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We discuss how the constraints on models of the early Universe derived from considering the formation and
evaporation of primordial black holé®BH's) are modified if the gravitational “constant” varies with time.
The modifications depend crucially on wheth@rhas the same value everywhds® that it maintains the
evolving background valyeor whether the local value within the black hole is preseri@responding to
what is termed “gravitational memory’ The simplest varyings scenario is Brans-Dicke theory, in which
one has a scalar fiel (with G~¢™%) and a coupling constani,. In this case, solar system observations
imply that wyg is very large and the modifications to the PBH constraints are negligible whether or not there is
gravitational memory. However, in more general scalar-tensor theories, the coupling “constahtvaries,
S0 w may be large today but small at early times. In this case, the val@ arfid the dynamics of the early
Universe could be strongly modified during the period when PBH'’s form. We present a class of scalar-tensor
models which exhibit this feature and discuss how the PBH constraints are modified according to whether or
not one has gravitational memoiy50556-282(96)01218-7

PACS numbg(s): 04.70.Dy, 04.50t+h, 97.60.Lf, 98.80.Cq

[. INTRODUCTION theories. During most of the period in which PBH’s form and
evaporate, the Universe is radiation dominated and this sim-

Primordial black holegPBH’s) may have formed in the plifies the situation considerably. This is because, in any
early Universe as a result of initial inhomogeneit[ds?],  scalar-tensor gravity theory, the Friedmann radiation uni-
inflation [3,4], phase transitionE5], bubble collisiong6,7]  verse of general relativity is a particular exact solution of the
or the decay of cosmic loods8]. Such black holes are of field equations withp constant and, in general, this solution
special interest because they are the only ones which could a late-time attractor in radiation-dominated models. How-
be small enough to have evaporated by the present epoch asger, there are at least two situations in which the early Uni-
a result of quantum emissiof®]. There are severe con- verse will not be radiation dominated and this is why the
straints on the fraction of the Universe which can have gonetandard PBH constraints are modified. First, the Universe
into PBH’s at early times—even for those which do notbecomes pressureless after the radiation density falls below
evaporate—and this in turn places important restrictions otthe matter density, around 49r after the big bang, and this
models of the early Universesee[10] for a recent review may also apply for some earlier period if the density was

Recently, Barrow[11] has pointed out that these con- ever dominated by nonrelativistic particlgs14]. Secondly,
straints would be modified if the gravitational “constant” the Universe could have been vacuum dominated at suffi-
were to vary with time. This happens in various cosmologi-ciently early times. This certainly happens in the inflationary
cal scenarios, in particular, with the scalar-tensor theory, irscenario but it is also a generic feature of scalar-tensor theo-
which one has a scalar field (with G varying as¢™1), a  ries since the scalar field itself induces vacuum domination
coupling function w(¢) and a cosmological “constant” for some initial period. In some theoriémcluding variants
A(¢). This reduces to the Brans-Dicke thephZ] when\=0  of Brans-Dicke itself the scalar field may even cause the
and w is constant(w=wp) and, in this case, solar system Universe to bouncéso that it avoids an initial singularityin
observations implyw,>500 [13]. However, there are also which case PBH formation will be suppressed at sufficiently
more complicated theories in whiah, exceeds 500 today early times.
but is small at early epochs. Th@could deviate consider- The plan of this paper is as follows. In Sec. Il we review
ably from its present value at the time when PBH’s formed.how the formation and evaporation of PBH'’s proceeds in the
As Barrow emphasized, there are then two possibilities: irstandard cosmological scenafisith no variation ofG) and
what he terms “scenario A,’'G has the same value every- summarize the constraints on the fraction of the Universe
where at a given time, so that PBH evaporation is alwaygoing into them. In Sec. Il we examine some of the cosmo-
determined by its current value; in “scenario B,” the local logical consequences of scalar-tensor theories, focusing first
value of G within the black hole is always preserved, so thaton Brans-Dicke itself and then on more general scalar-tensor
the evaporation is determined by the value®fwhen the theories. In either case we show that, to a good approxima-
PBH formed(i.e., there is “gravitational memory)! tion, the history of the Universe can be modeled by a Brans-

The purpose of the present paper is to discuss how thBicke vacuum phase followed by a standard Friedmann ra-
various PBH constraints are modified in these two situationsliation phase. In Sec. IV we consider the formation and
and to examine how PBH limits can constrain scalar-tensoevaporation of PBH’s in Brans-Dicke and more general
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scalar-tensor theories, covering both scenario A and scenanehere the factof .;;=f(M;) has been taken to be about 3,
B. In Sec. V we infer how the standard constraints on thecorresponding to the emission of zero-rest-mass particles

fraction of the Universe going into PBH’s are modified. (i.e., photons, relativistic neutrinos, and gravitons
We now review the various constraints that can be placed
Il. PBH EVAPORATION IN THE STANDARD SCENARIO on the number of PBH'$10,16,17. If the current density

parameter associated with PBH's forming at titrie Q5(t),

Let us first recall how the formation and evaporation ofthen the fraction of the Universe’s mass going into such
PBH's proceeds in the standard cosmological scenario witlPBH's at that time ig2]

G constant. Providing the equation of state is hgve- yp
with 0<y<1), PBH’s which form from inhomogeneities at  B(t)=[Qg(t)/Qr](1+2) 1=10"5Qgx(t/s)? (t<t,),
timet must have an initial mass of order the particle horizon (2.8

mass: ) ) . _ ,
wherez is the redshift associated with tinteand Qz~10

M;~My(tH)~G 1t=10(t/s) M, (2.1) is the microwave background density. Equati¢h8) as-
sumes that the PBH’s form before the time of matter-

where we choose units witb=#=1. This is because they radiation equality {,) and also neglects dependencies on the
must be bigger than the Jeans mas$®?M, in order to  Hubble parameteH,. The mass of the PBH’s forming at
collapse against the pressure but smaller thgp itself in  timet is given by Eq.(2.1), so the fraction of the Universe
order not to be a separate Univefd&]. PBH's forming at  going into PBH’s of mas# is
the Planck time(tp~GY?~10"%% s) would, therefore, have
the Planck maséM ,~G~2~107° g), whereas those form- B(M)=~10"3Qg(M)(M/Mg)*2 29
ing at 10 2 s would have the mag#1 ~10'° g) required for _ _ _
PBH’s which evaporate at the present epoch. The probabilittny constraint o2g(M) therefore imposes a constraint on
of PBH formation on any mass scale depends on the ampIiG(M)- . . ]
tude of the density fluctuations on that scale when it enters Observations of the cosmological deceleration parameter
the particle horizon and to form PBH’s over an extendedMPly £g(M)<1 over all mass ranges for which PBH'’s have
mass range this amplitude must be scale invaf@ntPBH's ~ Not yet evaporated, so Eq.7) and(2.9) imply
forming via phase transitions or bubble collisions or the col- _
lapse of cosmic loops might have a somewhat smaller mass BM)<10 "(M/M¢™? (M>Mgpp).  (2.10
than is indicated by Eq2.1) but they would only form over
a limited period and hence over a limited mass range.

In the standard picture a black hole emits particles like
blackbody with temperatur9]

Considerably stronger limits apply fov ~M.,;; since such
PBH'’s generate g-ray background, most of the energy ap-
apearing at around 100 Mep8]. If the fraction of the emit-
ted energy which goes into photonssis, the density of the
- “1 54y —1 radiation at this energy is expected to 8e=¢ Qg(M ).
T(M)=(87GM) 1aM/10% g)~* MeV. (22 Sincee,~0.1 and the observeg-ray ba??groﬁ(r:d density
It therefore loses mass at a rate around 100 MeV is),~10"°, we infer Qg<10"% and Eq.
(2.9 then implies
_ 2 4_ -2
dM/dt=47R3f(M)aT*=af(M)M 2, (2.3 (Mo <10°5 .19
where Ry(M)=2GM is the radius of the black hole, the ) ) ]
factor f(M) measures the number of particle species whicHS€€e[17] for a more precise limit. Constraints onB(M)
can be emittedi.e., the number of species with rest mass@ssociated with the evaporation of PBH'’s smaller thag
below T(M)] and derive from entropy productiofl9]

a~M3/to~G 2~10"M3 5! 2.4 BM)<10 éM/10% g~ (M<10'g), (2.12
f(M) only has a weak dependence Fhand, if we give it distortion of the microwave background spectr[20]

the valuef(M;) associated with the initial magdl;, Eq.

— 18 1 -1 1 3
(2.3 can be integrated to give B(M)<10"(M/10™ g) (10 g<M<10"9),

(2.13
3_pg3
MZ=Mi+3af(M;)(ti—1), (2.9 and cosmological nucleosynthesis effects
wheret; is the formation time of the PBH. The black hole 100 ¥3(M/10° gp ' (10°%g<M<10'®g), (2.14a
therefore evaporates completéi =0) at a time BM)<{ 10" (MG g2 (M>10% g), (2.14b
r=[3af(M)] IM3+t;. (2.6) 107%M/10° g) 12 (10%g<M<10'g). (2.149

Note that Eqs(2.1) and (2.4) imply that thet; term is neg-  The latter constraints are associated Wihthe increase of

ligible for M;>Mp,. The PBH’s evaporating at the present the photon-to-baryon ratio by PBH photons emitted after nu-

epoch(ty~10'" s) have a mass cleosynthesi$21]; (b) the photodissociation of deuterium by
such photon$22]; and (c) the modification of the neutron-

M ¢rit= (3artof i) 3~ (tof erit/tp) M p= 10 g, (2.77  to-proton ratio by PBH nucleons emitted before nucleosyn-
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FIG. 1. The constraints on the fraction of the Universe going into PBH’s of rvhss the standard radiation-dominated model with
constantG. These derive from upper limits on the cosmological density parametery-thg background intensity, primordial entropy
production, modifications to primordial helium and deuterium production, and the density of stable Planck mass relics.

thesis[23]. If evaporating black holes leave stable Planck¢ 1, based on the study of light travel in the weak field limit.
mass relicts, as some people have argie@4], then one However, this factor should not appear in the cosmological

also gets a limit context because, for any choice of¢), one replaces the
term 87Gp in the Friedmann equation withs@ p, so the
B(M)<102(M/107° g)¥2 (M<10'Mp;~10C° @). effective “cosmological’G is just ¢ .
(2.15 Scalar-tensor gravity theories have been formulated in

two different ways. Steinhardt and Acceff20] express the
These limits or3(M) are summarized in Fig. 1. If the equa- Lagrangian of the theory in the form
tion of state in the early Universe is ever soft, then the limits
are modifiedas discussed ifb]) but we do not consider this L=—f(®)R+39,P5*°P+ 167L,, (3.1
case here.
where® is a scalar fieldf(®) is the coupling to the four-
IIl. MODELS WITH VARIABLE G qurvature, and__m is the Lagrangign of the remaining matter
fields. If we define a new scalar fielt=f ($) and a coupling
Most studies of cosmological models with varying gravi- function
tational coupling have focused upon the simplest case of
Brans-Dicke (BD) theory. This particular scalar-tensor o(p)=21f(df/dd) 2, (3.2
theory was created in the early 1960’s in response to claims
that the deflection of light by the Sun was observed to liethen Eq.(3.1) becomes
outside the range predicted by general relativiBR). Sub-
sequently, those observations were found to be affected by L=—¢R+ ¢ tw(p)dpdPd+ 16mL,,. (3.3
significant errors in the determination of the solar diameter,
so there was no further need to consider deviations from GRyhe theory proposed by Brans and Didke?] arises in the
However, recently scalar-tensor gravity theories have respecial case witlw constant and (®)cd?. The relative mer-
emerged in the context of early universe studies. They proits of adopting Eq(3.1), as do La and Steinharfif], or Eq.
vide scalar field sources for inflatiofv,25—-29 and also (3.3), as do Barrow and Maed&7], have been discussed by
serve as models for the low-energy behavior of string cost jddle and Wand$36]. Here we adopt Eq3.3).
mologies[30,3]1 or the dimensional reduction of higher- By varying the action associated with E@.3) with re-
dimensional cosmologi€$2]. spect to the space-time metric and the scalar fieldespec-

The early studies of BD theories have therefore been exively, we obtain the generalized Einstein equations and the
tended to a more general class of scalar-tensor theories withave equation fogp:

a coupling functionw(¢) governing the interactions with the

scalar field¢. This was first introduced by Bergmanha3s], Rap— 30aR=—87¢ T~ 0(P) ¢~ { Ppachp— 30andid'}
Wagoner[34], and Nordved{35]. We will assume that the

effective gravitational “constant” still varies a$ ' in such — ¢ Hap—gar B}, (3.43
theories. Nordvedt35] and Will [13] argue that one should _

add a first order correction factpt+2w(¢) /[ 3+ w(¢)] after {3+2w()}0p=87T—(dw/dg)di¢', (3.4b
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FIG. 2. The relation between the exponarih the time dependence & and the Brans-Dicke parameter In Brans-Dicke theory itself,
®>500 but generalized scalar-tensor theories may be approximated by Brans-Dicke modesdwitim to —3/2 for some period in the
early Universe. Models withv<<—3/2 are probably unrealistic since the scalar field has negative energy density. The consequences of
various values ofi and w for the cosmic evolution are indicated.

where ¢,=d,¢, 0=g?,3,, T2 is the energy momentum tions (termed “Machian” by some authoyswhich areal-
tensor of the matter content of the theory ands its trace.  waysmatter dominatefi37], the general solution approaches
Clearly if T vanishes(which only applies for a radiation these at late timesif they expand foreverbut not early
fluid) and if ¢ is constant, then Eq3.4b is satisfied identi- times] The vacuum solutions were found by O’Hanlon and
cally and Eq.(3.439 reduces to the standard Einstein equa-Tupper[38] (see alsq[39]). The full k=0 solution for a
tions with a gravitational consta@=¢ 1. Hence any exact perfect fluid is known[40] and is given, together with the
solution of Einstein’s equations with a trace-free matterk#0 vacuum and radiation solutions, by Barr¢@6]. Mi-
source(e.g., radiatiopwill also be a particular exact solution moso and Wandf41] have also studied the stiff and radia-
of the scalar-tensor theory wiih, and henceo(¢), constant.  tion solutions for generd. The full radiation solution can be
For an isotropic and homogeneous universe containing a pewell approximated by joining th&=0 vacuum solution to
fect fluid with equation of statp=yp, Egs.(3.4) and(3.5  thek=0 GR solution at some timg which may be regarded
give as a free parameter of the theory. The exaeD vacuum
solution has

H2+Hl b— wd?(642) +kla’=8mpl(3d), 3.5
¢l d— wp®l(64°) mpl(3¢) (3.53 GorpLoct~H(L+D) o (UB(L+A]

b+[3H+w/(20+3)]dp=8mp(1—37)/(2w+3), (3.5D

. . . d=o 1+ J1+2w/3] (3.6
H+H*+ w¢? (3¢%) —Hepl ¢
so this applies fronmp, until t;. Fort>t,, ¢ is constant and
=—[8mp/(3¢) {[(3y+1)w+3]/(20+3)} axt'? as in the usual radiation-dominated model. However,

G will vary again after the timg,~10'" s when the matter

Todll2¢20+3)], (3.59 density goes above the radiation density. During this era, one
p+3(y+1)Hp=0, (3.50) has a dust equation of state and obtains
wherea(t) is the scale factotd =a/a is the Hubble param- G ot ™" axt® VB n=2/(4+3w). (3.73

eter,k is the curvature constant, an overdot denotes differen-
tiation with respect to time, andw=w(¢(t)) is regarded as In terms of the parameter, in some ways the most useful

a function oft. characterization of the model, the evolution®ft) anda(t)
during the vacuum-dominated phdsggven by Eq.(3.6)] be-
A. Brans-Dicke theory comes

In BD theory, the isotropic homogeneous radiation model
is not identical with the GR model: it is vacuum dominated
at early times and only approaches the GR radiation solution
(axt*?) at late times[Although there exist power-law solu- The relationship between and w is shown in Fig. 2, al-

Gert~ (N VANTIO2 - gocq(2on-inente - (3.7y
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exotic possibilities. Figure 2 shows that the functiotw)
- a has both positive and negative branches, with the latter and
\ t(2-n)/3 some of the former encompassing negative values. dl-
though n diverges atw=-4/3, which is presumably un-
] physical, any other value @ might in principle be permit-
~_ ted. However, a number of important restrictions on the
values ofn and w can be imposed from cosmological con-
rn siderations.

(i) Equations(3.79 and(3.7b imply that values ofw just
below —4/3 have the interesting consequence Baand a
t(1-vR)/3 increase with time very rapidlysincen is very negativg

/ Indeed one has power-law inflatigwith a growing faster
thant) during any dust era witm<—1 (—4/3>»>—2) or
" ' i any vacuum era witm<—4 (—4/3>w>—3/2). Negative
values ofn and w are not necessarily precluded. However,
the scalar field effectively has a negative energy density un-
lessw>—3/2, as can be seen by writing the Friedmann equa-
éion (3.59 in the form

8] te

FIG. 3. The evolution of the scale factor a@l in standard
Brans-Dicke theory. These both evolve in the standard way in th
radiation-dominated era but they deviate from the standard model in
the late (matter-dominatedand early (vacuum-dominatederas. [H+ ¢/(2¢)]2+ k/a2= ¢Z(Zw+ 3)/(12¢2) +87pl(36).
The form of the exponents far<t,; assumes than is small, as (3.1
required in Brans-Dicke theory itself.

though not all the values indicated may be physically reasonthis precludes values ofin the range—4 to 0. Note that the

able. exponent oft in the expression for a during the vacuum
In BD theory itself, observations require thatbe large  phaseggiven by Eq.(3.7b] would also be complex for8n

(viz. ®>500), so thatn is small(viz. n<0.00J). In this case, >—4 and this is another indication that such solutions could

the expressions fa& anda during the vacuum phase can be not be cosmologically realistic.

simplified, Eqgs.(3.7a and(3.7b being approximated by (i) In order that the Universe be expandifgith the

exponent oft in the expression foa being positive, we

=B (t<ty) requiren<1/2 (w>0 or w< —4/3) during the vacuum era and

acc! t12 (1 <t<te) (3.9  n<2 (w>—1 or w<—4/3) during the dust era. Models with
t2-B - (t>t,) 1/2<n<2 (—1<w<0) may therefore expand during their
dust phase but bounce during their vacuum phase, thereby
and avoiding the initial singularity{43]. Such models are not
- necessarily precluded but they have the important conse-
Go(t1/t)(to/te)”  (1<ty) quence that no PBH’s could form before the bounce. Note
G(t)=1 Go(tote)" (1 <t<te) (3.9 that models with=2 (w=—1) contract during the vacuum
Go(te/t)" (t>t), phase and are static in the dust era, while models mth/2

(w=0) are static during the vacuum phase and expartd'as
where Gy is the present value db. This behavior is indi- jn the dust era.

cated in Fig. 3. The factott{/t.) in Eq.(3.9) can be approxi- (i) In order that the deceleration parameter,
mated as 19 For if the Hubble parameter 14,=100 h and qo=(n+1)/(2—n) for k=0, lie between 0 and 1 at the
the total density parameter §3,, we have{42] present epoclfas indicated by observationsEq. (3.8) re-

quires —1<n<1/2 (w>0 or w<—2). However, this condi-

— 7 b1 — 0 L4 -2
tr=3X10" h™*f(Qg) s, te=4X10° h™*0), "2 s, tion need not be imposed at early times.

(3.109 These restrictions are summarized in Fig. 2. We see that
wheref(Q,) goes from 2/3 fo),=1 to 1 for Q,=0, so only two bands of values fan (or w) are permitted by cos-
mological considerations: >2n=0 (w>-1) and n<—4
to/te=8X10° h3Q2f(Q). (3.10p  (—3/Z>w>—4/3). The latter gives power-law inflation in

both the dust and vacuum phages no PBH’s can formbut

For Qy=1 (as implied by the inflationary scenayidhe ratio  there is no inflationary phase for the former. In BD itself, the
has the value of T0for H,=60; for Q,=0.3 (the smallest experimental limitw>500 would restrict one to just a small
value consistent with dynamical constrajpt®ne needs part of the first band. Note that the linmit=2 (w=—1) has an
H,=100. Both values oH, are reasonable, so 4B always interesting physical significance since the low-energy effec-
a good approximation. tive action for bosonic string theory can be written in a form

As discussed belowy may vary in scenarios other than that gives a description of its scalar content corresponding to
BD. However, even in this case, the cosmological evolutiom=2. In this context the scalar field is referred to as the
may still be approximated by a BD model for a limited pe- dilation field. However, the two theories do not have the
riod. We therefore need to consider a wider range of valuesame coupling of the scalar field to the other forms of matter
for n and w than indicated above and this gives rise to more[30].
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B. More general scalar-tensor theories the observed behavior of light-bending and perihelion pre-
cession in the weak-field limit. The latter condition requires

=3 :
mits time variation ofG, but in general anys(¢) is permit- ¢ (do/d¢)—0 as w— and hencea>1/2; the former
ted. These more general scalar-tensor theories will approadPndition requiresa<2, with ¢ tending to ¢, from below

GR in the weak-field limit only if w—x and (S€€later o _

o 3(dw/d$)—0 simultaneously13,34,35. However, such For simplicity, we focus on ther=1 solution since this
theories make a strong time variation & much more ac- can be solved analytically for both a radiation-dominated and
ceptable because(s) can vary significantly early on but dust-dominated homogeneous, isotropic mgtﬂksllote thf‘t
asymptote to a large constant value at late times, so that Gi€ theory of Barke(47] is obtained whern=1 and g=
behaviour is achieved today. A number of exact cosmologi-_ 1/2: In this case, the value d& defined by geodesics,
cal solutions and a general solution-generating procedure f¢f =% (4+2w)/(3+w), is constant to first order.In the
such w(¢) theories have recently been foufi#6,44 and ra_ldlatlop-domlnated case, the solu_tlon is e_xpressed most
their asymptotic behaviours are understood for a wide clas§MPIy in terms of the conformal timey, defined bydt

of w(¢). As can be seen from Eg&.4) and(3.5), they have =ady:

the property that, in the radiation case, any GR solution is _ N " i Ny A2

also a particular solution of ang(¢) theory with ¢ (and d(m)=4pcn (7+2n90) [ (n+270)"+ 717, 313
hence w) constant.[However, the converse need not be '
true: there exist exact vacuum solutions of BD theories,  a2(,)=T 5( 5+ o)[(7+270) + 71X [4de (7
such as those given by E@3.6), which are not vacuum

BD theory is the simplest scalar-tensor theory which per

solutions of GR] This particular solution is generally a late- +270)M, (3.19
time attractor of radiation-dominated cosmological models if
the theory approaches GR in the weak-field limit. wherel” and 7, are constants and
Observations of the cosmic light element abundances im-
ply that the standard big bang picture, in whiéhdoes not A=3I(2B). 3.19

change with time, is an excellent description of the Iarge-T
scale evolution of the Universe after1 s. This is because
the success of the primordial nucleosynthesis scenario i
plies that the current value d& equals that at~1 s to

hus ¢— ¢, and a(7)x= n<t¥? as p—, so the radiation-
dominated Friedmann universe of GR is approached asymp-
mtotically. This is expected since é&s»w:

within 10—-20%][45], so significant variation of5(t) can 2w+ 30|1— ¢l | 1o ploct—s oo, (3.16
only have occurred prior to this. Acceptable evolution will
therefore be well described by a model which begins with an o (do/d@)x|1— ¢l pe|x p~2ct™1-0. (3.17)

initial period of vacuum-dominated expansi¢n<t, with

t,<1 9, during which significant time variation ap(t) can  Although the solutions of Eq:3.12 for other values ofx in
occur, followed by a phaset(<t<t,) described by the the range 1/2 to 2 do not admit convenient closed form, they
radiation-dominated Friedmann model withconstant. Dur-  display the following asymptotic behavior &ssc:

ing the radiation-dominated period, the evolution will be

driven ever closer to the GR radiation solution for a very a(n)xy[1+Crn 22 D]y, (3.18
general class ofw(¢). In the subsequent dust-dominated

phase {>t,), the initial state is so close to that of the GR () xp[1-Dn 2279 ¢, (3.19
solution that there will be little evolution dB(t) away from

the valueG(t,). If the Universe is open, so that there is a 20+ 30?27 o270 00, (3.20
final period of curvature-dominated evolution, then the solu-

tion will be driven ever closer to the GR Milne solution with o 3(doldd)o(1— ¢l ¢e)* toc p?1 2027 )

a ot andG constant during the curvature-dominated era.
We will be interested in assessing the observational im-

plications of PBH formation occurring during the vacuum-yhereC andD are constants. This shows that such theories
dominated erat(<t,), whenG(t) differs from its current  yays tend to GR at late times for H2<2 but not other-
value. Its variation will be determined by the specification of\yise” |n the limiting case withv=2, ¢— /2, and w(¢)—
(). It is expedient to use a model in whieb(t) exhibits 4B8-3/2 at late times.

simple behavior and a wide class of theories is described by a¢ early times(7—0) the a=1 solution given by Egs.

at(1-20)/(2=a)_, (3.21

the choice (3.13 and(3.14 with 7,>0 has the asymptotic form
2w(p)+3=2B|1— ¢l P~ (3.12 ao g1~ NP2oct(1-1/E-1) (3.22
whereq, 8, and ¢, are constantéwith >0 andg>0). This poc phoct?M BN (3.23

representation has been introduced by Garcia-Bellido and

Quiros[46] and investigated by Barroy26]. The casex=0  Hence there is a singularity in the radiation densjtya *)
corresponds to BD theory wit=w+(3/2). For a>0, one at =0 (wherea=0) if A<1 or A\>3. This asymptotic be-
expectsw to increase with, as required, but the discussion havior also describes the early phase of models with 1/2
of such theories by Barrof26] shows that only a range of <a<2 [44]. This provides a good model for the early
values ofa permits both approach to GR at late times andvacuum-dominated phase<(t,) which must be completed
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prior tot~1 s. Since the transition to the radiation solution t
occurs aty~ 1, t, is itself determined byy,. By requiring
that the temperature evolutionT¢a ') match smoothly
onto that of the GR radiation universetat we find that the G 2/3 a
temperature-time relation far<t, must take the form 20/ (A-3) t

T~10"t, /s) " Y&t, /1) A" MEM K (t<t,). (3.29

The behavior ofa and ¢ is indicated in Fig. 4 for different Go

ranges of values fox. Note that models with £\<3 reach 172
a maximum compression and bounce rather than encounter-
ing a singularity. EquatiofB.22 and(3.23 are equivalent to

Eq. (3.6) with A=3d/(2+3d), so the vacuum phase of this
particular model resembles the vacuum phase of the BD
model with an “effective” coupling constant

{11/ (3))
(0<r<1)

©0=3(1-\2)/(2\2)= g—3/2, 329 () N te to

where we have used E3.195. The last equality also fol- t
lows from Eq.(3.12 since ¢—0 ast—0 for 0<A<3.

The k=0 dust solution fore=1 can be found using the
generating-function method of Barrow and Mimd&8] and
is conveniently expressed in terms of a time paraméjer
defined bydt= y2w+3d6. The solution is given by

#(0)=p(1-A0""), (3.26 Go

a(0)*=Bg. 167, (3.27 tl/2

12/3

20+3=[B(2+pu)0*+5—2u" PH{3[BO*+5—pu '}, \
(3.29 (1<r<3)

whereA, B, andu are constants, related yAB=1, andé )
is related tat by f ' 4

BO?TH+(1—4lu) 6% t?. (3.29

We takeu>0, so thatp— ¢ as 6—». At late times(6—x),
one has#xt?@™# and so a

2/3
2w+ 3=B(2+ u)2043 M2 (3.30) ! /

acc 92+ 13213 (3.31)

Go
This shows that the solution tends asymptotically to the stan-
dard GR dust form. From Eqé3.12), (3.26), and(3.30, u is t1/2
related to the parametg by

B=(2+p)*(6p) . (3.32 (r>3)

At early times (6—0), the dust solution would have
acct@tWB and goct ~#, so Eq.(3.7a shows it would be BD- 1 ¢ ¢
like with w<—4/3. However, one would not expect this so- (c) tv le to
lution to apply after decoupling.

To summarize, in thex=1 scalar-tensor theory the Uni-
verse behaves like a BD model during the vacuum era but
like the standard GR solution at all other times. Although
these properties may not apply for more general scalar-tensor g, 4. The evolution of the scale factor aadin the “a=1"
theories, one might speculate that any theory can be approxizalar-tensor theory. These deviate from the standard model only in

mated by a BD model with an effective valuefproviding  the vacuum period befory and this necessarily precedes 1@.
one restricts attention to a SUffICIent'y short time interval. INshows models with Q)N<1; these expand continuously from an

the present context we are only interested in the value of initial singularity. (b) shows models with £\x<3; these bounce
during the period when the PBH’s form. From this perspec-during the vacuum erdc) shows models with>3; these undergo
tive, it is reasonable to consider all the valuesugfermitted  power-law inflation and hav& increasing before, .
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in our earlier discussion of BD theory. In this context, noteboth the BD and ‘a=1" models.

that the exponent of in Eq. (3.22 is negative for 3>A>1

(corresponding to Bw>—4/3) and such models should

bounce ats,,~(1—\)**. Presumably no PBH's can form A. Scenario A
before this epoch. It may also be impossible for PBH'’s to _ _
form in models with A>3 (corresponding to—3/2<w< In this scenarids has the same value everywhebeth at

—4/3) since such models always undergo power-law inflathe black hole horizon and in the background Univeesea
tion during the vacuum and dust eras. Henceforth we theregiven epoch and it is this global value which determines the

fore assume €\ <1 (corresponding taw>0). evaporation rate of a black hole. Equatiof2s2) and (2.3
give dM/dtcRET*=G 2, so one obtains an extra time de-
IV. PBH EVAPORATIONS pendence whenevés varies. As explained above, we only
IN SCALAR-TENSOR THEORIES consider this scenario in the context of BD theory itself.

Although the equations below assume that small(since

In this section we will discuss how PBH formation and . :
gnbservanons require<<0.00J), we also show how to extend

evaporation is modified in scalar-tensor theories, considerin
separately scenario An which G evolves in the same way em to the more general_case. ) o
everywherg and scenario Bin which black holes locally Itis gonvement to consider the evolution of the PBH's in
preserve the value dB at their formation epoch, while  the period before and aftéy separately. Beforg, Egs.(2.3)
continues to change in the background Universie will  and(3.9) give

also consider the two variants of the scalar-tensor theories

discussed in Sec. IlI: BD itselin which G varies in both the a(teltg)®™M ™2 (t,<t<t,)

vacuum and dust eras but only as a weak power of)tanel —dM/dt= [ al(t/t) 2 (tt) 22 (t<ty), &P
the “a=1" model (in which G can vary as a high power of o ! v
time early on but very little thereafterSince the most inter-
esting PBH constraints are associated with evaporatio

which occur at late time&>1 ), they are essentially unaf-
fected in the “w—=1" mogel if c)me a>c/iopts scenarioyA. We absorbed the factok. (If n were not small, the factor@

will therefore only discuss scenario A in the context of exactVould be replaced by+y4n+n® throughout the ensuing
BD theory, whereas we discuss scenario B in the context ofnalysisk Integrating Eq(4.1) we obtain

"Where « is still given by Eq.(2.4), except that it has now

. [ M3+ 3a(te/te) (MM 1,(1+2Vn) "Xt /1) 2 Mt —1)  (t,<t<t,) 2

M3+ 3a(1+2n) Lte/tg)2N(thH2My 2N _tl+2iny 20 (t<ty),

whereM; is the mass of the black hole at its formation tithand the first expression covers the cases in which the PBH forms
before and aftet;. The black hole therefore evaporates completdly=0) at a time

[(Ba) Mo/t ME+mIn[ 114+ 230 "X /1) 2T (ty<7<to) 3
T= [(Sa)fl(l_’_z\/ﬁ)(tolte)ZnMi1’>t§\5n+tij|_+2\s‘ﬁ]l/(l+2\s‘ﬁ) (T<t1). 4.3
|
From Eq.(2.1), the mass of a PBH which forms at a tirhe (3a) Hto/te) "M 3= 10" 12(M,/10° g)° s
beforet, (always the case for evaporating PBHis (1, <7<ty) “r
T — n n .
Gy L(te/to)™; (t1<ti<te) {(3a) M (L+24n)(to/te) "Mt Ty H+2

Mi’\"“CSG(ti)_lti%{Gal(te/to)n(ti/tl)\ﬁti (t|<t1) (T<tl)-

(4.4 Note that PBH'’s evaporate beforg(as assumedor masses

Since the Planck time in this model is given implicitly by ~ below

tp= GY2= G2ty /te) "3t /tpy) T2 (4.5 Me=(te/to)?"3(3ate)*~ 108" g. (4.9
corresponding to Forn=0, all these equations reduce to the form given in Sec.
1.

tp=[Go(to/te) "ty MMM (4.6) We now consider the PBH evolution after. During this

eraG is again time dependent and EG.3) gives
Eq. (4.4) implies that the; terms in Eq.(4.3) are negligible
for PBH’s which form after the Planck epoch. This is neces- —dM/dt= atgzntZ“M T2 (t>ty). (4.9
sarily the case, so we henceforth drop theerms. Equation
(4.3 can then be approximated as This can be integrated to give
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M3=M(te)3+3a(2n+1) "y 2N (12112041
~M;3—6an(2n+1) Y(ta/tg)* "t

—3a(2n+1) 21,2, (4.10
where M (t.) is the mass of the black hole gf, which is
itself determined in terms d¥1; by Eq. (4.2), and we have
assumed that such PBH's form aftgr (although it makes
little difference if they form before,). We now have three
cases, depending on the sign of the exponent of this
equation. Sincen must be small and positive, only the first
case is applicable in BD itself, but we will consider all three
cases for completeness.

n>-—1/2. The exponent of is positive, so the black hole
evaporates completely in a time

r=[(2n+1)(3a) " HE"ME—2ntZ" T V2D (1>¢,),

(4.11
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SCENARIO A M
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T M3/(2n+1) 7 ! ;
4 ' |
Me=1013-4n . . ,
Te - Y /// B ,,' T
n=1" h_1/2 n=0 n—-1/4 n=—1/2 _n=-1
- - - s
" —// g g g
M3
~
1 i H i i
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FIG. 5. The dependence of the PBH evaporation time on initial
PBH mass in Brans-Dicke theory for scenario A, in which the value
of G evolves in the same way everywhere. In practice, only small
positive values oh may be allowed and negative valueshown
dotted would probably not permit PBH formation beforg.

The second term on the right-hand side is negligible provid-

ing M, greatly exceeds the value given by H4.9), i.e.,

providing the black hole evaporates well aftgr and in this
case we have

roc M 3@n+1)

| .

(4.12

The situation is therefore qualitatively similar to the standar
one in thatr increases as a power bf;, albeit with a dif-
ferent exponent. The black holes evaporating atpresent
epoch form with an initial mass of
M, =(2n+1)"Y33aty)¥?~10"%2n+1) " g.  (4.13
Apart from the (2n+1)~*2 factor, this is the same as the
massM ;; of the PBH’s currently evaporating in the standard
scenario, given by Eq2.7), as expected since the current
value ofG is unaltered. HoweveM , becomes very large as
n tends to—1/2.

n<-—1/2.The exponent of in Eq. (4.10 is now negative,

so this term is dominated by the preceding one at late times.

As t—o, we have

M—[M?=-6n(2n+1) taty 22" 1Y (4.14
so complete evaporation only ever occurs for
M;<M.=[2n/(2n+1)]"M,, (4.15

where M., is defined by Eq(4.8); this upper limit is only
slightly larger thanM, itself unlessn~—1/2. For M, be-
tweenM, andM,,, the time for evaporation is

=t —2n+(2n+1)(M;/M)3]V2M D (7>t

(4.19

and this goes from, to infinity asM; goes fromM, to M.
Contrary to the remark made by Barrdw1], = always in-
creases withM; but the situation is very different from the
usual one in that PBH’s only slightly larger th&uh, never

M, :[1+(zn)il(tolte)szrl]l/SMw

~10%4"2n/(2n+1)]*3 g, (4.17

which is only slightly less thaM.,. Note thatM ., M, , and

M.. are all approximately the same and always exceédd.0

or n<—1/2. The cosmological constraints discussed in Sec.

Il suggest that models with negative are probably only

realistic for n<—4, in which case the critical mass scale

exceeds 1% g. However, it is not clear that PBH’s can form

with n<—4 since there is then power-law inflation.
n=-1/2.This is a special case in which E@..10 breaks

down and must be replaced by

M3=M(t)3—3aty In(t/ty)
~M3—3at [1+In(t/ty)]. (4.18

Evaporation, therefore, occurs at a time

=t exf (M?/3atg) 1=t exd (M;/M ;) °—1]

(4.19
and the PBH'’s evaporating at the present have an initial mass
M, =(3atg) ¥ 1+In(tg/te)]=2X 10 g. (4.20

However, as discussed above, this case is probably inappli-
cable.

The dependence afuponM; is these different situations
is indicated in Fig. 5. Whem is not small, the form of the
curves for r<t; comes from replacing ¢n by n
+4n+n? in the above equations. Curves with negative
(shown dottegl may be inapplicable since PBH’s can prob-
ably not form in this situation.

B. Scenario B

In this scenario, we assume that the valu&adissociated
with the black hole reflects the conditions when it first

evaporate in this picture. Indeed the PBH’s evaporating atormed rather than the background cosmological value. In

the present epoch have an initial mass

BD theory Egs(2.3) and(3.9) then imply
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—
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SCENARIO B a=1 SCENARIO B

I 1 i i 3 1 1] H i i
10? 1011 1013 1015 1017 109 1011 1083 1015 1017

o o FIG. 7. The dependence of the PBH evaporation time on initial
FIG. 6. The dependence of the PBH evaporation time on initialpg mass in ther=1 scalar-tensor theory. This assumes that sce-
PBH mass in Brans-Dicke theory for scenario B, in which the PBHparig B applies, since otherwise the standard picture is unchanged.
preserves the value @& at its formation epoch. In this case, one | this case, one must specify both the value\aind the value of
must specify both the value aofand the value of; (which specifies t,. The latter may or may not exceed the titi® 2% s) at which

when the vacuum-dominated era ends PBH'’s evaporating at the present epoch form.
2 -2
—dM/dt= a(te/to) "™ (€£i>t1) (3a,)7lMi3%1017(Mi/1015 9)3 s (ti>tv)
altelte) (4 /t)* "M ™2 (t<ty). 1 (Ba) " Ht, 1t)™NE VM3 (t,<t,).
(4.2 4.27)
The lifetime is, therefore, Sincet; is itself related taV; by Eq.(4.4), we can express
(3a) " L(ty/te) "M 3~ 1017+120(M /1015 g)3 s in thet;<t, case as
: (t;>tq) B T~G%(B’W(“")tf”(“")M59’”/(3“) (t<t,).
(3a) " H(to/te) ™ (t /) "M;? (4.29
(ti<ty).

(4.22 The mass of the PBH'’s evaporating at the present epoch is
' thereforeM ,;; if such PBH’s form afteit; but
The mass of the PBH'’s evaporating at the present epoch is M, = Mgﬁif’)‘)’(9’")t%"’(g""t;‘”‘/(g‘”) 429
M, = (te/to) " *M¢p=10"*" g (4.23

if they form beforet,. The dependence afuponM; in this
[where M;; is given by Eq.(2.7)] providing such PBH’s situation is indicated in Fig. 7. Solutions wik1>1 are prob-
form aftert,. For PBH's which form beford,, Egs.(4.4  ably inapplicable since such models either contract in the
and (4.22 imply vacuum phase or undergo power-law inflation.

e~ Gozl(1+ "ﬁ)(tolte)z"/(“ \fﬁ)tlz\xﬁ/(n WM 3+ JMY(1+ V)

(4.29
Figure 1 summarizes the constraints on the fraction of the
and, in this case, the mass evaporating now can be expressgfiverse going into PBH's of mass! in the standard big
as bang model. In this section we discuss how the “density”
= = = - and “y-ray” constraints are modified in the various sce-
M, = (te/to) 3 F M(to /t) MEH MM ¥, nariostor?sidered in Sec. 1ll. We will assume9<1/2 in
(425 the context of BD theory and<OA<1 in the context of ‘&
=1" scalar-tensor theory.
First we note that the final expression in E.8 no
ger applies since the relationship betweerand t is
changed. In BD theory Ed3.8) implies that the fraction of
the Universe’s mass going into PBH’s at a tinketweent;
andt, is

V. CONSTRAINTS ON PBH'’s

Equation(4.25 only applies for 8<n<1 but can be extended
to the more general case with the prescription used in S -
nario A. The dependence afuponM; is shown in Fig. 6.
In the “a=1" scalar-tensor modeli can be regarded as
constant in the periott>t, but it varies as a power dffor
t<t, . We can therefore adapt Eq4.21) to (4.25 by drop-
ping (t/to)" terms and replacingn by 2\/(3—\). Equation B(1)=[Qs(t)/ Qg]l(te/to) > MB(t/t,) 22
(4.21) then becomes B RitelT0 €
~ 107" 50 g(t/9)Y2 (5.1
aM -2 (tl >tv)
a(ty/t,)™MEMM—2 (t<t,), (426 \where [from the discussion after Eq3.10] we have as-
sumedt,/t,=1C°. From Eq.(4.4) PBH’s with initial massv
so the lifetime is form at a time

—dM/dt=
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M(t1)

5n-17 4
log B

-17 4
5n-25 |
3.8n-25 |

25 +

log (M/g)

FIG. 8. They-ray background and cosmological density con-
straints on the fraction of the Universe going into PBH’s of miess
for Brans-Dicke theory with scenariédsandB. The continuous and
broken curves show the situations witi<10™2% s andt;>10">s
respectively. The dotted lines show the constraints in the=1"
scalar-tensor theory for scenariésand B with t,>10"2 s. The
heavy line corresponds to the standard situation Witbonstant.

t~GoM(to/te)"~10F""3(M/My) s (5.2

so Eq.(2.9) for the fraction of the Universe going into PBH’s
of massM is replaced by
B(M)=10"""8Q5(M)(M/M)*2 (5.3

For PBH’s which form beforé,, Egs.(5.1)—(5.3) become

B(t)~1075Qg(t, /) YA(t/ty) LB, (5.4)

t=~[GoM (to/te)"ti" VT, (5.5

B( M )% 104n/(1+ v‘ﬁ)*SQB(tl/S)l/Z(GOM/tl)(lf yn)/3(1+ \s“ﬁ)’
(5.6

where we have assumed<l. In the “a=1" scalar-tensor
scenario

B(H)~10"°Qg(t, /9" At/t,) T NEN, (87

t%(GoM)(37)\)/(3+)\)tl}2)\/(3+)\), (58)

B(M)=10"5Q5(GyM/t,) 1~ N/E Nt 1912 (5.9

All these equations apply independently of whether one

adopts scenario A or B.
We requireQg(M) <1 for nonevaporating PBH’'s and so
in BD theory, for PBH'’s forming aftet,, we require
BM)<10" 8(M/Mx)¥2 (M>M,), (5.10

whereM, is the mass of the PBH'’s evaporating todd4/,
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is given by Eq.(4.13 in scenario A and Eq4.23 in sce-
nario B. For PBH’s which form beforg;, Eq. (5.6) implies

B(M )<[10(12n—10\£ﬁ—2o)(t1/S)(1+5\5ﬁ)

X (M/MQ)(l’ \“‘ﬁ)]l/3(1+ Jm)

(M>M,), (5.1

where M, is given by Eq.(4.13 in scenario A and Eq.
(4.25 in scenario B. Ine=1 scalar-tensor theory, E¢.9)
implies

BM)<[10"2(M/M )t~

X(tv /S)(1+3}\)/2]1/(3+)\) (M>M*), (512)

where M, is given by Eq.(4.13 in scenario A and Eq.
(4.29 in scenario B; this assumes that the PBH’s form be-
foret,, else there is no change from the usual constraint.

For evaporating PBH’s the most important constraint
comes from they-ray background limi{17,18. The stron-
gest limit is always associated with the PBH's evaporating at
the present epoch but the strength of the limit depends on
M, since this determines the energy at which the predicted
background peaks. In BD theory with scenario A, the PBH’s
evaporating at the present epoch have nearly the standard
massM ;=10 g, so they-ray background still peaks at
around 100 MeV and we again infd@g(M,)<107% A
more precise comparison in tif&=1 case, allowing for the
emission of quark and gluon jets, givgk/]

Qp(M,)<8%x10° h 1% (5.13

In BD theory with scenario B, assuming the PBH’s form
after the timet,, the background radiation from the PBH’s
evaporating at the present epoch peaks at a current energy

E~T~G(te) M, =Gy M, Y(te/to)"~107 2" MeV,
(5.14

which is below the usuaj-ray peak of 100 MeV fon>0.
Since the observeg-ray background density scales &5
over the energy band 35-170 MeV, the associated limit on
the PBH density is

Qg(M,)=10°"8 (0<n<0.2), (5.15

where the upper limit on comes from puttinde equal to 35
MeV in Eq. (5.14). Equation(5.10, therefore, implies

n=25  (scenario A

IB(M*)< 1&.81725 (Scenario B (51@
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If the PBH’s form beforet;, Eq. (5.11 implies

'B(M*)<[10(12"—16v‘ﬁ—62)

X (t,/5)1F5MYALIEM)  (scenario A.

(5.17

In a=1 scalar-tensor theory, thgray limit is unaffected if
the PBH forms aftet, but, if they form before, , Eq.(5.12
gives

3931

:8( M N ) <[1010)\—62(tv /S)(1+ 3)\)/2] 1/(3+N) (Scenario A

(5.18

Equationg5.17) and(5.18 are modified in scenario Bince

M, is modified but we do not show the equations explicitly

in this case since they are complicated. Figure 8 summarizes
the constraints oB(M ) in these various situations.
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