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Entropy and temperature of black 3-branes

S. S. Gubser,* I. R. Klebanov,† and A. W. Peet‡
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We consider slightly nonextremal black 3-branes of type IIB supergravity and show that their Beken
Hawking entropy agrees, up to a mysterious factor, with an entropy derived by counting non-BPS excit
of the Dirichlet 3-brane. These excitations are described in terms of the statistical mechanics of a~311!-
dimensional gas of massless open string states. This is essentially the classic problem of blackbody ra
The blackbody temperature is related to the temperature of the Hawking radiation. We also construct a s
of type IIB supergravity describing a 3-brane with a finite density of longitudinal momentum. For extr
momentum-carrying 3-branes the horizon area vanishes. This is in agreement with the fact that th
entropy of the momentum-carrying Dirichlet 3-branes is not an extensive quantity.@S0556-2821~96!00218-4#

PACS number~s!: 04.70.Dy, 11.10.Kk, 11.25.Hf
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I. INTRODUCTION

Apart from their intrinsic importance, black holes1 pro-
vide a testing ground for the quantum theory of gravitatio
Classical general relativity, together with quantum fie
theory, imply that a black hole should be assigned an entr
equal to one-fourth of its horizon area measured in Pla
units @1,2#. In a fundamental theory of quantum gravity th
Bekenstein-Hawking entropy should have a statistical in
pretation. It has been argued@3–5# that string theory pro-
vides such an interpretation, because very massive fu
mental string states should form black holes, and the num
of such states exhibits the exponential Hagedorn growth

Recently, a much improved understanding of t
Ramond-Ramond charged string solitons has emer
through the Dirichlet brane description@6,7#. This has led to
a rapid progress on the black hole entropy problem. In@8# a
certain extremal five-dimensional black hole was construc
so that its horizon area is nonvanishing. It was shown t
the logarithm of its ground state degeneracy, calculated w
D-brane methods, precisely matches the Bekenst
Hawking entropy. This remarkable finding has been
tended in a number of directions. In@9# it was generalized to
rotating black holes. In@10# a similar five-dimensional ex
ample was considered, and it was further shown that
entropy of slightly nonextremal black holes also matches
Bekenstein-Hawking result. This allowed for aD-brane cal-
culation of the temperature of Hawking radiation. In@11#
similar results were obtained for slightly nonextremal bla
strings in six dimensions~upon compactification thes
strings reduce in a certain limit to the five-dimensional bla
holes of@8#!.

At this stage it is important to elucidate the criteria f
agreement between theD-brane and the Bekenstein
Hawking entropy, and to find new successful examples

*Electronic address: ssgubser@puhep1.princeton.edu
†Electronic address: klebanov@puhep1.princeton.edu
‡Electronic address: peet@viper.princeton.edu
1In this short article we will not attempt to refer to all of th

developments in the recent black hole literature.
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this paper we provide a new and very simple example of
black p-brane whoseD-brane entropy almost matches the
Bekenstein-Hawking entropy. This is the self-dual 3-brane
ten dimensions. Since it couples to the self-dual five-form,
automatically carries equal electric and magnetic charge de
sities. A special property of this object, as well as of those
@8–11#, is that the string coupling is independent of position
Control over the value of the string coupling at the horizo
appears to be necessary for agreement between the two d
nitions of entropy. Forp-branes withp,3 it is easy to check
that theD-brane entropy is not proportional to the horizon
area. This is likely due to the string coupling becoming
strong near thep-brane.

The original 3-brane solution of type IIB supergravity was
constructed in@12#. In Sec. II we observe that at extremality
this solution has vanishing horizon area. We construct a ne
class of solutions describing 3-branes carrying finite
momentum density along one of its internal dimensions. A
though the longitudinal momentum is known to stabilize th
horizon area of extremal black strings@11#, here we find that
it does not. The fact that the classical entropy is zero agre
with the fact that the logarithm of the ground state degen
eracy of the momentum-carrying Dirichlet 3-branes is not a
extensive quantity. In order to address objects with nonva
ishing horizon area, in Sec. III we consider slightly nonex
tremal 3-branes, whose masses satisfydM5M2M0!M0.
To leading order in the parameterdM /M0, which is a mea-
sure of deviation from extremality, we find agreement be
tween theD-brane entropy and 1/4 of the horizon area
Amusingly, the statistical mechanics of a nonextrema
3-brane is that of a photon~and photino! gas in 311 dimen-
sions, which is the classic black-body radiation problem. Th
scaling of entropy with energy may be derived essential
from the well-known black-body scaling laws

M2M0;VT4, S;VT3. ~1!

Working out the precise normalizations, we find that th
Bekenstein-Hawking and statistical entropies are not iden
cal, but are related by a mysterious proportionality factor. I
however, only the transverse excitation modes of the 3-bra
are counted, then the statistical entropy becomes identical
3915 © 1996 The American Physical Society
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3916 54S. S. GUBSER, I. R. KLEBANOV, AND A. W. PEET
the Bekenstein-Hawking entropy. While this rule is sugg
tive, at the moment we do not know how to justify it.

Upon coupling of the 3-brane to the ten-dimension
world, waves colliding on the 3-brane may be converted
massless closed string states. This is Hawking radiatio
theD-brane language@10#. The black-body temperature tha
one assigns to a nonextremal 3-brane acquires the inte
tation of the Hawking temperature. In Sec. IV we conclu
with a brief discussion.

II. ENTROPY OF 3-BRANES CARRYING LONGITUDINAL
MOMENTUM

The 3-brane solution to the equations of type IIB sup
gravity was originally obtained by Horowitz and Stroming
@12# and is given by

ds252D1D2
21/2dt21D2

1/2~dx1
21dx2

21dx3
2!1D1

21D2
21dr2

1r 2dV5
2 ,

F ~5!5Q~«51* «5!,

F5const. ~2!

In these equationsF (5) is the Ramond-Ramond self-du
five-form field strength coupling to the 3-brane, and the
laton field has an arbitrary constant value for this soluti
We have also defined

D6~r !5S 12
r6
4

r 4 D . ~3!

The charge density on the 3-brane is

Q52r1
2 r2

2 [2r 0
4 ~4!

up to a convention-dependent proportionality constant.
this section we will ignore such constants since they are
relevant to our calculations. For the solution to be well b
haved, we needr1>r2 . Extremality is achieved when th
horizon radius r1 becomes equal tor2 . The extremal
Arnowitt-Deser-Misner~ADM ! mass is proportional toQ, as
required by supersymmetry. The extremal solution prese
one-half of the ten-dimensional type IIB supersymmetri
i.e.,N51. We also introduce an infrared cutoff by compa
tifying each internal coordinatexi on a very large circle of
radiusL, i.e., imagine that the 3-brane is wrapped aroun
large 3-torusT3.

The eight-dimensional area of the horizon is

A5v5r1
5 L3@D2~r1!#3/4, ~5!

wherev55p3 is the area of a unit five sphere. The classi
black 3-brane entropy

SBH5
A

4
, ~6!

therefore, vanishes in the extremal limit.
If we fix the charge and consider a slightly nonextrem

black 3-brane then, as we will see in the next section,
entropy of the classical extremal black 3-brane scales as
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Sext;v5L
3r 0

5FdMM0
G3/4. ~7!

In the case of the black string@12#, which also had zero
area at extremality, it was possible to perform a boost alo
the string to induce simultaneously finite ADM momentum
and horizon area.

It is also easy to inject momentumP along one2 of the
three spatial world-brane directions, which we take to
x1. The appropriate solution may be found by performing
~now standard! boost on the solution Eq.~2!. In this way we
obtain

ds252~cosh2aD1D2
21/22sinh2aD2

1/2!dt2

1~cosh2aD2
1/22sinh2aD1D2

21/2!dx1
2

1sinh~2a!~D2
1/22D1D2

21/2!dtdx1

1D2
1/2~dx2

21dx3
2!1D1

21D2
21dr21r 2dV5

2 . ~8!

If we imagine that theT3 is small, then we can think of the
configuration Eq.~8! as a seven-dimensional black hole. Th
black hole has a gauge charge corresponding to the ga
field which comes from the (t,x1) cross term in the metric.
Note that this extremal solution is still Bogomol’ni-Prasad
Sommerfield-~BPS-! saturated, as it preserves one supe
symmetry of a possible four~type IIB compactified onT3 to
d57 has N54 supersymmetry!. In ten-dimensional lan-
guage this ‘‘charge’’ is just the total ADM momentum
which is given by

PADM5
L3v5

8p
sinh~2a!~r1

4 2r2
4 !,

[
2pn

L
, ~9!

wheren is an integer and we are keeping the ten-dimension
Newton constant fixed.

If we let the deviation from extremality go to zero, bu
also take the limit of infinite boost parameter, then for fini
ADM momentum

PADM;L3v5QFe2a
dM

M0
G , ~10!

we need the scalingdM /M0;e22a.
Then, the entropy of a BPS-saturated state with this m

mentum numbern is finite and given by

2Note that our conclusions would be unchanged if we perform
additional boosts involving any of the other spatial world-bran
directions.



f

ing
e
ss-

to

y
e

ne

the

n
he

l

p
l-

s-
et
to
n-
se

e
ith
the

54 3917ENTROPY AND TEMPERATURE OF BLACK 3-BRANES
SBPS;2pA2n,

;L2@v5Q#1/2FdMM0
e2aG1/2. ~11!

This quantity is not extensive in the spatial world volume
the 3-brane. The entropy density, measured per unit sp
world volume, goes as

sBPS[
SBPS
L3
→0. ~12!

For a Dirichletp-brane, this zero BPS entropy will actual
happen for any value ofp.1, as follows. A BPS-saturate
excitation on the world volume is effectively restricted
live in a single dimension, because if there were two fin
orthogonal momenta, then the state would no longer be B
saturated. Therefore, the scaling goes asSBPS;An, while
PADM;Lp, so thatn;Lp11, and, therefore,

sBPS;L ~p11!/~2p!→0. ~13!

So we see that in order to have finite, nonzero ADM mom
tum and finite, nonzero entropy, both measured per unit s
tial world volume, we needp51, i.e., the string.

Let us now compare this conclusion about the Dirich
3-brane entropy with results for the classical black 3-bra
configuration. Because of the boost, we find that
Bekenstein-Hawking entropy of the classical configurat
Eq. ~2! is altered from its previous value to

SBH5
v5

4
r1
5 L3@D2~r1!#3/4cosha,

;v5L
3r 0

5FdMM0
G3/4ea, ~14!

as a→` and dM /M0→0. Let us now take the limit such
that the ADM momentum remains finite. Then, we need
scalingdM /M0;e22a and so the classical 3-brane area go
as

A;e23a/2ea→0. ~15!

This tells us that the BPS-saturated 3-brane with finite n
zero momentum still has zero area. Note that if we cons
a modified area given by the classical horizon area divi
by Ag22(r1)g33(r1), this scales similarly to the quantit
~11!; however, it is difficult to give this modified area a
enlightening physical interpretation.3

Therefore, we see that the entropy of the BPS-satura
classical 3-brane with momentum, which by definition is e
tensive in the horizon area, is also zero. It is satisfying t
the entropies on the classical black 3-brane and Diric
3-brane sides agree, as expected.

3Note also that in the above scaling limit,gtt diverges on the
horizon. We thank Gary Horowitz for pointing this out to us.
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III. STATISTICAL MECHANICS OF NONEXTREMAL
3-BRANES

In this section we will consider non-BPS excitations o
the 3-brane. In theD-brane picture the excitations we have in
mind are described by a dilute gas of massless open str
states running along the brane in arbitrary directions. Th
average total momentum is zero. The momenta of the ma
less string states are quantized:

pW 5
2p

L
nW , ~16!

wherenW PZ3. The mass of the excited 3-brane is

M5M01dM5
Ap

k
L31(

i51

k
2p

L
uniW u1O~g!. ~17!

Here,M0 is the mass of the extremal 3-brane@13#, k is the
number of open strings, and

k5A8pGN5ga82. ~18!

TheO(g) term in ~17! accounts for interactions among the
strings. The validity of counting these states and no others
obtain the entropy of a nonextremalp-brane was discussed
in @14# for the casep51, and the same arguments appl
here. In particular, our ability to control the decay rate of th
non-BPS states by makingL large allows us to count these
states reliably withg and henceGN finite.

Rather than calculating the degeneracy of excited 3-bra
states at a givendM directly, let us instead consider the
statistical mechanics of massless open string states in
grand canonical ensemble. The temperatureT will later be
identified as the Hawking temperature, but for now one ca
regard our ensemble calculations as a trick to figure out t
degeneracies of brane excitation levels.

For a system withN massless boson and fermion physica
degrees of freedom, the correct partition function is

Z5 )
nW PZ3

S 11qunW u

12qunW u D N

, ~19!

where we have defined

q5e22p/LT. ~20!

One expectsN58, but for now we leave it arbitrary. The
dynamics of these modes on the brane is given byN54
supersymmetric pure Yang-Mills theory with gauge grou
U~1! @15–17#. For our purposes, however, it is more revea
ing to view this theory asN51 Yang-Mills plus six chiral
multiplets. The chiral multiplets are associated with tran
verse oscillations of the brane, while the gauge multipl
describes internal degrees of freedom. We will find that,
obtain perfect agreement with the Bekenstein-Hawking e
tropy, it is necessary to count only the modes of transver
oscillation, hence settingN56 in Eq. ~19!.

What subtlety of the gauge dynamics might prevent th
gauge degrees of freedom from being enumerated along w
the transverse oscillations? Tseytlin has suggested to us
following interesting mechanism@18#. If one imposes peri-
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3918 54S. S. GUBSER, I. R. KLEBANOV, AND A. W. PEET
odic boundary conditions on the gauginos along the Eucl
ean time direction rather than the standard antiperio
boundary conditions, then the two physical gaugino degre
of freedom introduce a factor (12qunW u)2 into the partition
function, exactly canceling the gauge boson contributio
(12qunW u)22. Thus, the gauge dynamics becomes, in effe
topological. We look forward to exploring possible justifica
tions and consequences of this insightful guess for t
gaugino boundary conditions.

Equation~19! includesN bosonic andN physical fermi-
onic modes, and in 311 dimensions each fermion mode
makes 7/8 of the contribution of a boson mode to the entro
and energy~the corresponding ratio in 111 dimensions is
1/2). Using the relations

F52TlnZ,

E5T2
]

]T
ln Z,

S5~E2F !/T, ~21!

we find

E5
p2

16
NL3T4,

S5
p2

12
NL3T3. ~22!

At this point it is easy to see how things change whennw
3-branes are stacked on top of one another. The mass
open strings can now connect any two of the branes, so th
arenw

2 states for every one state we had before. In this co
text it is important to recall that there is no binding energ
among the 3-branes@15#, so strings running between differ
ent branes really are massless. Furthermore, whenL is large,
it makes no difference whether we considernw singly wound
branes or one brane wrappednw times aroundT

3: the asymp-
totic density of massless string states per unit volume is u
affected by such changes in boundary conditions.

To recapitulate, the prescription fornw.1 is to consider
nw
2 ~very weakly! coupled thermodynamic systems, eac
identical to thenw51 system treated above. Thus, Eq.~22!
becomes

E5
p2

16
Nnw

2L3T4,

S5
p2

12
Nnw

2L3T3. ~23!

The relation betweenE and S in the microcanonical en-
semble is determined by eliminatingT from Eq. ~23!:

S5 2
3N

1/4ApnwL
3/4E3/4. ~24!

SettingE5dM in Eq. ~24!, one obtains the entropy of non
extremal 3-branes with massM01dM . Using the formula
@13#
id-
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M05
Ap

k
nwL

3, ~25!

one can show finally that

S5 2
3N

1/4p7/8nw
5/4k23/4L3~dM /M0!

3/4. ~26!

This expression forS should be comparable to the
Bekenstein-Hawking entropy. Let us, therefore, turn to t
calculation of the horizon area in the low-energy supergra
ity theory.

The ADM mass formula for the black 3-brane describe
by the metric~2! is @19#

MADM5
v5L

3

2k2 ~5r1
4 2r2

4 !. ~27!

Applying this formula to the extremal caser15r25r 0 and
comparing with Eq.~25!, one finds

r 0
45

Ap

2v5
nwk. ~28!

The RR charge remains unchanged as we perturb away fr
extremality, sor25r 0

2/r1 . Writing r15r 01«, one finds
from Eq. ~27! that

dM

M0
56

«

r 0
~29!

to lowest order in«. Thus the horizon area of the metric~2!
is

A5v5r1
5 L3S 12

r2
4

r1
4 D 3/4

529/4v5r 0
5L3S «

r 0
D 3/4

521/4323/4p21/8~nwk!5/4L3~dM /M0!
3/4, ~30!

and the Bekenstein-Hawking entropy is

SBH5
2pA

k2 525/4323/4p7/8nw
5/4k23/4L3~dM /M0!

3/4.

~31!

If we include all eight bosonic and fermionic modes in th
statistical mechanics treatment ofD-brane excitations, we
obtain the following relation between the entropies@20#

S5~ 4
3 !1/4SBH . ~32!

While the scaling exponents agree perfectly, a mysterio
numerical factor appears. We do not understand why
statistical counting gets so close, yet fails to reproduce
Bekenstein-Hawking entropy. Note, however, that if we s
N56 thenS5SBH . It is tempting to conjecture that a subtle
modification of the world-volume dynamics, such as th
twisted boundary conditions proposed by Tseytlin, is respo
sible for this. The bottom line is that an ideal gas on 6nw

2

massless bosons and fermions on the world volume rep
duces the Bekenstein-Hawking entropy. The fact that th
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54 3919ENTROPY AND TEMPERATURE OF BLACK 3-BRANES
number is;nw
2 agrees with the enhanced symmetry of co

cident 3-branes. The necessary number issmaller than the
8nw

2 massless modes of the weakly coupledN54 U(n)
gauge theory. A resolution of this puzzle may be related
the question of binding of the 3-branes. If thenw parallel
3-branes form a marginal bound state, then the numbe
massless modes is indeed reduced compared to what i
pected for unbound 3-branes. Although we do not kn
what produces this bound state, we may speculate that
related to confinement.

A bonus we get for computing the entropy in the gra
canonical ensemble is that the blackbody temperatureT used
in Eqs.~19!–~23! is related to the Hawking temperature. Th
is a trivial consequence of the relationM5M01E where
E is the energy of the gas of massless open strings. We k
from ordinary statistical mechanics thatdE5TdSwhenL is
held fixed. ButdE5dM, so the relationdM5THdSBH from
black hole thermodynamics leads immediately to

TH5S 8

3p2nw

dM

L3 D 1/45SN6 D 1/4T. ~33!

At first, it seems surprising that the Hawking temperat
should be independent of the string couplingg. But it be-
comes inevitable when one realizes thatTH;T, since the
properties of the dilute gas of open string states charact
ing the excitation of theD-brane depend in no way ong. The
string coupling determines only the degree of diluteness
essary to make our arguments valid. It remains a fascina
problem to derive thisg-independent temperature from
string perturbative calculation of the amplitudes for dec
processes of the excited 3-brane, similar to the scatte
amplitudes computed in@21#.
in-

to

r of
s ex-
ow
it is

nd

is

now

ure

eriz-

nec-
ting
a
ay
ring

IV. DISCUSSION

In this paper we have presented a very simple Dirich
brane system whose entropy is almost identical to t
Bekenstein-Hawking entropy of the corresponding low
energy supergravity solution. This relation is so miraculo
that it clearly requires a deeper understanding. How do
classical type IIB supergravity ‘‘know’’ the Planck formula
for blackbody spectrum? Apparently it does. The numeric
factor relating the statistical and Bekenstein-Hawking entr
pies poses a puzzle, however. We are inclined to regard
factor as a hint that we have yet to learn everything about
dynamics of coincident 3-branes. The suggestion@18# to
make the gaugino fields periodic in Euclidean time is
simple way to obtain perfect agreement with the Bekenste
Hawking formula, but justification for this guess awaits
more thorough understanding of the world-volume gau
field.

Motivated by@10# we would also like to show precisely
how the 3-brane blackbody temperature translates into
Hawking temperature of the outgoing closed string radiatio
We hope to report on these issues in the near future.
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