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Innermost stable circular orbit of inspiraling neutron-star binaries: Tidal effects,
post-Newtonian effects, and the neutron-star equation of state
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We study how the neutron-star equation of state affects the onset of the dynamical instability in the equa-
tions of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects and
Newtonian tidal effects causes the stars to begin their final, rapid, and dynamically unstable plunge to merge
when the stars are still well separated and the orbital frequeneyB0 cycles/seé.e., the gravitational wave
frequency is approximately 1000 HZThe orbital frequency at which the dynamical instability ocduss, the
orbital frequency at the innermost stable circular grilitows modest sensitivity to the neutron-star equation of
state(particularly the mass-radius ratd/R, of the stars This suggests that information about the equation
of state of nuclear matter is encoded in the gravitational waves emitted just prior to the merger.
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[. INTRODUCTION minutes of the inspiral is very sensitive to a number of rela-
tivistic effects, such as gravitational-wave tails and spin-orbit
Binary neutron-star systems which are spiraling towardcoupling (dragging of inertial frames The gravitational
their final coalescence under the dissipative influence ofvaveform emitted by the binary in this portion of the coa-
gravitational radiation reaction forces are the primary targetéescence, the adiabatic inspiral, is currently being extensively
for detection of gravitational waves by interferometric gravi- studied4—6]. During most of this inspiral phase the neutron
tational wave detectors such as the Laser Interferometristars can be treated as simple point masses because the ef-
Gravitational Wave Observatoi).IGO) and VIRGO[1,2]. fects associated with the finite stellar size turn out to be
Extracting the gravitational waves from the detector noisesmall: (i) The neutron star has too small a viscosity to allow
and making use of the information encoded in the signaldor angular momentum transfer from the orbit to the stellar
will require a thorough knowledge of the expected wave-spin via viscous tidal torquE?,8]; (ii) the effect of the spin-
forms produced by these binarigg3]. In this paper we ex- induced quadrupole is negligible unless the neutron star has
plore the effect of the neutron-star equation of state on theotation rate close to the breakup liniit,10]; (iii) resonant
orbital evolution and gravitational-wave emission of binariesexcitations of neutron star internal mod@shich occur at
just prior to merging. Specifically, we show that a combina-orbital frequencies less than 100 Haroduce only a small
tion of post-Newtoniar(relativistic) effects and Newtonian change in the orbital phase due to the weak coupling be-
tidal effects(which depend on the equation of stat®n-  tween the modes and the tidal potentiall—13; (iv) the
spires to induce a dynamical instability in the orbital motion, correction to the equation of motion from tlistatio tidal
which causes the plunge to final coalescence to begin som@teraction is of orderR,/r)° (whereR, is the neutron-star
what sooner, and to proceed somewhat faster, than it woulchdius andr is the orbital separatiofil4]), which is negli-
simply under the influence of the dissipative radiation reacgible except whem is smaller than a few stellar radii. Since
tion force. Thus the motion of the bodies during the lateR,~5M for a typical neutron star of mass M4, and radius
stages of binary inspiral depends on the structure of the net0 km, the tidal effect is essentially @os)>-Newtonian
tron stars. Consequently, the gravitational waveform emitte@orrection[9]. The expression for the phase error induced by
during this short portion of the final coalescence will be im-the tidal effect is given in Ref.10]. The fact that the evolu-
printed with information about the nuclear equation of statetion of the binary system as it sweeps through the low-
During the final~10 min or the last~8000 orbits of a frequency band of the detector is insensitive to finite-size
neutron-star binary inspiral, the orbital frequency increasegffects means that the measurement of the inspiral waveform
from about 5 Hz on up to a cutoff of a few hundreds to 1000will allow us to probe cleanly into the intricate structure of
Hz (roughly corresponding to the orbital frequency when thegeneral relativity and to test whether general relativity is the
final plunge begins Thus the gravitational-wave frequency correct theory of gravity15,16. Moreover, some of the pa-
(twice the orbital frequency for the dominant quadrupole ratameters of the binary system, such as the masses of the
diation) chirpsthrough the LIGO detector bandwidth during stars, can be determined with reasonable accufaéyl§.
this period[1]. The evolution of the binary in these last few However, the waveform’s lack of dependence on the finite
size of the objects during most of the adiabatic inspiral also
implies that information about the internal structure of the
*Electronic address: dong@tapir.caltech.edu neutron star is only imprinted on the radiation emitted just
TElectronic address: agw@tapir.caltech.edu prior to coalescence when the orbital radius is small.

0556-2821/96/54)/39587)/$10.00 54 3958 © 1996 The American Physical Society



54 INNERMOST STABLE CIRCULAR ORBIT @ ... 3959

Indeed, at small orbital separations, tidal effects are exneglected near the instability limit, and the critical frequency
pected to be very important. In a purdllewtoniananalysis, can be much lower than the value obtained when only one of
the interaction potential between stdt’ and the tide- these effects are included.
induced quadrupole d¥l, Vg~ —M'2R3/r, increases with The main results of our analysis are summarized in Figs.
decreasing. The potential becomes so steep that a dynami2 and 3. Figure 2 shows that the rate of radial infall for stars
cal instability develops, accelerating the coalescence at Bear coalescence is substantially underestimated if one mod-
small orbital radius. This Newtonian instability has beenels the coalescence as a Newtonian circular orbit decaying
fully explored using semianalytic models in R¢1.0] and  solely under the influence of a radiation reactitop dotted
Ref. [19] (hereafter referred to as )L.Slt has also been ex- curve. In other words, the rate of coordinate infall is sub-
amined numerically in Ref§20,21. stantially enhanced by the nondissipative terms. Somewhat

However, a purely Newtonian treatment of the binary atmore relevant for observational purposes, Fig. 3 shows that
small separation is clearly not adequate, as general relativishe number of orbitgor gravitational wave cycléger loga-
tic effects will also be important in this regime, and generalrithmic frequency interval is substantially reduced by the un-
relativistic effects can also make the orbit unstable. For exstable collapse of the orbit. Both plots show modest sensitiv-
ample, a test particle in a circular orbit around a Schwarzsity to the equation of state.
child black hole will experience an “innermost stable circu-  The remainder of the paper is organized as follows. In
lar orbit” at ri,,=6M (or 5M in harmonic coordinat¢s  Sec. Il we present our equations of motion. In Sec. Ill we
This unstable behavior is caused by higher-order relativisti@xamine the orbital stability using the nondissipative portion
corrections included in the Schwarzschild geodesic equationsf the equations of motion and thus identify the location of
of motion. For computing the orbital evolution of two neu- the “innermost stable circular orbit.” In Sec. IV we include
tron stars of comparable mass near coalescence, the tegte dissipative terms that were omitted in the analysis of Sec.
mass limit is obviously inadequate. In order to explore theill and evolve the full equations of motion. In Sec. V we
orbital instability for such systems, Kidder, Will, and Wise- briefly discuss the relevance of our results to numerical hy-
man [22] (KWW) developedhybrid equations of motion. drodynamic calculations and to gravitational-wave signal
These equations augment the the Schwarzschild geodesigalysis.
equations of motion with the finite-mass terms of tpes)
52.Newtonian equations of motion. Including these finite-
mass terms in the equation of motion moved the innermost- |- EQUATIONS OF MOTION INCLUDING TIDAL
stable-circular-orbit radius farther odin units of the total AND GENERAL RELATIVISTIC EFFECTS
mas3.! In this paper, we augment the hybrid equations with
contributions due to the tidal deformation of the stars. In a Consider a binary containing two neutron stars of mass
nutshell, the work presented here combines the NewtonialWl and M’, each obeying a polytropic equation of state
tidal analysis of LS[19] with the relativistic point-mass P=Kp'. We use the compressible ellipsoid model for binary
analysis of KWW/[22] to yield a more complete picture of stars developed in LEL9]. Basically, we model the tidally
the neutron-star coalescence prior to merging. deformed neutron star as an ellipsoid, with an internal den-

We note that, unlike a test particle around a Schwarzssity profile similar to that of a spherical polytrope. The dy-
child black hole, the very notion of “innermost stable circu- namics of such a neutron stéso-called Riemanis ellip-
lar orbit” is poorly defined for objects of comparable mass.soid) is characterized by the three principal axes,@,,as
After all, in the relativistic regime the binary orbit will be for starM anda;,a;,a; for starM’), the angular velocity
decaying rapidly due to radiation reaction; thus, the orbit iS(Q) andQ’) of the ellipsoidal figure about a principal axis
not circular, but rather a decaying spiral. In order to give a(perpendicular to the orbital planeand the internal motion
semiquantitative definition of “innermost stable circular or- of the fluid with uniform vorticity. The nonzero internal fluid
bit” we use the artifice of “shutting off” all the dissipative motion is necessary because binary neutron stars are not ex-
terms in the equation of motion and looking for the pointpected to corotate with orbit due to rapid orbital decay and
where the solutions of the remaining nondissipative equasmall viscosity[7,8]. Although the Newtonian tidal interac-
tions become dynamically unstable. The use of hybrid equation between the neutron stars can be treated exactly in the
tions of motion augmented with the tidal terms allows us tolinear regime using mode decompositigii], the ellipsoid
map out the dependence of the critical radiug,, or the  model has the advantage that it can be extended to the non-
corresponding orbital frequendlys.,, for a wide range of linear regime at small orbital radii, when the tidal deforma-
allowed neutron star equations of stéparametrized by ra- tion of the star becomes significant.
dius and effective polytropic index; see Fig. We believe The Newtonian dynamical equations for the binary neu-
that clearing up such a dependence is important, and thison stars as derived in LS include the familiar Newtonian
analysis provides a benchmark with which comparisons cafl/r?) force law for point masses orbiting one another; they
be made with future numerical resultadeed, an important further contain Newtonian terms involving finite-sigidal)
point we wish to make in this paper is that neither relativistic effects. A post-Newtonian treatment of the tidal problem
(post-Newtonian) effects nor Newtonian tidal effects can ba&vould give the relativistic corrections to these terms,

namely, the standard point-mass, post-Newtonian corrections
to the equations of motion, as well as relativistic corrections
1See Wex and Scifer [23] for a critique and an alternative con- to the quadrupole moment and corrections due to higher mo-
struction. Their post-Newtonian calculation suggests that the innerments the bodiegSee Appendix F of24].) To ensure that
most stable orbit may occur at an even greater separation. our equations of motion at least agree with the known post-
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Newtonian, point-mass equations we augment these Newtom4/r smalle). As noted before, the tidal interaction enters the
ian equations of motion with the hybrid equations of KWW. Newtonian potential as a correction o[ (Ry/r)°]
However, we use only the Newtonian equations to describe=-O[(M,/r)®], in effect, as a(posh>-Newtonian term.
the evolution of the neutron stars structuee &nda;) and  Therefore, by not including relativistic corrections to these
the fluid motion (the figure rotation rate and the internal tidal terms, we are merely omitting terms which are of
vorticity) within the stars. These are given by E¢B.18—  (posh®-Newtonian order. In fact, the largest error comes
(2.22 of LS. In other words, we neglect the relativistic cor- from neglecting the post-Newtonian correctidaf order
rections to the fluid motion, self-gravity, and tidal interac- M/R,) to the internal stellar structursee Sec. IlI B for an
tion. These corrections are secondary effects and should nestimate of its effect offi,.). The relativistic corrections to
modify the orbital dynamicsappreciably(e.g., the Newton- the orbital motion, however, are very important. Our equa-
ian tidal interaction between the two stars scales approxitions of orbital motion can be assembled from E@s23
mately astR /r8, and its relativistic correction is of order and(2.24 of LS and from Eqs(1.2) and(1.3) of KWW:

.o, My 3 K M '
r=re?— —;(AH+ Bur)— r“ [a1(3co§a 1)+a3(3sirfa—1)— a3]— 0T ‘[a/%(3coa’—1)
12 12 M 32 5 : 1511 ’ H ’
+aj?(3sirta’ —1)—az?]— (A5,2+ Bl ) — — r[Q (I113—120)sin2a+ Q" >(11;—15,)sin2a" ], 1)
20 M, _ - 3k, M, 3k! M, " M, -
0=—T—r—zBH _1_0r_5(a1 a2)5|n2a T (a1 —ay”)sin2a’ — rel Bs/00
32 5 15011 ' '
—E[Q (I1—1ycos2x+ Q" >(11,—15,)cos2'], 2

whereM;=M + M’ is the total massy («') is the misalignment angle between the tidal bulg&ofM ") and the line joining

the two masses, and, , x;, are dimensionless structure constants depending on the mass concentration within the stars. In Egs.
(1) and (2) the last two lines contain the “dissipative” terms due to gravitational radiation reaction. The quahiities

By, Asp, andBg,, which include the “hybrid” corrections to the equation of motion, are given by

A_l—Mt/r 2—M,/r |\/|t 2, 2 2M 32+3 . 87 Mt2+3 A 4+151 -
HE L+ M N3 | T= (M2 r P re ey v 27| )+ @ Amuts g (=3
3 o1 M M.
—5(3=4n)w??= 5 (13-4y) ——v?~ (25+27) 12 ®
4—-2M,/r 1
h=—|———|r+29r— = 9r| (15+47)v? —(41+877)——3(3+27;) (4)
1—(M/r)? 2
A — o Mif g2 2Me_ e 5
52= "5 77 r 37 , 6)
8 M M )
Byo= 517—t(602—27t—15rz), (6)
|
where v2=12+r2¢2, n=wu/M;, and u=MM'/M,. Also Admittedly, this is not a consistent post-Newtonian ex-
the multipoles moments can be expressed as pansion of the true equations of motion; however, it is cor-
rect in several important limiting case@) In the limit that
) , , ' a;—0 anda/ —0 and the limity—0, we recover thexact

Schwarzschild equation of motiorii) In the point-mass
limit (a;—0 anda/—0) we recover the hybrid equations
Note that in Egs.(1) and (2), we have also included the givenin KWW. KWW presented an argument that suggested
leading-order radiation reaction forces due to tidal deformathat the higher-order;-dependent,pos)3-Newtonian, as
tion. yet uncalculated, corrections to these equations have only a
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modest effect on the equations of motion. See Fig. 6 of Ref. TABLE I. Physical quantities at the innermost stable oftit-
[22]. However, until these terms are calculated it is uncleanamical stability limi} of neutron-star binary, withM=M’,
just how large an effect they will have on the location of thel’=3, and zero spin at large orbital radii. HeRRg is the neutron
innermost stable orbit(iii) In the nonrelativistic limit we Star radiusa,; a,,a; are the axes of the ellipsoidal neutron star
recover the equations of motion given in LS. These equat@: along the binary axis3; perpendicular to the orbital plapend
tions contain the dominant contributions to the equations of1.4=M/(1.4Mo). The case in the top row is the purely Newton-
motion due to the finite sizes of the objects. |an_ calculation usmg LS eguatlons of r_nonon. T_he last I’OW-IS the
Note that although Eqg1) and (2) make reference to the point-mass calculation using the hybrid equations of motion of
orbital radiusr, we are always aware that this is a gauge-KWW'
dependent quantity and of little meaning for a distant ob-

server. Observationally, the more meaningful quantity is the™e/M 1/Ro MM /a1 3s/ar Miafon (H2)
orbital the frequency as measured by distant observers, and —— 2.76 6.90R,/5M) 0.772 0.805 657(BI/R,)%?
we shall use frequency rather than the radius in presenting g 2.87 11.5 0.830 0.850 279
most of our results. 6 297 8.91 0.857 0.871 399
5 3.10 7.74 0.880 0.891 488
Il INSTABILITY OF THE NONDISSIPATIVE 4 3.39 6.78 0.915 0.921 590
EQUATIONS OF MOTION 0 — 6.03 — — 697

A. Method to determine the stability limit

We now form a set of nondissipative equations of motionvalues ofl lie in the range of"=2-3[10].
by simply discarding the gravitational radiation reaction In Table I, we list the physical properties of the equilib-
terms given in the last two lines of E(L) and Eq.(2). These rium binary neutron stars at the dynamical stability limit for
nondissipative dynamical equations admit equilibrium solu-several values oRy/M and I'=3. In Fig. 1, the orbital
tions, which are obtained by settingr=r=0 frequencyfisis shown as a function &®y/M for I'=2 and
=Qorb=a= a’=0 as well asy;=a/ =0. For a giverr, the F:_S. Clearly, in the limit oflﬁglM—>0, f_isco approachs the
evolution equations for the neutron-star structure reduce to BOINt Mass resulfis,,=69M; ; Hz obtained in KWW In
set of algebraic equations fa and a/, while the orbital the nonrelativistic limit we recover the pure Newtonian re-
equation(2) gives the orbital frequencf),,,. These equa- sult[10,19
tions are solved using a Newton-Raphson method, yielding
an equilibrium binary model. Thus a sequence of binary fisco=65™1 2(5M/Ry)%? (Hz) (I'=3), (8)
models parametrized iy can be constructed.

To determine the stability of the orbit of a binary model,
we simply use the equilibrium parameters as initial condi-

tions for our nondissipative equations of motion. We add a}:m typical neutron-star radius M =5, the critical fre-

small perturbation to the equilibrium model and let the sys -
tem evolve. In this way we locate the critical point of the 9UENCY ranges fromi8s Hz (for I'=3) to 540 Hz (for

dynamical equations, corresponding to the dynamical stabilr_zz)’(;’vwe both th_e pure Nﬁwgo_gianl(wlith_ “deS) calcula-l
ity limit of the equilibrium binary or the innermost stable 1N an Ot & pure point-mass hy “h ca CIU ation g|¥e ahresut
circular orbit: Forr>r ., the binary is stable, and the sys- (30-40% larger. There are two physical causes for the re-

tem oscillates with small amplitude about the initial Configu-duc_tion in fiSCO:, (i) The binary becomels unstable .at Iarggr
ration; forr <r .., the binary is unstable, and the perturba_orbltal separation due to the steepening of the interaction

tion grows, leading to the swift merger of the neutron stard?0tential from both tidal and relativistic effectéij) for a
even in the absence of dissipation. given orbital radiug(itself a gauge-dependent quanjtyhe
post-Newtonian orbital frequency as measured by an ob-

server at infinity is smaller than the Newtonian orbital

frequency® We conclude that to neglect either the tidal ef-
For concreteness, we present results only for binary neufects or the relativistic effects can lead to large error in the

tron stars with equal masseM&EM’), both having zero  estimated critical frequency.

spin at large orbital separation, although our equations are Except for the intrinsic uncertainties associated with the

adequate to treat the most general c446% hybrid equations of motioh22,23, the main uncertainty in
The polytropic relatiorP=Kp' provides a useful param- our determination off.., comes from neglecting post-

etrization to the most general realistic nuclear equation ofNewtonian corrections t@) the stellar structure an@i) the

state(EOS. Since the radiu®, of the nonrotating neutron tidal potential. The first correctiordecreasesthe tide-

star of massM is uniquely determined biX andI’, we can induced quadrupole; the fractional change is of order

alternatively usd?y/M andI" to characterize the EOS. For a —M/R,. The secondncreaseshe quadrupole by a fraction

canonical neutron star with makt=1.4M , all EOS tabu-

lated in[25] give Ry/M in the range of 4-8, while modern

microscopic nuclear calculations typically give,/M=5 KWW [22] give a correct expression fate.,/M,, but incor-

[26]. For a givenR,/M, the polytropic indeX” specifies the rectly give f;..,=710 Hz due to a numerical error.

mass concentration within the star. Except for extreme °In the case of equal masses, at first post-Newtonian order

neutron-star massesM(=0.5My or M=1.8Mp), typical  Qqp=Qyepel1—(11/8)(M/r)]. See Ref[4].

fisco=766M 1 3(5M/R)*? (Hz) (I'=2). (€)

B. Results
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FIG. 1. The critical orbital frequencyat the innermost stable FIG. 2. The radial infall coordinate velocity during binary coa-

orbit) as a function of the ratio of the neutron-star radRisand ~ lescence, wittM=M'=1.4M¢, Ry/M=5, I'=3, all calculated
massM. The solid curves show the results induding both relativ- using the 2.5 pOSt-NeWtonian radiation reaction. The solid line is
istic and tidal eﬁectgthe lower curve is fol =3 while the upper the result inCluding relativistic and tidal eﬁects, the short-dashed
one is forT'=2), and the dashed curves are the Newtonian limitline includes only tidal effects, and the long-dashed line includes
given by Egs.(8) and (9). The vertical line corresponds to only relativistic effects. The dotted line is the point-mass “Newton-
R,/M = 9/4, the minimum value for any physical neutron star. Theian” result.

insert is a closeup for the nominal rangeRyf/M = 4-8 as given by

all the available nuclear EOS. Two curves within the insert shouldis  case the infall rate s given byuv, =t

bracket all the physical values 6fc,. =—(64/5)p(M,/r)3. [Specifically, we setA,=1 and
of orderM’/r. We can estimate how mudh, is modified 5i:te(a; byalthel kclj(ot':éél C(I)JI’I\?E I?r?sFl(glia; dafélgaj)”xspljrgg
by these two Correctllons. In Newtonian the_qr)gco N ?p' relativistic plunge in which we neglect the tidal effedtSpe-
prox,rznag/elg dftzfm'“i" tljy. _th_e cond|_t|onMrl1\(l Ir cifically we setaj=a; =1,=1,,=0 in Egs.(1) and (2).]
N_M Ry/r®. Including t E,} re a“‘{'f“ff ceorrectlons this con- This relativistic case is depicted by the long-dashed curve in
dion  becomes ,MM /r~;\/| Ro/r*(1=9), w_here Figs. 2 and 3(iii) A tidally enhanced plunge: we include
0=[O(M/Ro) ~O(M /r)]f<‘20/°‘ Thus the choar?g_e Msco only the Newtonian terms in Eg§l) and(2) and the radia-
dgg to these two gffects Tiscol fisco=0.30=6%; i.e., the tion reaction force[Specifically we seA=1 andB,=0 in
critical frequenpy Increases by a fe"Y .percEZTt']. . Egs.(1) and(2).] This case is depicted by the short-dashed
As empha5|zeq in Sec. |, t_he_ C”t_'cal radl(x_sr critical curve in Figs. 2 and Jiv) Finally, we evolve the complete
frequency, at which the nondissipative equations becomedynamical equations including all terms in E4E) and (2):
dynamically unstable, is meaningful only in the sense thatthis is depicted by the solid curve in Figs. 2 and 3. I’Each

W.henr.<riS°°’ the bmar_y will coalesce on a dY”af_”'d@'f' intergration is terminated when the surfaces of the stars
bital) time scale even in the absence of dissipation. In the

realistic situation, the dissipative radiation reaction forces
will also be rapidly driving the binary to coalescence. There- N e e e R EEa
fore to determine the significance of the dynamical instabil- W ]
ity we must compute the orbital evolution with the full equa-
tions of motion, including the radiation reaction.

IV. ORBITAL EVOLUTION PRIOR TO MERGER

We now include the dissipative radiation reaction forces
in our analysis. In this case the plunge will be driven by both
the dissipative and the nondissipative effects associated with
the steepening potentiéboth the tidal potential and the rela-
tivistic potentia). But which effect is dominant? In order to
numerically investigate this question, we choose a specific
system withM=M'=1.4My, Ry/M=5, and"'=3. The
orbital evolution begins when the stars are well outside the O T 0 500 e00 700 800
innermost-stable-circular-orbit limit. We consider four dif- £, (Hz)
ferent inspiral scenariogi) A purely dissipative inspiral: a
system of point masses subject only to a Newtonian?j1/ FIG. 3. The number of orbits the binary spends per logarithmic
force and (pos)>%Newtonian radiation reaction force. In frequency. The labels are the same as in Fig. 2.

dN,,/dInf_,




54 INNERMOST STABLE CIRCULAR ORBIT @ ... 3963

discussion The results of the various analyses do not con-
_ verge to an agreed answer. Obviously, the precise nature of
L L | the final coalescence of two neutron stars will only be deter-
0.1 - _ mined by a numerical simulation using full general-
relativistic hydrodynamics. However, the present analysis
1_,"";/”‘\ does point to two interesting features to look for in a full
s S | numerical treatment(i) To get even a qualitative picture of
s RN the coalescence, it is necessary to begin the numerical evo-
7 lution when the stars are still well separated, i.e., before the
onset of the orbital dynamical instability. The instability, the
plunge, causes the coalescence to proceed much more swiftly
than a coalescence driven solely by a radiation reaction; thus,
the actual coalescence may differ qualitatively from one
. . . e computed with a simple radiation-reaction-driven inspiral.
200 400 600 800 The final coalescence may be more of a splat than the slow
forp (H2) ' winding together of the staf85]. (i) The instability results
o ) from both the tidal effects and the relativistic corrections in
_ FIG. 4. The quadrupolar gravitational en(_ergy_ emitted near &he equations of motion. KWW showed that there is no in-
given frequency. The labels are the same as in Fig. 2. stability in thefirst post-Newtonian relativistic equations of
motion; the instability does not show up until at least second
post-Newtonian order. Therefore, in order for numerical
: L simulations to produce the effects of the relativistic unstable
_In Fig. 2 we clearly see that the nondissipative effects,,,,q it will probably require the use of at least a second-
tidal and relativistic, substantially increase the rate of 'nfa"'order, post-Newtonian hydrodynamic code. KWW also

The radial velocity at binary contact is comparable t0 thegy, e that the location of the dynamic instability does not

tanggntigl velocity. We also note thaF the radial Coordinateconverge very rapidly as one increases the post-Newtonian
velocity is a gauge-dependent quantity; therefore, our °n|¥)rder of the approximatior(This fact led KWW to the in-

intent in usi_ng it ?n Fig. 2 is to convey the g_ener_al tren_d_ thaty o gyce the hybrid equations of motiphus, to get even a
the rate of infall is enhanced by the dynamical instability. o 5jitatively accurate evolution of the binary near coales-

Flgure.S shows the number of orb|ts_, the binary spends P&ence, it may be necessary to use a full general-relativistic
Iogar|thm|c freque'nc'y. In .the smple;t pOInt'mass'hydrodynamic treatment of the coalescence problem and be-
Newtonian-plus-radiation-reaction cajsmse(i) abovd, the gin the evolution when the stars are still well separated.
result can be calculated analytically As we have shown, the dynamical instability in the equa-
tion of motion will, in effect, cut off the chirping waveform.
The frequency of the cutoff is somewhat dependent on the

=1.951G(M 4f orp/Hz) ~%3, (100  neutron-star equation of state. Only in this late stage of the
evolution does the equation of state leave a telltale sign in
which gives six cycles atgy=2f,,=1000 Hz. In contrast, the emitted waveform. However, devising a strategy to dig
the tidal and relativistic effects reduce this number to lesshis information from the detector output requires further
than 2. consideration. Most detection-measurement strategies for

Figure 4 shows the wave energy emitted around a givegoalescing binaries involve integrating template waveforms
frequency dEgw/d Infyp,=(Q o/ Qo) Ecw, WhereEgy is  against long stretche@000 orbit$ of raw output data, the
calculated using the simple quadrupole radiation formulaidea being that one can detect and measure a relatively-low-
The Newtonian plus radiation reaction result isamplitude signal by integrating for a long time. Looking for
dEgw/d Info,=1.63<10 3(f,,/Hz)?*M?/R,. We see that the signature of this very-late-stage plunge is precisely the
the radiation power near contact becomes much smallenpposite: We are looking at the waveform just before coa-
Note thatdEg,,/d Inf,, calculated in this way is not exactly lescence when the amplitude is fairly strong, but the plunge
the energy power spectrum, which must be obtained from thés of fairly short duration. So answering questions about the
Fourier transform of the waveforj28]; however, it does plunge(such as, at what orbital frequency did it beginé-
provide a semiquantitative feature of the full analysis. Inquires measuring a relatively-large-amplitude, but short-
particular, the dip in thelEg,y/d Inf,, curve around 600 Hz duration, effect. Clearly, analysis of such events will require
results from the dynamical instability of the orlfitee also a different detection stratedy8].

Refs.[21,29, although the calculations presented there are
purely Newtonian

dE,,/d1Inf,,
(o]
o
w
T

\\

~

/

L

touch, i.e., at=2a, (for the point-mass problem, the calcu-
lation is terminated at=2R).

AN /d Inf o= (5/192m) ™ *M; 23(27f o)~

ACKNOWLEDGMENTS

V. DI ION . . . .
SCUSSIO We thank Kip Thorne for useful discussions. This work

A number of authors have tried to define and locate théhas been supported by NSF Grants Nos. AST-9417371 and
innermost stable circular orbit for relativistic coalescing sys-PHY-9424337 and NASA Grant No. NAGW-2756 to
tems of comparable masgex3,30—33 in order to character- Caltech. D.L. also acknowledges support from the Richard
ize the final moments of a binary coalescefmee[34] fora  C. Tolman Fund at Caltech.



3964 DONG LAI AND ALAN G. WISEMAN 54

[1] A. Abramovici et al, Science256, 325 (1992. [19] D. Lai and S. L. Shapiro, Astrophys. 443 705(1995.
[2] K. S. Thorne, inProceedings of Snowmass '94 Summer Study{20] F. A. Rasio and S. L. Shapiro, Astrophys.4D1, 226 (1992;

on Particle and Nuclear Astrophysics and Cosmoloegited
by E. W. Kolb and R. PecceiWorld Scientific, Singapore,
1995.

[3] C. Cutleret al, Phys. Rev. Lett70, 2984 (1993.

[4] L. Blanchet, T. Damour, B. R. lyer, C. M. Will, and A. G.
Wiseman, Phys. Rev. Letf4, 3515(1995.

[5] L. Blanchet, B. R. lyer , C. M. Will, and A. G. Wiseman,
Class. Quantum Graw.3, 575(1996.

[6] C. M. Will and A. G. Wisemarn(unpublishegl

[7] L. Bildsten and C. Cutler, Astrophys. 400, 175 (1992.

[8] C. S. Kochanek, Astrophys. 398 234 (1992.

432, 242 (1994. Note that these calculations assufnareal-
istic) synchronized neutron-star rotation. The turning point in
the equilibrium energy curve of a corotating binary corre-
sponds to thesecularinstability limit, rather than the dynami-
cal instability limit (see Ref[10]).

[21] X. Zhuge, J. M. Centrella, and S. L. W. Mcmillan, Phys. Rev.

D 50, 6247(1994.

[22] L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev. D

47, 3281(1993.

[23] N. Wex and G. Scifar, Class. Quantum Gravi0, 2729

(1993.

[9] Assigning such a high “post-Newtonian” relativistic order to [24] C. M. Will and A. G. Wiseman, Phys. Rev. o be pub-

this “Newtonian” tidal effect may seem strange, but

lished.

the argument goes as follows: The quadrupole correc{25] W. D. Arnett and R. L. Bowyer, Astrophys. 33, 415(1977).

tion enters the Newtonian potential asMiM'/r)[1
+Q(Requatorial ') *P2(cosd)]; here, the leading term is just the
usual (1f) part of the Newtonian potentia) is some measure
of the bodies quadrupole moment, aRgd is the second Leg-
endre polynomial. For a typical neutron stafq,aoriar 5M,

O[(M/r)?] correction to the Newtonian potential, i.e., a
(posh?-Newtonian correction. HoweverQ, the tidally in-
duced quadrupole moment, also scales B&r)S. There-
fore the quadrupole correction term scales asOfM/r)®]

correction to the Newtonian potential; thus, it can be com-

pared to aposh°>-Newtonian term.

[10] D. Lai, F. A. Rasio, and S. L. Shapiro, Astrophys420, 811
(1999.

[11] D. Lai, Mon. Not. R. Astron. Soc270, 611 (1994).

[12] A. Reisenegger and P. Goldreich, Astrophys.426, 688
(19949.

[13] M. Shibata, Prog. Theor. Phy81, 871(1994.

[14] We adopt units in whictG=c=1. We use the following no-

[26] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 3B,

1010 (1988; for a recent review, see G. Baym, Isolated
Pulsars edited by K. Van Riper, R. Epstein, and C. Kdam-
bridge University Press, Cambridge, England, 1991

[27] The fact that post-Newtonian effects decrease the tidal distor-
and so we might expect the correction term to scale as an

tion is consistent with the finding in R€f30] and in M. Shi-
bata [Osaka University report, 1996unpublished] (whose
calculations assume synchronized neutron-star rotatidow-
ever, the accuracy of the stability limit given in RE30] is not
without question, since the method has been shown to give an
unphysical result regarding the stability of the neutron star
against radial collapse. See D. Lai, Phys. Rev. L#it.4878
(1996.

[28] D. Kennefick, D. Laurence, and K. S. Thor@published
[29] M. Ruffert, H.-T. Janka, and G. Scies, Astron. Astrophys.

(to be published

[30] J. R. Wilson and G. J. Mathews, Phys. Rev. L&, 4161

(1999; J. R. Wilson, G. J. Mathews, and P. Marronetti, Phys.
Rev. D54, 1317(1996.

tation to describe our binary system: The two neutron star§31] J. P. A. Clark and D. M. Eardley, Astrophys. 215 311

have (comparablg massesM and M’, the total mass of the
system is denotell, , lower case will denote orbital(center
to centey coordinate separation, and upper cRgewill denote
the neutron-star radius at large

(1977.

[32] J. K. Blackburn and S. Detweiler, Phys. Rev. 48, 2318

(1992.

[33] G. B. Cook, Phys. Rev. B0, 5015(1994.

[15] L. Blanchet and B. S. Sathyaprakash, Class. Quantum Gray34] D. M. Eardley and E. W. Hirschmann, Report No. gr-qc/

11, 2807(1994.
[16] C. M. Will, Phys. Rev. D50, 6058(1994).
[17] L. S. Finn and D. F. Chernoff, Phys. Rev.47, 2198(1993.
[18] C. Cutler and E. Flanagan, Phys. Rev4B 2658(1994.

9601019(unpublished

[35] See, e.g., M. Shibata, T. Nakamura, and K. Oohara, Prog.

Theor. Phys89, 809 (1993, for simulations of neutron-star
binary coalescence with and without large plunging velocities.



