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Black hole entropy: Statistical mechanics agrees with thermodynamics
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We discuss the connection between different entropies introduced for a black hole. It is demonstrated i
two-dimensional example that the~quantum! thermodynamical entropy of a hole coincides~including UV-
finite terms! with its statistical-mechanical entropy calculated according to ’t Hooft and regularized by t
Pauli-Villars scheme.@S0556-2821~96!03718-6#

PACS number~s!: 04.70.Dy, 04.62.1v
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Since Bekenstein introduced the thermodynamical a
ogy in black hole physics@1# and Hawking discovered@2#
thermal radiation from a black hole confirming this analog
it is an intriguing problem as to what degrees of freedom
counted by the entropy of a black hole. Equivalently, wh
~if any! statistical mechanics is responsible for t
Bekenstein-Hawking entropy? Recently, this problem w
attacked from different sides and a number of calculati
were produced~see reviews in@3#!. Every such calculation
typically deals with a specific definition of entropy. Below
briefly list them.

According to ’t Hooft @4# the statistical-mechanical en
tropy SSM arises from a thermal bath of quantum fiel
propagating outside the horizon~see also@5#!. An alternative
interesting approach treats entropy as arising from entan
ment @6,7#. Starting with the pure vacuum state one trac
over modes of the quantum field propagating inside the
rizon and obtains the density matrixr. The entanglemen
entropy then is defined by the standard formu
Sent52Trr lnr and is essentially due to correlations
modes propagating at different sides of the horizon. Th
are formal arguments@7,8# that Sent coincides with the en-
tropyScon appearing in the conical approach@9–12#. Accord-
ing to this approach~see@8,12#! one considers the black hol
system off shell by fixing only the temperatu
T215*g00

1/2dt5bg00
1/2(L) on the external boundary and th

topology of the black hole geometry. An arbitrary metr
gmn(x) satisfying these conditions~the fixing ofT imposes a
boundary condition on the metric! typically has a conical
singularity with deficit angled52p(12b/bH) on the hori-
zon. The free energyF@gmn(x),T# is then a functional of the
metricgmn(x) inside the region and of the temperatureT on
the boundary. The equilibrium state of the system undeT
fixed is found from the extreme equationdFuT50 and is
described by a regular~on-shell! metric with vanishing defi-
cit angle (b5bH). The conical entropy is defined a
Scon52]TF where after taking the derivative]T one consid-
ers Scon on the equilibrium configuration. The black ho
entropy originally appeared within the thermodynamic
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framework and it is determined by total response of th
~equilibrium! free energyF on variation of temperature:
dF52STDdT. Remarkably, the conical method gives pre
cisely the thermodynamical entropy,Scon5STD , for the equi-
librium configuration.

For ordinary thermodynamical systems the thermod
namical and microscopical~statistical-mechanical! entropies
are exactly the same. However for the black hole case, it w
argued in@13# that black holes provide us with a unique
example of a specific system for which these entropies
not necessarily coincide.

It should be noted that every calculation of statistical e
tropy encounters the problem of dealing with the very pec
liar behavior of the physical quantities near the horizo
where they typically diverge. To remove these divergenc
’t Hooft introduced the ‘‘brick wall,’’ a fixed boundary near
the horizon within which the quantum field does not prop
gate. Essentially, this procedure~as it formulated in@4#! must
be implemented in addition to the removing of standard u
traviolet divergences. Another important point is that th
procedure changes the topology of the original black ho
space-time by introducing an extra boundary near the ho
zon. There are only a few calculations that imply ‘‘invari
ant’’ regularization when these extra divergences on the h
rizon are eliminated simultaneously with the standard U
divergences. Such calculations preserve the original topolo
of the black hole space-time. An example is the conic
method in which, after UV renormalization, the residual d
vergence of the free energy~at the tip of the cone! is propor-
tional to the second power of the deficit angle and hen
does not affect the quantities~energy and entropy! calculable
for the equilibrium configuration.

The other calculation is a reformulation of the ’t Hoof
approach by using the Pauli-Villars~PV! regularization
scheme@14#. It consists of introducing a number of fictitious
fields ~regulators! of different statistics and with very large
masses. Remarkably, this procedure not only yields the st
dard UV regularization but automatically implements a cu
off for the entropy calculation allowing one to remove th
‘‘brick wall.’’

Both the conical and PV calculations give the ordina
UV divergences for the entropy when the regularization
removed. A comparison of the structure of these diverge
3900 © 1996 The American Physical Society
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54 3901BLACK HOLE ENTROPY: STATISTICAL MECHANICS . . .
terms1 for the Reissner-Nordstro¨m black hole in four dimen-
sions~see@10# and@14#! shows that they are really identica
and take precisely the form to provide the correct renorm
ization of bare entropy in agreement with the suggestion
Susskind and Uglum@9,11#. This fact suggests that the two
calculations really lead to the same result and the cor
sponding entropiesScon(STD) andSSM are identical including
UV-finite terms.

The present state of the theory makes it impossible
prove or refute this statement in four dimensions. Howev
recent intensive study of two-dimensional models shows t
the black hole physics there looks rather similar to the fou
dimensional one while the calculations are technically sim
pler. In this paper we carry out the precise calculations
two dimensions and demonstrate equality of the thermod
namical and ~regularized by the Pauli-Villars scheme!
statistical-mechanical entropies.

The black hole thermodynamical entropy at the one-lo
level is really a sum

STD5~Scl1S1!@gmn
qc #, ~1!

whereScl is entropy coming from the classical gravitationa
action andS1 is a part coming from quantum one-loop term
in the effective action. In principle, both entropies can b
calculated off shell for an arbitrary black hole metric by th
conical method assuming thatbÞbH . We get then the ther-
modynamical entropy when we setb5bH at the end and the
back reaction is taken into account by calculating the res
for the quantum-corrected black hole metricgmn

qc (x) ~and
bH

21 is also assumed to be the quantum-corrected Hawk
temperature!. The concrete form ofgmn

qc (x) is not important
for us since all the quantities can be calculated implicitly f
arbitrary black hole metric.

The form ofScl as function of the black hole geometry i
determined from the classical gravitational action. For co
creteness we may take it to be some kind of dilaton gravi

Wcl52E @eFR1~¹F!21V~F!#2kE R, ~2!

where we included also the two-dimensional~2D! Einstein
term with some ‘‘gravitational constant’’ k. Then
Scl54peF(x1)14pk, wherex1 is position of the horizon.

Essentially, our consideration concerns only that part
STD that is due to quantum one-loop terms in the action. W
have nothing to say aboutScl . Its statistical interpretation
requires additional considerations and, possibly, impleme
tation of new ideas.

Consider now the quantum massless scalar field descri
by the action

Wsc5
1

2E ~¹f!2. ~3!

1This concerns only contribution to the entropy due to the qua
tum matter minimally coupled to gravity. In the nonminimal cas
the situation is more complicated and at the present time we h
no correspondence between the two methods@8,14#.
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In two dimensions it induces the one-loop effective action
the form of the Polyakov term

W152
1

96pE Rh21R2
1

24p
ln~Lm!E R, ~4!

where we omitted the 2D cosmological constant that is irr
evant to our consideration. The last term in Eq.~4! gives the
UV divergence in two dimensions;m is an appropriate UV
regulator (L is an infrared regulator!. If we apply Pauli-
Villars regularization~see below! then m is precisely the
PV-regulator. This term renormalizes the ‘‘gravitational co
stant’’ k. Note that in this model there is no renormalizatio
of eF, which is the real gravitational coupling in Eq.~2!.

For the metric written in the conformal gaug
gmn5e2sdmn the term~4! leads to the entropy in the form
@15# ~see also@10,11#!

S15
1
6 s~x1!1 1

6 ln~Lm!. ~5!

Let the black hole instanton be described by the 2D me

dsBH
2 5g~x!dt21

1

g~x!
dx2, ~6!

where the metric functiong(x) has simple zero inx5x1 ;
x1<x<L, 0<t<bH , bH54p/g8(x1). It is easy to see
that Eq.~6! is conformal to the flat disk of radiusz0:

dsBH
2 5e2sz0

2~dz21z2dt̃ 2!,

s5
1

2
ln g~x!2

2p

bH
E
L

xdx

g
1 ln

bH

2pz0
,

z5expS 2p

bH
E
L

xdx

g D , ~7!

where t̃5 2pt/bH (0<t̃<2p), 0<z<1. So, applying
Eq. ~5! we get, forS1,

S15
1

12Ex1

L dx

g S 4p

bH
2g8D1

1

6
ln@mbHg

1/2~L !#, ~8!

where we omitted the irrelevant term that is the function
(L,z0) but not of parameters of the black hole and ha
retained dependence on UV regulatorm. The last term in Eq.
~8! really contains logarithm of temperatureT21

5bHg
1/2(L) measured on the external boundaryx5L. The

UV divergence of the entropy~5!, ~8! renormalizes the
‘‘gravitational constant’’k in Scl in agreement with the gen
eral statement of@9,11#.

We now calculate the statistical-mechanical entro
SSM. Applying Pauli-Villars regularization in two dimen
sions one needs to introduce a set of fictitious fields w
very large masses: two anticommuting scalar fields w
mass m1,25m and one commuting field with mas
m35A2m. Consider the free energy of the ensemble of
original scalar field and regulators with an inverse tempe
tureb:
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3902 54SERGEY N. SOLODUKHIN
bF5(
n

ln~12e2bEn!. ~9!

Note that energyEn in Eq. ~9! is defined with respect to
Killing vector ] t (t5ıt) and fields are expanded a
f5eıEtf (x). Therefore,b in Eq. ~9! is related with tempera-
ture T measured atx5L as T215bg1/2(L). The relevant
density matrix isr5(nfnfn* e

2bEn, where$fn% is the basis
of eigenvectors. One should take into account that for
regulator fields the Hilbert space has indefinite metric a
hence a part of the regulators contributes with a minus s

The free energy~9! can be determined for the arbitrar
black hole metric~6! without reference to the precise form o
the metric functiong(x). Repeating the calculation of Re
@14# in this 2D case and applying WKB approximation w
finally get

F52
1

pE0
` dE

ebE21Ex11h

L dx

g~x!
$E22@E22m2g~x!#1/2

1@E222m2g~x!#1/2%. ~10!

It should be noted that the WKB approximation for the orig
nal massless scalar field is really exact. We introduced in
~10! a ‘‘brick wall’’ cutoff h. In fact, one can see that diver
gences at smallh are precisely canceled in Eq.~10! between
the original scalar and the regulator fields. This is the
analogue of the mechanism discovered in@14#. So one can
remove the cutoff in Eq.~10!. However we will keep it ar-
bitrarily small in the process of calculation of separate ter
entering in Eq.~10!.

It is straightforward to compute the contribution of th
original massless field in Eq.~10!. For computation of the
regulator’s contribution take the fixedE and consider the
integral

I @m#5E
x11h

LE dx

g~x!
„E22m2g~x!…1/2, ~11!

where integration is done from the horizon (x11h) to dis-
tanceLE defined from equationg(LE)5E2/m2. It is clear
that when m grows LE becomes closer and closer t
(x11h). So, considering the limit of largem we conclude
that integral ~11! is concentrated near the horizon whe
we have g(x)5(4p/bH)(x2x1)5(2pr/bH)

2, dx/g
5(bH /2p)(dr/r) and the new radial variabler now runs
from e5AbHh/p to (EbH /2pm). The integral~11! then
reads

I @m#5mE
e

EbH /~2pm!dr

r
AS EbH

2pm D 22r2

5
~EbH!

2p S arctanhA12S me2p

EbH
D 2

2A12S 2pem

EbH
D 2D . ~12!

Using the asymptote arctanh(12x)52 1
2 ln(x/2)1O(x) we fi-

nally get
s
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I @m#52
~EbH!

2p F11
1

2
ln 21 lnS mep

EbH
D G . ~13!

This is the key identity allowing computation of the free
energy~10!. Omitting details that are rather simple below the
final result is

F52
1

12F bH

2b2E
x1

L dx

g S 4p

bH
2g8D 1

bH

b2 ln„mbg1/2~L !…G
1

bH

b2 F 1

2p2E
0

`dx x ln x

ex21
2
1

12
~12 ln 2!G , ~14!

where we removed the brick wall cut-off and used tha
*0

`(dx x)/(ex21)5p2/6. The statistical-mechanical free
energy~14! is really an off-shell quantity~see@14#! defined
for arbitrary metric~6! andb not necessarily equal tobH .

Calculating now entropySSM5b2]bF and putting
b5bH we obtain

SSM5
1

12Ex1

L dx

g S 4p

bH
2g8D1

1

6
ln„mbHg

1/2~L !…1C, ~15!

whereC is some numerical constant not depending onm or
metric g(x). So, we see thatSSM exactly coincides withS1
~8!. We conclude that at least this part of the thermodynam
cal entropy has statistical meaning.

Various calculations of black hole entropy in two dimen
sions were recently considered in@16#. In particular, it was
concluded thatSSM andSTD are different: one has to subtract
a ~divergent! contribution of the fictitious Rindler particles
from SSM in order to getSTD .

The correspondence of our results with that of@16# is seen
from analysis of important interplay of two different limits
h→0 ~brick wall! andm21→0 ~UV regularization!. If one
takes the limitm21→0 first one obtains that contribution of
the regulators in the free energy~10! completely vanishes.
One then gets the quantities that are functions of the bri
wall parameterh and divergent in the limith→0. These are
the quantities calculated in@16#. Elimination of their diver-
gence~with respect to limith→0) might require some sub-
traction procedure proposed in@16#. Note, that in this regime
the ‘‘brick wall’’ is treated as a real boundary staying a
macroscopicaldistanceh from the horizon withh being
larger than any UV cutoffm21.

The situation is different if we consider a ‘‘brick wall’’ as
a fictitious imaginary boundary withh being smaller than
any scalem21 of UV cutoff. Then the ‘‘brick wall’’ diver-
gences are eliminated by the standard UV regularization a
the UV regulators do contribute to the free energy an
entropy.2 This contribution is concentrated at the horizon. I
leads to the appearance of additional terms in the entro
~15! that are finite after renormalization. It is worth noting

2This possibly means that we do not need a ‘‘brick wall’’ at al
(h50 from the very beginning! in order to formulate the statistical
mechanics of quantum fields around a black hole. We must ju
impose some analyticity condition on quantum field wave function
on the horizon and deal with a continuous energy spectrum of t
quantum field system.
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54 3903BLACK HOLE ENTROPY: STATISTICAL MECHANICS . . .
that the mechanism of this phenomena is similar to that
the conformal anomaly. This similarity is not occasion
since the result for the statistical entropy~15! appears to
coincide with the thermodynamical expression~5!, ~8!,
which indeed originated from the conformal anomaly of th
effective action~4!.

We do not have this phenomena in statistical mechan
on space-time without horizons where the statistical entro
was proved to be conformal invariant and not dependent
UV cutoff ~see@17#!. This is easily seen from our analysis
Indeed, in this case where we haveg(x)>g0.0 everywhere
and for large UV cutoffm.m05E/g0

1/2, contribution of the
regulators disappears in the free energy~10!.

Thus, in the presence of horizons the statistical mechan
of quantum fields depends on their UV behavior. The U
regulators lead to nontrivial contribution to statistical entrop
of
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that is finite after renormalization. Unfortunately, the
straightforward generalization of this result on higher dimen
sions meets the still open problem of statistical description o
nonminimally coupled conformal matter@14#.

Concluding, we propose that there is some unification: a
the entropies (SSM, Sent, Scon, STD) introduced for a black
hole that arise due to quantum minimal matter are reall
identical. In two dimensions this statement can be supporte
by precise calculation. Recall that this does not concern th
classical entropy of a hole for the statistical explanation fo
which a special consideration is required.

I am grateful to Robert Myers for encouraging me to pre
pare this calculation for publication. I also thank Rober
Mann for valuable comments. This research was supporte
by NATO and in part by the Natural Sciences and Enginee
ing Research Council of Canada.
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