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Black hole entropy: Statistical mechanics agrees with thermodynamics
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We discuss the connection between different entropies introduced for a black hole. It is demonstrated in the
two-dimensional example that tHguantum thermodynamical entropy of a hole coincid@scluding UV-
finite termg with its statistical-mechanical entropy calculated according to 't Hooft and regularized by the
Pauli-Villars scheme[S0556-282(96)03718-4

PACS numbes): 04.70.Dy, 04.62+v

Since Bekenstein introduced the thermodynamical analframework and it is determined by total response of the
ogy in black hole physic$l] and Hawking discovere{?] (equilibrium) free energyF on variation of temperature:
thermal radiation from a black hole confirming this analogy,dF= —S;pdT. Remarkably, the conical method gives pre-
it is an intriguing problem as to what degrees of freedom areisely the thermodynamical entrop§,,,= Srp, for the equi-
counted by the entropy of a black hole. Equivalently, whatlibrium configuration.

(if any) statistical mechanics is responsible for the For ordinary thermodynamical systems the thermody-
Bekenstein-Hawking entropy? Recently, this problem wagiamical and microscopicatatistical-mechanicakentropies
attacked from different sides and a number of calculationgire exactly the same. However for the black hole case, it was
were producedsee reviews irf3]). Every such calculation argued in[13] that black holes provide us with a unique
typically deals with a specific definition of entropy. Below | €xample of a specific system for which these entropies do
briefly list them. not necessarily coincide. _ o

According to 't Hooft[4] the statistical-mechanical en- It should be noted that every calcqlatloq of statistical en-
tropy Sey arises from a thermal bath of quantum fields tropy encounters the problem of dealing with the very pecu-

propagating outside the horizésee alsd5]). An alternative "Eﬁe:)ee?r?gio': Oifcatlne dpi\r/]grSiZangu?enntqitcif/se t?]eeasre tgﬁ/ evogiﬁggs
interesting approach treats entropy as arising from entangIéI\-’ y typically ge. 9

ment[6,7]. Starting with the pure vacuum state one trace t Hooft introduced the “brick wall,” a fixed boundary near

over modes of the quantum field propagating inside the host_he horizon within which the quantum field does not propa-

. d obtai he densi o Th | gate. Essentially, this proceduias it formulated irf4]) must
fizon and obtains the density matrjx The entanglement ,q implemented in addition to the removing of standard ul-
entropy then is defined by the standard

_ _ formulagayiolet divergences. Another important point is that this
Sent=—Trp Inp and is essentially due to correlations of hocedure changes the topology of the original black hole

modes propagating at different sides of the horizon. Thergpace-time by introducing an extra boundary near the hori-
are formal argument7,8] that Sey coincides with the en- ;on There are only a few calculations that imply “invari-

tropy Scon @ppearing in the conical approa@h-12. Accord-  ant regularization when these extra divergences on the ho-
ing to this approackisee[8,12)) one considers the black hole izon are eliminated simultaneously with the standard UV
system 1/gﬁ Shelljz by fixing only the temperature givergences. Such calculations preserve the original topology
T~ '=/ggpd7=PBggo(L) on the external boundary and the of the black hole space-time. An example is the conical
topology of the black hole geometry. An arbitrary metric method in which, after UV renormalization, the residual di-
9,..(X) satisfying these conditionghe fixing of T imposes a  vergence of the free enerdggt the tip of the coneis propor-
boundary condition on the metjitypically has a conical tjonal to the second power of the deficit angle and hence
singularity with deficit angled=2m(1— 8/By) on the hori-  does not affect the quantitiésnergy and entropycalculable
zon. The free energl[g,,(x),T] is then a functional of the  for the equilibrium configuration.
metricg,,,(x) inside the region and of the temperatdren The other calculation is a reformulation of the 't Hooft
the boundary. The equilibrium state of the system unider approach by using the Pauli-VillaréPV) regularization
fixed is found from the extreme equatiafF|;=0 and is  schemd14]. It consists of introducing a number of fictitious
described by a regulgon-shel) metric with vanishing defi-  fields (regulator$ of different statistics and with very large
cit angle (8=pBy). The conical entropy is defined as masses. Remarkably, this procedure not only yields the stan-
Scon= — dtF where after taking the derivativi- one consid-  dard UV regularization but automatically implements a cut-
ers Sgn 0N the equilibrium configuration. The black hole off for the entropy calculation allowing one to remove the
entropy originally appeared within the thermodynamical“brick wall.”
Both the conical and PV calculations give the ordinary
UV divergences for the entropy when the regularization is
*Electronic address: sergey@avatar.uwaterloo.ca removed. A comparison of the structure of these divergent
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terms for the Reissner-Nordstno black hole in four dimen-  In two dimensions it induces the one-loop effective action in

sions(see[10] and[14]) shows that they are really identical the form of the Polyakov term

and take precisely the form to provide the correct renormal-

ization of bare entropy in agreement with the suggestion of _q 1

Susskind and Uglurfi9,11]. This fact suggests that the two Wy = - 967 RU™R- E'n(/\“)j R, 4

calculations really lead to the same result and the corre-

sponding entropieS,,{Srp) andSgy are identical including  where we omitted the 2D cosmological constant that is irrel-

UV-finite terms. evant to our consideration. The last term in E4).gives the
The present state of the theory makes it impossible taJv divergence in two dimensiong; is an appropriate UV

prove or refute this statement in four dimensions. Howeverregulator (A is an infrared regulator If we apply Pauli-

recent intensive study of two-dimensional models shows thayillars regularization(see below then u is precisely the

the black hole physics there looks rather similar to the fourpy.-regulator. This term renormalizes the “gravitational con-

dimensional one while the calculations are technically simstant” . Note that in this model there is no renormalization

pler. In this paper we carry out the precise calculations irof e®, which is the real gravitational coupling in Ep).

two dimensions and demonstrate equa”ty of the thermOdy' For the metric written in the conformal gauge

namical and (regularized by the Pauli-Villars SCheﬂne gMV: ezo-é,uv the term(4) leads to the entropy in the form

statistical-mechanical entropies. [15] (see alsd10,11)
The black hole thermodynamical entropy at the one-loop
level is really a sum S;=La(x,)+ 2 In(Apw). (5)
— qc
Sto=(SutS[9,.]; (1) Let the black hole instanton be described by the 2D metric
where S, is entropy coming from the classical gravitational 1
action andS, is a part coming from quantum one-loop term dsg=g(x)d7>+ mdxz, (6)

in the effective action. In principle, both entropies can be
calculated off shell for an arbitrary black hole metric by the
conical method assuming thgt B, . We get then the ther-
modynamical entropy when we sét By at the end and the
back reaction is taken into account by calculating the resul
fo[lthe quantum-corrected black hole metg8’(x) (and _ 42, = e 2(d 2+ 22d7 2),
By~ is also assumed to be the quantum-corrected Hawking
temperaturg The concrete form o@ffv(x) is not important 1 2 (xd

- o Lo T X B
for us since all the quantities can be calculated implicitly for o==Ing(x)——| —+In ,
arbitrary black hole metric. 2 L9 2720

The form of S as function of the black hole geometry is

determined from the classical gravitational action. For con- ZWfXdX)

creteness we may take it to be some kind of dilaton gravity, z=ex BulL g

where the metric functiog(x) has simple zero ix=x, ;
X, <X<L, 078y, Bu=47/g'(x,). It is easy to see
%hat Eq.(6) is conformal to the flat disk of radiug:

)

@) where 7= 277/8y (0s7<2w), O0sz<1. So, applying

Wd:—f [e‘I’R+(V<I>)2+V(‘I’)]_Kf R, Eq. (5) we get, forS;

where we included also the two-dimensionfaD) Einstein 1 tdxf4m |
term with some “gravitational constant” x. Then 81_1_2 %, 9 E_g
Sy=4me®*+) + 47k, wherex. is position of the horizon.

Essen_tlally, our consideration concerns _only that_ part ofyhere we omitted the irrelevant term that is the function of
Stp that is due to quantum one-loop terms in the action. WEIA,ZO) but not of parameters of the black hole and have

have nothing to say abowd. Its statistical interpretation retained dependence on UV regulatarThe last term in Eq.
requires additional considerations and, possibly, |mplemen(-8) really contains logarithm of temperaturel

1
TghluBug™ L)), ®

tation of new ideas. _ _ =Bx9Y4L) measured on the external boundaryL. The
Consider now the quantum massless scalar field describgg, divergence of the entropy5), (8) renormalizes the
by the action “gravitational constant”x in Sy in agreement with the gen-

eral statement of9,11].

We now calculate the statistical-mechanical entropy
Ssm- Applying Pauli-Villars regularization in two dimen-
sions one needs to introduce a set of fictitious fields with
very large masses: two anticommuting scalar fields with

This concerns only contribution to the entropy due to the quaninass uji,=u and one commuting field with mass
tum matter minimally coupled to gravity. In the nonminimal case 3= \/f,u Consider the free energy of the ensemble of the
the situation is more complicated and at the present time we haveriginal scalar field and regulators with an inverse tempera-
no correspondence between the two metH&ql$4]. ture 8:

1
Wsczif (V¢)2- ©)
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(EBn)
2

BF =2 In(1—e AEn). (9 Ifu]l=— 1+%In 2+In . (13

,uew)
EB

Note that energye, in Eq. (9) is defined with respect to This is the key |dent|ty aIIOWing Computation of the free
Kiling vector 4, (r=1t) and fields are expanded as energy(10). Omitting details that are rather simple below the
¢»=e'F(x). Therefore 8 in Eq. (9) is related with tempera- final result is

ture T measured ak=L as T *=pBgY4(L). The relevant

density matrix isp==,,¢,¢% e~ PEn, where{¢,} is the basis F=— 1 &2 : d_x(4_77 —g' |+ Egln(,uﬁgm(L))}

of eigenvectors. One should take into account that for the 12[2B%)x, 9\ Bu B

regulator fields the Hilbert space has indefinite metric and B 1 redx xInx 1

hence a part of the regulators contributes with a minus sign. + _'; _2f ———_(1-In2)|, (14)
The free energy9) can be determined for the arbitrary Be|2m°)o €—1 12

black hole metrig6) without reference to the precise form of .
the metric functiong(x). Repeating the calculation of Ref. erre we [(emovedzthe brick wall cut-off and used that
[14] in this 2D case and applying WKB approximation we Jo(dx x)/(e*—1)==</6. The statistical-mechanical free

finally get energy(14) is really an off-shell quantitysee[14]) defined
for arbitrary metric(6) and 8 not necessarily equal t6y .
1(=» dE [L dx Calculating now entropy Sgy= BZaBF and putting
T ;fo (?BE——1JX++h @J(_X){E_Z[EZ_"‘ZQ(X)]U2 =By we obtain
2_5,2 u 1 (rdx({4n 1
+[E*- 249001, 10 squ=| —| 50’ |+ZInBug ALY +C, (15
12 X4 g BH 6

It should be noted that the WKB approximation for the origi-
nal massless scalar field is really exact. We introduced in EqvhereC is some numerical constant not dependingwoor
(10) a “brick wall” cutoff h. In fact, one can see that diver- metric g(x). So, we see thabg), exactly coincides witts;
gences at smah are precisely canceled in E(LO) between (8). We conclude that at least this part of the thermodynami-
the original scalar and the regulator fields. This is the 2Dcal entropy has statistical meaning.
analogue of the mechanism discovered 14]. So one can Various calculations of black hole entropy in two dimen-
remove the cutoff in Eq(10). However we will keep it ar- sions were recently considered [ib6]. In particular, it was
bitrarily small in the process of calculation of separate termsoncluded thaBgy andS;p are different: one has to subtract
entering in Eq.(10). a (divergenj contribution of the fictitious Rindler particles
It is straightforward to compute the contribution of the from Sg), in order to getS;p.
original massless field in E410). For computation of the The correspondence of our results with thaf18] is seen
regulator’s contribution take the fixel and consider the from analysis of important interplay of two different limits
integral h—0 (brick wall) and x~1—0 (UV regularization. If one
takes the limitu.~*—0 first one obtains that contribution of
[ p]= Le K(EZ— 2g(x)) 12 (11) the regulators in the free enerd$0) completely vanishes.
K xs +h 9(X) ®9 ' One then gets the quantities that are functions of the brick
wall parameteh and divergent in the limih—0. These are
where integration is done from the horizor,(+h) to dis- the quantities calculated irl6]. Elimination of their diver-
tanceLg defined from equatiom(Lg)=E? u?. It is clear ~ gence(with respect to limith—0) might require some sub-
that when u grows Lg becomes closer and closer to traction procedure proposed|ib6]. Note, that in this regime
(x,+h). So, considering the limit of large we conclude the “brick wall” is treated as a real boundary staying at
that integral (11) is concentrated near the horizon where macroscopicaldistanceh from the horizon withh being
we have g(x)=(4m/By)(x—x,)=(2mpl/By)?, dx/g larger than any UV cutoff. ™.

= (BH /277)(dp/p) and the new radial Variab|ﬁ now runs The situation is different if we consider a “brick wall” as
from e=+/Byh/m to (EBy/2mw). The integral(1l) then & fictitious imaginary boundary with being smaller than
reads any scaleu ! of UV cutoff. Then the “brick wall” diver-
gences are eliminated by the standard UV regularization and
Epn/(2muydp EBu the UV regulators do contribute to the free energy and
I[M]Z,uf — (2 ) —p? entropy? This contribution is concentrated at the horizon. It
€ P T leads to the appearance of additional terms in the entropy
(EBy) e (15) that are finite after renormalization. It is worth noting
= arctanhy/ 1 ( B, )
2men 2 2This possibly means that we do not need a “brick wall” at all
_ _ ) ) ) (12) (h=0 from the very beginningin order to formulate the statistical
EBy mechanics of quantum fields around a black hole. We must just

. . impose some analyticity condition on quantum field wave functions
Using the asymptote arctanh{x) = —3In(x/2)+O(x) we fi-  on the horizon and deal with a continuous energy spectrum of the
nally get quantum field system.
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that the mechanism of this phenomena is similar to that othat is finite after renormalization. Unfortunately, the
the conformal anomaly. This similarity is not occasional straightforward generalization of this result on higher dimen-
since the result for the statistical entropy5) appears to sions meets the still open problem of statistical description of
coincide with the thermodynamical expressi@d), (8),  nonminimally coupled conformal mattgt4].
which indeed originated from the conformal anomaly of the Concluding, we propose that there is some unification: all
effective action(4). the entropies $su, Sens Scon Stp) introduced for a black
We do not have this phenomena in statistical mechanichole that arise due to quantum minimal matter are really
on space-time without horizons where the statistical entropydentical. In two dimensions this statement can be supported
was proved to be conformal invariant and not dependent oby precise calculation. Recall that this does not concern the
UV cutoff (see[17]). This is easily seen from our analysis. classical entropy of a hole for the statistical explanation for
Indeed, in this case where we hayex)=g,>0 everywhere which a special consideration is required.
and for large UV cutoffu> wo= E/gé’z, contribution of the | am grateful to Robert Myers for encouraging me to pre-
regulators disappears in the free ene(g). pare this calculation for publication. | also thank Robert
Thus, in the presence of horizons the statistical mechanidslann for valuable comments. This research was supported
of quantum fields depends on their UV behavior. The UVby NATO and in part by the Natural Sciences and Engineer-
regulators lead to nontrivial contribution to statistical entropying Research Council of Canada.
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