmn
~1! ~31!

and

Hlmn8~2!5bHlmn
~1! . ~32!

The new metric is now given as

ds252 f ~u!dudv1 f ~u!dxidxi12 f ~u!Ai
1dudxi

1 f ~u!K~u,x!du2, ~33!

where K(u,x)5 f (u)F(u,x). A rescaling f (u)du5dU of
the metric leads to the general form

ds2522dUdv1 f̃ ~U !dxidxi12Ãi
1~U,x!dUdxi

1
K̃~U,x!

f̃ ~U !
dU2. ~34!

Dropping the tildes and rewritingU asu in Eq. ~34! we have

ds252dudv12 f ~u!dxidxi12Ai
1~u,x!dudxi

1K̂~u,x!du2. ~35!

In subsequent discussions we drop the primes on the
trivial type IIB background fields generated by the SL(2,R)
transformations from theK model backgrounds. It can b
seen from the definitions thatK̂ in Eq. ~35! is also a qua-
dratic function ofxi ’s. This fact becomes important in prov
ing that these backgrounds are all-order solutions of the
IIB equations of motion.

As earlier, thev independence leads to a null Killing ve
tor lm. We reexpress the metric in Eq.~35! in terms oflm as

Gmn5Mmn1K̂lml n , ~36!

whereMmn is once again a 10310 matrix given as

Mmn5S 0 1 Ai
1

1 0 0

Ai
1 0 f ~u!I 8

D ~37!

and I 8 is a 838 unit matrix. The inverse metric may b
easily computed to obtain
non-

e

-
ype

-

e

Gmn5S 0 1 0

1 2K̂1
Ai

12

f
2
Ai

1

f

0 2
Ai

1

f

I 8
f
D . ~38!

Using these, it may be shown that the only nonzero comp
nents of the Christoffel connections are, once again,Guu

v ,
Guu
i , Gui

v , Gui
j , andG i j

v . This leads to the null Killing vector
being covariantly constant, i.e.,Dml

n50 andDml n50.
We now proceed to compute the Riemann curvature te

sor for the metric~35! of the type IIB background generated
by us. Employing the closed form expression for the ne
metric, we once again get the the Riemann tensor to be of
form in Eq. ~8! with Rlmnk

(M ) now being the Riemann tensor
for the metricMmn in Eq. ~37!. Once again the only nonzero
independent component of the Riemann tensor isRuiu j when
we specialize to the background described by Eqs.~18!. Ex-
plicitly, the expression for the Riemann tensor is

Ruiu j5
1
2 ] i] jK2 1

2 ]u@] iAj
11] jAi

1#1 1
2 ]u

2fd i j

2 1
4 f

21~u!@2]ufd ik1~] iAk
12]kAi

1!#

3@2]ufd jk1~] jAk
12]kAj

1!#. ~39!

The other background fields are the two antisymmetric te
sor field strengths from the NS-NS and R-R sectors, resp
tively, which are given byHlmn

(k) and (k51,2) in Eqs.~31!
and ~32!. Having obtained the type IIB background with
nontrivial R-R fields, described by Eqs.~29!–~32! and ~35!,
we now proceed to show that these are exact to all orders~in
a8). We once again adopt the geometrical approach@17,19#
outlined in Sec. II for this purpose. The background fie
equations for the type IIB superstring are, to the lowest o
der, those ofN52, D510 supergravity in@21#. They are all
tensor equations of a definite rank. For the type IIB bac
ground under consideration, we have second rank ten
equations for the string form metricGmn and the antisym-
metric tensor fieldBmn . We also have scalar equations fo
the NS-NS and R-R scalarsf andx and a fifth rank com-
pletely antisymmetric tensor equation for the five-form fiel
strengthFmnrsk . The last equation expresses the self-duali
condition on the five-form field strength.

To study the all order contributions to the backgroun
field equations of motion, the possible corrections to all the
tensor equations must be considered. Notice that the con
butions from the background gauge fieldsBmn andDmnrs

appear in the higher order terms as the corresponding gau
invariant field strengths. As a consequence, we need to c
sider the higher order terms in these equations obtained fr
the quantitiesRmnrs , Hmnr

(k) , Dmf, Dmx, Fmnrsk , and their
covariant derivatives. In our case, we chooseF to be zero,
which is obtained by setting the four-form fieldDmnrs50 in
its definition, together with the form ofH (k) in Eqs.~31! and
~32!.

As in the bosonic case, possible nonzero independent t
sor components for the background defined by Eqs.~29!–
~32! and~35! areDuf, Dux, Ruiu j , and its covariant deriva-
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3980 54ALOK KUMAR AND GAUTAM SENGUPTA
tives with respect toDu and Dj , Hui j , and its covariant
derivatives with respect toDu , and the corresponding cova
riant components. Notice that the index structures of the
propriate nonzero tensor components are exactly as earlie
the trivial case. The only additions for the field content in th
nontrivial type IIB case are the nonzero R-R fieldsx(u) and
H (2) as the five-form field strength is zero. Hence simil
arguments show that all such higher order contributions,
earlier, are vanishing. For the two additional equations al
namely, scalar and the five-form R-R fields, similar ge
metrical arguments show that the higher order constributio
vanish. Hence the background field equations, which to
lowest order are those ofN52, D510 supergravity, are ex-
act, to all orders ina8, also in presence of R-R fields in ten
dimensions.

IV. CONCLUSIONS

To conclude, we have obtained a class of type IIB sup
string backgrounds involving R-R fields from the boson
K models embedded in a type IIB background with vanis
ing R-R fields. The complications involving thes model
couplings of the R-R fields have been obviated by adoptin
purely geometrical approach to compute the higher ord
terms in the equations of motion. This approach, which
based on the analysis of the tensorial index structure
higher order contributions, seems to be applicable to a wi
class of backgrounds than those obtained from theK models.
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We mention in passing that our analysis has been restrict
to K model backgrounds with vanishing five-form self-dual
field strength. Furthermore, we have focused on strictl
u-dependent antisymmetric tensor field strengths and dilato
It would be an interesting exercise to obtain type IIB back
grounds from more generalK models and show that they are
also exact following the geometrical approach which ha
been elucidated in this article. In particular, forK models in
the bosonic case,A50 or Ā50 conditions provide another
class of all-order solutions. It will be interesting to show tha
they are exact for type IIB as well.

Our results also indicate that type IIB strings in a constan
magnetic field background may be formulated as an exa
conformal field theory. It will be interesting to study the
phase transition, discussed in@20#, for this case. The status of
unbroken space-time supersymmetries, like theK models
with trivial embeddings in superstrings, is also of interest to
investigate in the presence of R-R fields. These will hav
implications for the present backgrounds to be solutions i
the presence of local string-loop corrections as well.
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