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Innermost stable circular orbit of inspiraling neutron-star binaries: Tidal effects,
post-Newtonian effects, and the neutron-star equation of state
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Theoretical Astrophysics, 130-33, California Institute of Technology, Pasadena, California 91125
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We study how the neutron-star equation of state affects the onset of the dynamical instability in the eq
tions of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects a
Newtonian tidal effects causes the stars to begin their final, rapid, and dynamically unstable plunge to m
when the stars are still well separated and the orbital frequency is'500 cycles/sec~i.e., the gravitational wave
frequency is approximately 1000 Hz!. The orbital frequency at which the dynamical instability occurs~i.e., the
orbital frequency at the innermost stable circular orbit! shows modest sensitivity to the neutron-star equation of
state~particularly the mass-radius ratioM /R0 of the stars!. This suggests that information about the equation
of state of nuclear matter is encoded in the gravitational waves emitted just prior to the merg
@S0556-2821~96!05118-1#
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I. INTRODUCTION

Binary neutron-star systems which are spiraling tow
their final coalescence under the dissipative influence
gravitational radiation reaction forces are the primary targ
for detection of gravitational waves by interferometric gra
tational wave detectors such as the Laser Interferome
Gravitational Wave Observatory~LIGO! and VIRGO@1,2#.
Extracting the gravitational waves from the detector no
and making use of the information encoded in the sign
will require a thorough knowledge of the expected wav
forms produced by these binaries@2,3#. In this paper we ex-
plore the effect of the neutron-star equation of state on
orbital evolution and gravitational-wave emission of binar
just prior to merging. Specifically, we show that a combin
tion of post-Newtonian~relativistic! effects and Newtonian
tidal effects ~which depend on the equation of state! con-
spires to induce a dynamical instability in the orbital motio
which causes the plunge to final coalescence to begin so
what sooner, and to proceed somewhat faster, than it w
simply under the influence of the dissipative radiation re
tion force. Thus the motion of the bodies during the la
stages of binary inspiral depends on the structure of the n
tron stars. Consequently, the gravitational waveform emi
during this short portion of the final coalescence will be i
printed with information about the nuclear equation of sta

During the final;10 min or the last;8000 orbits of a
neutron-star binary inspiral, the orbital frequency increa
from about 5 Hz on up to a cutoff of a few hundreds to 10
Hz ~roughly corresponding to the orbital frequency when
final plunge begins!. Thus the gravitational-wave frequenc
~twice the orbital frequency for the dominant quadrupole
diation! chirps through the LIGO detector bandwidth durin
this period@1#. The evolution of the binary in these last fe
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minutes of the inspiral is very sensitive to a number of rel
tivistic effects, such as gravitational-wave tails and spin-orb
coupling ~dragging of inertial frames!. The gravitational
waveform emitted by the binary in this portion of the coa
lescence, the adiabatic inspiral, is currently being extensiv
studied@4–6#. During most of this inspiral phase the neutro
stars can be treated as simple point masses because th
fects associated with the finite stellar size turn out to b
small: ~i! The neutron star has too small a viscosity to allo
for angular momentum transfer from the orbit to the stell
spin via viscous tidal torque@7,8#; ~ii ! the effect of the spin-
induced quadrupole is negligible unless the neutron star h
rotation rate close to the breakup limit@7,10#; ~iii ! resonant
excitations of neutron star internal modes~which occur at
orbital frequencies less than 100 Hz! produce only a small
change in the orbital phase due to the weak coupling b
tween the modes and the tidal potential@11–13#; ~iv! the
correction to the equation of motion from the~static! tidal
interaction is of order (R0 /r )

5 ~whereR0 is the neutron-star
radius andr is the orbital separation@14#!, which is negli-
gible except whenr is smaller than a few stellar radii. Since
R0.5M for a typical neutron star of mass 1.4M( and radius
10 km, the tidal effect is essentially a~post! 5-Newtonian
correction@9#. The expression for the phase error induced b
the tidal effect is given in Ref.@10#. The fact that the evolu-
tion of the binary system as it sweeps through the low
frequency band of the detector is insensitive to finite-si
effects means that the measurement of the inspiral wavefo
will allow us to probe cleanly into the intricate structure o
general relativity and to test whether general relativity is th
correct theory of gravity@15,16#. Moreover, some of the pa-
rameters of the binary system, such as the masses of
stars, can be determined with reasonable accuracy@17,18#.
However, the waveform’s lack of dependence on the fini
size of the objects during most of the adiabatic inspiral al
implies that information about the internal structure of th
neutron star is only imprinted on the radiation emitted ju
prior to coalescence when the orbital radius is small.
3958 © 1996 The American Physical Society



a
v

t

e

t

s

i

y
of

s.
rs
od-
ing

-
hat
hat

n-
iv-

In
e
n
of

ec.

y-
al

ss
e
ry

n-
-

ex-
nd

the

on-
-

u-
n
y

m
s,
ons
ns
o-

st-

54 3959INNERMOST STABLE CIRCULAR ORBIT OF . . .
Indeed, at small orbital separations, tidal effects are e
pected to be very important. In a purelyNewtoniananalysis,
the interaction potential between starM 8 and the tide-
induced quadrupole ofM , Vtide;2M 82R0

5/r 6, increases with
decreasingr . The potential becomes so steep that a dynam
cal instability develops, accelerating the coalescence a
small orbital radius. This Newtonian instability has bee
fully explored using semianalytic models in Ref.@10# and
Ref. @19# ~hereafter referred to as LS!. It has also been ex-
amined numerically in Refs.@20,21#.

However, a purely Newtonian treatment of the binary
small separation is clearly not adequate, as general relati
tic effects will also be important in this regime, and gener
relativistic effects can also make the orbit unstable. For e
ample, a test particle in a circular orbit around a Schwarz
child black hole will experience an ‘‘innermost stable circu
lar orbit’’ at r isco56M ~or 5M in harmonic coordinates!.
This unstable behavior is caused by higher-order relativis
corrections included in the Schwarzschild geodesic equatio
of motion. For computing the orbital evolution of two neu
tron stars of comparable mass near coalescence, the
mass limit is obviously inadequate. In order to explore th
orbital instability for such systems, Kidder, Will, and Wise
man @22# ~KWW! developedhybrid equations of motion.
These equations augment the the Schwarzschild geod
equations of motion with the finite-mass terms of the~post!
5/2-Newtonian equations of motion. Including these finite
mass terms in the equation of motion moved the innermo
stable-circular-orbit radius farther out~in units of the total
mass!.1 In this paper, we augment the hybrid equations wi
contributions due to the tidal deformation of the stars. In
nutshell, the work presented here combines the Newton
tidal analysis of LS@19# with the relativistic point-mass
analysis of KWW@22# to yield a more complete picture of
the neutron-star coalescence prior to merging.

We note that, unlike a test particle around a Schwarz
child black hole, the very notion of ‘‘innermost stable circu
lar orbit’’ is poorly defined for objects of comparable mas
After all, in the relativistic regime the binary orbit will be
decaying rapidly due to radiation reaction; thus, the orbit
not circular, but rather a decaying spiral. In order to give
semiquantitative definition of ‘‘innermost stable circular or
bit’’ we use the artifice of ‘‘shutting off’’ all the dissipative
terms in the equation of motion and looking for the poin
where the solutions of the remaining nondissipative equ
tions become dynamically unstable. The use of hybrid equ
tions of motion augmented with the tidal terms allows us
map out the dependence of the critical radiusr isco, or the
corresponding orbital frequencyf isco, for a wide range of
allowed neutron star equations of state~parametrized by ra-
dius and effective polytropic index; see Fig. 1!. We believe
that clearing up such a dependence is important, and t
analysis provides a benchmark with which comparisons c
be made with future numerical results.Indeed, an important
point we wish to make in this paper is that neither relativist
(post-Newtonian) effects nor Newtonian tidal effects can

1See Wex and Scha¨fer @23# for a critique and an alternative con-
struction. Their post-Newtonian calculation suggests that the inn
most stable orbit may occur at an even greater separation.
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neglected near the instability limit, and the critical frequenc
can be much lower than the value obtained when only one
these effects are included.

The main results of our analysis are summarized in Fig
2 and 3. Figure 2 shows that the rate of radial infall for sta
near coalescence is substantially underestimated if one m
els the coalescence as a Newtonian circular orbit decay
solely under the influence of a radiation reaction~top dotted
curve!. In other words, the rate of coordinate infall is sub
stantially enhanced by the nondissipative terms. Somew
more relevant for observational purposes, Fig. 3 shows t
the number of orbits~or gravitational wave cycles! per loga-
rithmic frequency interval is substantially reduced by the u
stable collapse of the orbit. Both plots show modest sensit
ity to the equation of state.

The remainder of the paper is organized as follows.
Sec. II we present our equations of motion. In Sec. III w
examine the orbital stability using the nondissipative portio
of the equations of motion and thus identify the location
the ‘‘innermost stable circular orbit.’’ In Sec. IV we include
the dissipative terms that were omitted in the analysis of S
III and evolve the full equations of motion. In Sec. V we
briefly discuss the relevance of our results to numerical h
drodynamic calculations and to gravitational-wave sign
analysis.

II. EQUATIONS OF MOTION INCLUDING TIDAL
AND GENERAL RELATIVISTIC EFFECTS

Consider a binary containing two neutron stars of ma
M and M 8, each obeying a polytropic equation of stat
P5KrG. We use the compressible ellipsoid model for bina
stars developed in LS@19#. Basically, we model the tidally
deformed neutron star as an ellipsoid, with an internal de
sity profile similar to that of a spherical polytrope. The dy
namics of such a neutron star~so-called Riemann-S ellip-
soid! is characterized by the three principal axes (a1 ,a2 ,a3
for starM anda18 ,a28 ,a38 for starM 8), the angular velocity
(V andV8) of the ellipsoidal figure about a principal axis
~perpendicular to the orbital plane!, and the internal motion
of the fluid with uniform vorticity. The nonzero internal fluid
motion is necessary because binary neutron stars are not
pected to corotate with orbit due to rapid orbital decay a
small viscosity@7,8#. Although the Newtonian tidal interac-
tion between the neutron stars can be treated exactly in
linear regime using mode decomposition@11#, the ellipsoid
model has the advantage that it can be extended to the n
linear regime at small orbital radii, when the tidal deforma
tion of the star becomes significant.

The Newtonian dynamical equations for the binary ne
tron stars as derived in LS include the familiar Newtonia
(1/r 2) force law for point masses orbiting one another; the
further contain Newtonian terms involving finite-size~tidal!
effects. A post-Newtonian treatment of the tidal proble
would give the relativistic corrections to these term
namely, the standard point-mass, post-Newtonian correcti
to the equations of motion, as well as relativistic correctio
to the quadrupole moment and corrections due to higher m
ments the bodies.~See Appendix F of@24#.! To ensure that
our equations of motion at least agree with the known po

er-
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Newtonian, point-mass equations we augment these New
ian equations of motion with the hybrid equations of KWW
However, we use only the Newtonian equations to desc
the evolution of the neutron stars structure (ai andai8) and
the fluid motion ~the figure rotation rate and the intern
vorticity! within the stars. These are given by Eqs.~2.18!–
~2.22! of LS. In other words, we neglect the relativistic co
rections to the fluid motion, self-gravity, and tidal intera
tion. These corrections are secondary effects and should
modify theorbital dynamicsappreciably~e.g., the Newton-
ian tidal interaction between the two stars scales appro
mately asM2R0

5/r 6, and its relativistic correction is of orde
ton-
.

ribe

al

r-
c-
not

xi-
r

M /r smaller!. As noted before, the tidal interaction enters the
Newtonian potential as a correction ofO@(R0 /r )

5#
5O@(Mt /r )

5#, in effect, as a ~post! 5-Newtonian term.
Therefore, by not including relativistic corrections to these
tidal terms, we are merely omitting terms which are o
~post! 6-Newtonian order. In fact, the largest error comes
from neglecting the post-Newtonian correction~of order
M /R0) to the internal stellar structure~see Sec. III B for an
estimate of its effect onf isco). The relativistic corrections to
the orbital motion, however, are very important. Our equa
tions of orbital motion can be assembled from Eqs.~2.23!
and ~2.24! of LS and from Eqs.~1.2! and ~1.3! of KWW:
In Eqs.
r̈5r u̇22
Mt

r 2
~AH1BHṙ !2

3kn

10

Mt

r 4
@a1

2~3cos2a21!1a2
2~3sin2a21!2a3

2#2
3kn8

10

Mt

r 4
@a18

2~3cos2a821!

1a28
2~3sin2a821!2a38

2#2
Mt

r 2
~A5/21B5/2ṙ !2

32

5
r @V5~ I 112I 22!sin2a1V85~ I 118 2I 228 !sin2a8#, ~1!

ü52
2ṙ u̇

r
2
Mt

r 2
BHu̇2

3kn

10

Mt

r 5
~a1

22a2
2!sin2a2

3kn8

10

Mt

r 5
~a18

22a28
2!sin2a82

Mt

r 2
B5/2u̇

2
32

5
@V5~ I 112I 22!cos2a1V85~ I 118 2I 228 !cos2a8#, ~2!

whereMt5M1M 8 is the total mass,a (a8) is the misalignment angle between the tidal bulge ofM (M 8) and the line joining
the two masses, andkn ,kn8 are dimensionless structure constants depending on the mass concentration within the stars.
~1! and ~2! the last two lines contain the ‘‘dissipative’’ terms due to gravitational radiation reaction. The quantitiesAH ,
BH , A5/2, andB5/2, which include the ‘‘hybrid’’ corrections to the equation of motion, are given by

AH5
12Mt /r

~11Mt /r !3
2F 22Mt /r

12~Mt /r !2GMt

r
ṙ 21v22hS 2Mt

r
23v21

3

2
ṙ 2D1hF874 SMt

r D 21~324h!v41
15

8
~123h! ṙ 4

2
3

2
~324h!v2ṙ 22

1

2
~1324h!

Mt

r
v22~2512h!

Mt

r
ṙ 2G , ~3!

BH52F 422Mt /r

12~Mt /r !2G ṙ12h ṙ2
1

2
h ṙ F ~1514h!v22~4118h!

Mt

r
23~312h! ṙ 2G , ~4!

A5/252
8

5
h
Mt

r
ṙ S 18v21 2

3

Mt

r
225ṙ 2D , ~5!

B5/25
8

5
h
Mt

r S 6v222
Mt

r
215ṙ 2D , ~6!
-
r-

d

y a
where v25 ṙ 21r 2u̇2, h5m/Mt , and m5MM 8/Mt . Also
the multipoles moments can be expressed as

I i i5knMai
2/5, I i i8 5kn8M 8ai8

2/5. ~7!

Note that in Eqs.~1! and ~2!, we have also included th
leading-order radiation reaction forces due to tidal deform
tion.
e
a-

Admittedly, this is not a consistent post-Newtonian ex
pansion of the true equations of motion; however, it is co
rect in several important limiting cases:~i! In the limit that
ai→0 andai8→0 and the limith→0, we recover theexact
Schwarzschild equation of motion.~ii ! In the point-mass
limit ( ai→0 andai8→0) we recover the hybrid equations
given in KWW. KWW presented an argument that suggeste
that the higher-order,h-dependent,~post! 3-Newtonian, as
yet uncalculated, corrections to these equations have onl
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modest effect on the equations of motion. See Fig. 6 of R
@22#. However, until these terms are calculated it is uncle
just how large an effect they will have on the location of th
innermost stable orbit.~iii ! In the nonrelativistic limit we
recover the equations of motion given in LS. These equ
tions contain the dominant contributions to the equations
motion due to the finite sizes of the objects.

Note that although Eqs.~1! and~2! make reference to the
orbital radiusr , we are always aware that this is a gaug
dependent quantity and of little meaning for a distant o
server. Observationally, the more meaningful quantity is t
orbital the frequency as measured by distant observers,
we shall use frequency rather than the radius in present
most of our results.

III. INSTABILITY OF THE NONDISSIPATIVE
EQUATIONS OF MOTION

A. Method to determine the stability limit

We now form a set of nondissipative equations of motio
by simply discarding the gravitational radiation reactio
terms given in the last two lines of Eq.~1! and Eq.~2!. These
nondissipative dynamical equations admit equilibrium sol
tions, which are obtained by setting ṙ5 r̈5 ü
5V̇orb5a5a850 as well asȧi5ȧi850. For a givenr , the
evolution equations for the neutron-star structure reduce t
set of algebraic equations forai and ai8, while the orbital
equation~2! gives the orbital frequencyVorb. These equa-
tions are solved using a Newton-Raphson method, yieldi
an equilibrium binary model. Thus a sequence of bina
models parametrized byr can be constructed.

To determine the stability of the orbit of a binary mode
we simply use the equilibrium parameters as initial cond
tions for our nondissipative equations of motion. We add
small perturbation to the equilibrium model and let the sy
tem evolve. In this way we locate the critical point of th
dynamical equations, corresponding to the dynamical stab
ity limit of the equilibrium binary or the innermost stable
circular orbit: Forr.r isco, the binary is stable, and the sys
tem oscillates with small amplitude about the initial configu
ration; for r,r isco, the binary is unstable, and the perturba
tion grows, leading to the swift merger of the neutron sta
even in the absence of dissipation.

B. Results

For concreteness, we present results only for binary ne
tron stars with equal masses (M5M 8), both having zero
spin at large orbital separation, although our equations
adequate to treat the most general cases@19#.

The polytropic relationP5KrG provides a useful param-
etrization to the most general realistic nuclear equation
state~EOS!. Since the radiusR0 of the nonrotating neutron
star of massM is uniquely determined byK andG, we can
alternatively useR0 /M andG to characterize the EOS. For a
canonical neutron star with massM51.4M( , all EOS tabu-
lated in @25# give R0 /M in the range of 4–8, while modern
microscopic nuclear calculations typically giveR0 /M55
@26#. For a givenR0 /M , the polytropic indexG specifies the
mass concentration within the star. Except for extrem
neutron-star masses (M&0.5M( or M*1.8M(), typical
ef.
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values ofG lie in the range ofG52–3 @10#.
In Table I, we list the physical properties of the equili

rium binary neutron stars at the dynamical stability limit f
several values ofR0 /M and G53. In Fig. 1, the orbital
frequencyf isco is shown as a function ofR0 /M for G52 and
G53. Clearly, in the limit ofR0 /M→0, f isco approachs the
point mass resultf isco5697M1.4

21 Hz obtained in KWW.2 In
the nonrelativistic limit we recover the pure Newtonian
sult @10,19#

f isco5657M1.4
21~5M /R0!

3/2 ~Hz! ~G53!, ~8!

f isco5766M1.4
21~5M /R0!

3/2 ~Hz! ~G52!. ~9!

For typical neutron-star radius R0 /M55, the critical fre-
quency ranges from488 Hz (for G53) to 540 Hz (for
G52), while both the pure Newtonian (with tides) calcul
tion and the pure point-mass hybrid calculation give a res
~30–40!% larger. There are two physical causes for the
duction in f isco: ~i! The binary becomes unstable at larg
orbital separation due to the steepening of the interac
potential from both tidal and relativistic effects;~ii ! for a
given orbital radius~itself a gauge-dependent quantity!, the
post-Newtonian orbital frequency as measured by an
server at infinity is smaller than the Newtonian orbi
frequency.3 We conclude that to neglect either the tidal e
fects or the relativistic effects can lead to large error in
estimated critical frequency.

Except for the intrinsic uncertainties associated with
hybrid equations of motion@22,23#, the main uncertainty in
our determination of f isco comes from neglecting post
Newtonian corrections to~i! the stellar structure and~ii ! the
tidal potential. The first correctiondecreasesthe tide-
induced quadrupole; the fractional change is of or
2M /R0. The secondincreasesthe quadrupole by a fractio

2KWW @22# give a correct expression forr isco/Mt , but incor-
rectly give f isco5710 Hz due to a numerical error.
3In the case of equal masses, at first post-Newtonian o

Vorb5VKepler@12(11/8)(Mt /r )#. See Ref.@4#.

TABLE I. Physical quantities at the innermost stable orbit~dy-
namical stability limit! of neutron-star binary, withM5M 8,
G53, and zero spin at large orbital radii. HereR0 is the neutron
star radius,a1 ,a2 ,a3 are the axes of the ellipsoidal neutron s
(a1 along the binary axis,a3 perpendicular to the orbital plane!, and
M1.45M /(1.4M(). The case in the top row is the purely Newto
ian calculation using LS equations of motion. The last row is
point-mass calculation using the hybrid equations of motion
KWW.

R0 /M r /R0 r /Mt a2 /a1 a3 /a1 M1.4 forb ~Hz!

222 2.76 6.90(R0/5M ) 0.772 0.805 657(5M /R0)
3/2

8 2.87 11.5 0.830 0.850 279
6 2.97 8.91 0.857 0.871 399
5 3.10 7.74 0.880 0.891 488
4 3.39 6.78 0.915 0.921 590
0 — 6.03 — — 697
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3962 54DONG LAI AND ALAN G. WISEMAN
of orderM 8/r . We can estimate how muchf isco is modified
by these two corrections. In Newtonian theory,r isco is ap-
proximately determined by the conditionMM 8/r
;M 82R0

5/r 6. Including the relativistic corrections this con
dition becomes MM 8/r;M 82R0

5/r 6(12d), where
d5@O(M /R0)2O(M 8/r )#&20%. Thus the change inf isco
due to these two effects isD f isco/ f isco.0.3d&6%; i.e., the
critical frequency increases by a few percent@27#.

As emphasized in Sec. I, the critical radius~or critical
frequency!, at which the nondissipative equations beco
dynamically unstable, is meaningful only in the sense th
when r,r isco, the binary will coalesce on a dynamical~or-
bital! time scale even in the absence of dissipation. In
realistic situation, the dissipative radiation reaction forc
will also be rapidly driving the binary to coalescence. The
fore to determine the significance of the dynamical insta
ity we must compute the orbital evolution with the full equ
tions of motion, including the radiation reaction.

IV. ORBITAL EVOLUTION PRIOR TO MERGER

We now include the dissipative radiation reaction forc
in our analysis. In this case the plunge will be driven by bo
the dissipative and the nondissipative effects associated
the steepening potential~both the tidal potential and the rela
tivistic potential!. But which effect is dominant? In order t
numerically investigate this question, we choose a spec
system withM5M 851.4M( , R0 /M55, andG53. The
orbital evolution begins when the stars are well outside
innermost-stable-circular-orbit limit. We consider four d
ferent inspiral scenarios:~i! A purely dissipative inspiral: a
system of point masses subject only to a Newtonian (1r 2)
force and ~post! 5/2-Newtonian radiation reaction force. I

FIG. 1. The critical orbital frequency~at the innermost stable
orbit! as a function of the ratio of the neutron-star radiusR0 and
massM . The solid curves show the results including both relat
istic and tidal effects~the lower curve is forG53 while the upper
one is forG52), and the dashed curves are the Newtonian li
given by Eqs. ~8! and ~9!. The vertical line corresponds t
R0 /M59/4, the minimum value for any physical neutron star. T
insert is a closeup for the nominal range ofR0 /M54–8 as given by
all the available nuclear EOS. Two curves within the insert sho
bracket all the physical values off isco.
-
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this case the infall rate is given by v r5 ṙ
52(64/5)h(Mt /r )

3. @Specifically, we setAH51 and
BH5ai5ai85I kk5I kk8 50 in Eqs. ~1! and ~2!.# This is de-
picted by the dotted curve in Figs. 2 and 3.~ii ! A purely
relativistic plunge in which we neglect the tidal effects.@Spe-
cifically we setai5ai85I kk5I kk8 50 in Eqs. ~1! and ~2!.#
This relativistic case is depicted by the long-dashed curve
Figs. 2 and 3.~iii ! A tidally enhanced plunge: we include
only the Newtonian terms in Eqs.~1! and ~2! and the radia-
tion reaction force.@Specifically we setAH51 andBH50 in
Eqs. ~1! and ~2!.# This case is depicted by the short-dashed
curve in Figs. 2 and 3.~iv! Finally, we evolve the complete
dynamical equations including all terms in Eqs.~1! and ~2!;
this is depicted by the solid curve in Figs. 2 and 3. Eac
intergration is terminated when the surfaces of the sta

iv-

it

he

uld

FIG. 2. The radial infall coordinate velocity during binary coa-
lescence, withM5M 851.4M( , R0 /M55, G53, all calculated
using the 2.5 post-Newtonian radiation reaction. The solid line i
the result including relativistic and tidal effects, the short-dashe
line includes only tidal effects, and the long-dashed line include
only relativistic effects. The dotted line is the point-mass ‘‘Newton-
ian’’ result.

FIG. 3. The number of orbits the binary spends per logarithmi
frequency. The labels are the same as in Fig. 2.
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touch, i.e., atr.2a1 ~for the point-mass problem, the calcu
lation is terminated atr.2R0).

In Fig. 2 we clearly see that the nondissipative effec
tidal and relativistic, substantially increase the rate of infa
The radial velocity at binary contact is comparable to th
tangential velocity. We also note that the radial coordina
velocity is a gauge-dependent quantity; therefore, our o
intent in using it in Fig. 2 is to convey the general trend th
the rate of infall is enhanced by the dynamical instability.

Figure 3 shows the number of orbits the binary spends
logarithmic frequency. In the simplest point-mas
Newtonian-plus-radiation-reaction case@case~i! above#, the
result can be calculated analytically

dNorb/d lnf orb5~5/192p!m21Mt
22/3~2p f orb!

25/3

51.95105~M1.4f orb/Hz!
25/3, ~10!

which gives six cycles atfGW.2 f orb51000 Hz. In contrast,
the tidal and relativistic effects reduce this number to le
than 2.

Figure 4 shows the wave energy emitted around a giv
frequency,dEGW/d lnforb5(Vorb/V̇orb)ĖGW, whereĖGW is
calculated using the simple quadrupole radiation formu
The Newtonian plus radiation reaction result
dEGW/d lnforb51.6331023( f orb/Hz)

2/3M2/R0. We see that
the radiation power near contact becomes much smal
Note thatdEGW/d lnforb calculated in this way is not exactly
the energy power spectrum, which must be obtained from
Fourier transform of the waveform@28#; however, it does
provide a semiquantitative feature of the full analysis.
particular, the dip in thedEGW/d lnforb curve around 600 Hz
results from the dynamical instability of the orbit~see also
Refs. @21,29#, although the calculations presented there a
purely Newtonian!.

V. DISCUSSION

A number of authors have tried to define and locate t
innermost stable circular orbit for relativistic coalescing sy
tems of comparable masses@23,30–33# in order to character-
ize the final moments of a binary coalescence~see@34# for a

FIG. 4. The quadrupolar gravitational energy emitted near
given frequency. The labels are the same as in Fig. 2.
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discussion!. The results of the various analyses do not con
verge to an agreed answer. Obviously, the precise nature
the final coalescence of two neutron stars will only be dete
mined by a numerical simulation using full general
relativistic hydrodynamics. However, the present analys
does point to two interesting features to look for in a ful
numerical treatment:~i! To get even a qualitative picture of
the coalescence, it is necessary to begin the numerical e
lution when the stars are still well separated, i.e., before th
onset of the orbital dynamical instability. The instability, the
plunge, causes the coalescence to proceed much more sw
than a coalescence driven solely by a radiation reaction; th
the actual coalescence may differ qualitatively from on
computed with a simple radiation-reaction-driven inspira
The final coalescence may be more of a splat than the slo
winding together of the stars@35#. ~ii ! The instability results
from both the tidal effects and the relativistic corrections i
the equations of motion. KWW showed that there is no in
stability in thefirst post-Newtonian relativistic equations of
motion; the instability does not show up until at least secon
post-Newtonian order. Therefore, in order for numerica
simulations to produce the effects of the relativistic unstab
plunge, it will probably require the use of at least a second
order, post-Newtonian hydrodynamic code. KWW als
showed that the location of the dynamic instability does no
converge very rapidly as one increases the post-Newtoni
order of the approximation.~This fact led KWW to the in-
troduce the hybrid equations of motion.! Thus, to get even a
qualitatively accurate evolution of the binary near coales
cence, it may be necessary to use a full general-relativis
hydrodynamic treatment of the coalescence problem and b
gin the evolution when the stars are still well separated.

As we have shown, the dynamical instability in the equa
tion of motion will, in effect, cut off the chirping waveform.
The frequency of the cutoff is somewhat dependent on th
neutron-star equation of state. Only in this late stage of th
evolution does the equation of state leave a telltale sign
the emitted waveform. However, devising a strategy to d
this information from the detector output requires furthe
consideration. Most detection-measurement strategies
coalescing binaries involve integrating template waveform
against long stretches~8000 orbits! of raw output data, the
idea being that one can detect and measure a relatively-lo
amplitude signal by integrating for a long time. Looking for
the signature of this very-late-stage plunge is precisely th
opposite: We are looking at the waveform just before coa
lescence when the amplitude is fairly strong, but the plung
is of fairly short duration. So answering questions about th
plunge~such as, at what orbital frequency did it begin?! re-
quires measuring a relatively-large-amplitude, but shor
duration, effect. Clearly, analysis of such events will requir
a different detection strategy@28#.
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