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Entropy of a quantum field in rotating black holes
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Department of Physics, Korea Advanced Institute of Science and Technology, 373-1 Kusung-dong, Yusung-ku, Taejon 305-70

~Received 23 February 1996!

By using the brick wall method we calculate a free energy and the entropy of the scalar field in rotating
black holes. As one approaches the stationary limit surface rather than the event horizon in a comoving frame,
these become divergent. Only when the field is comoving with the black hole~i.e., V05VH) do the free
energy and entropy become divergent at the event horizon. In the Hartle-Hawking state the leading terms of the
entropy areA(1/h)1Bln(h)1 finite, whereh is the cutoff in the radial coordinate near the horizon. In terms of
the proper distance cutoffe it is written asS5NAH /e

2. The origin of the divergence is that the density of
states on the stationary surface and beyond it diverges.@S0556-2821~96!01816-4#

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

By comparing black hole physics with thermodynami
and from the discovery of black hole evaporation by Haw
ing, it was shown that the black hole entropy is proportion
to the horizon area@1,2#:

SBH5
AH

4
~1!

in units \5c5G51. In the Euclidean path integration ap
proach it was shown that the tree level contribution of t
gravitational action gives the black hole entropy@3#. How-
ever, the exact statistical origin of the Bekenstein-Hawki
black hole entropy is unclear.

Recently many efforts have been concentrated on un
standing the statistical origin of black hole thermodynami
especially black hole entropy, by various methods~for re-
view see@4#!: ’t Hooft calculated the entropy of a quantum
field propagating outside the black hole. After regularizatio

he obtainedS5 1
4AH ~the brick wall method! @5–8#. Another

approach is to identify the black hole entropy with the e
tanglement entropySent. The entanglement entropy arise
from ignoring the degree of freedom of a proper region
space:S52Trr lnr. It is found that the entropy is propor
tional to the area of the boundary@9#. In fact, the entangle-
ment entropy and the entropy in the brick wall method a
equivalent. Frolov and Novikov argued that black hole e
tropy can be obtained by identifying the dynamical degre
of freedom with the states of all fields which are locat
inside the black hole@10#. The leading term of the entropy
obtained by these methods is proportional to the surface
of the horizon. However the proportional coefficient diverg
as the cutoff goes to zero. The conical approach also g
results similar to others@11#. The divergence is because of a
infinite number of states near the horizon, which can be
plained by the equivalence principle@12#. An alternative ap-
proach by Frolov is to identify the black hole entropy wi
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the thermodynamic one. In this approach the entropy is fin
@13#. However they all treat only the spherical symmetric
black hole.

If the black hole has a rotation, what is changed? It is w
known that in a rotating black hole spacetime a particle w
zero angular momentum dropped from infinity is dragg
just by the influence of gravity so that it acquires an angu
velocity in the same direction in which the black hole rotate
The dragging becomes more and more extreme the ne
one approaches the horizon of the black hole. This effec
called the dragging of inertial frames@14#.

Thus the field at equilibrium with the rotating black ho
must also be rotating. The rotation is not rigid but locally
different. So the velocity of the radiation does not exceed
velocity of light. However we do not know how to treat th
equilibrium state with a locally different angular velocity
More precisely there are no global static coordinates. So
assume that the radiation has a rigid rotationV0 smaller than
or equal to the extremum value of the local rotation. In
rotating black hole the extremum value of it isVH , which is
the angular velocity of the event horizon.

Recently we considered the black hole entropy by t
brick wall method in the charged Kerr black hole in@15# and
showed the entropy is proportional to the event horizon
Hartle-Hawking states. In this paper to more deeply und
stand the black hole entropy we shall investigate the bla
hole entropy by the brick wall method in various stationa
black holes: the Kaluza-Klein black hole@16# which is the
solution of the four-dimensional effective theory reduc
from the five-dimensional Kaluza-Klein theory, and the S
black hole@17# which is the solution of the Einstein-Maxwel
dilaton-antisymmetric tensor gauge field theory came fro
the heteroitic string theory, and the Kerr-Newman black h
@18# which is the solution of the Einstein-Maxwell theory.

In order to understand the equilibrium state of the rad
tion ~the field! in the rotating black hole spacetime in Sec.
we will first consider the rotating heat bath in the flat spac
time. In Sec. III we will consider the radiation in the equ
librium state in Rindler spacetime with rotation, which is th
most simple spacetime having the event horizon and a r
tion. In Sec. IV we will investigate the entropy of the qua
tum field in the stationary black hole background. We fin
the condition to give the finite value to the free energy a
3904 © 1996 The American Physical Society
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54 3905ENTROPY OF A QUANTUM FIELD IN ROTATING . . .
the entropy. In Sec. V we calculate the entropy in the Har
Hawking state for the rotating black holes. The final sect
is devoted to the summary.

II. A ROTATING HEAT BATH

Let us consider a massless scalar field with a cons
angular velocityV0 about thez axis at thermal equilibrium
with a temperatureT51/b in Minkowski spacetime, for
which the line element in cylindrical coordinates is given

ds252dt21r 2df21dr21dz2. ~2!

In this spacetime the positive frequency field mode can
written asFq,m(x)5 f qm(r ,z)e

2 ivt1 imf, whereq denotes a
quantum number andm is the azimuthal quantum number

For such an equilibrium ensemble of the states of
scalar field the partition function is given by

Z5 (
nq ,m

e2nq~vq2mV0!b ~3!

and the free energy is given by

bF5(
m

E
0

`

dvg~v,m!ln~12e2b~v2mV0!!, ~4!

whereg(v,m) is the density of state for a fixedv andm.
Following ’t Hooft we assume that all possible modes o

scalar field vanish atr5r 1 (r 1 is very small! and atr5L. In
the WKB approximation withF5eiS(r )2 ivt1 imf1 ikz the ra-
dial wave numberK(x,v,m)5] rS is given by

K2~x,v,m!5v22
m2

r 2
2k2. ~5!

This expression denotes the ellipsoid in momentum ph
space at a fixed frequencyv. The total number of mode
with energy less thanv and a fixedm is obtained by inte-
grating over the volume of phase space, which is determi
by Eq. ~5!:

G~v,m!5(
m

E dfdzE
r1

L

dr
1

pE dkK~x,v,m!

5
1

p(
m

E dfdzE
r1

L

drE dkS v22
m2

r 2
2k2D 1/2.

~6!

The integration overk must be carried out over the pha
space that satisfiesK2>0. G(v,m) can be obtained by in
vestigating the shape of expression~5! in momentum phase
space. Thus the free energy, after the integration by pa
becomes

bF52b(
m

E
0

`

dvG~v,m!
1

eb~v2mV0!21

52
b

2E0
`

dvE
2rv

rv

dmS v22
m2

r 2 D 1

eb~v2mV0!21
, ~7!
tle-
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where we assume that the azimuthal quantum numberm is a
continuous parameter. By making the change of variab
m5rvu we obtain the free energy

bF52
N

b3E dfdzE
r1

L r

~12v2!2
dr, ~8!

whereN is a constant andv5rV0. Note that asL goes to
1/V0 this partition function diverges asg4, where
g5(12v2)21/2.

From expression~8! it is easy to obtain expressions for
the energyE, angular momentumJ, and entropyS of radia-
tion:

J5^m&av5
1

b

]

]V0
~bF !54N

1

b4V0E r 2g6rdrdfdz, ~9!

E5^v&av5V0J2
]

]b
~bF !5N

1

b4E ~31v2!g4rdrdfdz,

~10!

S5b2
]

]b
F54N

1

b3E g4rdrdfdz. ~11!

These coincide with those in@19#. Similarly to the free en-
ergy F these expressionsJ,E, andS diverge asL→1/V0.
The divergence is related to the rigid rotation. In a rigid
rotating system the velocity of the comoving observer grow
as one moves from the origin to infinity. So beyond som
point the velocity exceeds the velocity of the light. This is
unphysical. Thus a rotating system cannot have the si
greater than 1/V0. Therefore to obtain a finite value for
J,E, andS, we must takeL,1/V0. In such a finite system
v.mV0.

Now let us consider the above problem in the comovin
coordinate that is rotating with angular velocityV0. The line
element in the comoving frame is given by

ds252~12V0
2r 2!dt212V0rdf8dt1dr21dz2, ~12!

where we have usedf85f2V0t. In this coordinate the
positive frequency field mode is written as
Fqm(x)5 f̄ qm(r ,z)e

2 iv8t1 imf8.
Because in the comoving frame the field has no rotatio

the free energy is given by

bF5E
0

`

dv8g8~v8!ln~12e2bv8!, ~13!

whereg8(v8) is the density of state for a fixedv8. In the
WKB approximation the Klein-Gordon equationhF50
yields the constraint@20#

gabkakb50 ~14!

or

2~v82V0m!21S 1r 2m21k21p2D50, ~15!



u
l

a

t

n
e

h

-
e

he

the
-

ss

3906 54MIN-HO LEE AND JAE KWAN KIM
wherep5]S/]r . In the region whereV0r,1, for a fixed
v8, this expression represents the ellipsoid in moment
space. Therefore the total number of modes with energy
thanv8 is given by

G8~v8!5
1

p(
m

dfdzE drE dkS ~v82mV0!
22

m2

r 2

2k2D 1/2 ~16!

5
4

3E dfdzE
r1

L

dr
r

~12V0
2r 2!2

v83, ~17!

which is the volume of the ellipsoid. Expression~16! is just
the same form as Eq.~6! when v→v2mV0. The phase
volume~17! diverges asL→1/V0. Inserting expression~17!
into Eq. ~13! and integrating we get

bF52
N

b3E dfdzE
r1

L

dr
r

~12V0
2r 2!2

. ~18!

This expression is the same with Eq.~8!. From this we get
the energyE8 and the entropyS:

E85^v8&av52
]

]b
~bF !53

N

b4AE
r1

L

dr
r

~12V0
2r 2!2

, ~19!

S5b2
]

]b
~bF !54

N

b3AE
r1

L

dr
r

~12V0
2r 2!2

, ~20!

whereA5*dfdz. It is noted that the entropyS is the same
with Eq. ~11! and the energyE8 is satisfied with
E85E2V0J. This fact shows that the coordinate transfo
mation to the comoving frame only changes the energy
does not change the entropy in the WKB approximatio
Thus in the case of calculating the entropy or the free ene
it is convenient to choose the comoving frame. It is not
that in the comoving frame the divergence is related to
time componentgtt of the metric~12!.

III. A THERMAL BATH IN RINDLER SPACETIME
WITH A ROTATION

In this section we will consider the thermal equilibrium
state of the scalar field with the massm and a uniform rota-
tion about thez axis in Rindler spacetime. The line eleme
of the Rindler spacetime in cylindrical coordinates is giv
by

ds252j2dh21dj21r 2df21dr2. ~21!

In this spacetime the event horizon is atj50, andj5const
represent the trajectory of the uniform acceleration@21#. The
importance of Rindler spacetime is that in the large bla
hole mass limit the metric of the black spacetime reduces
that of Rindler spacetime@7#.

As in Sec. II, the WKB approximation with
F(x)5e2 ivt1 imf1 iS(j,r ) yields
m
ess

r-
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rgy
ed
he

t
n
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to

K2~j,r ,v,m!5
v2

j2
2

1

r 2
m22pr

22m2, ~22!

whereK5]jS andpr5] rS. In this section we will calculate
the free energy by using the slightly different method wit
that in Sec. II.

It is important to note that in the WKB approximation the
density of stateg(v,m) is determined by the constraint~22!,
and that the free energy is singular atv5mV0. In particular
if v2mV0,0 the free energy becomes an imaginary num
ber. However in the WKB approximation we can easily se
v̄5v2mV0.0 in the region such thatj2V0r.0. But in
the region such thatj2V0r,0 it is possible that
v2mV0,0. ~More details are in Sec. IV.! Therefore to
obtain the finite value for the free energy we must require t
system to be in the region such thatj2V0r.0. Then the
free energy is written as

bF5(
m

E
mV0

`

dvg~v,m!ln~12e2b~v2mV0!!

5E
0

`

dv(
m

g~v1mV0 ,m!ln~12e2bv!

52bE
0

`

dv
1

ebv21E dmG~v1mV0 ,m!, ~23!

where we have integrated by parts and assumed that
quantum numberm is a continuous variable. The total num
ber of modes with energy less thanv is obtained by integrat-
ing over the volume of phase space

G~v̄!5E dmG~v1mV0 ,m!

5E dmE dfdrE
r1

L

dj
1

pE dprK~j,r ,v1mV0 ,m!

5
1

pE dmE dfdrE
r1

L

djE dpr S v2

j2

1
2

j2
mV0v1

m2V0
2

j2
2

1

r 2
m22pr

22m2D 1/2. ~24!

The integrations overm andpr must be carried out over the
phase space that satisfiesK2(v1mV0 ,m)>0. After the in-
tegration we obtain the number of states with energy le
thanv, which is given by

G~v!5
4

3E d3x
jr

A~j22V0
2r 2!

S v2

j22V0
2r 2

2m2D 3/2.
~25!

Thus the free energy becomes
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bF52
4

3
bE d3xE

mAj22V0
2r2

`

dv
1

ebv21

3
jr

A~j22V0
2r 2!

S v2

j22V0
2r 2

2m2D 3/2. ~26!

For a massless scalar field (m50) the free energy becomes

bF52
N

b3E dfdrE
j1

L

dj
jr

~j22V2r 2!2
. ~27!

From this we get the energyE, the angular momentumJ,
and the entropyS of the field

J5^m&av54
N

b4V0E r 2

~j22V0
2r 2!3

jrdjdrdz, ~28!

E5^E&av5
N

b4E 3j21V0
2r 2

~j22V0
2r 2!3

jrdjdrdz, ~29!

S54
N

b3E 1

~j22V0
2r 2!2

jrdjdrdz. ~30!

It is noted that the thermodynamic quantitiesF,E, andS are
divergent asj→V0r rather than the event horizon. Only in
theV050 case the divergence occurs at the horizonj50.
Such a fact can be easily understand in the comoving fram
of which the line element is given by

ds252j2dh21r 2~df81V0dh!21dj21dr2

52~j22V0
2r 2!dh212V0r

2dhdf8

1r 2df821dj21dr2, ~31!

where we usedf85f2V0h. In this spacetime the event
horizon is atj50. In addition to the event horizon there is a
stationary limit surface atj5V0r , where the Killing vector
]h becomes null. That surface is the elliptic hypersurfac
@22#. In the interval 0,j,V0r , the Killing vector is space-
like. We can also show that the entropy in the comovin
frame is the same form with Eq.~30!. These facts imply that
the divergence of the thermodynamic quantities is deeply r
lated to the stationary limit surface in the comoving fram
rather than the event horizon.

IV. ENTROPY OF A SCALAR FIELD IN A ROTATING
BLACK HOLE

A. General formalism

Let us consider a scalar field with massm in thermal
equilibrium at temperature 1/b in the rotating black hole
background, of which line element is generally given by

ds25gtt~r ,u!dt212gtf~r ,u!dtdf1gff~r ,u!df2

1grr ~r ,u!dr21guu~r ,u!du2. ~32!

This metric has two Killing vector fields: the timelike Killing
vector jm5(] t)

m and the axial Killing vectorcm5(]f)
m.

The metrics we are concerned with of the Kaluza-Klein, th
e,

e

g

e-
e

e

Sen, and the Kerr-Newman black holes are in the Appendix
The properties of those metrics are

gttgff2gtf
2 52D~r !sin2u→0 ~33!

and

~gttgff2gtf
2 !grr→finite ~34!

as one approaches the horizon. Another property is that the
are two important surfaces~the event horizon and the station-
ary limit surface!, and the two surfaces do not coincide. On
the stationary limit surface the Killing vectorjm vanishes,
and the Killing vectorjm1VHcm is null on the horizon,
whereVH is the angular velocity of the horizon.

The equation of motion of the field with massm and
arbitrarily coupled to the scalar curvatureR(x) is

@¹m¹m2jR2m2#C50, ~35!

wherej is an arbitrary constant. Thej51/6 andm50 cases
correspond to the conformally coupled one. We assume th
the scalar field is rotating with a constant azimuthal angula
velocityV0. The associated conserved quantities are angula
momentumJ. The free energy of the system is then given by

F5
1

b(
m

E
0

`

dEg~E ,m!ln~12e2b~E2mV0!!, ~36!

whereg(E ,m) is the density of state for a givenE andm.
To evaluate the free energy we will follow the brick wall

method of ’t Hooft@5#. Following the brick wall method we
impose a small radial cutoffh such that

C~x!50 for r<r H1h, ~37!

where r H denotes the coordinate of the event horizon. To
remove the infrared divergence we also introduce anothe
cutoff L@r H such that

C~x!50 for r>L. ~38!

It is noted that the brick wall is spherically symmetric. In the
WKB approximation withC5e2 iE t1 imf1 iS(r ,u), Eq. ~35!
yields the constraint@20#

pr
25

1

grr
@2gttE212gtfEm2gffm22guupu

22V~x!#,

~39!

where pr5] rS, pu5]uS, and V(x)5jR(x)1m2. In the
WKB approximation it is important to note that the number
of states for a givenE is determined bypu , pr , andm. The
number of modes with energy less thanE and with a fixed
m is obtained by integrating overpu in phase space:

G~E ,m!5
1

pE dfduE drE dpupr~E ,m,x!

5
1

pE dfduE drE dpuF 1grr @2gttE212gtfEm

2gffm22guupu
22V~x!#G1/2. ~40!
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The integration overpu must be carried over the phase spa
such thatpr>0.

At this point we need some remarks. In a rotating syste
in general, there is a superradiance effect, which occ
when 0,E,mV0. For this range of the frequency the fre
energyF becomes a complex number. In the caseE5mV0
the free energy is divergent. Therefore to obtain a real fin
value for the free energyF, we must require thatE.mV0.
~For 0,E,mV0 the free energy diverges. See below.! This
requirement says that we must restrict the system to be in
region such thatgtt8[gtt12V0gtf1V0

2gff,0. In this re-
gion E2mV0.0, so the free energy is a finite real value.
is easily showed as follows. Let us defineE5E2mV0.
Then it is written as

E5S gtfgtt 2V0Dm1
1

2gtt
@~gtfm!21~2gtt!~V1gffm2

1grr pr
21guupu

2!#1/2

5~V2V0!m1
2D

gff
F 1

2D
m21

gff

2D
SV1

pr
2

grr
1

pu
2

guu
D G1/2,

~41!

where we used

gtt5
gff

D
, gtf5

2gtf
D

, gff5
gtt
D
, ~42!

and V52gtf /gff . Here 2D5gtf
2 2gttgff . From Eq.

~41!, for all m, pr , andpu , one can see the condition suc
thatE.0 is

A2D

gff
6~V2V0!.0 ~43!

or

gtt8[gtt12V0gtf1V0
2gff,0. ~44!

Therefore in the region such that2gtt8 .0 ~called region I!
the free energy is real, but in region such that2gtt8 ,0
~called region II! the free energy is complex. However
region I the integration over the momentum phase spac
convergent. But in region II the integration over the mome
tum phase is divergent. These facts become more appare
we investigate the momentum phase space. In region I
possible points ofpi satisfyingE2V0pf5E for a givenE
are located on the surface

pr
2

grr
1

pu
2

guu
1

2gtt8

2D
S pf1

gtf1V0gff

gtt8
E25S E2

2gtt8
2VD ,

~45!

which is the ellipsoid,a compact surface. Herepf5m. So
the density of stateg(E) for a given E is finite and the
integrations overpi give a finite value. But in region II the
possible points ofpi are located on the surface
ce

m,
urs
e

ite

the
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pr
2

grr
1

pu
2

guu
2

gtt8

2D
S pf1

gtf1V0gff

gtt8
ED 252SE2

gtt8
1VD ,

~46!

which is the hyperboloid,a noncompact surface. So g(E)
diverges and the integration overpi diverges. In the case of
gtt8 50, the possible points are given by the surface

pr
2

grr
1

pu
2

guu
5
pf2~gffE

2/D1V!/@~2gtf /D !E#

2D /2gtfE
, ~47!

which is elliptic paraboloid and alsononcompact. There-
fore the value of thepi integration is divergent. Actually the
surface such thatgtt8 50 is the velocity of the light surface
~VLS!. Beyond VLS ~in region II! the comoving observer
must move more rapidly than the velocity of light. Thus w
will assume that the system is in region I.~For the possible
region I see Sec. IV B.! For example, in the case ofV050
the points satisfyinggtt8 50 are on the stationary limit sur-
face. The region of the outside~inside! of the stationary limit
surface corresponds to region I~II !. In the rotating system in
Sec. II region I isr,1/V0 and r.1/V0 corresponds to re-
gion II. In the Rindler spacetime with a rotation,j.V0r
corresponds to region I, andj,V0r to region II.

With the assumption that the system is in region I we ca
obtain the free energy as

bF5(
m

E
mV0

`

dEg~E ,m!ln~12e2b~E2mV0!!

5E
0

`

dE(
m

g~E1mV0 ,m!ln~12e2bE!

52bE
0

`

dE
1

ebE21E dmG~E1mV0 ,m!, ~48!

where we have integrated by parts and we assume that
quantum numberm is a continuous variable. The integrations
overm andpu yield

F52
4

3E dfduE
rH1h

L

drE
V~x!A2g8tt

`

3dE
1

ebE21

Ag4
A2gtt8

S E2

2gtt8
2V~x! D 3/2. ~49!

In particular whenV050 and the nonrotating casegtf50,
the free energy~49! coincides with the expression in@5,8#
and it is proportional to the volume of the optical space i
the limit V(x)50 @23#. It is easy to see that the integrand
diverges asr H1h or L approach the surface such tha
gtt8 50. In that case the contribution of theV(x) can be neg-
ligible.

For a massless and minimally coupled scalar field ca
(m5j50) the free energy reduces to
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bF52
N

b3E dudfE
rH1h

L

dr
Ag4

~2gtt8 !2

52NE
0

b

dtE dudfE
rH1h

L

drAg4
1

b local
4 , ~50!

whereb local5A2gtt8b is the reciprocal of the local Tolma
temperature@24# in the comoving frame. This form is just th
free energy of a gas of massless particles at local tempera
1/b local.

From this expression~50! it is easy to obtain expression
for the total energyU, angular momentumJ, and entropy
S of a scalar field

J5^m&52
1

b

]

]V0
~bF !

5
4N

b4 E dudfE
rH1h

L

dr
Ag4

~2gtt8 !2
gff

~2gtt8 !
~V02V!,

~51!

U5^E&5V0J1
]

]b
~bF !

5
N

b4E dudfE
rH1h

L

dr
Ag4

~2gtt8 !2

3F314
V0~V02V!gff

~2gtt8 ! G , ~52!

S5b2
]

]b
F5b~U2F2V0J!

54
N

b3E dudfE
rH1h

L

dr
Ag4

~2gtt8 !2
, ~53!

FIG. 1. The position of the outer velocity of light surface for th
Kaluza-Klein black hole.
e
ture

s

which are also divergent as one approach the surface s
thatgtt8 50.

B. The region such that2gtt8>0

In this section we study where the possible region I is f
three black holes, the Kaluza-Klein, and the Sen, the Ke
Newman black holes, forV05VH ,V0,VH , and the ex-
treme case withV05VH .

1. The Kaluza-Klein black hole

~a! V05VH case: In theV05VH case the position of the
light of velocity surface is exactly found. In such a casegtt8
can be written as

gtt8 5gtt12VHgtf1VH
2 gff ~54!

5
m2

BS
~x2 r̄ H!H y2sin2u

4r̄ H
2 ~12v2!x3

1
y2sin2u

4r̄ H
2 @22 r̄2~12v2!#x2

1F211
y2sin2u

4r̄ H
2 @41y2~12v2!cos2u22r̄2#Gx

1F r̄21
y2sin2u

4r̄ H
2 @24r̄ H2 r̄2y

2~12v2!cos2u#G
[

m2

BS
~x2 r̄ H!

y2sin2u

4r̄ H
2 ~12v2!~x31a1x

21a2x1a3!

~55!

for uÞ0, where x5r /m, y5a/m, r̄ H5r H /m, and
r̄ 25r2 /m. From this we can see that there are two VLS’
One is the horizon (r5r H), and another light of velocity
surface~call outer VLS! is given by@25#

rVLS52mA2QcosS 13Q D2
1

3
a1m, ~56!

where

Q5arccosS P

A2Q2D ~57!

with

Q5
3a22a1

2

9
, P5

9a1a2227a322a1
3

54
. ~58!

In the case of the slowly rotating black hole (a is small! the
VLS is approximately given by

rVLS;2m
r H

aA12v2sinu
2
1

3 S 2

12v2
2
r2

m Dm, ~59!

which is an open, roughly, cylindrical surface. Asv→1 or
a→0 the VLS becomes more distant, which came from t

e
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fact that asv→1 or a→0 the coordinate angular velocity
df/dt52gtf /gff vanishes. Foru50 it is always that
gtt8 ,0 for r.r H . As a→m the outer VLS approaches the
horizon. See Fig. 1.

~b! V0,VH case. In this casegtt8 50 is a fourth-order
polynomial equation inr for a givenu. Region I corresponds
to r in,r,rVLS . At u5p/2 r in is between the stationary
limit surface and the event horizon, and atu50 r in contacts
with the event horizon. Actually the inner VLSr in is between
the stationary limit surface and the event horizon for allu.
The particular point is that asV0→VH , r in approaches the
horizon. However it does attach to the horizon only whe
V05VH . While the outer velocity of light surface is locate
at a very far distance from the horizon, it is a roughly cylin
drical surface as in caseV05VH . For the position of the
inner VLS see Fig. 2.

~c! The extreme black hole case withV05VH. The ex-
treme black hole for the Kaluza-Klein black hole occu
whenm25a2. In this case the inner horizon and outer hor
zon are at the same place. Atu51/2p, gtt8 is written as

gtt8 5
m2

BS
~x2 r̄ H!2xS x1

2

12v2D12v2

4
, ~60!

which shows that the possible region such thatgtt8 ,0 does
not exist atu51/2p. Therefore in the extreme black hole
case it is impossible to consider the brick wall model
’t Hooft.

2. The Sen black hole

~a! V05VH case. InV05VH casegtt8 can be written as

gtt8 5gtt12VHgtf1VH
2 gff ~61!

5
m2

S
~x2 r̄ H!H y2sin2u

4r̄ H
2 cosh4g

x31
y2sin2u

4r̄ H
2 cosh4g

~2cosh2g

FIG. 2. The position ofr in at u50.5p for the Kaluza-Klein
black hole.v50.5.
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d
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i-

of

2 r̄2!x21F211
y2sin2u

r̄ H
2

1
y2sin2u

4r̄ H
2 cosh4g

~y2cos2u22r̄2cosh2g!Gx
1F r̄21

y2sin2u

r̄ H
2

y2sin2u

4r̄ H
2 cosh4g

~ r̄2y
2cos2u!G

[
m2

S
~x2 r̄ H!

y2sin2u

4r̄ H
2 cosh4g

~x31a1x
21a2x1a3! ~62!

for uÞ0, where x5r /m, y5a/m, r̄ H5r H /m, and
r̄ 25r2 /m. Then the exact position of the inner VLS and
outer VLS are are given by

r in5r H , rVLS52mA2QcosS 13Q D2
1

3
a1m. ~63!

The position of the outer VLS for smalla is approximately
given by

rVLS;
2mr Hcosh

2g

asinu
2
1

3 S 2cosh~2g!2
r2

m Dm, ~64!

which is an open, roughly, cylindrical surface. Asa→0 the
VLS goes to the infinity, and it disappears whena50. As
g or a is increasing the VLS approaches the horizon. A
u5(1/2)p, similarly to the Kaluza-Klein black hole,
gtt8 ,0 for r.r H . See Fig. 3.

~b! V0,VH case. In this casegtt8 50 is also a fourth-
order equation inr for a givenu. Similarly to the Kaluza-
Klein black hole region I isr in,r,rVLS . At u50 the inner
VLS r in is at the horizon, and atu5p/2 r in is located be-
tween the stationary limit surface and the event horizon. S
Fig. 4. AsV0→VH , r in approaches the horizon. Only when
V05VH it coincides with the event horizon. The outer ve

FIG. 3. The position of the outer velocity of light surface for th
Sen black hole.g55.0.
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locity of light surface, in the case of smalla, locates at the
very far distance from the horizon, and it is a roughly cyli
drical surface.

~c! The extreme black hole case withV05VH . The ex-
treme black hole for the Kaluza-Klein black hole occu
whenm25a2. In this case the inner horizon and outer ho
zon are at the same place. Atu5(1/2)p gtt8 is written as

gtt8 5
m2

S
~x2 r̄ H!2x~x12cosh2g! ~65!

which shows that the possible region such thatgtt8 ,0 does
not exist atu51/2p. Therefore in the extreme black ho
case it is impossible to consider the brick wall model
’t Hooft.

3. The Kerr-Newman black hole

~a! V05VH case. In V05VH case we can exactly find
the position of the light of velocity surface. In such a ca
gtt8 can be written as

gtt8 5gtt12VHgtf1VH
2 gff

5
M2

S
~x2 r̄ H!$V̄H

2 sin2ux31 r̄ HV̄H
2 sin2ux2

1@211V̄H
2 sin2u~y21y2cos2u1 r̄ H

2 !#x ~66!

1@2~12V̄Hysin
2u!22 r̄ H1 r̄ HV̄H

2 sin2u~ r̄ H
2 1y2

1y2cos2u)] % ~67!

[
M2

S
~x2 r̄ H!V̄H

2 sin2u~x31a1x
21a2x1a3! ~68!

for uÞ0, wherex5r /M , y5a/M , z5e/M , V̄H5MVH ,
r̄ H5r H /M . Then the exact position of the outer light o
velocity surface is given by

FIG. 4. The position of the inner velocity of light surface for th
Sen black hole.g55.0,u50.5p.
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rVLS52MA2QcosS 13Q D2
1

3
a1M . ~69!

For smalla Eq. ~69! is approximately given by

rVLS;
1

VHsinu
2
r H
3
, ~70!

which is an open, roughly, cylindrical surface. Foru50 it is
always thatgtt8 ,0 for r.r H . As a→0, rVLS goes to infinity,
and asa→AM21e2 it approaches the event horizon. Se
Fig. 5. The inner VLSr in is the event horizon.

~b! V0,VH case: In this case, similarly to other black
holes, the inner VLS r in approaches the horizon as
V0→VH . See Fig. 6. The inner VLS is a compact surface
which shrinks to the horizon asV0→VJ . See Fig. 7. The
outer VLS is at far place, which disappears whenV050.

e FIG. 5. The position of the outer light of velocity surface for the
Kerr-Newman black hole.e50.0.

FIG. 6. The position of the inner light of surface for the Kerr
Newman black hole.u50.5p.
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~c! The extreme black hole case withV05VH . For the
extreme Kerr-Newman black hole case, which occurs wh
M25a21e2, gtt8 at u5(1/2)p is written as

gtt8 5
M2

S

y

11y2
~x21!2S x112

1

yD S x111
1

yD . ~71!

From this we obtain the position of VLS atu5p/2 as

r5M for
1

2
M<a<M and a50, ~72!

r5S 211
M

a DM for 0,a,
1

2
M . ~73!

The second case corresponds to the extreme black hole
is slowly rotating and has many charges.~In this case
e.A3/2M'0.866M ). In particular, in the case o
e<A3/2M (a5M for e50) the horizon and the light of the
velocity surface are at the same position. Therefore in cas
the extreme black hole witha>1/2M it is impossible to
consider the brick wall model of ’t Hooft.

V. THE ENTROPY IN THE HARTLE-HAWKING
VACUUM

The Hartle-Hawking vacuum state@29# is one that the
angular velocityV0 is equal to that of the event horizon, an
the temperatureb is equal to the Hawking temperature
where the Hawking temperature and the angular velocity
the horizon are defined as@26#

TH5
k

2p
, VH5 limr→rHS 2

gtf
gff

D . ~74!

Herek is the surface gravity of the horizon.
First of all let us assume thatV05VH . In this case, as

stated in Sec. IV, the possible region I isr H,r,L,rVLS .
The outer brick wall must be located inside the outer VL

FIG. 7. The shape of the inner light of surface for the Ke
Newman black hole.a50.8M ,e50.
en

that

e of

d
,
of

S.

This fact was already pointed out by Frolov and Thorne@27#
to remove the singular structure of the Hartle-Hawki
vacuum and modify it. Now recall that in gener
gtt8 ur5rH

50. This came from thatgtt8 is the same form as

xmxm5(jm1VHcm)(jm1VHcm), andxm is null on the ho-
rizon. So it follows that gtt8 5(r2r H)G(r ,u), where
G(r ,u) is a nonvanishing function atr5r H except the ex-
tremal case.~We cannot consider the extreme black ho
case.!

Therefore for the three black holes the leading behav
of the free energyF for very smallh are then given by

bF'2
N

b3E dudfE
rH1h

L

dr
Ag4

~2gtt8 !2
~75!

52
N

b3E dudfE
rH1h

L

dr
D~r !

~r2r H!2G2~r ,u!
, ~76!

whereD(r ,u)5Ag4. SinceD(r ,u) andG(r ,u) are nonvan-
ishing functions atr5r H we can expand it aboutr5r H as

D~r ,u!5D~r H ,u!1D8~r H ,u!~r2r H!1O„~r2r H!2…, ~77!

1

G2~r ,u!
5

1

G2~r H ,u!
1S 1

G2~r H ,u! D 8
1O„~r2r H!2…, ~78!

where a prime denotes the partial derivative forr . So the free
energy is approximately given by

bF'2
N

b3E dfduE drH D~r H ,u!

G2~r H ,u!

1

~r2r H!2

1S D~r H ,u!

G2~r H ,u! D 8 1

~r2r H!
1O„~r2r H!0…J

52
2pN

b3 H 1hE du
D~r H ,u!

G2~r H ,u!

2 ln~h!E duS D~r H ,u!

G2~r H ,u! D 8
1•••J , ~79!

which show that generally, in addition to the linear dive
gence term inh, there is a logarithmic one in the case
rotating black hole. If we write the free energy in terms
the proper distance cutoffe, it becomes in very simple form

bF'2
N

b3E
r5rH

dfduAguugff

3E
rH1h

L

drAgrr S gff

gtf
2 2gttgff

D 3/2
'2

N

2~kb!3
AH

e2
, ~80!

whereAH is the area of the event horizon, ande is the proper
distance from the horizon tor H1h:

r-
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e5E
rH

rH1h

drAgrr . ~81!

However the proper distance cutoff is dependent on the
ordinateu, which is the general property of the rotating blac
hole.

From the free energyF we obtain the leading behaviors
of the entropyS as

S5b2
]

]b
F'

N

b3 SA 1h1Bln~h!1finiteD , ~82!

whereA andB are inc numbers in Eq.~79!, or

S'
4N

2~kb!3
AH

e2
. ~83!

The entropyS is linearly and logarithmically divergent as
h→0. The divergences arise because the density of state
a givenE diverges ash goes to zero.

Now we take T as the Hartle-Hawking temperature
TH5k/2p. Then the entropy becomes

SH'
N8p3

k3 SA 1h1Bln~h!1finiteD , ~84!

or

SH'
N

4p3

AH

e2
. ~85!

The entropy of a scalar field in the Hartle-Hawking sta
diverges quadratically ine21 as the system approaches th
horizon. Or it diverges inh21 and ln(h). In the casea50 our
result ~85! agrees with the result calculated by ’t Hooft@5#
and with one in@28#. These facts imply that the leading
behaviors of entropy~85! are in general form.

VI. SUMMARY AND CONCLUSION

By using the brick wall method we have calculated th
entropies of the rotating systems with a rotationV0 at ther-
mal equilibrium with temperatureT in the rotating black
holes. In the WKB approximation to get the real finite fre
energy and entropy the system must be in region I. As t
system approaches the VLS (r in and rVLS) the thermody-
namic quantities become divergent. From this factwe con-
clude that the divergence of the thermodynamic quantit
including the entropy is related to the stationary limit sur
face in the comoving frame. In the spherical symmetric black
hole the stationary limit surface and the event horizon co
cide. Only whenV05VH can the system approach the ho
rizon. The entropy for this case is linearly and logarithm
cally divergent as the ultraviolet cutoff goes to zero. T
remove such a divergence, in addition to the renormalizati
of the gravitational constant, we need the renormalization
the curvature square term@27#. But after the renormalization
the entropy is not proportional to the area of the event ho
zon. If we use the proper distance cutoff the entropy is pr
portional to the horizon areaAH . But the cutoff depends on
the coordinateu.

Another particular point is that in the extremal black ho
o-
k

for

e
e

e

e
he

es
-

n-
-
i-
o
on
of

ri-
o-

e

case we cannot consider the brick wall method of ’t Hoo
except for the case 0,a,1/2M in Kerr-Newman black
hole.
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APPENDIX

For the three rotating black holes the metrics, the surfa
gravities, and the proper distancese are given as follows.

~1! The Kaluza-Klein black hole@10#

ds252
D2a2sin2u

BS
dt222asin2u

1

A12v2
Z

B
dtdf

1FB~r 21a2!1a2sin2u
Z

BGsin2udf2

1
BS

D
dr21BSdu2, ~A1!

where

D5r 222mr1a2, S5r 21a2cos2u, Z5
2mr

S
,

B5S 11
v2Z
12v2D

1
2
. ~A2!

The physical massM , the chargeQ, the angular momentum
J, and the horizon are expressed by the parametersv,m, and
a as

M5mF11
v2

2~12v2!G , Q5
mv
12v2

,

J5
ma

A12v2
,r H5m1Am22a2. ~A3!

The surface gravity and proper distance are

kKaluza Klein5
A~12v2!~m22a2!

r H
2 1a2

, ~A4!

eKaluza Klein52SB~r H!S~r H!

2r H22m D 1/2Ah. ~A5!

~2! The Sen black hole@17#

ds252
D2a2sin2u

S
dt22

4mracosh2gsin2u

S
dtdf ~A6!

1
S

D
dr21Sdu21

L

S
sin2udf2, ~A7!

where

D5r 222mr1a2, S5r 21a2cos2u12mrsinh2g, ~A8!
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L5~r 21a2!~r 21a2cos2u!12mra2sin2u ~A9!

14mr ~r 21a2!sinh2g14m2r 2sinh4g.
~A10!

The massM , the chargeQ, the angular momentumJ, and
the horizon are given by parametersm,b, anda as

M5
m

2
~11cosh2g!, Q5

m

A2
sinh2g,

j5
am

2
~11cosh2g!, r H5m1Am22a2. ~A11!

The surface gravity and proper distance are

kSen5
A~2M22e2!224J2

2M @2M22e21A~2M22e2!224J2#
, ~A12!

eSen52S r H2 1a2cos2u12mr Hsinh
2g

2r H22m D 1/2Ah. ~A13!

~3! The charged Kerr black hole@18#
ds252S D2a2sin2u

S Ddt22 2asin2u~r 21a22D!

S
dtdf

1F ~r 21a2!22Da2sin2u

S Gsin2udf21
S

D
dr21Sdu2,

~A14!

where

S5r 21a2cos2u, D5r 21a21e222Mr , ~A15!

and e,a, and M are charge, angular momentum per u
mass, and mass of the spacetime, respectively. The e
horizon is

r H5M1AM22a22e2. ~A16!

The surface gravity and proper distance are

kKerr5
AM22a22e2

2M @M1AM22a22e2#2e2
, ~A17!

eKerr52S r H2 1a2cos2u

2r H22M D 1/2Ah. ~A18!
.
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