
tum
red.
izon.
kernel

plings
le.

PHYSICAL REVIEW D 15 SEPTEMBER 1996VOLUME 54, NUMBER 6

0556-2821/
Conical geometry and quantum entropy of a charged Kerr black hole
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We apply the method of conical singularities to calculate the tree-level entropy and its one-loop quan
corrections for a charged Kerr black hole. The Euclidean geometry for the Kerr-Newman metric is conside
We show that for an arbitrary periodization in Euclidean space there exists a conical singularity at the hor
Its d-function-like curvatures are calculated and are shown to behave similar to the static case. The heat
expansion for a scalar field on this conical space background is derived and the~divergent! quantum correction
to the entropy is obtained. It is argued that these divergences can be removed by renormalization of cou
in the tree-level gravitational action in a manner similar to that for a static black ho
@S0556-2821~96!01318-5#
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I. INTRODUCTION

The notion that black holes could be considered as th
modynamic systems characterized by temperature, ene
and entropy was first proposed by Bekenstein@1# and con-
firmed via the discovery of their thermal radiation propertie
by Hawking@2#. Independently, it was realized that there a
only a few macroscopic parameters which can be assigne
a black hole: its mass (m), charge (q), and angular momen-
tum (V). In the static case, angular momentum vanishes
typical representative of this class is the Reissner-Nordstr¨m
black hole which is a solution of the Einstein equations wi
a Maxwell field as a source. Such a hole is characterized
just its mass (m) and charge (q).

When rotation is present, the Einstein-Maxwell equatio
have the Kerr-Newman metric@3# as a solution. This metric
corresponds to a black hole of a general type characteri
by all three parameters (m,q,V). Remarkably, the thermo-
dynamic analogy works for this general case; in particular
suggests that there is an entropy associated with this h
that is proportional to the area of the horizon. If this analo
is exact, there must be hidden degrees of freedom of the h
which are counted by the Bekenstein-Hawking entropy. R
cently, there has been much interest in attempting to prov
a statistical explanation of these degrees of freedom and t
relationship to the entropy~see reviews@4,5#! within some
quantum-mechanical calculations@6–21#. However, the pro-
posed expressions for the entropy can be considered to
quantum~one-loop! corrections to the classical quantity, an
do not give any explanation of the classical entropy itself

According to ’t Hooft@6#, one can relate the entropy of a
black hole with a thermal gas of quantum field excitation
propagating outside the horizon. In his model ’t Hooft intro
duced a ‘‘brick wall’’ cutoff: a fixed boundary near the ho
rizon within which the quantum field does not propagate.
role is to eliminate divergences which appear due to the
finite growth of the density of states close to the horizo
This model can be successfully formulated in differe
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space-time dimensions@7#. The quantization of a field sys-
tem typically requires an ultraviolet~UV! regularization pro-
cedure that must be taken into account in the statistic
mechanical calculation as well. Remarkably, it wa
demonstrated in@8# that the Pauli-Villars regularization not
only removes the standard field-theoretical UV divergenc
but automatically implements a cutoff in the ’t Hooft calcu
lation, rendering unnecessary the introduction of the ‘‘bric
wall.’’

The natural way to formulate black hole thermodynamic
is to use the Euclidean path integral approach@22#. For an
arbitrary field system it entails closing the Euclidean tim
coordinate with a periodb5T21 whereT is the temperature
of the system. This yields a periodicity condition for th
quantum fields in the path integral. In the black hole case f
arbitrary b this procedure leads to an effective Euclidea
manifold which has a conical singularity at the horizon th
vanishes for a fixed valueb5bH . Thermodynamic quanti-
ties ~i.e., energy and entropy! are calculated by differentiat-
ing the corresponding free energy with respect tob and then
settingb5bH . This procedure was consistently carried ou
for a static black hole and resulted in obtaining the gene
UV-divergent structure of the entropy@18–21#.

Essentially, the divergences of the entropy have the sa
origin as the UV-divergences of the quantum effective actio
and can be removed by renormalization of the gravitation
couplings in the tree-level gravitational action@16,17,21#.
The technique developed in@21# allowed proof of this state-
ment for an arbitrary static black hole. Alternatively, this wa
demonstrated for the Reissner-Nordstro¨m black hole within
’t Hooft’s approach@8# applying the Pauli-Villars regulariza-
tion scheme.

An essential loophole in the above considerations is th
they were concerned with only static, nonrotating blac
holes. The only exception is a series of recent preprints@23#
where ’t Hooft’s approach was applied to a Kerr-Newma
black hole and some~qualitative! analysis of divergences
was presented. Adoption of conical methods for stationa
black holes necessitates dealing with problems of treati
Euclideanization~or complexification! of the Kerr-Newman
metric @24# and a general periodicity analysis of its conica
geometry. Although the passage to a Euclidean metric a
3932 © 1996 The American Physical Society
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periodicity arguments were given some time ago@22# the
conical geometry for arbitrary period in the Kerr-Newma
case remains unclear. Additional outstanding questions
clude the structure of the UV divergences of the entropy
stationary black holes and whether or not their renormaliz
tion works in the same way as for a static hole.

In this paper we consider these questions in detail. In S
II we describe the passage to Euclidean space for the K
Newman metric, establishing the structure of this space
the vicinity of the horizon. We determine the conditions ne
essary for periodicity in the direction of the timelike Killing
vector~which is analog of the Euclidean time vector]t in the
static case! corresponding to regular Euclidean space. F
arbitrary periods there is a conical singularity at the horiz
surface. The geometry of this conical space is studied in S
III. We employ the regularization method suggested in@25#
and obtain the expectedd-function-like behavior of the cur-
vatures. The integrals of quadratic combinations of curvatu
tensors are also considered. The results we obtain hav
marked similarity to the static case. In Sec. IV we consid
the Euclidean path integral quantization of a scalar mat
field in the background of a conical Kerr-Newman metri
We obtain the UV divergences for the entropy, the structu
of which is similar to that obtained in the static case. W
argue that these divergences of entropy are renormalize
the same way as for a static black hole.

II. EUCLIDEAN KERR-NEWMAN GEOMETRY

The Kerr-Newman metric of the space-time wit
Minkowskian signature in Boyer-Lindquist coordinates tak
the form

ds25grr dr
21guudu21gttdt

212gtfdtdf1gffdf2,

grr5
r2

D
, guu5r2, gtt52

~D2a2sin2u!

r2
,

gtf52
asin2u~r 21a22D!

r2
,

gff5S ~r 21a2!22Da2sin2u

r2 D sin2u,
D~r !5r 21a21q222mr, r25r 21a2cos2u. ~2.1!

The function D(r ) can be represented in the form
D(r )5(r2r1)(r2r2), wherer65m6Am22a22q2.

This space-time has a pair of orthogonal Killing vector

K5] t1
a

r 21a2
]f , K̃5asin2u] t1]f ,

K252
Dr2

~r 21a2!2
, K̃25r2sin2u, K•K̃50. ~2.2!

The vectorK is timelike everywhere in the regionr>r1 and
becomes nullK250 for r5r1 , whereasK̃ is spacelike ev-
erywhere outside the axis (u50,u5p) where K̃250. The
one-forms dual toK and K̃ are
n
in-
of
a-

ec.
err-
in
c-

or
on
ec.

re
e a
er
ter
c.
re
e
d in

h
es

s:

v5
~r 21a2!

r2
~dt2asin2udf!,

ṽ5
~r 21a2!

r2 S df2
a

~r 21a2!
dtD ,

v@K#5ṽ@K̃#51, v@K̃#5ṽ@K#50. ~2.3!

To obtain the correspondence with the Schwarzschil
metric note thatK and K̃ are the respective analogs of the
vectors] t and]f andv andṽ are the respective analogs of
dt anddf of the Schwarzschild metric. This correspondenc
is almost exact with one exception:v and ṽ together with
du and dr form an anholonomic basis of one-forms. This
means that there are no globally defined coordinatesX and
X̃ such thatv5dX and ṽ5dX̃.

Horizon surfacesS are defined as the surfaces where the
timelike vectorK becomes null,K2uS50; the outer horizon
is the surface for whichr5r1 . In addition to this one often
considers the surface where the vector] t becomes null. This
surface is called the ergosphere and is determined by equ
tion r 21a2cos2u1q222mr50. It lies outside the outer hori-
zonS, touching it at the axisu50 andu5p.

Consider now the Euclideanization of the Kerr-Newman
metric. The standard prescription says@22# that we must
change the time variablet5ıt and supplement this by the
parameter transformationa5ıâ,q5ıq̂. The Euclideanvec-
tors K,K̃ and the corresponding one-formsv,ṽ take the
form

K5]t2
â

r 22â2
]f , K̃5âsin2u]t1]f ,

v5
~r 22â2!

r̂2
~dt2âsin2udf!,

ṽ5
~r 22â2!

r̂2 S df1
â

~r 22â2!
dt D , ~2.4!

wherer̂25r 22â2cos2u. The Euclidean metric can be written
in the form

dsE
25

r̂2

D̂
dr21

D̂r̂2

~r 22â2!2
v21 r̂2~du21sin2uṽ2!, ~2.5!

wherev and ṽ take the form~2.4!, D̂5r 22â22q̂222mr.
Roots of the functionD̂ are nowr̂65m6Am21â21q̂2. The
horizon surfaceS defined byr5 r̂1 is the stationary surface
of the Killing vector K. Consider the metric~2.5! near
r5 r̂1 . It is useful to introduce a newradial variablex such
that near the horizon we have

D̂5g~r2 r̂1!5
g2x2

4
,

~r2 r̂1!5
gx2

4
, g52Am21â21q̂2. ~2.6!
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Then the metric~2.5! up to termsO(x2) reads

dsE
25dsS

21 r̂1
2 S dx21 g2x2

4~ r̂1
2 2â2!2

v2D , ~2.7!

wherer̂1
2 5 r̂1

2 2â2cos2u and

dsS
25 r̂1

2 ~du21sin2uṽ2!5 r̂1
2 du21

~ r̂1
2 2â2!2

r̂1
2 sin2udc2

~2.8!

is metric on the horizon surfaceS. In writing Eq. ~2.8! we
employed the fact that onS we may introduce the well-
defined angle coordinatec5f1@ â/( r̂1

2 2â2)#t. The regu-
larity of the metric~2.8! at the pointsu50,u5p requires the
identification of the pointsc and c12p on S. After all
calculations with the Euclideanized Kerr-Newman metr
have been completed, we analytically continue the resu
obtained back to the real valuesa andq.

Expression~2.7! may be rewritten as

dsE
25dsS

21 r̂1
2 dsC2

2 , ~2.9!

wheredsC2
2 is metric of a two-dimensional diskC2 attached

to the horizonS at a point (u,c):

dsC2
2 5dx21

g2x2

4r̂1
4 ~dt2âsin2udf!2. ~2.10!

Consider the metric~2.10! with (u,c) fixed. Then we may
introduce an angle coordinate onC2, x5t2âsin2uf, in
terms of which the metric reads

dsC2
2 5dx21

g2x2

4r̂1
4
dx2. ~2.11!

Requiring the absence of a conical singularity atx50 means
that we must identify pointsx andx14pg21r̂1

2 . In order
for this to hold independently of the coordinateu on the
horizon we must also identify points (t,f) with
(t12pbH ,f22pVbH), where V5â/( r̂1

2 2â2) is the
~complex! angular velocity and bH5( r̂1

2 2â2)/
Am21â21q̂2. It is easy to see that the identified points hav
the same coordinatec.

With the described identification we obtain the followin
picture of the Euclidean Kerr-Newman geometry in the v
cinity of the horizonS. Attached to every point (u,c) of the
horizon is a two-dimensional diskC2 with coordinates
(x,x). Although x is not a global coordinate in four-
dimensional space and at each point (u,c) there is a new
x, the periodic identification of points onC2 works univer-
sally and independently of any point on the horizonS. As in
the static case, the Euclidean Kerr-Newman geometry p
sesses an Abelian isometry generated by the Killing vec
K with horizon surfaceS being a fixed set of the isometry
Globally,K is not a coordinate vector. However, locally w
haveK5]x wherex was introduced above. The periodicit
is in the direction of the vectorK and the resulting Euclidean
spaceE is a regular manifold.
ic
lts

e

g
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y

III. CONICAL SINGULARITY AND CURVATURE
TENSORS

Assume now that we close the trajectory of the Killing
vectorK with arbitrary period 2pb. Near the horizon this
means that onC2 in Eqs.~2.9! and~2.10! we identify points
(t,f) and (t12pb,f22pVb) with bÞbH . Note again
that points identified in this way have the same value of th
coordinatec. Then x is an angle coordinate with period
2pb(11âVsin2u). By introducing a new angle coordinate
x5br̂1

2 ( r̂1
2 2â2)21x̄ which has period 2p, the metric on

C2 becomes

dsC2,a
2 5dx21a2x2dx̄2 ~3.1!

and coincides with the metric on a two-dimensional con
with angular deficit d52p(12a), a5b/bH . With the
above identification the four-dimensional~4D! metric ~2.5!
describes the Euclidean conical spaceEa with singular sur-
faceS.

Curvature tensors at conical singularities behave as dis
butions. This behavior was precisely established for a flat 2
cone in @26# and for a general static metric in@25#. The
Kerr-Newman metric, which is the subject of our conside
ation here, is stationary and not static. Therefore, all the fo
mulas obtained in@25# must be checked for this case.

To proceed, we apply the method which was successful
the static case~see details in@25#!. It consists in regulating
the conical singularity when the cone metric~3.1! is replaced
by a sequence of regular metrics labeled by a parameterb:

dsC2,a,b
2 5 f ~x,b!dx21a2x2dx̄2, ~3.2!

where f (x,b) is some smooth regulating function that ap
proaches unity asb→0, e.g.,

f ~x,b!5
x21a2b2

x21b2
~3.3!

is a suitable regularization function. In the limitb→0 the
sequence of metrics~3.2! reproduces ad-function-like con-
tribution to the curvature.

Applying this method to the Kerr metric, consider a sma
vicinity of the horizon surfaceS. ForbÞbH the metric there
reads

dsEa

2 5dsS
21 r̂1

2 dsCa

2 . ~3.4!

Replacing the cone metricdsCa

2 by dsCa,b

2 @Eq. ~3.2!# we

obtain a sequence of regular metrics:

dsEa,b

2 5dsS
21 r̂1

2 dsCa,b

2 . ~3.5!

To calculate the curvature we define the~anholonomic! basis
of one-forms$ea,a51, . . . ,4% orthonormal with respect to
the metric~3.5!:

e15br̂1 f
1/2~y!dy, ~3.6!

e25by
~m21â21q̂2!1/2

r̂1
~dt2âsin2udf!,
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e35 r̂1du,

e45
~ r̂1

2 2â2!

r̂1
sinuS df1

â

~ r̂1
2 2â2!

dt D ,
where we changed variables so th
x5by, f (y)5(y21a2)/(y211).

The Lorentz connection one-formvb
a5vbc

a ec is found
from the equation

dea1vb
a`eb50. ~3.7!

We are interested in those components of the Lorentz c
nection which are singular in the limitb→0. Analyzing the
expressionsdea for the basis~3.6! we observe that only
de2 contains a singular term:

de25
dy

y
`e21•••5@by f1/2~y!#21e1`e21•••, ~3.8!

where the ellipsis means terms finite in the limitb→0. It
follows from Eq. ~3.8! that the only singular component o
the Lorentz connection is

v 1
25@byr̂1 f

1/2~y!#21e21•••. ~3.9!

The curvature two-formRb
a5Rbcd

a ec`ed is defined as

Rb
a5dvb

a1vc
a`vb

c .

Again, the only singular component ofRb
a is

R 1
25dv 1

21•••5
1

2yb2r̂1
2

f y8

f 2
e2`e11•••

and so in terms of curvature components the only sing
component is

R21215
1

2yb2r̂1
2

f y8

f 2
1•••. ~3.10!

Introducing a pair of vectors@see Appendix Eqs.~A1! and
~A2!# na5na

m]m ,a51,2 orthogonal to the horizonS and
dual to the one-formsea, a51,2 we may rewriteR2121

5 1
2 Rmnabna

mnb
nna

anb
b

In order to show that the componentR2121 behaves as a
d function in the limitb→0, let us consider the integral

I De
5E

De

R2121v~x,u,c!e1`e2`e3`e4 ~3.11!

over a small diskDe surrounding the horizon surfaceS,
0<x<e. In Eq. ~3.11! v(x,u,c) is a test function which is
constant along the trajectory of the vectorK (K@v#50). It
can be expanded as

v~x,u,c!5v0~u,c!1v1~u,c!x21•••

5v0~u,c!1b2v1~u,c!y21•••.
at

on-

f

lar

Recall that (u,c) are the coordinates on the horizonS. Sub-
stituting Eqs.~3.6! and ~3.10! into Eq. ~3.11! we obtain

I De
5E

0

e/b

dy
f y8

2 f 3/2
Am21â21q̂2 R ~dt

2âsin2udf!E
S

1

r̂1
2 ~v01v1b

2y21••• !e3`e4.

~3.12!

In Eq. ~3.12! we first integrate overe1`e2 in the subspace
orthogonal toS under fixed (u,c) and then take the integral
*Se

3`e4 over the horizon. This yields

R ~dt2âsin2udf!5
2pbr̂1

2

r̂1
2 2â1

2
, ~3.13!

where the integration is taken over the closed integral traje
tory of the Killing vectorK under fixed (u,c).

In the limit b→0, we havee/b→` in they integration in
Eq. ~3.12! and so obtain

E
0

`

dy
f y8

2 f 3/2
52 f21/2~y!u0

`5
12a

a
. ~3.14!

Taking into account thatbH5( r̂1
2 2â2)/Am21â21q̂2 from

Eqs.~3.12!–~3.14! we finally obtain, in the limitb→0,

I De
52p~12a!E

S
v0~u,c!e3`e4. ~3.15!

Since this holds for arbitrarily smalle we conclude that in
the limit b→0 the quantityR2121 behaves as ad function
having support at the surfaceS. Noting that the vectors
na ,a51,2 introduced above are normal toS we may write

Rab
mn5R̄ab

mn12p~12a!@~nmna!~nnnb!2~nmnb!~nnna!#dS ,

Rn
m5R̄n

m12p~12a!~nmnn!dS ,

R5R̄14p~12a!dS , ~3.16!

where dS is the delta function*MfdSe
1`e2`e3`e4

5*S f e
3`e4 and we denote (nmnn)5(a51

2 nm
ann

a . In particu-
lar, it follows from Eq.~3.16! that

E
Ea

Re1`e2`e3`e4

5aE
E
R̄e1`e2`e3`e414p~12a!AS, ~3.17!

whereAS5*Se
3`e4 is area ofS. For the particular case of

the Kerr-Newman metric,R̄50. Remarkably, expressions
~3.16! and ~3.17! are exactly the same as that obtained in
@21# for a static metric.

For a variety of applications it is necessary to know the
integrals of quadratic combinations of curvatures over th
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spaceEa with a conical singularity at the surfaceS. Accord-
ing to Eq.~3.16!,R contains (12a)dS contributions as well
as a regular partR̄. Therefore, one can expect a result whi
can be symbolically written as follows:

E
Ea

R25aE
Ea51

R̄212~12a!E
S
R̄n1O„~12a!2…,

~3.18!

where R̄n means projection of the tensorR̄ onto the sub-
ch

space orthogonal to the singular surfaceS. The expression
~3.18! is ill defined sinceR2 contains term@(12a)dS#2.
However, it is of higher order with respect to (12a) and so
can be collected in the last term in Eq.~3.18!.

The form ~3.18! was obtained in@25# for a static metric.
To verify this for the Kerr-Newman case we must write th
metric ~2.5! near the horizonS, including all terms of order
x2. Taking into account the regularization functionf (x,b) as
above the metric reads
dsEa,b

2 5by f~y!dy21
g2b2y2

4r̂1
2 ~dt2âsin2udf!21S r̂1

2 1
g

2
b2y2r̂1D du21F ~ r̂1

2 2â2!2

r̂1
2 1

~ r̂1
2 2â2!

r̂1
2

3S 12
~ r̂1

2 2â2!

2r̂1
2 D g r̂1b

2y2Gsin2uS df1
â

r̂1
2 2â2

dt D 22 gâb2y2

2r̂1
2

sin2uS df1
â

r̂1
2 2â2

dt D dt. ~3.19!
l

n

al
The general structure of quadratic combinations of curvatu
terms~denoted byR2) for the metric~3.19! symbolically is

R25b2A1
f y8

b2
B1

~ f y8!2

b4
C1O~b4!, ~3.20!

whereA,B,C are some functions that are independent ofb
and do not contain derivatives of the regularization functio
f (y).
Since the measure of integration in the region nearS is

proportional tob2 we conclude that second and third terms i
Eq. ~3.20! after integration produce in the limitb→0 the
respective second and third terms in Eq.~3.18!. In order to
get this we use the fact that the derivatives off (y) behave as
f 8(y);(12a).
After straightforward but tedious calculations we obtain

in the limit b→0,

E
Ea

RmnRmn5aE
E
R̄mnR̄mn14p~12a!

3E
S
R̄aa1O„~12a!2…, ~3.21!

E
Ea

RmnlrRmnlr5aE
E
R̄mnlrR̄mnlr18p~12a!

3E
S
R̄abab1O„~12a!2…, ~3.22!

where R̄aa5(a51,2R̄mnna
mna

n and R̄abab

5(a,b51,2R̄mnlrna
mna

lnb
nnb

r .
In obtaining Eqs.~3.21! and ~3.22! we made use of the

fact @as in Eq.~3.12!# that nearS the measure of integration
mEa,b

takes the form@see Eq.~2.5!# mEa,b
5 r̂1

2 mSmCa,b
,

wheremS5( r̂1
2 2â2)sinududc (0<c<2p) is the measure
re

n

n

,

on S andmCa,b
5ab2f 1/2(y)dydx̄ (0<x̄<2p) is the mea-

sure on the regularized coneCa,b . For the integral ofR
2 we

obtain

E
Ea

R25O„~12a!2…

in agreement with the expected formula

E
Ea

R25aE
E
R̄218p~12a!E

S
R̄1O„~12a!2…, ~3.23!

since the Kerr-Newman metric satisfiesR̄50.
Again we obtain for a stationary metric with a conica

singularity the same expressions~3.21!–~3.23! as for the
static case@25#.

For the Kerr-Newman metric we have, on the horizo
S,

1

2
R̄abab5R̄21215

r̂1
2 ~4q̂218mr̂1!2~ q̂216mr̂1!r̂2

r̂1
6 ,

1

2
R̄aa5R̄115R̄225

q̂2

r̂1
4 ~3.24!

and after integration overS we get

E
S
R̄abab58p

~ r̂1
2 1q̂2!

r̂1
2 14p

q̂2

r̂1
2

~ r̂1
2 2â2!

âr̂1

lnS r̂11â

r̂12â
D ,

E
S
R̄aa54p

q̂2

r̂1
2 F11

~ r̂1
2 2â2!

2âr̂1

lnS r̂11â

r̂12â
D G . ~3.25!

The analytic continuation of these expressions back to re
values of the parametersa andq requires the substitution
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q̂252q2, â252a2, r̂15r1 ,

1

â
lnS r̂11â

r̂12â
D 5

2

a
tan21S a

r1
D . ~3.26!

IV. HEAT KERNEL EXPANSION AND ENTROPY

In the Euclidean path integral approach to a statistic
field system at temperatureT5(2pb)21 one considers the
fields which are periodic with respect to imaginary timet
with period 2pb. This works well for a static black hole
when the metric does not depend on the time coordinatet
@22#. One then closes the integral curves of the Killing vect
]t with the period 2pb.

For a rotating black hole metric we need to close th
integral curves of the vectorK ~2.4!. The result of this is that
for arbitraryb we obtain the conical spaceEa , the geometry
of which was described in the previous section. The partiti
function then reads

Z~b!5E @Dw#exp@2I E~w,gmn!#, ~4.1!

where the matter Euclidean actionI E is considered on the
spaceEa with appropriate boundary~i.e., periodicity! condi-
tions imposed on the matter field~s! w. The contribution to
the entropy is

S52~b]b21!lnZ~b!ub5bH
. ~4.2!

Although the Kerr-Newman metric is a solution of th
Einstein equations with the matter source in form of a Ma
well field, the gravitational action is always modified b
higher-order curvature terms due to quantum correctio
SuchR2 terms must be added to the action at the outset w
some bare constants (c1,B ,c2,B ,c3,B) ~tree-level! to absorb
the one-loop infinities. The bare~tree-level! gravitational ac-
tion functional thus takes the form

Wgr5E Agd4xS 2
1

16pGB
R1c1,BR

2

1c2,BRmnR
mn1c3,BRmnabR

mnabD . ~4.3!

Of course, we assume in addition to Eq.~4.3! a classical
matter action which can in principle be rather complicate
The corresponding tree-level entropy can be obtained a
replica of the action~4.3! after introducing the regulated
conical singularity and applying formulas~4.1!–~4.2!. Using
formulas~3.21!–~3.23! of the previous section we obtain, for
the tree-level entropy,

S~GB ,ci ,B!5
1

4GB
AS2E

S
~8pc1,BR̄14pc2,BR̄aa

18pc3,BR̄abab!, ~4.4!

where R̄aa5(a51,2R̄mnna
mna

n and R̄abab

5(a,b51,2R̄mnlrna
mna

lnb
nnb

r , $na
m ,a51,2% are vectors normal

to S. This is exactly the same expression that we had for t
al

r

e

n

x-

s.
ith

d.
s a

he

static case@27,21#. Expression~4.4! is really valid off-shell,
as we do not require the metric to satisfy any equations
motion. On-shell we must substitute in Eq.~4.4! the field
equationR̄50 satisfied by the Kerr-Newman metric.

At the one-loop level we consider the matter action in th
form

I E5
1

2EEa

~¹w!2

and get for the partition function

lnZ~b!52
1

2
lndet~2hEa

!

expressed via the determinant of the Laplacianh5¹m¹m

over the conical spaceEa . In the DeWitt-Schwinger proper
time representation we have, for the logarithm of the dete
minant,

lndet~2h !52E
e2

`ds

s
Tr~esh!. ~4.5!

In four dimensions we have the asymptotic expansion

Tr~esh!5
1

~4ps!2(n50

`

ans
n ~4.6!

and for the divergent part of (lnZ)div we get

~ lnZ!div5
1

32p2 S 12 a0e241a1e
2212a2ln

L

e D , ~4.7!

whereL is an infrared cutoff. It is known that for a manifold
with conical singularities the heat kernel coefficients in E
~4.6! are really a sum

an5an
st1an,a ~4.8!

of standard plus conical coefficients. The standard coe
cientsān

st are the same as for a smooth manifoldE @28#:

a0
st5E

Ea

1, a1
st5

1

6EEa

R̄,

a2
st5E

Ea

S 1

180
R̄mnabR̄

mnab2
1

180
R̄mnR̄

mn

2
1

30
hR̄1

1

72
R̄2D , ~4.9!

whereas the parts coming from the singular surfaceS ~sta-
tionary point of the isometry! are

a0,a50; a1,a5
p

3

~12a2!

a E
S
Agd2u; ~4.10!
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a2,a5
p

3

~12a2!

a E
S
S 16 R̄1l1@kaka22tr~k•k!# DAgd2u

2
p

180

~12a4!

a3 E
S
S R̄aa22R̄abab

1
1

2
kaka1l2@kaka22tr~k•k!# DAgd2u,

l1,2 are some constants andkmn
a ,a51,2 is the extrinsic cur-

vature of the surfaceS with respect to normal vecto
na ,a51,2; ka5gmnkmn

a tr(k•k)5(a51,2kmn
a ka

mn .
The expression~4.10! for some special spaces has be

known for some time@29#. For a general static metric it wa
derived recently by Fursaev@30#, in the case that all extrinsic
curvatureskmn

a vanished. Dowker@31# derived the heat ker
nel coefficients in the form~4.10! for an arbitrary conical
metric of a general type with a surfaceS having nontrivial
extrinsic geometry. Very general arguments were used
@31# to derive the general structure of Eq.~4.10!: O~2! in-
variance, dimensionality, and conformal invariance. The
sult ~4.10! contains some unknown constantsl1 and l2 in
front of the conformal-invariant combinatio
@kaka22tr(k•k)#. The analysis of@31# does not provide a
prescription for obtaining the explicit values for these co
stants.

Applying the formula~4.2! to Eq. ~4.7! and taking into
account that the standard coefficientsan

st;a we obtain for
the divergent quantum correction to the entropy

Sdiv5
1

48pe2
AS1F 1

144pES
R̄2

1

16p

1

45ES
~R̄aa22R̄abab!

2
1

16p

1

90ES
kaka1

1

24p S l12
l2

30D
3E

S
@kaka22tr~k•k!#G lnLe . ~4.11!

We see that the divergent part of the entropy~4.11! depends
both on the projections of the curvatures,R̄aa and R̄abab,
onto the subspace normal to the horizon surfaceS and on the
quadratic combinations of the extrinsic curvatures ofS. For
the static case all extrinsic curvatures vanish and Eq.~4.11!
repeats the form of the tree-level entropy~4.4!. This fact
allows one to prove@21# for arbitrary static black holes th
statement@16,18# that all the UV divergences of entropy a
absorbed in the standard renormalization of the gravitatio
couplings (G,ci) in the tree-level gravitational action~4.3!.
Applying the same line of reasoning to the Kerr-Newm
black hole entails studying the external geometry of the
rizon S of the charged rotating black hole. For this case
find that (a51,2k

aka5tr(k•k)50 ~see Appendix!. This
makes the coefficients~4.10! and the expression forSdiv
~4.11! for the Kerr-Newman metric the same as for a sta
metric.

Consequently,Sdiv in Eq. ~4.11! repeats the form of the
tree-level entropy and therenormalizationstatement is valid
for a stationary hole as well. In one sense this is not surp
ing since the classical thermodynamics of static and stat
n

in

re-

n-

e
nal

n
o-
e

tic

ris-
on-

ary holes are formulated in the same way. One could the
fore expect this also to be valid in the quantum case.

Consider Eq.~4.11! on the Kerr-Newman background.
Substituting here Eq.~3.25!, the conditionR̄50, and making
the analytic continuation~3.26!, we finally obtain, for the
quantum entropy of the Kerr-Newman black hole,

Sdiv5
1

48pe2
AS

1
1

45H 12
3q2

4r1
2 F11

~r1
2 1a2!

ar1
tan21S a

r1
D G J lnLe ,

~4.12!

where AS54p(r1
2 1a2) is area of the horizonS. In the

limit a→0 this expression reduces to that of the Reissne
Nordström black hole obtained in@20# using the conical
method and in@8# within the framework of a statistical-
mechanical calculation in spirit of ’t Hooft’s approach. Sur
prisingly, in the uncharged case (q50) the quantum correc-
tion ~4.12! does not depend on the rotation parametera and
coincides with the quantum entropy of the Schwarzchi
black hole@18#. We do not have an explanation of this fact

V. CONCLUSIONS

The Euclidean approach to black hole thermodynami
implying the conical singularity method is known to be ver
useful in the static case. It allows one to get both the classic
and quantum thermodynamic quantities of static black hole
We have proposed that the thermodynamics of the classi
static and stationary black holes are formulated in a simil
way. The underlying assumption is that the conical singula
ity technique can be applied to the rotating hole as well.

In this paper we logically followed this line of reasoning
We studied the Euclidean geometry of the Kerr-Newma
metric for an arbitrary period along the timelike Killing vec-
tor generating the Abelian isometry of the space. The conic
geometry of the space near the horizon was established
thed-function-like behavior of the curvatures obtained. Thi
behavior strongly resembles that of a static black hole.

The essential point of formulating the quantum thermod
namics of static black hole is the proving the statement th
all the UV divergences of the entropy of black hole due t
quantum matter are removed by the standard renormalizat
of couplings in the tree-level gravitational action. This al
lows one to consider the entropy as a well-defined quantu
field theoretical quantity. We demonstrated for the Ker
Newman black hole thatSdiv being expressed via geometrica
invariants repeats the form of the tree-level entropy in th
same way as for a static case. This proves that therenormal-
ization statement works universally both for the static an
stationary holes providing the correct treatment of the qua
tum thermodynamics.

However, it is still an open question as to what degrees
freedom are counted by the entropy of black hole. A usef
approach to this problem is to compare our result with th
statistical-mechanical calculation of the quantum entropy
Kerr-Newman black hole along the lines of@6–8#. For a
charged nonrotating black hole it is known that there is pe
fect agreement between these two methods~see @8# and
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@20#!. Checking this for stationary case1 should provide us
with a better understanding of the relationship between
different entropies assigned to a black hole@32#.
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APPENDIX: EXTRINSIC GEOMETRY OF HORIZON

With respect to the Euclidean metric~2.5! we may define
a pair of orthonormal vectors$na5na

m]m ,a51,2%:

n1
r 5A D̂

r̂2
, ~A1!

n2
t5

~r 22â2!

AD̂r̂2
, n2

f5
2â

AD̂r̂2
. ~A2!

Covariantly these are

nr
15Ar̂2

D̂
, ~A3!

nt
25A D̂

r̂2
, nf

252A D̂

r̂2
âsin2u. ~A4!

The vectorsn1 andn2 are normal to the horizon surfaceS
@defined as r5r1 ,D(r5r1)50#, which is a two-
dimensional surface with induced metr
gmn5gmn2nm

1nn
12nm

2nn
2 . The ~nonzero! components of the

induced metric are

guu5r2, gtt5
â2sin2u

r̂2
,

gtf5
â~r 22â2!sin2u

r̂2
,

1The recent statistical calculation performed in@23# appears to be
unsatisfactory since it relates the entropy of rotating hole with d
on the ergosphere rather than on the horizon.
the

nd

ic

gff5
~r 22â2!2sin2u

r̂2
. ~A5!

With respect to the normal vectorsna,a51,2 we may define
@33# the extrinsic curvatures of the surfaceS:
kmn
a 52gm

agn
b¹an

a. We find

kuu
1 52rA D̂

r̂2
,

ktt
1 5

râ2sin2u

r̂4
A D̂

r̂2
,

ktf
1 52

âr ~r 22â2!sin2u

r̂4
A D̂

r̂2
,

kff
1 52

r ~r 22â2!2sin2u

r̂4
A D̂

r̂2
, ~A6!

and

k r t
2 52

â2sinucosu

r̂2
A D̂

r̂2
,

k rf
2 52

â~r 22â2!sinucosu

r̂2
A D̂

r̂2
. ~A7!

For the trace of the extrinsic curvatures,ka5kmn
a gmn, we

obtain

k152
2r

r̂2
A D̂

r̂2
, k250, ~A8!

which clearly vanishes when restricted to the surfac
S@D(r5 r̂1)50#.

The quadratic combinations

kmn
1 k1

mn5
2r 2D̂

r̂6
,

kmn
2 k2

mn5
2â2cos2uD̂

r̂6
~A9!

vanishS separately both in the static (a50) and stationary
(aÞ0) cases. Consequently, we have tr(k•k)5kmn

a kamn

50 on the horizon.
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