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Entropy of a quantum field in rotating black holes
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By using the brick wall method we calculate a free energy and the entropy of the scalar field in rotating
black holes. As one approaches the stationary limit surface rather than the event horizon in a comoving frame,
these become divergent. Only when the field is comoving with the black (hele Q,=Q) do the free
energy and entropy become divergent at the event horizon. In the Hartle-Hawking state the leading terms of the
entropy aréA(1/h) + BIn(h)+ finite, whereh is the cutoff in the radial coordinate near the horizon. In terms of
the proper distance cutoff it is written asS=NA,; /€2. The origin of the divergence is that the density of
states on the stationary surface and beyond it divef@®556-282(96)01816-4

PACS numbdss): 04.70.Dy

I. INTRODUCTION the thermodynamic one. In this approach the entropy is finite
[13]. However they all treat only the spherical symmetrical
By comparing black hole physics with thermodynamicsblack hole.
and from the discovery of black hole evaporation by Hawk- If the black hole has a rotation, what is changed? It is well
ing, it was shown that the black hole entropy is proportionalknown that in a rotating black hole spacetime a particle with
to the horizon aredl,2]: zero angular momentum dropped from infinity is dragged
just by the influence of gravity so that it acquires an angular
velocity in the same direction in which the black hole rotates.
SBH:Aﬁ (1) The dragging becomes more and more extreme the nearer
4 one approaches the horizon of the black hole. This effect is
called the dragging of inertial fram¢&4].
, , , ) , Thus the field at equilibrium with the rotating black hole
in units=c=G=1. In the Euclidean path integration ap- st aiso be rotating. The rotation is not rigid but locally is
proaph It was s.hown. that the tree level contribution of theyitterent. So the velocity of the radiation does not exceed the
gravitational action gives the black hole entrdfBj. How- e gcity of light. However we do not know how to treat the
ever, the exact statistical origin of the Bekensteln-Hawklngequ”ibrium state with a locally different angular velocity.

black hole entropy is unclear. More precisely there are no global static coordinates. So we

Recently many efforts have been concentrated on undefisq e that the radiation has a rigid rotatpsmaller than
standing the statistical origin of black hole thermodynam|csOr equal to the extremum value of the local rotation. In a

e;pecially bla’ck hole entropy, by various methdtis re- rotating black hole the extremum value of it(d5, , which is
view see[4]): 't Hooft calculated the entropy of a quantum angular velocity of the event horizon.

field propagating outside the black hole. After regularization, Recently we considered the black hole entropy by the

he obtaineds= ;A (the brick wall metho§i[5—8]. Another  prick wall method in the charged Kerr black hole[i5] and
approach is to identify the black hole entropy with the en-showed the entropy is proportional to the event horizon in
tanglement entropys.,. The entanglement entropy arises Hartle-Hawking states. In this paper to more deeply under-
from ignoring the degree of freedom of a proper region ofstand the black hole entropy we shall investigate the black
space:S=—Trplnp. It is found that the entropy is propor- hole entropy by the brick wall method in various stationary
tional to the area of the boundaf9]. In fact, the entangle- black holes: the Kaluza-Klein black ho[@6] which is the
ment entropy and the entropy in the brick wall method aresolution of the four-dimensional effective theory reduced
equivalent. Frolov and Novikov argued that black hole en-from the five-dimensional Kaluza-Klein theory, and the Sen
tropy can be obtained by identifying the dynamical degrees$lack hole[17] which is the solution of the Einstein-Maxwell
of freedom with the states of all fields which are locateddilaton-antisymmetric tensor gauge field theory came from
inside the black hol¢10]. The leading term of the entropy the heteroitic string theory, and the Kerr-Newman black hole
obtained by these methods is proportional to the surface arg¢a8] which is the solution of the Einstein-Maxwell theory.
of the horizon. However the proportional coefficient diverges In order to understand the equilibrium state of the radia-
as the cutoff goes to zero. The conical approach also giveson (the field in the rotating black hole spacetime in Sec. Il
results similar to otherfsl1]. The divergence is because of an we will first consider the rotating heat bath in the flat space-
infinite number of states near the horizon, which can be extime. In Sec. Il we will consider the radiation in the equi-
plained by the equivalence princifl&2]. An alternative ap- librium state in Rindler spacetime with rotation, which is the
proach by Frolov is to identify the black hole entropy with most simple spacetime having the event horizon and a rota-
tion. In Sec. IV we will investigate the entropy of the quan-
tum field in the stationary black hole background. We find
"Electronic address: mhlee@chep6.kaist.ac.kr the condition to give the finite value to the free energy and
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the entropy. In Sec. V we calculate the entropy in the Hartlewhere we assume that the azimuthal quantum numbisra
Hawking state for the rotating black holes. The final sectioncontinuous parameter. By making the change of variable
is devoted to the summary. m=rwu we obtain the free energy

N L or
Il. A ROTATING HEAT BATH BF:__af dedz i 2)2dr, @)
Let us consider a massless scalar field with a constant B f1 v
angular velocityQ), about thez axis at thermal equilibrium
with a temperatureT=1/8 in Minkowski spacetime, for
which the line element in cylindrical coordinates is given by

whereN is a constant and =r(},. Note that ad. goes to
1/, this partition function diverges asy®, where
y= (1_02)71/2_

d?=—dt?+r2d¢?+dr2+d2. 2) From expression{8) it is easy to obtain expressions for

the energyE, angular momentund, and entropysS of radia-
In this spacetime the positive frequency field mode can blon:
written as¢q,m(x)=fqm(r,z)e"“’”'m"’, whereq denotes a
guantum number anoh is the azimuthal quantum number. I=(m) :l L(BF)=4N
For such an equilibrium ensemble of the states of the B a0y

scalar field the partition function is given by

1

,84Q°j r2y8rdrdgpdz,  (9)

1% 1
_ _ o — N — 2\ . 4
723 & Nalvg ™8 3 E=(w)a=00J aﬂ(ﬂF) NB“] (3+v9)y*rdrd ¢pdz,
i (10)
and the free energy is given by d 1
S=ﬁ2ﬁF=4NEgJ y*rdrd ¢dz. (11

BF=2, f dwg(w,m)in(1—e Ale=mo)), (4)
m JO These coincide with those i19]. Similarly to the free en-
) i i ergy F these expression$ E, and S diverge asL— 1/(),.
whereg(w,m) is the density of state for a fixed andm. The divergence is related to the rigid rotation. In a rigid
Following 't Hooft we assume that all possible modes of aqtating system the velocity of the comoving observer grows
scalar field vanish at=r, (ry is very small and atr=L.In 35 one moves from the origin to infinity. So beyond some
the WKB approximation withb = 'S(" =11+ im¢+1kz the ra- point the velocity exceeds the velocity of the light. This is

dial wave numbeK(x,»,m)=4,Sis given by unphysical. Thus a rotating system cannot have the size
) greater than 11,. Therefore to obtain a finite value for
K2(X, ,m) = w?— m—z—kz. (5) J,E, andS, we must takd <1/Q),. In such a finite system
r w>me),.

Now let us consider the above problem in the comoving
This expression denotes the ellipsoid in momentum phasgoordinate that is rotating with angular velocidy,. The line
space at a fixed frequenay. The total number of modes element in the comoving frame is given by
with energy less tham and a fixedm is obtained by inte-
grating over the volume of phase space, which is determined  ds?= —(1—Qgr2)dt2+ 2Qord ¢’ dt+dr2+dz%, (12
by Eq. (5):
where we have use@’=¢—Qgt. In this coordinate the
F(w,m)=z f d¢dszdrif dKK(x, .m) positive _frequengyr fielg mode is written as

m rq w ‘qu(X)qum(r,Z)e io't+ime¢ .

1 L 2 12 Because in the comoving frame the field has no rotation
- _2 f dq&dzf drf dk( 02— ﬂz_kz) _ the free energy is given by
e r r

(6) ,8F=j:dw’g’(w’)ln(l—e’ﬁ“"), (13

The integration ovek must be carried out over the phase
space that satisfie§?=0. I'(w,m) can be obtained by in- whereg’(w’) is the density of state for a fixed’. In the
vestigating the shape of expressid@ in momentum phase WKB approximation the Klein-Gordon equation® =0
space. Thus the free energy, after the integration by partgields the constrain20]
becomes

9%°kak,=0 (14)

o 1
,8F=—,3§m: Jo dwF(w,m)W or
_ Br f ,_ M 1
= E o do ﬂwdm [0 r—2

Famg 1 (7) — (@' =Qom)?+ =0, (15

1
r—2m2+ k2+ p2
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where p=4dS/dr. In the region wher&),r<1, for a fixed w? 1
o', this expression represents the ellipsoid in momentum Kz(f-r,w-m):?—pmz—Pf—Mz- (22)
space. Therefore the total number of modes with energy less
thane' is given by
L ) whereK=4,S andp,=4,S. In this section we will calculate
m X ) X .
' (0')= ;% dqﬁdzJ drf dk((w’—mﬂo)z— & mgtfirr?essgelrlg.;y by using the slightly different method with
It is important to note that in the WKB approximation the
density of statey(w,m) is determined by the constrai(22),
and that the free energy is singularaat m). In particular
if w—my<0 the free energy becomes an imaginary num-
4 L r . ber. However in the WKB approximation we can easily see
=§J d(ﬁdZJ dfmw ’, (17 @=w—mQy>0 in the region such thai— Q,r>0. But in
1 0 the region such thaté—Qyr<0 it is possible that
w—my<0. (More details are in Sec. IY.Therefore to
obtain the finite value for the free energy we must require the
system to be in the region such th@at Qqor>0. Then the
free energy is written as

1/2
- k2) (16)

which is the volume of the ellipsoid. Expressi@tb) is just

the same form as Eq6) when ow— w—m{,. The phase
volume (17) diverges as. — 1/Q . Inserting expressiofil7)

into Eq. (13) and integrating we get

N L r 0
BF=—ng dd)dzﬁldrmw- (18) ,3F=2f dwg(w,m)in(1—e Ale~mo)

m JmQg

This expression is the same with E®). From this we get

= ) _ e Be
the energyE’ and the entropys: fo dw% 9w+ méo,m)in(1—e"")

1% N L r ® 1
E'=(w').=— — =3— - =—,Bf dow—735 fdml“(ermQ ,m), (23
S= F 4 A f dr ' 20 where we have integrated by parts and assumed that the
B B('B )= _?-’ (1-Qfr?) 20 gquantum numbem is a continuous variable. The total hum-

ber of modes with energy less thanis obtained by integrat-
whereA= [d¢dz It is noted that the entrop$ is the same ing over the volume of phase space
with Eq. (11) and the energyE’ is satisfied with
E'=E—QJ. This fact shows that the coordinate transfor-
mation to the comoving frame only changes the energy and
does not change the entropy in the WKB approximation.
Thus in the case of calculating the entropy or the free energy L1
it is convenient to choose the comoving frame. It is noted :J de d¢er dg_J dpK(&,r,0+mQo,m)
that in the comoving frame the divergence is related to the r, T
time componeny,; of the metric(12).

=—f dmf d¢drf dgf dpr( —
I1l. A THERMAL BATH IN RINDLER SPACETIME §
WITH A ROTATION 292 1

1/2
2
In this section we will consider the thermal equilibrium = mQO‘”"" & _Zm pi—u ) . (29
state of the scalar field with the magsand a uniform rota-
tion about thez axis in Rindler spacetime. The line element
of the Rindler spacetime in cylindrical coordinates is givenThe integrations ovem andp, must be carried out over the

(Ejzf dml’(w+mQqy,m)

by phase space that satisfi€$(w+m€y,m)=0. After the in-
tegration we obtain the number of states with energy less

ds?=— £2dn?+ d&2+r2dgp?+dr2. (21)  thanw, which is given by

In this spacetime the event horizon isét 0, andé=const

represent the trajectory of the uniform accelerafi@]. The LAl ér w? 2 32

importance of Rindler spacetime is that in the large black I'(w) _j X202 | 2—qaz2 M
of | _ JE-0%2) &

hole mass limit the metric of the black spacetime reduces to (25)

that of Rindler spacetimg7].

As in Sec. Il, the WKB approximation with

O (x) =g TetTIm+ISEn yields Thus the free energy becomes
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4 8 1
=— 3 -
AF 3Bjd Xfﬂmd“’eﬂw—l
y ér ( w?
NGRS

3/2
MZ) . (26

For a massless scalar fielg €0) the free energy becomes

ér

N L
BFZ_FJ d¢dr gdfm (27)

From this we get the energy, the angular momenturd,
and the entropys of the field

r2

Wfrdfdrdz, (28)

J=(m) —4£QJ
- av— ﬁ4 0 (52_

N [ 3&2+Q3r?
E=<E)av=/?jm§rd§drdz, (29)
S—4Nf ! dédrd 30
U] (@magptratdra G0

It is noted that the thermodynamic quantitlesE, andS are

divergent a— Qgr rather than the event horizon. Only in

the ;=0 case the divergence occurs at the horiZer0.

3907

Sen, and the Kerr-Newman black holes are in the Appendix.
The properties of those metrics are

OuGps— Orp= —A(r)sin?9—0 (33

and

(99 ¢~ 9ty)9rr— finite (34)
as one approaches the horizon. Another property is that there
are two important surfacdthe event horizon and the station-
ary limit surface, and the two surfaces do not coincide. On
the stationary limit surface the Killing vect@g* vanishes,
and the Killing vectoré“+Qy¢* is null on the horizon,
where(), is the angular velocity of the horizon.

The equation of motion of the field with mags and
arbitrarily coupled to the scalar curvaturgx) is

[V, V¥—ER—u?]¥ =0, (35)

whereé is an arbitrary constant. Thie=1/6 andu=0 cases
correspond to the conformally coupled one. We assume that
the scalar field is rotating with a constant azimuthal angular
velocity Q4. The associated conserved quantities are angular
momentuml]. The free energy of the system is then given by

1 o ,
F==> f dZg(£,m)in(1—e A¥~m)y - (3p)
,Bm 0

Such a fact can be easily understand in the comoving framgyhereg(#,m) is the density of state for a givefi andm.

of which the line element is given by
ds?=—£2dnp?+r23(d¢’ + Qedn)?+de2+dr?
=—(£2-Q3r?)d7?+2Qyr?dyd¢’

+r2d¢’?+dé+dr?, 31

To evaluate the free energy we will follow the brick wall
method of 't Hooft[5]. Following the brick wall method we
impose a small radial cutofi such that

P(x)=0 forr=<ry+h,

(37

wherer, denotes the coordinate of the event horizon. To

where we usedb’=¢— Q7. In this spacetime the event 'émove the infrared divergence we also introduce another
horizon is até=0. In addition to the event horizon there is a cutoff L>ry such that

stationary limit surface af=Qqr, where the Killing vector
d,, becomes null. That surface is the elliptic hypersurface
[22]. In the interval B<£<Qgr, the Killing vector is space-

¥(x)=0 for r=L. (38

It is noted that the brick wall is spherically symmetric. In the

like. We can also show that the entropy in the comovingWKB approximation withW = e~ 1/t+imé+is(.0)  Eq. (35)
frame is the same form with E¢B0). These facts imply that yields the constrainf20] ’
the divergence of the thermodynamic quantities is deeply re-

lated to the stationary limit surface in the comoving frame

rather than the event horizon.
IV. ENTROPY OF A SCALAR FIELD IN A ROTATING
BLACK HOLE
A. General formalism

Let us consider a scalar field with mags in thermal

1 Py B
pr=grr [~ " 7%+ 2g'm=g?im? = g"pi-V(x)],
(39
where p,=4,S, p,=d,S, and V(x)=&R(x)+u?. In the
WKB approximation it is important to note that the number

of states for a give is determined by,, p,, andm. The
number of modes with energy less thanand with a fixed

equilibrium at temperature #/in the rotating black hole m is obtained by integrating over, in phase space:

background, of which line element is generally given by
ds?=gy(r,0)dt?+ 29, 4(r,0)dtde+g4,(r,0)dp?

+ 0y (r,0)dr2+gg(r,0)d6>. (32

This metric has two Killing vector fields: the timelike Killing

vector §#=(4,)* and the axial Killing vectory*=(d,)".

The metrics we are concerned with of the Kaluza-Klein, the

F(%,m)z%j dd)def drfdpgpr(g',m,x)

1 1
=;f qudef drfdpg[?[—g“é’z—FZgw%m

1/2

—g%*m?—g%%p3-V(x)] (40)
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The integration ovep, must be carried over the phase space

such thatp,=0.

At this point we need some remarks. In a rotating system,
in general, there is a superradiance effect, which occurs
when 0<Z£<m(),. For this range of the frequency the free

energyF becomes a complex number. In the casem(),
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2 2 ' 2 2
p p g Oipt Qo0 E
[ Tha s ) B RV
Or Y90 — Y Ott tt

(46)

which is the hyperboloida noncompact surfaceso g(E)

the free energy is divergent. Therefore to obtain a real finitaliverges and the integration ovpr diverges. In the case of

value for the free energl, we must require that™>m(},.
(For 0<#<m{), the free energy diverges. See belpithis

requirement says that we must restrict the system to be in the 2

region such thag{tzgttJrZﬂogt¢+Q§gd,¢<0. In this re-

gion £—mQ >0, so the free energy is a finite real value. It

is easily showed as follows. Let us defifie=~—m{},.
Then it is written as

g'¢

E= ?_QO m+

[(g'm)?+(—g")(V+g??m?

} 1/2

(41)

_gtt
+ grr pr2+ gaﬂpg)]l&
2 2

SRR
Orr Qo

~9

1
=(Q—-Qg)m+ 9og
9o

2
m<+
AR

7

where we used

"0ty

Ott
=7 9= 9= @

17k

and Q=—0,4/9,44. Here —7=gf,—gu0,44. From Eq.

(412), for all m, p,, andp,, one can see the condition such

thatE>O0 is

—
~+(0—0()>0
94e

(43

or
9{t59t1+2909t¢+939¢¢< 0. (44)

Therefore in the region such thatg;;>0 (called region )
the free energy is real, but in region such thag; <0

(called region 1) the free energy is complex. However in
region | the integration over the momentum phase space is
convergent. But in region Il the integration over the momen-
tum phase is divergent. These facts become more apparent if 1
we investigate the momentum phase space. In region | the

possible points op; satisfying©—Qyp,=E for a givenE
are located on the surface

2 2
P P
Orr Qo

— Ot Otg T Qolgg _, ( E? )
U+ g | — v,
—9 Ps Ot -

(45)

which is the ellipsoida compact surfaceHere p,=m. So

the density of statgg(E) for a givenE is finite and the
integrations ovep; give a finite value. But in region Il the
possible points op; are located on the surface

g:=0, the possible points are given by the surface

o Ph Py (Y +V)IL(214] 2)E]
Orr 9o —2129:4E ,

(47)

which is elliptic paraboloid and alsooncompact There-
fore the value of they; integration is divergent. Actually the
surface such thay/,=0 is the velocity of the light surface
(VLS). Beyond VLS (in region Il) the comoving observer
must move more rapidly than the velocity of light. Thus we
will assume that the system is in region(For the possible
region | see Sec. IV B.For example, in the case 6i,=0
the points satisfyingy;,=0 are on the stationary limit sur-
face. The region of the outsidaside of the stationary limit
surface corresponds to regiofll). In the rotating system in
Sec. Il region | isr<1/Qq andr>1/Q}, corresponds to re-
gion Il. In the Rindler spacetime with a rotatio§>Qqr
corresponds to region |, arg< Qqr to region Il.

With the assumption that the system is in region | we can
obtain the free energy as

BF=2

Joc
m mQg

=f dzY, g(£+mQg,m)in(1—e A7)

0 m

dZg(#,m)in(1—e A7~ M)

* 1
=—BJ df—r— fdmI‘(éf’erQo,m), (48
0 er -1

where we have integrated by parts and we assume that the
guantum numbem is a continuous variable. The integrations
overm andp, yield

4 L o
P3| dodo[ arf
3 ¢ ry+h V(x) V=09

o2 3
X d =g Vo, ( ,—V(x)) . (49
e’ -1 \/—g{t —Ou

In particular when(2,=0 and the nonrotating cagg,=0,
the free energy49) coincides with the expression ®,8]
and it is proportional to the volume of the optical space in
the limit V(x)=0 [23]. It is easy to see that the integrand
diverges asry+h or L approach the surface such that
g:;=0. In that case the contribution of th&x) can be neg-
ligible.

For a massless and minimally coupled scalar field case
(u=£&=0) the free energy reduces to
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FIG. 1. The position of the outer velocity of light surface for the
Kaluza-Klein black hole.
Vs

N L
AF== ﬁf d0d¢frH+hdr(_g{t)2

—Nf drfdadqaf drfﬁlocal,

(50

where Bioca= v — 918 is the reciprocal of the local Tolman
temperatur¢24] in the comoving frame. This form is just the

free energy of a gas of massless patrticles at local temperature = B o5 (X=ry)———

1/:8Iocal
From this expressiofb0) it is easy to obtain expressions

for the total energyJ, angular momentund, and entropy
S of a scalar field

J=<m>——ﬁm(ﬁ )
_4N V9:  Guo o
_,34fd0d¢ ry+h ( gtt)z( gtt)(Q .,
(51
Jd
U:<((5>:QO‘]+%(,BF)
_N L Vo,
_/84J' d0d¢frH+hdr(_gt,t)2
x[3+4%§))%¢ , (52)
tt
S—ﬁ ,BF BU—-F—-Q4d)
_ N L Vo
—4EJ’ d@dd)frHJrher, (53)
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which are also divergent as one approach the surface such
thatg;,=0

B. The region such that—g;>0

In this section we study where the possible region | is for
three black holes, the Kaluza-Klein, and the Sen, the Kerr-
Newman black holes, fof2o=Q4,Qe<Qy, and the ex-
treme case witl)o=0Q, .

1. The Kaluza-Klein black hole

(@ Qo= case: In the)y= ), case the position of the
light of velocity surface is exactly found. In such a cage
can be written as

gt’t:gtt+29Hgt¢+Qag¢¢ (54
2
7 y?sin’ o .
BE(X rH)| Tz (1-v9)X
H
2sint 6
2T (1071
I
2sirt e _
—1+y [4+y%(1-v?)cogo—2r _]|x
M
2sirt e
+ r,+y4 [—4ry—r_y%(1-v?)cosd]
2 __ y?sirfe
® y (1 U )(X3+a1X2+a2X+a3)
4arg
(55
for 6+#0, where x=r/u, y=alu, ry=ry/p, and

r_=r_/u. From this we can see that there are two VLS'’s.
One is the horizonr(=ry), and another light of velocity

surface(call outer VLS is given by[25]

1
VVLSZZMV_QCOS(§®)_§31M, (56)
where
arcco
=
with
3a,—a? 9a,a,—27a;—2a’

In the case of the slowly rotating black hola (s smal) the
VLS is approximately given by

. My 1( 2 r_ 59
r -~ A - y
S 1 —vsing 3\1—v? uw/*

which is an open, roughly, cylindrical surface. As~1 or
a—0 the VLS becomes more distant, which came from the
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18 . 200000 f: 2 ::;2 :‘f_' -
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a/l a/u
FIG. 2. The position ofr;, at §=0.57 for the Kaluza-Klein FIG. 3. The position of the outer velocity of light surface for the
black hole.v=0.5. Sen black holey=5.0.
fact that asv—1 or a—0 the coordinate angular velocity 2R
. o — yesincé
dép/dt=—0;4/94, Vanishes. Ford=0 it is always that )X+ —1+ —
0:;<0 for r>ry. As a—pu the outer VLS approaches the MH
horizon. See Fig. 1. 26ir20
(b) Qo<Qy case. In this casg;=0 is a fourth-order + L(yZCOS?g_ztcoshzy) X
polynomial equation im for a givend. Region | corresponds 4Tﬁcosﬁy
to rip<r<ry.s. At 6=m/2 r;, is between the stationary - )
limit surface and the event horizon, andéat O r;, contacts i+ y Sln2¢9_ y%sinfe 20020
with the event horizon. Actually the inner VLI, is between r- I 4rZcost (r-y“cos6)
. L . H H Y
the stationary limit surface and the event horizon foréll
The particular point is that a®,—Qy, r;, approaches the u?  __ y?sirte )
horizon. However it does attach to the horizon only when E?(X_rH)—Z—(XS-" a;x“+axx+ag) (62)
4ricostty

Qo= . While the outer velocity of light surface is located

at a very far distance from the horizon, it is a roughly cylin- _ _ —

drical surface as in cas@,=,. For the position of the for 00, where x=r/p, y=a/p, ry=ry/n, and

inner VLS see Fig. 2. r_=r_/u. Then th(_a exact position of the inner VLS and
(c) The extreme black hole case wifhy=(},,. The ex- outer VLS are are given by

treme black hole for the Kaluza-Klein black hole occurs 1 1

when u?=a2. In this case the inner horizon and outer hori- Fn=rH, FVLs=2M*/—QC05<§) — g (63)

zon are at the same place. At 1/2m, gy, is written as

) ) The position of the outer VLS for smadl is approximately
9= =T x+ 2 |1-v 60  9iven by
B H 1-v?) 4

2urycostty 1

r_
"Vis™ " asing 5(2005m27)— Z)M (64)

which shows that the possible region such that0 does

not exist atd=1/2sr. Therefore in the extreme black hole o
case it is impossible to consider the brick wall model ofWhich is an open, roughly, cylindrical surface. As-0 the
't Hooft. VLS goes to the infinity, and it disappears whar0. As

v Or a is increasing the VLS approaches the horizon. At
2 The Sen black hole 0=(1/2)m, similarly to the Kaluza-Klein black hole,
9:;<0 for r>ry. See Fig. 3.
(b) Qy<Qy case. In this caseg;;=0 is also a fourth-
order equation irr for a givend. Similarly to the Kaluza-

(@ Qp=Qy case. INQ,=Q caseg;, can be written as

96= O+ 2Q1Gis+ Q8044 (61 Klein black hole region | ig;,<r<ry.s. At §=0 the inner
VLS r;, is at the horizon, and a#=#/2 r;, is located be-
2 [ y?sirte y2sin?g tween the stationary limit surface and the event horizon. See
== (X—Tp)| = 3 — (2cosh2y Fig. 4. AsQy—Qy, ri, approaches the horizon. Only when
2 4ricostty 4riicostty 0,=0Qy it coincides with the event horizon. The outer ve-
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FIG. 4. The position of the inner velocity of light surface forthe  FIG. 5. The position of the outer light of velocity surface for the
Sen black holey=5.0,6=0.5. Kerr-Newman black holee=0.0.

locity of light surface, in the case of small| locates at the 1 1
very far distance from the horizon, and it is a roughly cylin- rvis=2M \/—_QCO<§®) - §all\/|. (69
drical surface.

(c) The extreme black hole case withy= . The ex-
treme black hole for the Kaluza-Klein black hole occurs
when u?=a?. In this case the inner horizon and outer hori- 1 My
zon are at the same place. A& (1/2) gy, is written as Fvis™ m_ 3 (70

For smalla Eq. (69) is approximately given by

2

gt’tz'%(x—r_H)zx(erZcosth) 65) which is an open, roughly, cylindrical surface. R O it is

always thag,;<0 forr>r, . Asa—0,ry, g goes to infinity,
and asa—M?+¢€? it approaches the event horizon. See
which shows that the possible region such that 0 does Fig. 5. The inner VLS, is the event horizon.
not exist atd=1/2m. Therefore in the extreme black hole  (b) Q< case: In this case, similarly to other black
case it is impossible to consider the brick wall model ofholes, the inner VLSr;, approaches the horizon as
't Hooft. Q,—Qy. See Fig. 6. The inner VLS is a compact surface,
which shrinks to the horizon aQ,— ;. See Fig. 7. The
3. The Kerr-Newman black hole outer VLS is at far place, which disappears wheg=0.
(@ Qy=Qy case In Qy=Q, case we can exactly find
the position of the light of velocity surface. In such a case
g;; can be written as

9= Gu+ 2010+ QiG40

M2 -
=5 (x= ra){ Q2 sir? 0x3+ 1, Q7 sirf 6x?
+[— 1+ Q2 sir?0(y2+y?co20+12) Ix (66)
+[2(1— Quysin?0)2—1 4+ Q2sin?o(rs +y2
+y?cos )]} (67)

2 JR—
= ?(x—r_H)Qﬁsinza(x%— a;x?+ax+as) (68)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a/M

for 6#0, wherex=r/M, y=al/M, z=¢e/M, &TH=MQH,

Ty=ry/M. Then the exact position of the outer light of  FIG. 6. The position of the inner light of surface for the Kerr-
velocity surface is given by Newman black holed=0.5z.
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1.6 . This fact was already pointed out by Frolov and Thor2ig|
to remove the singular structure of the Hartle-Hawking
= 14 - 1 vacuum and modify it. Now recall that in general
~ g{t|r:,H=0. This came from thag; is the same form as
o ey 1 Xxu=(E+Quy*)(£,+ Quip,), andx* is null on the ho-
8 al i rizon. So it follows that g{,=(r—ry)G(r,6), where
(3) G(r, ) is a nonvanishing function at=r except the ex-
5 o8 L ] tremal case(We cannot consider the extreme black hole
case).
06 | i Therefore for the three black holes the leading behaviors
of the free energy for very smallh are then given by
04 B
; N L Vo,
L 4 F~-— —f ded dr - 75
0.2 B ,83 ¢ f+h (_gtt)z (79
0 |
0 02 04 06 08 1 .l 2 14 16 18 2 N L D ( r )
. =——| dod dr ——————-1, 76
T, SIN o /M ﬁsf ¢ i (r—rm)2G2(r,0) (76)

FIG. 7. The shape of the inner light of surface for the Kerr-
Newman black holea=0.8M,e=0. whereD(r, 6) = \/g,. SinceD(r,6) andG(r,6) are nonvan-
ishing functions at =r,; we can expand it about=r as
(c) The extreme black hole case withy=Q, . For the
extreme Kerr-Newman black hole case, which occurs whem(r,0)=D(ry,0)+D'(ry ,9)(r—rH)+o((r—rH)2), (77)
M2=a%+e?, g;, at §=(1/2)7 is written as

M? 1 1 ! ! +< ! ,+O((r rw?, (79
r_ PRy _ - - 2 =2 2 “IH) s
9= 5 W(X 1) x+1 y) X+1+y - (7Y G*r,0) Gry,0) \G%ry,0)
From this we obtain the position of VLS @t==/2 as where a prime denotes the partial derivativerfoo the free
energy is approximately given by
1
r=M for EMsasM and a=0, (72 i Nqusdafd ( D(ryy.6) 1
~— r
M 1 p Eg G3(ry,0) (r—ry)?
r=|—-1+—/M forO<a<zM. (73 D(ry,6)\’
. ? ) +O((r=ry)%)
G (ry,0)) (r—ry)
The second case corresponds to the extreme black hole that
is slowly rotating and has many charges$n this case :_ZWN{EI D(ry,0)
e>\3/2M~0.866M). In particular, in the case of B3 |h G?(ry,0)
e<./3/2M (a=M for e=0) the horizon and the light of the D(ry.,0) '
velocity surface are at the same position. Therefore in case of - In(h)j de 2;) +... ] , (79
the extreme black hole witln=1/2M it is impossible to G(ry.,6)

consider the brick wall model of 't Hooft.
which show that generally, in addition to the linear diver-
V. THE ENTROPY IN THE HARTLE-HAWKING gence term inh, there is a logarithmic one in the case of
VACUUM rotating black hole. If we write the free energy in terms of

) ) the proper distance cutoé, it becomes in very simple form,
The Hartle-Hawking vacuum sta{9] is one that the

angular velocity() is equal to that of the event horizon, and N
the temperature8 is equal to the Hawking temperature, /3F~——3f d¢dOVg46944
where the Hawking temperature and the angular velocity of B Jr=ry,
the horizon are defined §26] L oo 312
X f dryg, (—)
" 9t2¢_9tt9¢¢

K . ) ry+h
TH:_! QH:hmr_)r <__> (74)
27T H gd’¢ N AH
. . . S~ T SkBR 2 (80)
Here k is the surface gravity of the horizon. (kB)° €

First of all let us assume th&,=Qy. In this case, as
stated in Sec. IV, the possible region Irig<r<L<ry,g. WhereAy isthe area of the event horizon, aads the proper
The outer brick wall must be located inside the outer VLS.distance from the horizon to;+ h:
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ry+h case we cannot consider the brick wall method of 't Hooft
€=j dryg. (81 except for the case ©a<1/2M in Kerr-Newman black
H hole.
However the proper distance cutoff is dependent on the co-
ordinated, which is the general property of the rotating black ACKNOWLEDGMENTS
hole.
From the free energ¥ we obtain the leading behaviors
of the entropyS as

This work was partially supported by Korea Science and
Engineering Foundation.

5 9 N 1 APPENDIX
S=B°—F~ —5| A-+BIn(h)+finite|, 82
A B Bg*\"'h () ®2 For the three rotating black holes the metrics, the surface
. . gravities, and the proper distancesre given as follows.
whereA andB are inc numbers in Eq(79), or (1) The Kaluza-Klein black hol€10]
AN Ay 5 .
S~ . (83 __A-a sirfe 2 1z
2(xp)° € ds’= —gs 2asm26—\/1__vz 5 dide

The entropyS is linearly and logarithmically divergent as
h— 0. The divergences arise because the density of state for +|B(r2+ a2)+a25in265 sirfod ¢?
a givenE diverges as goes to zero. B

Now we take T as the Hartle-Hawking temperature

Ty=«k/27. Then the entropy becomes +%dr2+82d62, (A1)
N8w3[ 1 .
Sy~ 3 AH+BIn(h)+f|nlte , (84)  where
2ur
or A=r2—2ur+a? X=r?+a%cog¥, Z=~-,
5~ A 8
(g @ b2z \3

The entropy of a scalar field in the Hartle-Hawking state
diverges quadratically i~ ! as the system approaches the
horizon. Or it diverges it~ and Inf). In the case=0 our
result(85) agrees with the result calculated by 't HopH]
and with one in[28]. These facts imply that the leading

The physical masM, the chargeQ, the angular momentum
J, and the horizon are expressed by the parameters and

behaviors of entropy85) are in general form. 02 QU
M= 1t s0-07 Q1,2
VI. SUMMARY AND CONCLUSION

By using the brick wall method we have calculated the . pa _ %
entropies of the rotating systems with a rotatidg at ther- )= \/1_—,)2’rH_’“Jr poan (A3)
mal equilibrium with temperaturd in the rotating black
holes. In the WKB approximation to get the real finite free The surface gravity and proper distance are
energy and entropy the system must be in region I. As the
system approaches the VL3$;{andry,s) the thermody- NL-v*)(uP-ad)
namic quantities become divergent. From this faet con- Kialuza Klein™ r2+a? : (A4)
clude that the divergence of the thermodynamic quantities
including the entropy is related to the stationary limit sur- B(ry)3(ry)\Y?
face in the comoving framén the spherical symmetric black €Kaluza Klein— (m) Vh. (AS5)
hole the stationary limit surface and the event horizon coin-
cide. Only when(),={1y can the system approach the ho-  (2) The Sen black holg17]
rizon. The entropy for this case is linearly and logarithmi-
cally divergent as the ultraviolet cutoff goes to zero. To o A-a’sirg  4uracositysir’g
remove such a divergence, in addition to the renormalizatioﬁ T S B S dtd¢ (AB)

of the gravitational constant, we need the renormalization of
the curvature square terf@7]. But after the renormalization S A
the entropy is not proportional to the area of the event hori- + Kdr2+2d02+ gsmzﬁd(ﬁz, (A7)
zon. If we use the proper distance cutoff the entropy is pro-
portional to the horizon are@y, . But the cutoff depends on \where
the coordinates.
Another particular point is that in the extremal black holeA=r2—2ur+a? 3 =r2+a%cog6+2ursintfy, (A8)
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A=(r2+a?(r?+a%cog)+2ura’sirfd  (A9)
+4ur(r’+a?)sintPy+4u2r?sintty.
(A10)

The masaM, the chargeQ, the angular momenturd, and
the horizon are given by parametgrsB, anda as

M

isinth,

V2

%(1+cosh2y), Q=

a
j= 7'“(1—{-008?\2}/), ru=p+yp’—az (All)

The surface gravity and proper distance are

V(2M?—e?)?—4)?
2M[2M2—e?+\(2MZ—e2)2—-4]37]’

Ksen

(A12)

r2+a’cog 0+ 2ursintty| 2
2rH_2,LL

Vh

(A13)

€sen—

(3) The charged Kerr black hole 8]

MIN-HO LEE AND JAE KWAN KIM

A—a’sifg| . 2asirff(r’+a?—A)
S py

r2+a?)2—Aa?sirfe )
( ) sirfgd¢?+ —dr2+3de?,

s A
(A14)

where

S =r2+a%og0, A=r2+a%+e?-2Mr, (Al5)

and e,a, and M are charge, angular momentum per unit
mass, and mass of the spacetime, respectively. The event
horizon is

ry=M+JM?—a?—e’
The surface gravity and proper distance are
/M 2_a2_e2
Kierr= 7_,2_ 2 2’
2M[M+JyM“—a“—e]—e

r2+a’cos 6 1/2\/H
21— 2M '

(A16)

(A17)

(A18)

€Kerr—
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