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Entropy and temperature of black 3-branes

S. S. Gubser, |. R. Klebanov! and A. W. Peét
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 5 March 1996

We consider slightly nonextremal black 3-branes of type IIB supergravity and show that their Bekenstein-
Hawking entropy agrees, up to a mysterious factor, with an entropy derived by counting non-BPS excitations
of the Dirichlet 3-brane. These excitations are described in terms of the statistical mechani¢3-df)a
dimensional gas of massless open string states. This is essentially the classic problem of blackbody radiation.
The blackbody temperature is related to the temperature of the Hawking radiation. We also construct a solution
of type IIB supergravity describing a 3-brane with a finite density of longitudinal momentum. For extremal
momentum-carrying 3-branes the horizon area vanishes. This is in agreement with the fact that the BPS
entropy of the momentum-carrying Dirichlet 3-branes is not an extensive qudSti§56-282(96)00218-4

PACS numbgs): 04.70.Dy, 11.10.Kk, 11.25.Hf

[. INTRODUCTION this paper we provide a new and very simple example of a
black p-brane whoseD-brane entropy almost matches the

Apart from their intrinsic importance, black hotepro-  Bekenstein-Hawking entropy. This is the self-dual 3-brane in
vide a testing ground for the quantum theory of gravitation.ten dimensions. Since it couples to the self-dual five-form, it
Classical general relativity, together with quantum fieldautomatically carries equal electric and magnetic charge den-
theory, imply that a black hole should be assigned an entrop§ities. A special property of this object, as well as of those in
equal to one-fourth of its horizon area measured in Planck8—11], is that the string coupling is independent of position.
units[1,2]. In a fundamental theory of quantum gravity this Control over the value of the string coupling at the horizon
Bekenstein-Hawking entropy should have a statistical interappears to be necessary for agreement between the two defi-
pretation. It has been argug¢@-5] that string theory pro- nitions of entropy. Fop-branes withp<<3 it is easy to check
vides such an interpretation, because very massive fund#hat theD-brane entropy is not proportional to the horizon
mental string states should form black holes, and the numbearea. This is likely due to the string coupling becoming
of such states exhibits the exponential Hagedorn growth. strong near the-brane.

Recently, a much improved understanding of the The original 3-brane solution of type IIB supergravity was
Ramond-Ramond charged string solitons has emergeconstructed if12]. In Sec. Il we observe that at extremality
through the Dirichlet brane descripti$6,7]. This has led to this solution has vanishing horizon area. We construct a new
a rapid progress on the black hole entropy probleni8lra  class of solutions describing 3-branes carrying finite-
certain extremal five-dimensional black hole was constructethomentum density along one of its internal dimensions. Al-
so that its horizon area is nonvanishing. It was shown thathough the longitudinal momentum is known to stabilize the
the logarithm of its ground state degeneracy, calculated withorizon area of extremal black stringkl], here we find that
D-brane methods, precisely matches the Bekensteirit does not. The fact that the classical entropy is zero agrees
Hawking entropy. This remarkable finding has been exwith the fact that the logarithm of the ground state degen-
tended in a number of directions. 8] it was generalized to eracy of the momentum-carrying Dirichlet 3-branes is not an
rotating black holes. I110] a similar five-dimensional ex- extensive quantity. In order to address objects with nonvan-
ample was considered, and it was further shown that théshing horizon area, in Sec. lll we consider slightly nonex-
entropy of slightly nonextremal black holes also matches théremal 3-branes, whose masses satishf =M —M <M.
Bekenstein-Hawking result. This allowed foDabrane cal- To leading order in the parametéM/M,, which is a mea-
culation of the temperature of Hawking radiation. [lhl]  sure of deviation from extremality, we find agreement be-
similar results were obtained for slightly nonextremal blacktween theD-brane entropy and 1/4 of the horizon area.
strings in six dimensions(upon compactification these Amusingly, the statistical mechanics of a nonextremal
strings reduce in a certain limit to the five-dimensional black3-brane is that of a photoand photing gas in 3+ 1 dimen-
holes of{8]). sions, which is the classic black-body radiation problem. The

At this stage it is important to elucidate the criteria for scaling of entropy with energy may be derived essentially
agreement between thé®-brane and the Bekenstein- from the well-known black-body scaling laws
Hawking entropy, and to find new successful examples. In

M—Mo~VT4 S~VTS (1)
*Electronic address: ssgubser@puhepl.princeton.edu Working out the precise normalizations, we find that the
"Electronic address: klebanov@puhep1.princeton.edu Bekenstein-Hawking and statistical entropies are not identi-
*Electronic address: peet@viper.princeton.edu cal, but are related by a mysterious proportionality factor. If,
YIn this short article we will not attempt to refer to all of the however, only the transverse excitation modes of the 3-brane
developments in the recent black hole literature. are counted, then the statistical entropy becomes identical to
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the Bekenstein-Hawking entropy. While this rule is sugges- 4.5 OM 3/4

tive, at the moment we do not know how to justify it. Sext~ wsL T o| 17— (7)
Upon coupling of the 3-brane to the ten-dimensional 0

world, waves colliding on the 3-brane may be converted to

massless closed string states. This is Hawking radiation in | the case of the black strinfd.2], which also had zero
the D-brane languagE10]. The black-body temperature that greq at extremality, it was possible to perform a boost along

one assigns to a nonextremal 3-brane acquires the interprgye string to induce simultaneously finite ADM momentum
tation of the Hawking temperature. In Sec. IV we concludegng horizon area.

with a brief discussion. It is also easy to inject momentu® along oné of the
three spatial world-brane directions, which we take to be
[l. ENTROPY OF 3-BRANES CARRYING LONGITUDINAL x1. The appropriate solution may be found by performing a
MOMENTUM (now standarfiboost on the solution E@2). In this way we
obtain

The 3-brane solution to the equations of type IIB super-
gravity was originally obtained by Horowitz and Strominger

[12] and is given by ds?= — (cosRaA , A~ 12— sinfPaA Y2 dt?
ds?=—A A2+ AV dxE+dxa+dxd) + AL TA T dr? T (cosRaA 2 sintfad . A~1)dx
+r2d0g, +sinh(2a)(AY2— A, A=) dtdx
Fi5=Q(es+*es), +AYHdx3+dx3) +ATIAT M2+ r2dQ2.  (8)
& =const. 2

) . If we imagine that theT® is small, then we can think of the
In these equations s is the Ramond-Ramond self-dual configuration Eq(8) as a seven-dimensional black hole. The
five-form field Strength Coupllng to the 3-bl’ane, and the d|'b|ack hole has a gauge Charge Corresponding to the gauge
laton field has an arbitrary constant value for this solutionfie|d which comes from thet(x!) cross term in the metric.

We have also defined Note that this extremal solution is still Bogomol'ni-Prasad-
4 Sommerfield-(BPS) saturated, as it preserves one super-
A+(r):( _ r_z) . 3) symmetry of a possible foutype 11B compactified orT3 to
- r d=7 has N=4 supersymmetyy In ten-dimensional lan-
) ) guage this “charge” is just the total ADM momentum,
The charge density on the 3-brane is which is given by
Q=2r3r2=2r; (4)

3
up to a convention-dependent proportionality constant. In ﬂ
this section we will ignore such constants since they are ir-
relevant to our calculations. For the solution to be well be-
haved, we need . =r_. Extremality is achieved when the
horizon radiusr, becomes equal to_. The extremal
Arnowitt-Deser-Misne(ADM) mass is proportional tQ, as
required by supersymmetry. The extremal solution preserves . . . . .
one-half of the ten-dimensional type 11B supersyrnmetrieswheren is an integer and we are keeping the ten-dimensional
i.e., N=1. We also introduce an infrared cutoff by compac—NeWton constant fixed.

o . ) i . If we let the deviation from extremality go to zero, but
tifying each internal coordinatg' on a very large circle of - oo .

) A ; ; also take the limit of infinite boost parameter, then for finite
radiusL, i.e., imagine that the 3-brane is wrapped around

large 3-torusT®. ADM momentum

The eight-dimensional area of the horizon is

Paom=—g—sinh(2a)(r} —r?),

8
2mn 9
= ©

A=wsrI LA _(r )% 5 Paom~L30sQ

wherews= 7 is the area of a unit five sphere. The classical
black 3-brane entropy

g2« (10)

il

we need the scalingM/M,~e™2¢.

A Then, the entropy of a BPS-saturated state with this mo-
SBH:Z' (6) mentum numben is finite and given by
therefore, vanishes in the extremal limit.

If we fix the charge and consider a slightly nonextremal 2Note that our conclusions would be unchanged if we performed
black 3-brane then, as we will see in the next section, theadditional boosts involving any of the other spatial world-brane
entropy of the classical extremal black 3-brane scales as directions.
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Sgps~ 27 2n lll. STATISTICAL MECHANICS OF NONEXTREMAL

3-BRANES
1/2

g2« (11 In this section we will consider non-BPS excitations of
the 3-brane. In th®-brane picture the excitations we have in
mind are described by a dilute gas of massless open string

This quantity is not extensive in the spatial world volume ofstates running along the brane in arbitrary directions. The

the 3-brane. The entropy density, measured per unit spatiglerage total momentum is zero. The momenta of the mass-

oM
~L 0sQ]*3 My

world volume, goes as less string states are quantized:
S . 2m.
SBPSE Lle?S—)O (12) p: Tn! (16)

> _3 , )
For a Dirichletp-brane, this zero BPS entropy will actually wherene Z®. The mass of the excited 3-brane is

happen for any value gb>1, as follows. A BPS-saturated \/; kK oo

excitation on the world volume is effectively restricted to M=Mgy+ M= -—L3+> —|n|+0(g). (17
live in a single dimension, because if there were two finite K =1 L

orthogonal momenta, then the state would no longer be BPS

saturated. Therefore, the scaling goesSag<~ Vn, while Here,M, is the mass of the extremal 3-brafis], k is the
Paom~LP, so thatn~LP*1, and, therefore, number of open strings, and

k=\87Gy=ga’?. (18

The O(g) term in (17) accounts for interactions among the
So we see that in order to have finite, nonzero ADM momenstrings. The validity of counting these states and no others to
tum and finite, nonzero entropy, both measured per unit spabtain the entropy of a nonextrempibrane was discussed
tial world volume, we neegp=1, i.e., the string. in [14] for the casep=1, and the same arguments apply

Let us now compare this conclusion about the Dirichlethere. In particular, our ability to control the decay rate of the

3-brane entropy with results for the classical black 3-brangon-BPS states by makirig large allows us to count these
configuration. Because of the boost, we find that thestates reliably wittg and hencesy finite.
Bekenstein-Hawking entropy of the classical configuration Rather than calculating the degeneracy of excited 3-brane
Eq. (2) is altered from its previous value to states at a giverdM directly, let us instead consider the

statistical mechanics of massless open string states in the

grand canonical ensemble. The temperafUreill later be

SBPSNL(FHD/(ZP)—’O- (13

Wy .
SBH=ZriL3[A7(f+)]3/4COSM, identified as the Hawking temperature, but for now one can
regard our ensemble calculations as a trick to figure out the
5.5 OM 3/4 degeneracies of brane excitation levels.
~wsL7rol | &% (14 For a system withN massless boson and fermion physical
0 degrees of freedom, the correct partition function is
as a—~ and 6M/My—0. Let us now take the limit such 14+gf\ "
that the ADM momentum remains finite. Then, we need the 7= 4 —| (19)
scalingéM/M ,~e~ 2% and so the classical 3-brane area goes nez8 L 1— qln\
as
where we have defined
— a—3al2,a
A~e e“—0. (15) q:e—27T/LT. (20)

This tells us that the BPS-saturated 3-brane with finite nonOne expectdN=238, but for now we leave it arbitrary. The
zero momentum still has zero area. Note that if we considedynamics of these modes on the brane is given\by 4
a modified area given by the classical horizon area dividedupersymmetric pure Yang-Mills theory with gauge group
by Vd,x(r+)gss(r.), this scales similarly to the quantity U(1) [15-17. For our purposes, however, it is more reveal-
(1D; however, it is difficult to give this modified area an ing to view this theory asv=1 Yang-Mills plus six chiral
enlightening physical interpretatich. multiplets. The chiral multiplets are associated with trans-
Therefore, we see that the entropy of the BPS-saturatederse oscillations of the brane, while the gauge multiplet
classical 3-brane with momentum, which by definition is ex-describes internal degrees of freedom. We will find that, to
tensive in the horizon area, is also zero. It is satisfying thabbtain perfect agreement with the Bekenstein-Hawking en-
the entropies on the classical black 3-brane and Dirichletropy, it is necessary to count only the modes of transverse
3-brane sides agree, as expected. oscillation, hence settiny=6 in Eq. (19).
What subtlety of the gauge dynamics might prevent the
gauge degrees of freedom from being enumerated along with
Note also that in the above scaling limig,, diverges on the the transverse oscillations? Tseytlin has suggested to us the
horizon. We thank Gary Horowitz for pointing this out to us. following interesting mechanisiil8]. If one imposes peri-
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odic boundary conditions on the gauginos along the Euclid- [

ean time direction rather than the standard antiperiodic Mo=—n,L53, (25
. . . K

boundary conditions, then the two physical gaugino degrees

of freedom introduce a factor (1g")? into the partition  one can show finally that

function, exactly canceling the gauge boson contribution,

(1—qg")~2. Thus, the gauge dynamics becomes, in effect, S=ENY4ar g kI3 (SMIM )%, (26)
topological. We look forward to exploring possible justifica-
tions and consequences of this insightful guess for th
gaugino boundary conditions.

Equation(19) includesN bosonic and\ physical fermi-
onic modes, and in 31 dimensions each fermion mode
makes 7/8 of the contribution of a boson mode to the entrop
and energy(the corresponding ratio in£1 dimensions is

his expression forS should be comparable to the
ekenstein-Hawking entropy. Let us, therefore, turn to the
calculation of the horizon area in the low-energy supergrav-
ity theory.
The ADM mass formula for the black 3-brane described
¥)y the metric(2) is [19]

1/2). Using the relations 3
Maom =22 (514 —r4) (27)
F=-TinZ, AOMT 22 T
P Applying this formula to the extremal case =r _=r, and
E=Tzﬁln Z, comparing with Eq(25), one finds
NE
S=(E—F)/T, (22) r3=2—nWK. (28)
Ws
we find The RR charge remains unchanged as we perturb away from
2 extremality, sor_=r3/r_ . Writing r, =r,+&, one finds
E= 1—6NL3T4, from Eq. (27) that
oM =6 ¢ 29
o Mo Oro 29
S=NL°T?. (22)

to lowest order ire. Thus the horizon area of the met(2)

At this point it is easy to see how things change wimgn IS

3-branes are stacked on top of one another. The massless 5.3 re) %
open strings can now connect any two of the branes, so there A=wsri L7 1 E
aren? states for every one state we had before. In this con- a4
text it is important to recall that there is no binding energy _ poi4 r5L3(i)

among the 3-brandd45], so strings running between differ- ro

ent branes really are massless. Furthermore, Whisrlarge,

it makes no difference whether we considg,rgingly wound =213 8, k) L3 (SMIM ), (30)
branes or one brane wra times around™: the asymp- . , .

totic density of masslesspsmg states per unit volur%e Fi)s un@nd the Bekenstein-Hawking entropy is

affected by such changes in boundary conditions. 2rA
To recapitulate, the prescription for,>1 is to consider Sgp=—7= 25’43*3’4777’%5{4K*3’4L3( SM/M )%,
nfv (very weakly coupled thermodynamic systems, each K 31
identical to then,=1 system treated above. Thus, EB2) (3D
becomes If we include all eight bosonic and fermionic modes in the
5 statistical mechanics treatment Bf-brane excitations, we
E= anz L3T4 obtain the following relation between the entropjés]
16 v '
) S=(%)""Sgn. (32
a
- 2 . . .
S= EanL3T3- (23 while the scaling exponents agree perfectly, a mysterious

numerical factor appears. We do not understand why the
The relation betweerE and S in the microcanonical en- Statistical counting gets so close, yet fails to reproduce the

semble is determined by eliminatifgfrom Eq. (23): Bekenstein-Hawking entropy. Note, however, that if we set
N=6 thenS=Sgy. It is tempting to conjecture that a subtle
S=ZNY4zrn, L¥E3 (24) modification of the world-volume dynamics, such as the

twisted boundary conditions proposed by Tseytlin, is respon-
SettingE= M in Eq. (24), one obtains the entropy of non- sible for this. The bottom line is that an ideal gas anf,6
extremal 3-branes with masd,+ éM. Using the formula massless bosons and fermions on the world volume repro-
[13] duces the Bekenstein-Hawking entropy. The fact that this
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number is~n2 agrees with the enhanced symmetry of coin- IV. DISCUSSION

gldzent 3—bTanes. Tge nefceisary nlli?wbesnmlgii]an the In this paper we have presented a very simple Dirichlet
Ny massless modes of the weakly coup U(n) brane system whose entropy is almost identical to the

gauge theory. A resolution of this puzzle may be related tQzerenstein-Hawking entropy of the corresponding low-
the question of binding of the 3-branes. If thg parallel  onergy supergravity solution. This relation is so miraculous
3-branes form a marginal bound state, then the number Qf,a¢ it clearly requires a deeper understanding. How does
massless modes is indeed reduced compared to what is €Xxssical type 1B supergravity “know” the Planck formula
pected for unbound 3-branes. Although we do not knowg,, piackbody spectrum? Apparently it does. The numerical
what produces this bound state, we may speculate that it igctor relating the statistical and Bekenstein-Hawking entro-
related to confinement. pies poses a puzzle, however. We are inclined to regard this

A bonus we get for computing the entropy in the grandg,cior as a hint that we have yet to learn everything about the
canonical ensemble is that the blackbody temperafursed dynamics of coincident 3-branes. The suggesiiaé] to

in Eqs.(19—(23) is related to the Hawking temperature. This yake the gaugino fields periodic in Euclidean time is a
is a trivial consequence of the relatiM=M,+E where  gimple way to obtain perfect agreement with the Bekenstein-
E is the energy of the gas of massless open strings. We knowawking formula, but justification for this guess awaits a

from qrdinary statistical mechanics 'tm§E=TdSwhenL IS more thorough understanding of the world-volume gauge
held fixed. ButdE=dM, so the relatiomdM=Tyd Sz from  fig|q.

black hole thermodynamics leads immediately to Motivated by[10] we would also like to show precisely
8 SM\M4 [N\V4 how the 3-brane blackbody temperature translates into the
Th=|5—>— _3) = <_) T (33 Hawking temperature of the outgoing closed string radiation.
37°ny L 6 We hope to report on these issues in the near future.

At first, it seems surprising that the Hawking temperature
should be independent of the string couplipgBut it be-
comes inevitable when one realizes tiaj~T, since the We are grateful to C. G. Callan, G. Horowitz, J. Mal-
properties of the dilute gas of open string states characteriziacena, R. Myers, A. Strominger, and A. Tseytlin for illumi-
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string coupling determines only the degree of diluteness nedy U.S. DOE Grant No. DE-FG02-91ER40671, the NSF
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problem to derive thisgg-independent temperature from a PHY-9157482, and the James S. McDonnell Foundation
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