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K models and type 1IB superstring backgrounds
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A family of type IIB superstring backgrounds involving Ramond-Ramond fields are obtained in ten dimen-
sions starting from & model through a generalization of our recent results. The unbroken globalRJL(2,
symmetry of the type IIB equations of motion are implemented in this context as a solution generating
transformation. A geometrical analysis, based on the tensor structure of the higherortlams in the
equations of motion, is employed to show that these backgrounds are [SG&56-282(96)03716-3

PACS numbds): 11.25.Mj, 11.30.Ly

I. INTRODUCTION class of backgrounds with a covariantly constant null Killing
vector which are known ak models[11,13. The simplest
Recent advances in string theory have provided a glimpsexample in this class is the plane wave string backgrounds.
of their underlying nonperturbative structure. There nowFor the bosonic and heterotic versions of these, it has been
seems to be a strong indication that the several distinct stringhown that they are exath «') through a purely geometri-
theories all arise from a yet unknown fundamental theory incal analysis based on the existence of the covariantly con-
11 dimensions, which has been called Meheory[1]. The  stant null Killing vector[12,16—18§.
central guiding principle behind this unification has been the Previously, in collaboration with Kaf19], we have
duality symmetrie$2-5]. They includeT duality [2] which  shown that starting from such a plane wave background em-
is perturbative in the genus expansion and the conjecturebledded trivially in a type IIB string theorfi.e., with vanish-
nonperturbativeS duality [3-5]. The latter relates electrical ing R-R fields, it is possible to generate a nontrivial type 11B
charged perturbative states to magnetic charged solitons atédckground with R-R fields in ten dimensions. We further
weak to strong coupling regimes. As an example, we havshowed, through a geometrical analysis, that these type 11B
the type IIB string theory in ten dimension§,7]. These backgrounds were also exact to all ordersin This method
possess a global SLER) symmetry of the classical effective avoids the complications arising from the world sheet cou-
field theory which is broken to the discrete SI{?, plings of the R-R fields. In this article, we extend our analy-
S-duality group in the quantum theory which relates Neveu-sis to a more general classi§fmodels with chiral couplings
Schwarz—Neveu-SchwafhNS-NS to the Ramond-Ramond on the world shedtl5]. On compactification to lower dimen-
(R-R) sector. sions, these couplings lead to background gauge fields. The
In the o model approach to string theof§], one consid- bosonic and the heterotic versions of thésemodels de-
ers the propagation of a string in the background of its massscribe strings propagating in a uniform magnetic field back-
less excitations. The evolution is described by a two-ground[20] as one of the special cases. These can be formu-
dimensionalo model in which the background fields appear lated as exact confornal field theories and illustrate a phase
as couplings. Conformal invariance then requires the corretransition at some critical value of the magnetic field where
sponding perturbativg functions for these couplings to van- an infinite number of states becomes tachyonic. In lower
ish, leading to the background field equations of motion. Thalimensions they also describe charged black holes through
higher order term§8] in these equations provide the stringy the Kaluza-Klein mechanisrfil5]. We consider such &
corrections to the tree level theory and may be computednodel in ten dimensions trivially embeddéde., without
perturbatively. However, for the type 1IB string background, R-R field9 in a type [IB background. Using the global
this remains a nontrivial exercise owing to the presence o8L(2R) symmetry of the equations of motion, we generate a
R-R fields which arise from the solitonic sec{®]. These type IIB background with a nontrivial R-R field background.
couple to the spin fields on the world sheet and make th&ubsequently, assuming a specific structure for the field
corresponding perturbation theory intractable at higher orstrengths, we show that the backgrounds obtained are exact
ders[9,10]. There exists, however, a large class of string(in «’) through a geometrical analysis. In this context, unlike
backgrounds for the bosonic and heterotic cases, where tlwur earlier work, we show that the geometrical consider-
higher order contributions are identically zefd1-15. ations based on the covariantly constant null Killing vector
Hence the tree level equations of motion are exact to alnay be retranslated in the language of the index structure of
orders in thec model couplinga’. Among these are the the corresponding higher order tensfitg,19. It is possible
that the present approach is applicable to a wider class of
models. This article is divided into four sections. In Sec. Il
" Electronic address: kumar@iopb.ernet.in we present a brief review of the backgrounds obtained from
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K models for the bosonic case and show that they are exadKilling vector is covariantly constant. We therefore have
Section Il deals withK models embedded in a type IIB D,I”"=0 andD,I,=0. The curvature tensor for the back-
theory and their SL(R) transformations. In this section we grounds(7) may be obtained as

also explicitly prove that these backgrounds are exact in the ™)

presence of R-R fields. We present the conclusions in Sec. Ry wwe= Ry T 200,91, Kl g (8

V. . .
Notice that the only nonzero independent components of

Il. STRING BACKGROUNDS FROM K MODELS Riuvx 3r€Ryiuj aNdRyiji - These are
We begin with a description of the string background Ruiuj=32di9;K— 33, [3iA + A 1= 1 G™(3;An— dmA")
fields obtained from th& models. The Lagrangian for the

+ +
bosonicK model is given a$15] X(9iAy — InA) €)
L£=23udv +K(u,x)audu+ 2A;(U,X) Jugx’ and
- J— X X ) 1 + +
+2A(u,X)9udx + (Gj; + Bj;) (u,x) ax' ax! Ruijk=20iLAA] — A (10

+R@p(u,x). (1) We get the expressions for the corresponding components of

the Ricci tensor by appropriate contractions of the Riemann

We specialize to the case whef@;=4;, B;=0, and tensor as
¢= ¢(u). For this case we have the metric

Ruy= 323 9K — 3,0 A = 1 (Fjm+F ) (FIM+FIM),

ds?=2dudv +2A;" (u,x)dudX +K(u,x)du?+dxdx, (12)
2 _
— _1m
and the antisymmetric tensor field Ruk= = 2" (Fim Fiem), (12
0 1 A where
| -1 o o Fij=(0iA;—=djA),  Fij=(diA;—diA) (13
= B : €
-A 0 0 are thefield strengthsassociated with the couplings and

A. Next we consider the antisymmetric tensor field strength
The greek indices,v) run over (0,...,9), §,v) are the which is given in the standard form as
light-cone coordinates, and the latin indices,j)
=(2,...,9) run over the transverse space coordindtés/e Haur= (B, +3,B\+3d,By ). (14

also have ) _
The only nonzero independent componentigf,, is

A=AEA @ Huijz_(Fij_F_ij)- (15

The v independence of the metric leads to a Killing vector ) i ,
|“=(0,1,0,...,0). It is possible to express the metric in a We now proceed to obtain the background field equations

compact form in terms of“ which eases subsequent com- at the tree level. As mentioned earlier, these are provided by
putations. Explicitly, we have the one-loopg functions of the couplings,,,, B,,, and
' ¢. Using standard expressions for these equatj@hswe

G, =M, +KII,, (5  obtain three independent equations of mofib]:
whereM ,, is a 10< 10 symmetric matrix, JF;;=0, ﬂjF_ijZOy (16)
0 1 A and
M,,= A1+ g |0 , 6) — 100K+ ad'A +FFl+202¢=0.  (17)
i 8

After obtaining the background field equations of the general
K models, we now specialize to the case where the field

andlg is a 8<8 unit matrix. The inverse metric is obtained strengthsF andF_ij are constant in the transverse directions

as but arbitrary functions ofi. A subclass of these, namely, the
0 1 0 ones which are constant inas well, describe the propaga-
o . tion of closed strings in uniform magnetic field backgrounds
grr=| 1 —K+AT A7 | (7)  [20]. They have been shown to be represented by exact con-
0 A lg formal field theory models. The heterotic generalizations of

these models have also been found. The chiral couplings in

: : this case are
The only nonzero connections aFg,, I't,, I'ti, '}, and

Fi”j . Using these connections, it is easy to show that the null Ai=— %Fij(u)xj, A_i: — %F—ij(u)xj. (18
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As a consequence, we have, for the curvature tensogre exactto all ordersia’. In the next section we show how

Ruijk=0 and these backgrounds may be considered to be trivially embed-
— _ ded in a type 1IB string background and generate nontrivial
Ryiuj=19i9;K— 7 G™(Fjm+ Fjm)(Fin+ Fin) type IIB backgrounds involving R-R fields.
— 3 du(Fij(u) + Fjj(w). (19 ll. TYPE 1IB BACKGROUNDS

. . . . . AND RAMOND-RAMOND FIELDS
In this case, the first two background field equations in Egs.

(16) are trivially satisfied. For the metric equation we have, In this section we now proceed to first show how the
backgrounds defined in Eq&) and(3) and ¢ can be em-

- %(7‘(?iK(u,x)+Fija(u)JrZaﬁd)(U) bedded in a type 1IB string theory with vanishing R-R fields.
. — We subsequently present the action of the global SR)2,
— 2 dy(Fji(u)+Fji(u))=0. (200 transformations on a type 1IB background. Utilizing these

] ) . transfromations, we then generate a nontrivial type IIB back-
ThereforeK must be a quadratic function of tkxéin order to ground involving R-R fields. The field content of a type I1B

satisfy Eq.(20). _ _ string background consists of the following: the string frame
We now proceed to show that this background is exact tQ i~ G two three-form field strength#1® where

all orders ina’. For this, we first note that Eq20) is a K=(1.2) g scalargy and ¢ from the NS-N%LVand R-R

s%clonhq rhank tznsor equgtion.kSO we must_gon_sider g" po 'ecto,rs ,respectively and a five-form field strength,, .,

sible higher order second rank tensor contributions obtaine ' ¥ . o

from the background field configuration. The only possible he two scalarsy and ¢ may be combined to form a com

= e ¢ i -
covariant tensor components available for this purpose arglri);nsdceggtr;\me)éj}:gm :[hi(o n\ql\;edeT?éfi%Oerc]jSIge;(Lge ;:;k
D,¢, Ryiui,» and its covariant derivatives with respect toJ . ¥ '
] . ) L ) Egs.(2) and(3) to be a special case of a type 1IB background
D, andDy, Hy;;, and its covariant derivative with respect to hich hasH® =0, y=0, andF<=0. As shown in[6.7]
D,. One also has the corresponding contravariant compo\t'-v ! B t.WV_. DEIO h 5_| b | SL wh 't’
nents which are consistent with the form of the meté ype strings inb = ave a gioba (B) symmetry

We first examine the terms involving a single Riemann?t the level of the equations of moti¢#,21]. This acts on
; AR s : the type IIB background fields as
tensor with the structurB*D "R, ,,.. . An explicit evaluation

provides the identities G =|cA+d|G (23)
mv mv
DuDuRuiuj:DlDJRuiju:DuDlRujiu ar+b
=D'D'Ry,,;=0, etc., (21) N=oTFa (24)
which implies and
D*D'R =0. 22 ,
Nav (22 HM=AHE,, (25
Itis apparent now that to construct second rank tensors wn\r)vhere A is an SL(2R) matrix such that
Ryiuj and its derivatives, it is required to contract at least two
indices of R with anotherR or its appropriate derivatives. d ¢
Potentially nonzero contributions may come from the con- A= (26)
tractions of covariant indicesu(i) and contravariant indices b al

(v,i). However, this requires a covariant indexor contra-

variant indexu, which are unavailable and contractions onwith ad—bc=1.

derivatives have been shown to be zero. Hence we conclude Implementing the transformations outlined in E¢&3)—
that it is impossible to construct nonzero second rank tensor®5s), we generate a nontrivial type 11B background with R-R
from contractions oR, ,,. and its derivative$17,19. Thus fields starting from the trivial type 1B configuration obtained
all such higher order contributions are vanishing. Similarlyfrom the K models[cf. Egs.(2) and(3)] and ¢(u). Explic-
notice that terms of the for, $R**** require contraction itly, we have

of the covariant indexs and hence it is also zero.

We proceed to consider higher order contributions from G, (ux)=f(u)G,,(u,x), (27)
the field strengtiH and its derivatives. Notice that the only __—
nonzero component df is H,;; and the only nonzero cova- Wheref(u)=[d"+ce
riant derivative isD H;; . Itis obvious that all terms involv-
ing only derivatives oH require contraction of the covariant e
index u which, as we showed earlier, was not possible. ice”?+d’
Hence these terms are all identically zero. Higher order con- ,
tributions of the schematic formDR)H and @ ¢)H may be ~ With \'=x’+ie” %" and\=ie”?. We then have the final
proved to be identically zero from similar considerations. Itexpressions for the type IIB scalars as
is also possible to show that all scalars constructed from 1
these covariant objects are also vanishing. Hence we con- P — —2¢
clude that the string background obtained from khenodels X(W= f(u)Z[db+ ace 7], (29

—2¢(u)]1/2 and

iae"?+b
(29)



@' (u)=d(u)+2Inf(u). (30

For the three-form field strengti™®, k=1,2, we have

Hi=dH, (3D
and
HYo=bH{, - (32
The new metric is now given as
ds?=2f(u)dudv + f(u)dxdx+2f(u)A; dudx
+f(u)K(u,x)du?, (33

where K(u,x)=f(u)F(u,x). A rescaling f(u)du=dU of
the metric leads to the general form

ds?=—2dUdv +f(U)dxdx +2A; (U,x)dUdx

K(U,x)

2
T0) U< (39

Dropping the tildes and rewriting asu in Eq. (34) we have

ds?=2dudv + 2f(u)dx'dx;+ 2A;" (u,x)dudx

+K(u,x)du?. (35
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o 1 0
1 _k+ |_+2 _ £
Ghr= ) f (39)
o A b
f f

Using these, it may be shown that the only nonzero compo-
nents of the Christoffel connections are, once aghif,,

T, Ty, T, and[l'j; . This leads to the null Killing vector
being covariantly constant, i.eb,1”"=0 andD,l,=0.

We now proceed to compute the Riemann curvature ten-
sor for the metriq35) of the type IIB background generated
by us. Employing the closed form expression for the new
metric, we once again get the the Riemann tensor to be of the
form in Eq. (8) with R, now being the Riemann tensor
for the metricM ,,, in Eq. (37). Once again the only nonzero
independent component of the Riemann tensét,jg; when
we specialize to the background described by Et®). Ex-
plicitly, the expression for the Riemann tensor is

Ruiuj:

i 2
30,0;K= 30 [ A + AT+ 3 955 5

— TN W[ 3, S+ (GAL — AA)]

X[ = dyf S+ (AL — A ] (39

The other background fields are the two antisymmetric ten-
sor field strengths from the NS-NS and R-R sectors, respec-
tively, which are given byH{"), and k=1,2) in Egs.(31)

and (32). Having obtained the type IIB background with
nontrivial R-R fields, described by Eq&9)—(32) and (35),

we now proceed to show that these are exact to all or@ers
a'). We once again adopt the geometrical apprdddhl19
outlined in Sec. Il for this purpose. The background field
equations for the type IIB superstring are, to the lowest or-

In subsequent discussions we drop the primes on the nogter, those oN=2, D =10 supergravity if21]. They are all

trivial type 1IB background fields generated by the SIKR,
transformations from th& model backgrounds. It can be
seen from the definitions thag in Eqg. (35) is also a qua-
dratic function ofx"’s. This fact becomes important in prov-

tensor equations of a definite rank. For the type 1IB back-
ground under consideration, we have second rank tensor
equations for the string form metriG,, and the antisym-
metric tensor field8,,. We also have scalar equations for

ing that these backgrounds are all-order solutions of the typthe NS-NS and R-R scalaks and y and a fifth rank com-

[IB equations of motion.
As earlier, thev independence leads to a null Killing vec-
tor 1#. We reexpress the metric in E5) in terms ofl* as

G =M, +KI,l,, (36
whereM ,, is once again a 2010 matrix given as
0o 1 A
1 0 0
e (37
A" 0 f(u)lg

and lg is a 8xX8 unit matrix. The inverse metric may be
easily computed to obtain

pletely antisymmetric tensor equation for the five-form field
strengthF .. The last equation expresses the self-duality
condition on the five-form field strength.

To study the all order contributions to the background
field equations of motion, the possible corrections to all these
tensor equations must be considered. Notice that the contri-
butions from the background gauge fielg, andD ,,,,
appear in the higher order terms as the corresponding gauge-
invariant field strengths. As a consequence, we need to con-
sider the higher order terms in these equations obtained from
the quantitieR, ;. H'),, D&, DX, F .0, and their
covariant derivatives. In our case, we chods¢o be zero,
which is obtained by setting the four-form field,,,,,=0 in
its definition, together with the form ¢ in Egs.(31) and
(32).

As in the bosonic case, possible nonzero independent ten-
sor components for the background defined by E89)—

(32) and(35) areD ¢, Dx, Ryiuj, and its covariant deriva-
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tives with respect tdD, and D;, H,;;, and its covariant We mention in passing that our analysis has been restricted
derivatives with respect tB,,, and the corresponding cova- to K model backgrounds with vanishing five-form self-dual
riant components. Notice that the index structures of the apfield strength. Furthermore, we have focused on strictly
propriate nonzero tensor components are exactly as earlier {pdependent antisymmetric tensor field strengths and dilaton.
the trivial case. The only additions for the field content in thejt would be an interesting exercise to obtain type 1B back-
nontrivial type 1IB case are the nonzero R-R fiejda1) and  grounds from more generl models and show that they are
H® as the five-form field strength is zero. Hence similarajso exact following the geometrical approach which has

arguments show that all such higher order contributions, ageen elucidated in this article. In particular, férmodels in

earlier, are vanishing. For the two additional equations alsoy ., v nic cased=0 or A=0 conditions provide another
namely, scalar and the five-form R-R fields, similar geo-

. . . 27" class of all-order solutions. It will be interesting to show that
metrical arguments show that the higher order constnbutmnaﬁ(_}y are exact for type IIB as well

vanish. Hence the background field equations, which to the Our results also indicate that type IIB strings in a constant

e eV, e o magntc ek bacyound may be formsted a2 an exac
dim’ensions ' conformal f|_e;ld th_eory. It will be interesting to study the
' phase transition, discussed 0|, for this case. The status of
unbroken space-time supersymmetries, like Kanodels
V. CONCLUSIONS with trivial embeddings in superstrings, is also of interest to
investigate in the presence of R-R fields. These will have
To conclude, we have obtained a class of type IIB superimplications for the present backgrounds to be solutions in

string backgrounds involving R-R fields from the bosonicthe presence of local string-loop corrections as well.
K models embedded in a type IIB background with vanish-

ing R-R fields. The complications involving the model
couplings of the R-R fields have been obviated by adopting a
purely geometrical approach to compute the higher order
terms in the equations of motion. This approach, which is G.S. would like to thank Institute of Physics, Bhu-
based on the analysis of the tensorial index structure dbaneswar where this work was partially completed and the
higher order contributions, seems to be applicable to a widedigh Energy Theory Group there for the warm hospitality
class of backgrounds than those obtained fromktheodels.  and the stimulating research environment.
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