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Conical geometry and quantum entropy of a charged Kerr black hole
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We apply the method of conical singularities to calculate the tree-level entropy and its one-loop quantum
corrections for a charged Kerr black hole. The Euclidean geometry for the Kerr-Newman metric is considered.
We show that for an arbitrary periodization in Euclidean space there exists a conical singularity at the horizon.
Its 5-function-like curvatures are calculated and are shown to behave similar to the static case. The heat kernel
expansion for a scalar field on this conical space background is derived aftlivirgenj quantum correction
to the entropy is obtained. It is argued that these divergences can be removed by renormalization of couplings
in the tree-level gravitational action in a manner similar to that for a static black hole.
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I. INTRODUCTION space-time dimensior§]. The quantization of a field sys-
tem typically requires an ultravioléUV) regularization pro-
The notion that black holes could be considered as thereedure that must be taken into account in the statistical-
modynamic systems characterized by temperature, energyechanical calculation as well. Remarkably, it was
and entropy was first proposed by Bekensfdihand con- demonstrated if8] that the Pauli-Villars regularization not
firmed via the discovery of their thermal radiation propertiesonly removes the standard field-theoretical UV divergences
by Hawking[2]. Independently, it was realized that there arebut automatically implements a cutoff in the 't Hooft calcu-
only a few macroscopic parameters which can be assigned tation, rendering unnecessary the introduction of the “brick
a black hole: its masaf), charge ), and angular momen- wall.”
tum (Q). In the static case, angular momentum vanishes. A The natural way to formulate black hole thermodynamics
typical representative of this class is the Reissner-Nomistro is to use the Euclidean path integral approf2®]. For an
black hole which is a solution of the Einstein equations witharbitrary field system it entails closing the Euclidean time
a Maxwell field as a source. Such a hole is characterized bgoordinate with a perio=T ! whereT is the temperature
just its mass i) and charge d). of the system. This yields a periodicity condition for the
When rotation is present, the Einstein-Maxwell equationgguantum fields in the path integral. In the black hole case for
have the Kerr-Newman metr[@] as a solution. This metric arbitrary 8 this procedure leads to an effective Euclidean
corresponds to a black hole of a general type characterizasgianifold which has a conical singularity at the horizon that
by all three parameterar(,q,(2). Remarkably, the thermo- vanishes for a fixed valug= 8y . Thermodynamic guanti-
dynamic analogy works for this general case; in particular, ities (i.e., energy and entropyare calculated by differentiat-
suggests that there is an entropy associated with this holeg the corresponding free energy with respecBtand then
that is proportional to the area of the horizon. If this analogysetting 8= 8y, . This procedure was consistently carried out
is exact, there must be hidden degrees of freedom of the hofter a static black hole and resulted in obtaining the general
which are counted by the Bekenstein-Hawking entropy. ReUV-divergent structure of the entropg8—21].
cently, there has been much interest in attempting to provide Essentially, the divergences of the entropy have the same
a statistical explanation of these degrees of freedom and thedrigin as the UV-divergences of the quantum effective action
relationship to the entropysee reviewg4,5]) within some  and can be removed by renormalization of the gravitational
quantum-mechanical calculatiof-21. However, the pro- couplings in the tree-level gravitational acti¢h6,17,2].
posed expressions for the entropy can be considered to bithe technique developed [21] allowed proof of this state-
guantum(one-loop corrections to the classical quantity, and ment for an arbitrary static black hole. Alternatively, this was
do not give any explanation of the classical entropy itself. demonstrated for the Reissner-Nordstrblack hole within
According to 't Hooft[6], one can relate the entropy of a 't Hooft's approach 8] applying the Pauli-Villars regulariza-
black hole with a thermal gas of quantum field excitationstion scheme.
propagating outside the horizon. In his model 't Hooft intro- ~ An essential loophole in the above considerations is that
duced a "brick wall” cutoff: a fixed boundary near the ho- they were concerned with only static, nonrotating black
rizon within which the quantum field does not propagate. Itsholes. The only exception is a series of recent prepf2®$
role is to eliminate divergences which appear due to the inwhere 't Hooft's approach was applied to a Kerr-Newman
finite growth of the density of states close to the horizon.black hole and soméqualitative analysis of divergences
This model can be successfully formulated in differentwas presented. Adoption of conical methods for stationary
black holes necessitates dealing with problems of treating
Euclideanizationor complexification of the Kerr-Newman
*Electronic address: mann@avatar.uwaterloo.ca metric[24] and a general periodicity analysis of its conical
"Electronic address: sergey@avatar.uwaterloo.ca geometry. Although the passage to a Euclidean metric and
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periodicity arguments were given some time d4@@] the (r2+a?)
conical geometry for arbitrary period in the Kerr-Newman w=——F—(dt—asifgde),
case remains unclear. Additional outstanding questions in- P
clude the structure of the UV divergences of the entropy of 2, .2
. , 4 (re+a“) a
stationary black holes and whether or not their renormaliza- D= > dp— ——— dt),
tion works in the same way as for a static hole. p (re+ac)
In this paper we consider these questions in detail. In Sec. - -
Il we describe the passage to Euclidean space for the Kerr- o[K]=w[K]=1, o[K]=o[K]=0. 2.3

Newman metric, establishing the structure of this space in _ . .
the vicinity of the horizon. We determine the conditions nec- TO obtain the correspondence with the Schwarzschild
essary for periodicity in the direction of the timelike Killing metric note thaK andK are the respective analogs of the

vector(which is analog of the Euclidean time vectorin the

vectorsd; andd, andw andw are the respective analogs of

static casg corresponding to regular Euclidean space. Fordt andd¢ of the Schwarzschild metric. This correspondence
arbitrary periods there is a conical singularity at the horizoris almost exact with one exceptios: and @ together with
surface. The geometry of this conical space is studied in Seclé and dr form an anholonomic basis of one-forms. This

[ll. We employ the regularization method suggestedaf]
and obtain the expectefifunction-like behavior of the cur-

means that there are no globally defined coordinatesd
X such thatw=dX andw=dX.

vatures. The integrals of quadratic combinations of curvature Horizon surfaceS are defined as the surfaces where the
tensors are also considered. The results we obtain havetinelike vectorK becomes nullK?|s=0; the outer horizon

marked similarity to the static case. In Sec. IV we considefs the surface for which

=r, . In addition to this one often

the Euclidean path integral quantization of a scalar mattegonsiders the surface where the vectobecomes null. This

field in the background of a conical Kerr-Newman metric. syrface is called the ergosphere and is determined by equa-
We obtain the UV divergences for the entropy, the structur@jon r2+ acog6+g?—2mr=0. It lies outside the outer hori-
of which is similar to that obtained in the static case. Wezons,, touching it at the axi®=0 and 6= .

argue that these divergences of entropy are renormalized in Consider now the Euclideanization of the Kerr-Newman

the same way as for a static black hole.

II. EUCLIDEAN KERR-NEWMAN GEOMETRY

The Kerr-Newman metric of the space-time with
Minkowskian signature in Boyer-Lindquist coordinates takes

the form

ds*=g, dr?+ged 6>+ g dt* + 29, dtdd+ g yud 7,

p ) (A—aZsirf6)
grr:Xv 9eo=p", gtt:_Ta
_asife(r’+a’-A)
gt¢ p2 ]
r’+a?)?—Aa’sirfé
g</>¢: ( ) 2 Sin26,
p
A(r)=r?+a?+qg?-2mr, p?=r2+a’cogh. (2.1
The function A(r) can be represented in the form

A(r)=(r—r,)(r—r_), wherer . =m= Jm?—a?—¢>.

This space-time has a pair of orthogonal Killing vectors:

a —

K= ﬁt+ 2 20"(/), K=aSin2007t+z9¢,

e AP el dire K.R—o0 2.2
e Kemrsite kR0 @

The vectoK is timelike everywhere in the regiarer , and
becomes nulK?=0 forr=r_ , whereax is spacelike ev-
erywhere outside the axis#¢0,0=m) where K?=0. The
one-forms dual t&k andK are

metric. The standard prescription saj&2] that we must
change the time variable= 17 and supplement this by the
parameter transformatioa=1a,q=19. The Euclideanvec-
tors K,K and the corresponding one-forms o take the
form

— a K = asir?
K—a,._méd), K=asi 00,1 3dy,
(r’—a?

?)(dT— ésir120d¢),

(rz_éz)(d , @ d)
7 |9 )

wherep?=r2—2a2cog6. The Euclidean metric can be written
in the form

w=

w=

(2.9

R

wherew and o take the form(2 4), A=r2-32 —q®—2mr.
Roots of the function are nowr+ m=Jm?+a%+q2. The
horizon surfac& defined byr =t . is the stationary surface
of the Killing vector K. Consider the metriq2.5 near
r=r, . Itis useful to introduce a nevadial variablex such
that near the horizon we have

2,2
R oYX
A=y(r=ri)=——,

(2.6

B LA X
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Then the metrig2.5) up to termsO(x?) reads

2

¥?x?

ds2=ds +p2| dXP+ ———— o? (2.7)
wherep? =2 —a%cog6 and
] ] (F3—a%?
dsi =p3 (d6?+sirf0@2) = p3 d 0%+ ——5——sirPod ¢/
+
(2.8

is metric on the horizon surfac®. In writing Eq. (2.8) we
employed the fact that o we may introduce the well-
defined angle coordinatg= ¢+[a/(f> —a?)]r. The regu-
larity of the metric(2.8) at the points#=0,6= = requires the
identification of the pointsy and ¢+ 27 on . After all
calculations with the Euclideanized Kerr-Newman metric
have been completed, we analytically continue the result
obtained back to the real valuasandq.

Expression2.7) may be rewritten as

Ig=0+770%,,

whered%2 is metric of a two-dimensional disk, attached
to the horizon, at a point @, ¥):

(2.9

24,2

X

~4
P+

d2 =dx+ - (dr-asiodg)?.  (2.10

Consider the metri¢2.10 with (0,¢) fixed. Then we may
introduce an angle coordinate dd,, y=7—asirfd¢, in
terms of which the metric reads

24,2
YX
dSéz:dXZ‘l' 4-T‘]_d)(z.

P+

(2.11

Requiring the absence of a conical singularitx&0 means
that we must identify pointy andx+4wy*1;3i . In order
for this to hold independently of the coordinateon the
horizon we must also identify points 7(¢$) with
(7+27By,¢p—2mQBy), where Q=3a/(f2—2a% is the
(compley  angular velocity and By=(f2—2a%/
Jm?+2a%+?. Itis easy to see that the identified points have
the same coordinate.

With the described identification we obtain the following
picture of the Euclidean Kerr-Newman geometry in the vi-
cinity of the horizons,. Attached to every pointd, i) of the
horizon is a two-dimensional disliC, with coordinates
(x,x). Although y is not a global coordinate in four-
dimensional space and at each poifit#) there is a new
X, the periodic identification of points 0@, works univer-
sally and independently of any point on the horiZonAs in
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I1l. CONICAL SINGULARITY AND CURVATURE
TENSORS

Assume now that we close the trajectory of the Killing
vector K with arbitrary period 2r8. Near the horizon this
means that oI€, in Egs.(2.9) and(2.10 we identify points
(7,¢) and (r+27B,¢—27QB) with B+ By . Note again
that points identified in this way have the same value of the
coordinatey. Then y is an angle coordinate with period
2w B(1+aQsird). By introducing a new angle coordinate
x=PBp>(t2 —a%) Yy which has period 2, the metric on
C, becomes

— 2 2242
dsg, =dx’+a’x?dy (3.
and coincides with the metric on a two-dimensional cone
with angular deficit 6=27(1—«), a=pB/By. With the
above identification the four-dimension@D) metric (2.5
gescribes the Euclidean conical sp&tgwith singular sur-
faceX.

Curvature tensors at conical singularities behave as distri-
butions. This behavior was precisely established for a flat 2D
cone in[26] and for a general static metric if25]. The
Kerr-Newman metric, which is the subject of our consider-
ation here, is stationary and not static. Therefore, all the for-
mulas obtained if25] must be checked for this case.

To proceed, we apply the method which was successful in
the static casésee details if25]). It consists in regulating
the conical singularity when the cone metf&l) is replaced
by a sequence of regular metrics labeled by a paranheter

dsg, ,=f(x,b)dx*+a’x’dx?, (3.2
where f(x,b) is some smooth regulating function that ap-
proaches unity ab—0, e.g.,

x%+ a?b?

fx.0)=—arpz

- (3.3

is a suitable regularization function. In the limbt—0 the
sequence of metric.2) reproduces a-function-like con-
tribution to the curvature.

Applying this method to the Kerr metric, consider a small
vicinity of the horizon surfac&. . For 8+# B, the metric there
reads

dsg =dsi+pidsg .

Replacing the cone metrids%a by ds%ab [Eq. (3.2] we
obtain a sequence of regular metrics: '

ds§a1b=ds§+fﬁdséa’b.

To calculate the curvature we define flamholonomig basis

(3.9

(3.5

the static case, the Euclidean Kerr-Newman geometry pof one-forms{e®,.a=1,...,4 orthonormal with respect to

sesses an Abelian isometry generated by the Killing vectofh€ metric(3.5):
K with horizon surface&, being a fixed set of the isometry.
Globally, K is not a coordinate vector. However, locally we
haveK =4, where y was introduced above. The periodicity
is in the direction of the vectdf and the resulting Euclidean

spacekE is a regular manifold.

et=bp. fY4y)dy, (3.6)

m2+é2+"2 1/2 R
e2=by¥(dr—asin20d¢),

P+
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e®=p.de, Recall that @, ) are the coordinates on the horizBn Sub-
stituting Egs.(3.6) and(3.10 into Eq.(3.11) we obtain
2 -a? a f
et=———sing| dp+ ————dr|, efb ; =
5 ( i ) 1o, | ay s EEE § dr
where we changed variables S0 that L 1
x=by,f(y)=(y?+ a?d)/(y?+1). —aS|n26d¢)f = (vo+tv,b%y%+ - )edNet.
The Lorentz connection one-formi=w}.e° is found =P
from the equation 3.12
de?+ wd/\eP=0. (3.77  In Eq.(3.12 we first integrate ovee'/\e? in the subspace

orthogonal taX under fixed @, ) and then take the integral

We are interested in those components of the Lorentz confse®/\e* over the horizon. This yields
nection which are singular in the limit— 0. Analyzing the

~2
expressionsde? for the basis(3.6) we observe that only A _ 27 Bp%
de? contains a singular term: (dr—asirfod¢) = a2 (3.13
d . L ) .
de2:_y/\e2+ ... =[byf¥y)] te'Ae?+---, (3.8 where the integration is taken over the closed integral trajec

tory of the Killing vectorK under fixed @, ¢).
In the limit b— 0, we havee/b— o in they integration in
where the ellipsis means terms finite in the lirbit-0. It  Eq. (3.12 and so obtain
follows from Eg.(3.8) that the only singular component of
the Lorentz connection is f

’

o f a
dygpm=— T YAyl=——. (314
wi=[byp. fY(y)] te?+- - . (3.9

o e . Taking into account thaB, = (2 —a2)/ym?+aZ+q? from
The curvature two-fornRy=R;.€°/\e“ is defined as Egs.(3.12—(3.14 we finally obtain, in the limitb—0,
Re=dwl+ w2/ \w.
b Th T e T Io :2w(1—a)f vo( 0, p)edN\e. (3.19
. . . € s
Again, the only singular component B is
Since this holds for arbitrarily smalt we conclude that in
1 f) the limit b—0 the quantityR,;,; behaves as & function

2 _ 2 _ Y 2A 41 . )
Ri=do%t--- = 2y b2 fze/\ett having support at the surfac®. Noting that the vectors
* n,,a=1,2 introduced above are normal ¥owe may write
and so in terms of curvature components the only singular e
component is R§;= R§;+ 2m(1—a)[(n*n,)(N"ng)—(n“ng)(n"n,)]ds ,
1 RE=RE+2m(1—a)(n#n,) ds ,

R =—— 5+t . (3.10)
2121 2yb2p2+ f2 L

R=R+47w(1-a)fs, (3.1

Introducing a pair of vectorgsee Appendix Eqs(Al) and

(A2)] n;=n%d, ,a=1,2 orthogonal to the horizol and where oy is the delta functionffsse'/\e*/\e®/\e?

dual to the one-forms? a=1,2 we may rewriteR,;,; = fsfe3/\e*and we denotedﬂnV)ZZf‘:lnini. In particu-

_ %Rwalgng‘ngngnﬁ lar, it follows from Eq.(3.16 that

In order to show that the componeR};,, behaves as a

6 function in the limitb— 0, let us consider the integral 2N B 4
Re!\e?/NedNe
E

|DE:f R2121U(X,0,l//)el/\ez/\es/\e4 (31]) -
Pe ZaJ Re!Ae?NedNet+4m(1—a)As, (3.17
E

over a small diskD, surrounding the horizon surface,
0=x<e. In Eq.(3.11) v(x,6,¢) is a test function which is
constant along the trajectory of the vector(K[v]=0). It
can be expanded as

whereAs = [se3/\e? is area of>. For the particular case of

the Kerr-Newman metricR=0. Remarkably, expressions
(3.16 and (3.17) are exactly the same as that obtained in
X, 0.0)=00( 0.0)+01(0, )2+ - - - [21] for a static metric.
o ¥)=vo(6.4)+va(6.4) For a variety of applications it is necessary to know the
=vo(0,9)+b%v(0,h)y>+---. integrals of quadratic combinations of curvatures over the
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spaceE , with a conical singularity at the surfade Accord-  space orthogonal to the singular surfateThe expression
ing to Eq.(3.16), R contains (- ) 85 contributions as well  (3.18 is ill defined sinceR? contains term (1— ) & ]2.
as a regular parR. Therefore, one can expect a result which However, it is of higher order with respect to{k) and so
can be symbolically written as follows: can be collected in the last term in E§.18.
The form (3.18 was obtained i125] for a static metric.
o o To verify this for the Kerr-Newman case we must write the
f R?= af R2+2(1— a)f R+ 0O((1— a)?), metric (2.5) near the horizork,, including all terms of order
E E = (318 x2. Taking into account the regularization functibfx,b) as

above the metric reads
where R,, means projection of the tens@ onto the sub-

2122 r2—a%)? (r
42 =byf(y)dy2+ oY (dr—asirPdd)?+ b2y2r de?+ iz ) ( — &)
@b 4p+ P+ P+
(FA-8%| . a ? yab?y? a
x| 1-————=| yf . b%y?|sirPo| dp+ dr| — SirPg| dep+ dr|dr. (3.1
( 27 |7 o T B e e A

The general structure of quadratic combinations of curvaturen s and uc = ab’fV(y)dydy (0=y=2m) is the mea-
terms(denoted byR?) for the metric(3.19 symbolically is  syre on the regularlzed cof, ,. For the integral oR? we
, 5 obtain
f (fy)

R2=b%A+ 5B+ 4 o7

b C+0(b%, (3.20

f R2=O((1— a)?)

whereA,B,C are some functions that are independenb of
and do not contain derivatives of the regularization functionin agreement with the expected formula
f(y).

Since the measure of integration in the region neas P = — o
proportional tob? we conclude that second and third terms in~ |, X~ @ | R +87(1~a) 2R+O((1_a) ). 323
Eqg. (3.20 after integration produce in the limh—0 the :
respective second and third terms in E8.18. In order to  gince the Kerr-Newman metric satisfigs=0.

get this we use the fact that the derivatived @f) behave as Again we obtain for a stationary metric with a conical
f'(y)~(1-a). singularity the same expressioti3.21)—(3.23 as for the
After straightforward but tedious calculations we obtain, siatic casd25].

in the limit b—0, For the Kerr-Newman metric we have, on the horizon

21
ROR,,—a | ROR,,+4m(1— o L L
fEa w— @ ptan(l-a) 1—  —  F2(40%+8mt,)—(g%+6mft,)p?
5 Raban= Ra121= =5 ,
— P+
x [ Ratoa-ap, @2y
3 1— 6]2
> Raa=Ri1=Ro>= o (3.29
+
f REMR, 0= @ RMPRMPJrsw(l—a) . _
EBa and after integration oveY we get
X | RapartO((1-@)?), (3.22 — (F2+8% g2 (f2-a% (f,.+a
2 Rapab=87 =2 taAmam —( In{ - ~ |
) rL rr ary, r.—a
where Raa=2a:1 2R,NENG and Rabab
=S ap-1 Rum,nnEng — @[ (-8 [i.+a
In obtaining Eqs(3.2]) and (3.22 we made use of the ERaa_4”f_§_ 1+ &%, In t.—al| (3.29

fact[as in Eq.(3.12] that nearX, the measure of integration

e, , takes the form[see Eq.(2.5] ue P+M2Mcab The analytic continuation of these expressions back to real
where,uz (F2 —a?)sinadedy (0<y=<2) is the measure values of the parameteesandq requires the substitution
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g%=-q?, a?=-a? f.=r,, static cas¢27,21]. Expression4.4) is really valid off-shell,
as we do not require the metric to satisfy any equations of
1 [f,+a) 2 motion. On-shell we must substitute in E@t.4) the field
=In| ——|=—tan’! — (3.260  equationR=0 satisfied by the Kerr-Newman metric.
rv+—a * At the one-loop level we consider the matter action in the
form
IV. HEAT KERNEL EXPANSION AND ENTROPY
In the Euclidean path integral approach to a statistical IE:EJ (V)2
field system at temperatufB=(27) ! one considers the 2J)e,

fields which are periodic with respect to imaginary time

with period 27 B. This works well for a static black hole and get for the partition function

when the metric does not depend on the time coordimate

[22]. One then closes the integral curves of the Killing vector 1

d, with the period 2r8. InZ(B)=— 5 Inde(—Le )
For a rotating black hole metric we need to close the

integral curves of the vectdt (2.4). The result of this is that

for arbitrary 8 we obtain the conical spa¢g,, the geometry

of which was described in the previous section. The partitio

function then reads

expressed via the determinant of the LapladidrV ,V*
over the conical spacg,. In the DeWitt-Schwinger proper
Yime representation we have, for the logarithm of the deter-
minant,

=ds

Z(ﬁ):f [D(P]eXF[_lE(QDag#y)]a (41) Tr(eSD) (45)

Inde(—D)=—fZ?
where the matter Euclidean actidp is considered on the ‘
spaceE,, with appropriate boundargi.e., periodicity condi-  |n four dimensions we have the asymptotic expansion
tions imposed on the matter figll ¢. The contribution to

the entropy is

Tr(esH) = ! %as" (4.6)
S=—(Bdg—1)INZ(B)|p-p, (4.2) (4ms)2=, °n

Although the Kerr-Newman metric is a solution of the and for the divergent part of (B, we get
Einstein equations with the matter source in form of a Max-
well field, the gravitational action is always modified by 1 /1 L
higher-order curvature terms due to quantum corrections. (InZ)diFst ane‘4+als‘2+2azln— , (4.7
SuchR? terms must be added to the action at the outset with i €
some bare constantg(z,C,5,C3p) (tree-leve) to absorb
the one-loop infinities. The baféree-level gravitational ac-
tion functional thus takes the form

wherelL is an infrared cutoff. It is known that for a manifold
with conical singularities the heat kernel coefficients in Eq.
(4.6) are really a sum

1
— 4y 2
Wgr—f vgd X( 167Gq R+c1gR ap=as+a, . (4.9

BRMmﬁ 4.3 of standard plus conical coefficients. The standard coeffi-

+c,gR,,R*"+C35R . )
2B 38 mentsEﬁI are the same as for a smooth maniféd28]:

uva,

Of course, we assume in addition to E¢.3) a classical 17 —
matter action which can in principle be rather complicated. agt:f 1, ai‘:_f R,

The corresponding tree-level entropy can be obtained as a 6Je,

replica of the action(4.3) after introducing the regulated

conical singularity and applying formul#4.1)—(4.2). Using . 1 — — 1 — —
formulas(3.21)—(3.23 of the previous section we obtain, for ay= f (@RwaﬁR“mB_@RWRW
the tree-level entropy, Ea

1 — 1
1 — — ——DR+—R2), 4.9
S(Gg,Cig)= _Az_f (8mC1gR+4mCy8Raa 30 72 “9
, 4GB s s )
+87CanR. ’ 4.4 vyhereas the parts c_oming from the singular surfacésta-
mCasRavan) @4 tionary point of the isometiyare
where Ry ,=2,-1R,,n4in, and Rabab 5

=Eavb:l_,2F_2W)\pngngngng, {n4,a=1,2 are vectors normal a0, =0; ala:z (1~ )f Jyd20;  (4.10

to 2. This is exactly the same expression that we had for the “ 3 el s,
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) ary holes are formulated in the same way. One could there-
\/;d 0 fore expect this also to be valid in the quantum case.
Consider Eq.(4.11) on the Kerr-Newman background.

m (1—a?) 1— a4 a
aZ,a_g o fE(ER+A1[K K _2tr(K'K)]

m (1-a* [ [— — Substituting here Eq3.25), the conditiorR= 0, and making
- @TL Raa—2Rabab the analytic continuatior{3.26), we finally obtain, for the
quantum entropy of the Kerr-Newman black hole,
+%KaKa+)\2[KaKa—2tr(K'K)] JVyd?e, 1 A
v 287 e2 =
A1, are some constants am@wazl,z is the extrinsic cur- 1[ 3qz{ (r2++a2) ) ( a) ] L
vature of the surface® with respect to normal vector +—il-— ——tan Y —||{In—,
n,,a=1,2; Ka=g"“K2V tr(x- K)ZEa:LZKZVKg" 45 ars ary My €
The expressioni4.10 for some special spaces has been (4.12

known for some timg29]. For a general static metric it was
derived recently by Fursad@0], in the case that all extrinsic Where Ay =4m(r% +a?) is area of the horizor®. In the
curvatureSKZ,, vanished. Dowkef31] derived the heat ker- limit aT>O this expression reduces to that of the Reissner-
nel coefficients in the forn{4.10 for an arbitrary conical Nordstran black hole obtained i}20] using the conical
metric of a general type with a surfae having nontrivial ~method and in[8] within the framework of a statistical-
extrinsic geometry. Very general arguments were used ifnechanical calculation in spirit of 't Hooft's approach. Sur-
[31] to derive the general structure of E@t.10: O(2) in-  prisingly, in the uncharged casg< 0) the quantum correc-
variance, dimensionality, and conformal invariance. The retion (4.12) does not depend on the rotation parametend
sult (4.10 contains some unknown constantg and\, in  coincides with the quantum entropy of the Schwarzchild
front of the conformal-invariant combination black hole[18]. We do not have an explanation of this fact.
[ k¥®—2tr(k- k)]. The analysis of31] does not provide a
prescription for obtaining the explicit values for these con- V. CONCLUSIONS
stants.

Applying the formula(4.2) to Eq. (4.7) and taking into
account that the standard coefficieaf$~ « we obtain for
the divergent quantum correction to the entropy

The Euclidean approach to black hole thermodynamics
implying the conical singularity method is known to be very
useful in the static case. It allows one to get both the classical
and quantum thermodynamic quantities of static black holes.

1 1 1 — We have proposed that the thermodynamics of the classical
f R—— —f (Raa—2Rgapap) static and stationary black holes are formulated in a similar
144m ) x 16m 45)x way. The underlying assumption is that the conical singular-
1 1 1 N ity technique can be applied to the rotating hole as well.
2 . . T .
—— — | K%+ —( N— —) In this paper we logically followed this line of reasoning.
16m 90Js 24m 30 We studied the Euclidean geometry of the Kerr-Newman
L metric for an arbitrary period along the timelike Killing vec-
In—. (4.11  tor generating the Abelian isometry of the space. The conical
€ geometry of the space near the horizon was established and
the é-function-like behavior of the curvatures obtained. This
We see that the divergent part of the entrégyll) depends  pehavior strongly resembles that of a static black hole.
both on the projections of the curvaturds,, and Rypap, The essential point of formulating the quantum thermody-
onto the subspace normal to the horizon surfa@nd on the  namics of static black hole is the proving the statement that
quadratic combinations of the extrinsic curvaturesofFor  all the UV divergences of the entropy of black hole due to
the static case all extrinsic curvatures vanish and(Ed.1) guantum matter are removed by the standard renormalization
repeats the form of the tree-level entrop§.4). This fact of couplings in the tree-level gravitational action. This al-
allows one to prové21] for arbitrary static black holes the lows one to consider the entropy as a well-defined quantum
statemen{16,1§ that all the UV divergences of entropy are field theoretical quantity. We demonstrated for the Kerr-
absorbed in the standard renormalization of the gravitationaNewman black hole th&y;, being expressed via geometrical
couplings G,c;) in the tree-level gravitational actio@.3). invariants repeats the form of the tree-level entropy in the
Applying the same line of reasoning to the Kerr-Newmansame way as for a static case. This proves thatehermal-
black hole entails studying the external geometry of the hoization statement works universally both for the static and
rizon %, of the charged rotating black hole. For this case westationary holes providing the correct treatment of the quan-
find that =,_; x®«k®=tr(k-x)=0 (see Appendix This tum thermodynamics.

Suiv= g2 As T

X fE[KaKa— 2tr(k- k)]

makes the coefficient$4.10 and the expression foBy;, However, it is still an open question as to what degrees of
(4.17) for the Kerr-Newman metric the same as for a staticfreedom are counted by the entropy of black hole. A useful
metric. approach to this problem is to compare our result with the

Consequently Sy, in Eqg. (4.11) repeats the form of the statistical-mechanical calculation of the quantum entropy of
tree-level entropy and thenormalizationstatement is valid Kerr-Newman black hole along the lines f—8]. For a
for a stationary hole as well. In one sense this is not surpriseharged nonrotating black hole it is known that there is per-
ing since the classical thermodynamics of static and statiorfect agreement between these two methdéskse [8] and
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[20]). Checking this for stationary casshould provide us (r2—a?)3sirt6
with a better understanding of the relationship between the 0L A B (AS5)
different entropies assigned to a black h[3&]. P
With respect to the normal vecton$,a=1,2 we may define
ACKNOWLEDGMENTS [33] the extrinsic curvatures of the surface:
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APPENDIX: EXTRINSIC GEOMETRY OF HORIZON

i ; : ra®sife [A
With respect to the Euclidean metii2.5 we may define el -
a pair of orthonormal vector,=n4d, ,a=1,2: ” p* p°

r_\/—Ar Kl:_ér(rZ—Aéz)sinze\/A_Xz
n= p? A i p p~

2__ A2\2¢j
. . r(r’—a??2sirtd A
nT:—(rZ—aZ) ng= 2 (A2) Ké’q’:_%\/ﬁ:’ (A9)
and
Covariantly these are .
) azsmacosﬂ\/X
~ Ki,=— =2\ =2
=5 (A3) g g
5 a(r’—a?sinfcosy [ A
Kig="— =3 =7 (AT)
, \/X , \/X - p p
n‘=\/=3, N5%=—"\/=zasiro. A4 o
7 p> ¢ p* (A4) For the trace of the extrinsic curvatures;= «},,g*", we
obtain
The vectorsn! andn? are normal to the horizon surface
[defined as r=r, ,A(r=r,)=0], which is a two- 1 2r\/—Ar -
dimensional surface with induced metric K AL k°=0, (A8)
Yur=0,,— N N;—n2n%. The (nonzerg components of the _ . _
induced metric are which clearly vanishes when restricted to the surface
S[A(r=F,)=0].
) a2%sinfe The quadratic combinations
Yoo=P s Y= =2 ~
p v 2r2A
K,uVK1 =776
a(r’—a?sirfo P
Y E— A ~
Yo 3 , ,, 2a’cosoA
Ky Ky =T (A9)

The recent statistical calculation performed 28] appears to be vanishX separately both in the stati@€0) and stationary
unsatisfactory since it relates the entropy of rotating hole with datda# 0) cases. Consequently, we havextrk)= szxa“”
on the ergosphere rather than on the horizon. =0 on the horizon.

[1] J. D. Bekenstein, Lett. Nuovo Cimenty 737 (1972; Phys. [7] R. B. Mann, L. Tarasov, and A. Zelnikov, Class. Quantum

Rev. D7, 2333(1973; 9, 3292(1974. Grav.9, 1487(1992.
[2] S. W. Hawking, Commun. Math. Phy43, 199 (1975. [8] J. -G. Demers, R. Lafrance, and R. C. Myers, Phys. Res2D
[3] R. P. Kerr, Phys. Rev. Lettll, 237 (1963; E. T. Newman 2245(1995.
et al, J. Math. Phys6, 918(1965. [9] M. Srednicki, Phys. Rev. Let?1, 666(1993; L. Bombelli, R.
[4] J. D. Bekenstein, “Do we understand black hole entropy?” Koul, J. Lee, and R. Sorkin, Phys. Rev.33, 373(1986); V.
Report No. gr-qc/940901&inpublishegl Frolov and I. Novikov,ibid. 48, 4545(1993.
[5] V. P. Frolov, “Black hole entropy and physics at Planckian [10] C. Callan and F. Wilczek, Phys. Lett. 83 55 (1994.
scales,” Report No. hep-th/95101%6npublished [11] A. 1. Barvinsky, V. P. Frolov, and A. I. Zelnikov, Phys. Rev. D

[6] G. 't Hooft, Nucl. Phys.B256, 727 (1985. 51, 1741(1995.



3940 ROBERT B. MANN AND SERGEY N. SOLODUKHIN 54

[12] S. P. de Alwis and N. Ohta, “On the entropy of quantum fields [24] J. D. Brown, E. A. Martinez, and J. W. York, Jr., Phys. Rev.
in black hole backgrounds,” Report No. COLO-HEP-347, Lett. 66, 2281(1991).

hep-th/9412027unpublished [25] D. V. Fursaev and S. N. Solodukhin, Phys. Rev5p) 2133
[13] G. Cognola, L. Vanzo, and S. Zerbini, Class. Quantum Grav.  (1995.

12, 1927(1995. [26] D. D. Sokolov and A. A. Starobinsky, Sov. Phys. DoRR,
[14] A. Ghosh and P. Mitra, Phys. Rev. Lef3, 2521(1994). 312(1979.
[15] K. Shiraishi, Mod. Phys. Lett. A, 3509(1994. [27] R. M. Wald, Phys. Rev. DI8, R3427(1993; V. lyer and R.
[16] L. Susskind and J. Uglum, Phys. Rev.5D, 2700 (1994); L. M. Wald, ibid. 50, 846 (1994; T. A. Jacobson, G. Kang, and

R. C. Myers,ibid. 49, 6587(1994; V. lyer and R. M. Wald,

ibid. 52, 4430(1995.

[28] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved
Space (Cambridge University Press, Cambridge, England,
1982.

[29] H. P. McKean and |. M. Singer, J. Diff. Geometdy, 43

(1967); J. Cheegeribid. 18, 575(1983; H. Donnelly, Math.

Ann. 224, 161(1976; P. Chang and J. S. Dowker, Nucl. Phys.

B395 407 (1993; D. V. Fursaev, Class. Quantum GraMl,

Susskind, “Some speculations about black hole entropy in
string theory,” Report No. hep-th/9309146npublished

[17] T. Jacobson, “Black hole entropy and induced gravity,” Re-
port No. gr-qc/940403%unpublished

[18] S. N. Solodukhin, Phys. Rev. B1, 609 (1995.

[19] D. V. Fursaev, Mod. Phys. Lett. AQ, 649(1995.

[20] S. N. Solodukhin, Phys. Rev. B1, 618 (1995.

[21] D. V. Fursaev and S. N. Solodukhin, Phys. Lett.3B5 51

(1996. 1431 (1994; G. Cognola, K. Kirsten, and L. Vanzo, Phys.
[22] G. W. Gibbons and S. W. Hawking, Phys. Rev.1B, 2752 Rev. D49, 1029(1994; D. V. Fursaev and G. Mieldbid. 49,

(1976; S. W. Hawking, inGeneral Relativityedited by S. W. 987 (1994.

Hawking and W. IsraelCambridge University Press, Cam- [30] D. V. Fursaev, Phys. Lett. B34, 53 (1994.

bridge, England, 1999 [31] J. S. Dowker, Phys. Rev. B0, 6369(1994.

[23] M. -H. Lee and J. K. Kim, “The entropy of a quantum field in [32] S. N. Solodukhin, this issue, Phys. Rev.5B, 3900(1996.
a charged Kerr black hole,” Report No. KAIST-CHEP-95/8 [33] L. P. EisenhartRiemannian GeometrgPrinceton University
(unpublishedt this issue, Phys. Rev. B4, 3904(1996. Press, Princeton, NJ, 1966



