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Surface gravity in dynamical spherically symmetric spacetimes
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A definition of surface gravity at the apparent horizon of dynamical spherically symmetric spacetime
proposed. It is based on a unique foliation by ingoing null hypersurfaces. The function parametrizing
hypersurfaces can be interpreted as the phase of a light wave uniformly emitted by some far-away
observer. The definition gives back the accepted value of surface gravity in the static case by virtue
nonlocal character. Although the definition is motivated by the behavior of outgoing null rays, it turns out
there is a simple connection between the surface gravity, the acceleration of any radially moving observe
the observed frequency change of the infalling light signal. In particular, this gives a practical and sim
method of how any geodesic observer can determine surface gravity by measuring only the redshift
infalling light wave. The surface gravity can be expressed as an integral of matter field quantities alon
ingoing null line, which shows that it is a continuous function along the apparent horizon. A formula for
area change of the apparent horizon is presented, and the possibility of thermodynamical interpreta
discussed. Finally, concrete expressions of surface gravity are given for a number of four-dimensiona
two-dimensional dynamical black hole solutions.@S0556-2821~96!05518-X#
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I. INTRODUCTION

There has been renewed interest in spherically symme
spacetimes in the past half decade. The unexpected comp
ity of the problem is well illustrated by the large number o
new ‘‘dirty’’ black hole solutions. An important result
proved by Visser@1# is that these stationary matter field
always decrease the surface gravity compared to the sa
mass vacuum black hole. Dynamical spherically symmet
spacetimes were initially studied mainly to check the validi
of the cosmic censorship hypothesis. More recently, su
ported by powerful numerical methods, considerable eff
has been focused on near-critical collapsing solutions at
black hole formation threshold.

The fundamental question is, what physical quantities a
describing these spherically symmetric collapses? Undou
edly, local quantities such as a now well-defined gravit
tional mass function and densities belonging to the mat
fields are essential. Because of their importance in the s
tionary case, we expect that generalizations of thermo
namical quantities will also play a major role. For stationa
black holes, the surface gravity is proportional to the tem
perature of the Hawking radiation. On the other hand, co
sidering the collapse of a spherical shell, Hiscock@2# pro-
posed to identify one-quarter of the area of the appar
horizon as the gravitational entropy. Furthermore, Hajic
@3# suggested that the Hawking effect is associated with
apparent horizon rather than the event horizon, since the
parent horizon in spherically symmetric spacetimes acts
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the boundary of negative energy states. Hence we expect t
some naturally generalized surface gravity for apparent ho
zons will have a crucial role as a physical quantity in dy
namical spacetimes.

It is possible to formulate a local dynamical analogue o
black hole thermodynamics even for apparent horizons th
are not spherically symmetric. Using a null tetrad formalism
Collins @4# has derived a formula for the area change of th
apparent horizon, which can be interpreted as a generaliz
first law of thermodynamics. However, the temperature ter
in this equation is tetrad dependent, and no unique tetr
choice is made in the nonstationary case. This ambigu
reflects the difficulty of selecting an appropriate distanc
function along the apparent horizon. Hayward@5# has used
the natural distance defined by the spacetime metric,
though this choice is divergent in the stationary limit whe
the horizon becomes null. Hayward also presents the an
logues of the zeroth and second laws of thermodynamic
and defines a dynamical counterpart of surface gravit
called trapping gravity. Unfortunately, when specializing t
static spherically symmetric spacetimes again, the trappi
gravity does not agree with the accepted value of surfa
gravity even for charged Reissner-Nordstro¨m black holes
~see the Appendix!.

There are two basic ways to introduce surface gravity
stationary spacetimes. The first, physically more dire
method is in terms of the acceleration of stationary observe
near the black hole horizon. This form of the definition
proves to be very difficult to generalize. In dynamical spher
cally symmetric spacetimes, the observers moving on co
stant radius orbits are the most natural analogues of the st
observers. However, their acceleration has a qualitative
different behavior, being proportional to the matter densi
instead of any possible generalization of surface gravity.

The second, mathematically more straightforward a
proach is to define surface gravity as the inaffinity of th
Killing vector field along the black hole horizon. In the gen

hys-
d-

ch-
d-
3882 © 1996 The American Physical Society



e
e
ssi-

he
s.
lar

-
i-

s-
nd

ty
f

as
-
n-

be
he
es

o-
-

nt
ht
e

y

ral

am-

on
ion
he
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eral dynamical case the apparent horizon ceases to be n
and there is no geodesic contained in the horizon. Howev
in spherical symmetry, the outgoing radial light rays are ne
essarily geodesics, and they are locally constant radius orb
when they cross the apparent horizon. Hence it is natural
attempt to generalize surface gravity as the inaffinity of the
outgoing null orbits@6#. The concept of inaffinity is defined
only with respect to a preferred parametrization of th
curves. The main difficulty is how to choose this particula
parametrization, considering that one has to get back t
Killing time in the stationary limit. The normalization of the
Killing vector is defined at spacelike infinity, which shows
that our definition cannot be local either.

The most important idea in this paper is to parametrize t
outgoing null geodesics using a natural spherically symm
ric foliation of ingoing null hypersurfaces. We assume tha
the labeling of these hypersurfaces is defined by the prop
time of a static observer at infinity. This foliation can be
most easily observed by any dynamical observer, simply
observing a radio wave emitted uniformly by a far-away re
erence clock. We can interpret the function generating th
foliation as a global advanced-time coordinate. We will se
that for static observers in a static spherically symmetr
spacetime, this advanced-time parameter agrees with
Killing time, which ensures that our surface gravity indee
reduces to the accepted value in the nondynamical case.

Our natural ingoing null foliation will allow us not only to
give a clear physical interpretation of surface gravity, bu
also to prescribe the most practical way to measure it in a
static or dynamical spherically symmetric spacetime. An
observer moving along a timelike orbit can precisely me
sure the apparent change of frequency of a standard radio
light signal falling in from the far-away asymptotically flat
region. We can find an explicit relation between this fre
quency change and the acceleration of the observer. In p
ticular, for any geodesic observer crossing the horizon, t
proper time derivative of the redshift of the infalling wave i
exactly equal to the surface gravity. This is particularly in
teresting, since it means that surface gravity can be det
mined by performing simple frequency measurements onl

Another physical approach, which may lead to a differe
~but still not local! definition of surface gravity, is by using a
fully dynamical generalization of the Hartle-Hawking for-
mula @7#. Assuming that the apparent horizon area corr
sponds to the entropy of a dynamical black hole@2#, this
formula may be interpreted as a generalized first law of bla
hole thermodynamics. It has been pointed out by Collins@4#
that the temperature term appearing in this equation can c
respond to some possible generalization of surface grav
only in the near-stationary limit. Furthermore, this temper
ture term can change in a noncontinuous way along the h
rizon whenever there is a jump in the matter field densit
This happens, for example, at the surface of a collapsing s
In contrast, as we will see, our dynamical surface gravity
always continuous for regular matter fields.

Dynamical surface gravity is defined in Sec. II, using th
inaffinity of outgoing null rays at the apparent horizon. In
Sec. III, a method is described for how any observer, whic
crosses the horizon in an arbitrary way, can measure surf
gravity by observing light signals falling in from infinity. In
Sec. IV, the surface gravity is expressed as an integral
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regular matter field quantities along an ingoing null curv
coming from past null infinity. In Sec. V, an equation for th
area change of the apparent horizon is presented. The po
bility of interpreting it as a dynamical first law of black hole
thermodynamics is discussed. In Sec. VI, the value of t
surface gravity is calculated for several exact solution
These include the charged Vaidya metric, self-similar sca
field solutions, (111)-dimensional dilaton gravity and ho-
mogenous dust ball collapse. In the Appendix, while exam
ining the properties of null congruences, Hayward’s defin
tion of trapping gravity is reviewed in the spherically
symmetric case, and the relation to our formulation is di
cussed. We use units in which the gravitational constant a
the speed of light satisfyG5c51.

II. DYNAMICAL SURFACE GRAVITY

The surface gravityk of stationary spacetimes is defined
by the behavior of the timelike Killing vectorja at the event
horizon. The definition has a nonlocal character. Ifja is a
Killing vector field, thenbja is also a Killing vector for any
constantb. This changes the value of the surface gravi
from k to bk. Therefore one must fix the normalization o
ja. The obvious way to do it is to requirejaja521 at
spacelike infinity. To calculate surface gravity, either one h
to know the Killing vector field globally or one has to per
form an integration between the horizon and spacelike infi
ity to determine the ‘‘anomalous redshift factor’’@1#.

There are several equivalent expressions which can
used to define surface gravity in stationary spacetimes. T
most appropriate for generalizing into dynamical spacetim
is

jbj ;b
a 5kja. ~1!

Since the wave vector of a light signal is an affine null ge
desic,k has the physical meaning of determining the fre
quency decrease, or in other words theredshift, of an outgo-
ing light signal moving along the horizon. Hencek describes
the ‘‘energy loss’’ of a photon trying to climb out of the
black hole, but only able to move exactly along the consta
radius horizon. No such frequency change occurs for a lig
signal moving exactly along the horizon of an extrem
Reissner-Nordstro¨m black hole, although the redshift of a
photon escaping from very close to the horizon to infinit
can be still arbitrarily large.

In any spherically symmetric spacetime there is a natu
foliation by ingoing spherically symmetricnull hypersur-
faces. Let us suppose that these hypersurfaces are par
etrized by a functionv. If the spacetime is asymptotically flat
at past null infinity, we can make the functionv unique~up
to an additive constant! by requiring thatjav ;a51 at past
null infinity, whereja is the asymptotic Killing vector. This
requirement means thatv is fixed by the proper time of a
far-away stationary observer. We can consider the functi
v as a global advanced-time coordinate. The parametrizat
of the null surfaces can be more conveniently fixed using t
natural radial function r instead of ja. At infinity
jaja521, r ;ar ;a51, and jar ;a50. Hence in place of
jav ;a51 we can equivalently requirer ;av ;a51 at past null
infinity.
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In a static spherically symmetric spacetime the Killin
vector ja is defined everywhere, and it is easy to see t
jav ;a is constant along the ingoing constantv lines:

v ;b~jav ;a! ;b5v ;av ;bj~a;b!1
1

2
ja~v ;bv ;b! ;a50. ~2!

Hencejav ;a51 everywhere. This means that for static o
servers the advanced timev agrees with the Killing time,
apart from an observer-dependent additive constant de
mining the time ‘‘zero.’’

In a dynamical spacetime the apparent horizon is not n
anymore, and there is no geodesic contained in the horiz
However, outgoing radial null curves are always geode
because of spherical symmetry. Furthermore, since the
pansion of outgoing null rays vanishes at the apparent h
zon, the outgoing null curves are locally constant radius
bits when they cross the horizon. Hence instead of
Killing vector, which is very problematic to generalize t
dynamical spacetimes, we will use the inaffinity of an ou
going null vector fieldka to define surface gravity. The nul
condition and the spherical symmetry only fix the directi
of ka. The most difficult problem is how to fix the norma
ization of this vector field. Since we want our definition
give back the usual value for the surface gravity when s
cializing to static spacetimes,ka should agree with the Kill-
ing vector ja on a static horizon. We can assure this
requiringkav ;a51 at every point of the spacetime~see Fig.
1!. This determineska uniquely in a nonlocal way. Becaus
ka is geodesic everywhere, the relationkbk;b

a 5kka can be
used to definek at every point of the spacetime which can b
reached by an ingoing radial light ray coming from past n
infinity. However, on physical grounds, we are interested
the value of the surface gravity only at the apparent horiz
Sincekar ;a50 only on the apparent horizon, the physic
significance ofk is much less clear elsewhere.

FIG. 1. An illustration of our dynamical surface gravity defin
tion. The functionv parametrizing the null foliation is fixed by the
proper timet of a far-away reference clock. The velocity vector
the clock agrees with the asymptotic Killing vectorja, and
jav ;a51. The surface gravity describes the inaffinity of bothka

andk̃a ~black arrows!, as long as they are tangent to a geodesic a
kav ;a5 k̃av ;a51. The white arrow represents the affine geode
wave vectorl a of some outgoing light signal crossing the horizo
The ‘‘frequency’’ l av ;a is a decreasing function of the advance
time v.
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Multiplying the formulakbk;b
a 5kka by v ;a ,

k5v ;ak
bk;b

a 5kb~v ;ak
a! ;b2kakbv ;ab52kakbv ;ab .

~3!

Since v ;bv ;ab5v ;bv ;ba50, for any scalar functiona the
vector k̃a5ka1av ;a will also satisfyk52 k̃ak̃bv ;ab . This
shows that the fundamental structure is not the vector fie
ka, but the functionv determining the null foliation. We only
have to assume thatka points in a radial direction and
kav ;a51. Since no derivative ofka appears, it is enough to
choose any such vector at only one point and no need
construct a vector field. The vectorka can be not only null
but also timelike or spacelike.

Definition. Given a foliation by ingoing null hypersur-
faces, parametrized by a functionv which satisfies
v ;ar ;a51 ~or jav ;a51) at past null infinity, thesurface
gravity at some point of the spacetime is defined as

k52kakbv ;ab , ~4!

whereka is a vector pointing in a radial direction and satis
fying kav ;a51.

Given any radially directed geodesic, we can parametri
it by the advanced timev. Then the tangent vectork̃a satis-
fies k̃av ;a51 and the geodesic equationk̃bk̃;b

a 5k̃ k̃a. Multi-
plying by v ;a , we getk̃5k ~see Fig. 1!.

Consequence. For any radial geodesic with tangent vecto
ka satisfyingkav ;a51, the surface gravityk describes the
inaffinity of the geodesic as

kbk;b
a 5kka. ~5!

The physically most relevant case is whenka is the
unique outgoing null vector crossing the apparent horiz
and satisfyingkav ;a51. At the horizon of static black holes
this null vector agrees with the Killing vector, and our defi
nition gives the standard value of surface gravity. The phy
cal meaning of the dynamicalk is the same as in the station-
ary case. An outgoing light signal moves along a local
constant radius orbit when it crosses the apparent horiz
Since the parametrizationv is not affine,k determines the
frequency decrease, that is, theredshiftof the light signal at
the horizon~see Fig. 1!. Physically, the photon loses its ‘‘en-
ergy’’ because of the attractivity of the black hole.

What happens if we try to calculate the surface gravi
using a different parametrization of the null hypersurfaces
function ṽ which is not asymptotically well behaving at pas
null infinity? Then we getk̃52 k̃ak̃bṽ ;ab for somek̃a sat-
isfying k̃aṽ ;a51. The physical parametrization always ca
be obtained by a relabeling of the null surfaces,v[v( ṽ).
Since k̃av ;a5dv/dṽ[v8, we have to rescale the vectork̃a

and useka5 k̃a/v8 to ensure thatkav ;a51. Then

k52kakbv ;ab52
1

~v8!2
k̃ak̃b~v8ṽ ,a! ;b . ~6!

Hence the physical surface gravityk is related to the un-
physicalk̃ as

-
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k5
1

v8
k̃2

1

~v8!2
v95

1

v8
k̃1S 1v8D 8

, ~7!

where the primes denote derivatives with respect toṽ.
Given the functionv, one can choose it as one of th

coordinates in a null coordinate systemxa5(v,r ,u,f). The
metric takes the form

ds252Fdv212Gdvdr1r2dV2, ~8!

whereF, G, andr are functions ofv andr , andG.0. The
only remaining freedom is in choosing ther coordinate. Us-
ing the Christoffel symbols in this coordinate system, fro
Eq. ~4! we havek5kakbGab

1 , and, sinceG 22
1 5G12

1 50,

k5G 11
1 5

G,v

G
1
F ,r

2G
, ~9!

independently of the radius functionr. If we chooser as an
outgoing null coordinate, then we obtain a double-null co
dinate system withF50 andk5G,v /G. Another convenient
choice isr5r, which we will use in most of the paper.

III. PHYSICAL IMPLICATIONS

The familiar method of determining the surface gravity
a stationary black hole is by measuring the acceleration
observers moving along the Killing orbits near the horizo
Using the coordinate system~8! wherer5r, the most natu-
ral generalization of the Killing vector isja5(1,0,0,0), be-
cause it satisfiesjar ;a50, and reduces to the Killing vecto
in the static case. Sincejaja52F, the velocity of the ob-
servers moving along these constant radius orbits
ua5(1/AF,0,0,0). Their acceleration isaa5ubu;b

a and

jajaa
bab5SG,v

G
1
F ,r

2G
1
F ,v

2F D 2. ~10!

In stationary spacetimesF ,v50, and comparing with Eq.~9!
we can see that this expression givesk2. In a dynamical
spherically symmetric spacetime the derivative of the rad
function r5r vanishes in outgoing null directions at th
points of the apparent horizon. Since (2G,F,0,0) is such a
null vector field, this means thatF50 there. However, from
Einstein’s equations we haveF ,v528prGTvv , and hence
F ,v /F and jajaa

bab in general diverges at the appare
horizon. The only combination which is always finite
(jaja)

3abab . It is proportional toTabjajb instead ofk,
and zero in the static case. From these arguments we can
that in dynamical spacetimes the acceleration of constan
dius observers cannot be used to define any generalizatio
surface gravity at the apparent horizon. To illustrate
problem more concretely, let us consider the Vaidya spa
time, for which G51, F5122m(v)/r , and r5r . Then
k5m/r 2, and

jajaa
bab5Smr 2 2

2m8

r22mD 2. ~11!

This diverges at the apparent horizonr52m, whenever
m85dm/dvÞ0.
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There is a very intimate connection between the accele
tion of radially moving observers, the advanced timev, and
the dynamical surface gravityk. Consider an arbitrary con-
gruence of curves in the constant angle radial plane, gen
ated by some vector fieldua. We do not assume that the
congruence is geodesic, and it can be not only timelike b
also spacelike or null. If we define the functionf by
f5uav ;a , the vector fieldka5ua/ f satisfies the normaliza-
tion conditionkav ;a51 needed in the definition ofk. We
define the vector fieldaa5ubu;b

a which is just the accelera-
tion when ua is a normalized velocity vector. Then
aa5 f 2kbk;b

a 1 f kakb f ;b . Multiplying this by v ;a , using the
fact that the derivative ofkav ;a vanishes, and substituting
the defining relation~4! of k, we get

aav ;a5 f 2k1ua f ;a . ~12!

If the congruence is geodesic, thenaa50 and
k5ua(1/f ) ;a . This is not very surprising, since we hav
seen in the previous section thatk describes the inaffinity of
any geodesic parametrized byv. The important thing is that
for timelike ua the functionf has a simple physical interpre-
tation and can be very easily measured. Sincef5uav ;a , the
value of f gives the ratio of the global advanced time chang
Dv and the observer’s proper time changeDt along the orbit
~see Fig. 2!:

f5
dv
dt

. ~13!

Considering a light signal emitted by a static observer
infinity with frequency v` , the observed frequency is
v5 fv` . Introducing the redshift factor

z5
v`

v
215

1

f
21, ~14!

the surface gravity is

k5uaz;a5
dz

dt
. ~15!

FIG. 2. Given an observer with velocityua, define the function
f5uav ;a . If there is an infalling light wave emitted by a far-away
static clock with frequencyv` , the observer measuresv5 fv`

frequency. For a geodesic observer, the surface gravityk is equal to
the derivative of the redshiftz with respect to the proper timet,
i.e., k5uaz;a wherez51/f21.
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This shows that for any geodesic observer, the proper-tim
derivative of the observed redshift of a standard light or ra
dio signal is equal to the surface gravityk. Since such fre-
quency changes can be very easily and most precisely de
mined, this is the most practical method of measurin
surface gravity in spherically symmetric spacetimes, even
the static case.

The proper time is measured by a clock carried by th
observer. Actually, since we have not used that the norm
ua is 21, t does not even have to be proper time; it i
enough if it is proportional to it. But to get the physicalk,
the frequencyv` of the light signal must be determined by
the proper time of a static clock at infinity. To measure th
surface gravity of the apparent horizon, the observer mu
actually cross the horizon. If the apparent horizon is spac
like, the observer is unable to send the result of the measu
ment back to infinity. The utmost an observer far from th
black hole can know is the approximate value ofk at the
event horizon, even if the physical meaning ofk is not clear
there. However, we expect that dynamical surface gravi
will play the most important role in the case of evaporatin
black hole models, when the apparent horizon is timelike an
located outside the event horizon.

Equation~12! provides the most practical way of measur
ing surface gravity for nongeodesic radially moving observ
ers as well. In our null coordinate system let

u7
a 5S f , f 2F71

2 fG
,0,0D , ~16!

assumingf>0. Sincegabu7
a u7

b 571 andgabu2
a u1

b 50, a
general observer moving in a radial direction can be d
scribed by the velocityu2

a , while u1
a is the outward-pointing

normal vector to the orbits. Defininga7
a 5u7

b u7;b
a we have

a7
a 5

1

z11
~k2u7

b z;b!u6
a . ~17!

This follows from the fact thata7
a has to be parallel to

u6
a , and that by contracting withv ;a we get back Eq.~12!.
The norm ofu1

a is 1, and the accelerationua2
a u can be di-

rectly measured, whileu2
b z;b can be determined by observ-

ing the frequency change of light signals falling in from
infinity.

All observers who measure a constant redshiftz have ac-
celeration proportional to the surface gravityk. Hence, to
find the natural generalization of the static observers, one h
to look for those solutions of the equationu7

a f ;a50 which
reduce to the Killing orbits in the static limit. Unfortunately,
in general, this equation is too difficult to solve analytically
One has the freedom to specify the value off as initial data
on some surface, for example, on the apparent horizon.
natural choice to fixf is by requiringu7

a to be tangent to the
horizon. In general, each orbit determined byu7

a f ;a50 will
be tangent to the horizon at only one point, and since th
never cross into the other side, the apparent horizon w
emerge as the ‘‘envelope’’ of these orbits. The acceleratio
of the observers at the moment of touching the horizon
e
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f hk. The functionf h can be interpreted as a generalized red
shift factor. It is finite for dynamical spacetimes, but alway
diverges in the static limit.

IV. INTEGRAL FORMULA

In the coordinate systemds252Fdv212Gdvdr
1r 2(du21sin2udw2), the independent components of the
Einstein’s equations are

8pTrr5
2G,r

rG
, ~18!

8pTvr52
2G

r 2
M ,r , ~19!

8pTvv5
2

r 2
~FM ,r1GM ,v!, ~20!

8pS Tuu2
r 2

4
Ta

aD5
r 2

2G
k ,r1

M

r
, ~21!

where

M5
r

2 S 12
F

G2D , k5
G,v

G
1
F ,r

2G
, ~22!

andTab is the stress tensor of matter fields. Using the radiu
function r, the local massM can be expressed in a
coordinate-system-invariant form asM5r(12r ;ar ;a)/2.

Defining the vectorsja5(1,0,0,0) andl a5(0,21,0,0),
we have Tvv5jajbTab , Tvr52jal bTab , and
Trr5l

al bTab . The vectorl a can be easily constructed in
any coordinate system, since it is future directed null an
l ar ;a521. However, forja, only its direction is fixed lo-
cally by jar ;a50 and the normalizationjaja52F is
known only after globally constructing the asymptotically
well-behaving foliation given byv. The best one can do
locally is to define the Kodama vector@8# za by zar ;a50
andzaza52M /r215F/G2. Thenja5Gza. Since the co-
tangent vectorr ;a5(0,1,0,0) can be easily constructed in
any coordinate system, it is useful to write the more covar
ant combination of Eqs.~19! and ~20!:

8pTr
r5

F ,r

rG2 2
2M

r 3
. ~23!

Using Eq.~18! and assuming thatG approaches 1 at past
null infinity, G can be expressed as an integral of local qua
tities along an ingoing radial null line:

lnG524pE
r

`

rTrr dr. ~24!

This shows thatG51 in the whole outer vacuum region. If
the matter fields satisfy the weak energy condition, thenG is
nonincreasing in ingoing null directions and 0,G<1. After
calculatingG, evenF can be determined locally from the
expression~22! of the local mass,F5G2(122M /r ).

From Eq.~21!, k can be expressed as an integral along a
ingoing radial null curve:
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k5E
r

`

GS 2Mr 3 2
16p

r 2
Tuu14pTa

aDdr. ~25!

SinceG is not a local quantity, before calculatingk one has
to evaluate the integral~24! to getG at every point of the
null line. Using the expression forTvr from

Ta
a5

2

G
Tvr1

F

G2Trr1
2

r 2
Tuu , ~26!

we can get

SGM

r 2 D
,r

52GS pTrr2pTa
a1

2p

r 2
Tuu2

M

r 3 D , ~27!

which gives another integral formula fork:

k5G
M

r 2
1E

r

`

2pGS Trr1Ta
a2

6

r 2
TuuDdr. ~28!

This latter expression is especially useful if there are vacu
regions.

Using Eq.~23!,

F ,r

2G
5GS 4prTr

r1
M

r 2 D . ~29!

The best we can do for theG,v /G term in the expression~9!
of k is to take the derivative of Eq.~24!. We obtain

k5GS 4prTr
r1

M

r 2 D24pE
r

`

r
]Trr
]v

dr. ~30!

After G is already known, the partial derivative can be wri
ten in a coordinate-system-invariant form, as a Lie derivati
along the vector fieldja5Gza:

]Trr
]v

5l al bLGzTab . ~31!

In the static caseja is the Killing vector and the integral
term vanishes.

It is instructive to introduce a basis carried by observe
moving along the constant radius orbits. Settin
na5(G/AF)r ;a and ta5(1/AF)ja, we have nana51,
uaua521, anduana50. The measured energy density
«5Tabt

atb, the radial energy flow isS5Tabt
anb, and the

radial pressure isP5Tabn
anb. We have the ingoing null

vector ta2na5(AF/G)l a. Then

Trr5Tabl
al b5

G2

F
Tab~ ta2na!~ tb2nb!5

«22S1P

12~2M /r !
.

~32!

Since l a is regular, this shows that«22S1P must ap-
proach zero at the horizon. Similarly we can g
Tvr5G(S2«), Tvv5F«, andTr

r5P2S. Substituting into
Eq. ~24!,

lnG524pE
r

`r ~«22S1P!

12 ~2M /r !
dr. ~33!
m

-
e

rs
g

s
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In the static caseS50, and this reduces to the formula de-
termining the ‘‘anomalous redshift’’f52 lnG given by Vis-
ser @1#. From Eq. ~30!, using the fact that on the horizon
r52M and «22S1P50, we get the surface gravity of
static black holes@1#:

k5
G

2r
~128pr 2«!. ~34!

V. AREA LAW

Trying to obtain a dynamical analogue of the second law
of thermodynamics, we calculate the advanced time deriva
tive of the apparent horizon area. The radius and the loc
mass of the apparent horizon are related byr h52Mh . Since

drh
dv

52
dMh

dv
52SM ,v1M ,r

drh
dv D , ~35!

we have

drh
dv

5
2M ,v

122M ,r
. ~36!

Since at the horizonF50 andTvr5GTr
r from Eqs. ~19!

and ~20! we get

M ,r524pr h
2Tr

r , M ,v5
4pr h

2

Gh
Tvv . ~37!

The change of the horizon area is

dAh
dv

58pr h
drh
dv

5
4pr h

28pTvv
Gh~4pr hTr

r11/2r h!
. ~38!

Using Eq.~30!, we get

Q
dAh
dv

54pr h
2Tvv , ~39!

where

Q5GhS 4pr hTr
r1

1

2r h
D 5

1

8p S k14pE
r h

`

r
]Trr
]v

dr D .
~40!

In the quasistationary limit the integral term becomes negli
gible, and we obtain an expression corresponding to th
Hartle-Hawking formula@7#. If we identify one-quarter of
the apparent horizon area as the gravitational entropy@2#,
then we may interpret Eq.~39! as a generalized first law of
black hole thermodynamics.

One of the problems with the temperature termQ is that
it can be a noncontinuous function along the apparent hor
zon if there is a sudden change in the matter density. Whe
ever there is a jump inTrr , the integrand in Eq.~40! be-
comes unbounded andQ stops being continuous too. On the
other hand, since every quantity remains regular in the inte
gral form ~25! of k, our dynamical surface gravity is always
continuous when the energy densities are bounded. Anoth
difficulty is thatQ is not necessarily positive. Since the ra-
dius functionr is always constant in the outgoing null direc-
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tion at the horizon,drh /dv and hencedAh /dv are always
positive for spacelike and negative for timelike apparent h
rizons. If the weak energy condition holds, thenTvv>0 on
the right-hand side of Eq.~39!, andQ>0 for spacelike while
Q<0 for timelike horizons. Furthermore, under the wea
energy condition, spacelike horizons are outer, while tim
like horizons are inner according to the classification of Hay
ward @5# ~see the Appendix!. Hence one would expect that
horizons, separating an asymptotically flat region from th
black hole region, are always spacelike. However, as we w
see in the next section when studying the example of pre
sureless dust collapse, near the center the apparent hori
can become timelike~see Fig. 3!. This timelike region is
separated form the outer spacelike region by points whe
the horizon is ingoing null. In black hole evaporation mode
the energy condition is violated, and ifTvv,0, thenQ.0
for timelike apparent horizons.

One would expect that the change of the black hole ma
appears in the first law of thermodynamics. Instead, th
right-hand side of Eq.~39! describes the ingoing energy flux
across the apparent horizon. Unfortunately, there is no dire
relation between this energy flux and the change of the loc
mass along the horizon. Becauser h52Mh always holds on
the horizon,

1

8p

1

2r h

dAh
dv

5
dMh

dv
, ~41!

which is independent of the surface gravity. From Eq.~20!
we can see that the horizon value ofTvv is proportional to
the derivative of the local mass in the constant radius outg
ing null direction. Hence

Q
dAh
dv

5GhM ,v . ~42!

Unfortunately the derivatives in the two sides of the equatio
are taken in different spacetime directions.

When the horizon is spacelike, there is a unique outgoin
unit-vector za tangent to the horizon, satisfyingzaza51.
Although za determines a natural local specification of dis
tance along the horizon, it has the disadvantage of divergi
in the static limit. Using Eq.~30!, ~37!, and~40! we get

FIG. 3. Conformal diagram describing the collapse of an inho
mogeneous dust ball. The apparent horizon is timelike inner b
tween the pointsA andB, spacelike outer betweenB andC, and
null in the vacuum region. If there is a sudden change in the de
sity, for example, at the surface of the ball, then the direction of th
horizon changes noncontinuously there. Depending on the init
density distribution, a null singularity may appear at the center, a
near it the apparent horizon has to become spacelike outer aga
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AQzaAh;a54pr hA r h
Gh

Tvv. ~43!

The fact that the temperature term appears under a squ
root follows from the unnatural normalization of the vecto
za. Substituting from Eq.~A13! in the Appendix, we get the
form of the first law given by Hayward@5#.

VI. EXAMPLES

The simplest spherically symmetric dynamical spacetim
for which we can calculate surface gravity is the charge
Vaidya metric@9#, describing a massless, charged null flui
falling into a charged black hole. In the coordinate syste
~8! we haveG51, F5122m(v)/r1e(v)2/r 2, and r5r ,
and it follows from Eq.~9! that k5m/r 22e2/r 3. Since the
radius of the outer and inner apparent horizons
r65m6Am22e2, the horizon surface gravity is

k65
1

2r6
S 12

e2

r6
2 D 56

1

r6
2 Am22e2, ~44!

in local agreement with the Reissner-Nordstro¨m value. The
surface gravity is always positive for the outer and negativ
for the inner horizon. Taking a partial derivative of Eq.~44!,
we can see that charging this type of black hole always d
creases its outer-horizon surface gravity. If the infalling ma
ter is not charged and satisfies the energy conditions, th
]m/]v>0, and the inner-horizon surface gravity is always
decreasing function of time. The outer-horizon surface gra
ity also decreases for not very strongly charged black hol
which satisfy 4e2,3m2.

Our next example is the Roberts solution@10#, describing
the self-similar collapse of a massless scalar field. The met
is ds252hdudv1r2dV2, where h51 and
r25@(12p2)v222vu1u2#/4. For parameter valuesp.1,
this solution describes the formation of an unboundedly i
creasing mass black hole, with a spacelike apparent horiz
at u5(12p2)v. Since from Eq.~9! we havek5h,v /h50
everywhere, the surface gravity is zero all along the appare
horizon. This indicates that the Roberts solution describes
extreme black hole, analogously to thee5m Reissner-
Nordström metric.

However, not all self-similar black holes have vanishin
surface gravity. There is a conformally coupled scalar cou
terpart of the Roberts solution@11#. The two metrics are
related by a conformal transformationds̃252h̃dudv
1 r̃ 2dV2, wherer̃ 25h̃r2 and h̃ is a function ofu, v, and
p. The new apparent horizon is determined byr̃ ,v50. There,
using Eq.~9!,

k5
1

h̃
h̃,v52

1

r2
~r2! ,v5

1

2r2
@u2~12p2!v#. ~45!

The horizon exists forp.1, and it is a spacelike self-
similarity surface given byu5c(12p2)v/4, wherec is a
constant weakly depending onp: 2.535,c,2.6667. Substi-
tuting into the surface gravity formula,

-
-

-
e
l
d
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k5
8~42c!

v@8~c22!1~p221!c2#
.0. ~46!

After the moment of black hole formation, the surface gra
ity gradually decreases to zero from an infinitely big initi
value, as the mass increases unboundedly.

Our third example is the~111!-dimensional dilaton grav-
ity proposed by Callan, Giddings, Harvey, and Stroming
~CGHS! @12#. It is defined by the action

S5
1

2pE dx2A2gH e22f@R14~¹f!214l2#

2
1

2(
i51

N

~¹ f i !
2J , ~47!

wheregab is the two-dimensional metric,f is the dilaton
field, f i are matter fields, andl is a cosmological constant. I
is convenient to use a double-null coordinate syst
(x1,x2), and denote the only nonvanishing component
the metric byg1252 1

2e
2 r̄ . Considering (1/l)e2f as a ra-

dius function, the apparent horizon is located at]1f50. It
follows from the field equations that one can always intr
duce a coordinate system wherer̄5f. The static vacuum
solution of the model is given by e22 r̄ 5e22f

5 m/l2l2x1x2, wherem is a parameter giving the mass o
the black hole. The asymptotically normed Killing vector
this solution isja5(lx1,2lx2), and using Eq.~1!, we get
k5l, independently of the black hole mass. We will s
shortly that our dynamical surface gravity always agre
with the cosmological constant, even for nonvacuum d
namical solutions. Suppose that we are given any asymp
cally flat nonvacuum dynamical solution of the field equ
tions. Since the solution approaches the static vacu
solution at large distances, the parametrization defined
elv5lx1 has to be asymptotically well behaving for an
solution. In the (v,x2) coordinate system the nonvanishin
metric component isgv25elvg12 . Since on the apparen
horizon ]1f50, that is,]vg1250, from Eq. ~9! the dy-
namical surface gravity is

k5
1

gv2
]vgv25l. ~48!

There exists a semiclassical model proposed by Ru
Susskind, and Thorlacius~RST! @13#, which reduces to the
previously discussed CGHS theory at the classical level.
vacuum solutions have identical forms in the two models.
the same argument as in the previous paragraph, one
show that the surface gravity of any asymptotically flat d
namical black hole solution of this theory is equal to t
cosmological constant,k5l, on the apparent horizon.

As our last example, we calculate the apparent horiz
surface gravity of a uniform density dust ball collapsing fro
the rest. The internal region is equivalent to a part of t
Friedmann cosmology,

ds25a2~2dh21dc21sin2cdV2!, ~49!
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a5cS cosh2 D 2 ~50!

and c is some constant. The proper time i
t5c(h1sinh)/2. We match to a Schwarzschild solution a
the world line of a dust particle atc5c0. The mass param-
eter of the external solution ism5(c/2)sin3c0, and the maxi-
mal radius of the ball isr 05csinc0. The apparent horizon is
represented by the timelike surfaceh5p22c. This timelike
horizon is a future inner trapping horizon in Hayward’s cla
sification @5# ~see the Appendix!. Using Eq.~9!, the surface
gravity belonging to the null foliation ṽ5h1c is
k̃52cotc. Unfortunately, the parametrizationṽ is not as-
ymptotically well behaving when continued into the vacuu
region. Hence we will have to use the transformation fo
mula ~7! to get the physical surface gravityk, where
v5t1r12mln(r/2m21) is the regular null coordinate in
the external Schwarzschild region. Looking from the vacuu
region, the matching boundary is generated by radial n
geodesics with maximal radiusr 0. The radius and proper
time of such geodesic can be expressed using a param
h as

r5r 0S cosh2 D 2, t5
1

2
A r 0

3

2m
~h1sinh!. ~51!

Sincer andt have to agree at both sides of the boundary, t
parameterh also agrees with the inner time coordinateh. At
the boundaryṽ5h1c0, and, hence,

v8[
dv
dṽ

5
dv
dh

5
dv
dr

dr

dh
1
dv
dt

dt

dt

dt

dh
5

r 0~cosh/2!3

sinc0cos~c02h/2!
.

~52!

Since ṽ5(p22c)1c at the horizon andṽ5h1c0 at the
matching surface, we haveh5p2c2c0. The final result
for the surface gravity is

k5
sinc0

4r 0sinc@sin~c1c0!/2#4
@cos~c2c0!12cos~2c0!

23cos~c1c0!#. ~53!

At the surface of the ballk51/4m, which shows that our
dynamical surface gravity indeed changes continuou
along the apparent horizon. At the central singularity th
surface gravity diverges to minus infinity.

VII. SUMMARY AND DISCUSSION

In this paper we have proposed a definition of surfa
gravity on the apparent horizon of spherically symmetric d
namical black holes. Since in stationary spacetimes the s
face gravity is not a local quantity, our definition cannot b
local either. The necessary nonlocal structure is an asym
totically regular foliation by ingoing null hypersurfaces. Th
resulting dynamical surface gravity is proportional not on
to the frequency decrease of the outgoing light rays, but a
to the acceleration of some special family of observers. F
thermore, any observer can easily measure it by observ
the apparent redshift of standard light signals falling in fro
infinity.
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We have also seen that the area change of the appar
horizon, which may be essential in possible thermodynam
cal interpretations, becomes directly proportional to the su
face gravity only in the stationary limit. On the other hand
although it is well known that stationary black holes em
Hawking radiation with temperature proportional to thei
surface gravity, it is unclear whether or not a dynamical an
logue of this statement can be formulated. There have be
attempts to define the dynamical temperature only at the~ap-
proximate! event horizon of Vaidya spacetime@14#. If there
was discrepancy between the temperature and the surf
gravity, it might be linked with the nonthermal nature of the
Hawking radiation.

Based on the study of the examples in the previous se
tion, we can have a number of conjectures on the gene
dynamical behavior of surface gravity in spherically sym
metric spacetimes. It is natural to expect that the surfa
gravity of evaporating black holes is always a positive an
nondecreasing function of time. This case is especially im
portant, since if similarly to the quasistatic limit there was
close relation between the temperature of the~thermal part of
the! Hawking radiation and the surface gravity, then thi
would be the strongest support in favor of our definitions
Although these kinds of calculations are extremely difficu
to perform in four-dimensional Einstein theory, it is very
encouraging that the dynamical surface gravity of blac
holes in the exactly solvable two-dimensional dilaton gravit
models ~CGHS and RST! is a positive mass-independen
constant, in accordance with the Hawking temperature c
culations@15#.

If the matter fields falling into the black hole satisfy the
energy conditions, then according to the classification
Hayward@5# ~see the Appendix!, the apparent horizon is ei-
ther spacelike outer or timelike inner. From the examples
seems very likely that spacelike outer horizons always ha
non-negative surface gravity which decreases in the outgoi
direction in most of the physically relevant cases. The su
face gravity of timelike inner horizons is probably always
decreasing function of time if the singularity is in the future
Since the surface gravity is continuous, it is initially positive
even in the inner region. However, if this inner region i
large enough, then the surface gravity can become negat
there.

It is possible that the positivity ofk may be proved some-
how by the integral formula~25!, if one uses the energy
conditions and that 2M,r outside the horizon. Although Eq.
~21! gives us the derivative ofk in the ingoing null direction,
there are no similar relations for the other directional deriva
tives. Substituting Eqs.~26! and ~19! into Eq. ~21!, we get

k ,r5
8pG

r 2
Tuu2

4pF

G
Trr1

2G

r SMr D
,r

. ~54!

At the apparent horizonF50 andr52M . Since outside of
the horizonr.2M , the third term is negative for spacelike
outer and positive for timelike inner horizons~see Fig 3!. At
the boundary of these two regions, where the horizon is i
going null, k ,r is exactly the horizon directional derivative,
and its signature is determined only by the signature of th
angular directional pressure (1/r 2)Tuu . In particular, for col-
lapsing dustTuu50 andk ,r50. This indicates that in case of
ent
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dust collapse the surface gravity takes its maximal value ex
actly where the apparent horizon becomes an ingoing nu
hypersurface.
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APPENDIX

In this appendix we review some important properties of
radial null congruences in spherically symmetric spacetimes
We mostly follow the approach of Hayward@5#. Denote the
future-directed null vector fields generating the congruence
by k1

a and k2
a pointing in the outgoing and ingoing future

radial null directions, respectively. Define the normalization
function f by k1

a k2a52e2 f . Because of spherical symme-
try, k6

a are geodesics, although they are not necessarily a
finely parametrized:

k1
b k1;b

a 5b1k1
a , k2

b k2;b
a 5b2k2

a . ~A1!

Given two intersecting ingoing and outgoing foliations of
null hypersurfaces determined by constant values ofj1 and
j2, there are two obvious ways to define the null vector
fields. The first is to setk6a52j ;a

7 . Thenb650 andk6
a are

affine geodesics. The other way is to define the null vecto
fields by

k6
a 5S ]

]j6D a

. ~A2!

In this case the inaffinity parameters areb652k6
a f ;a .

The tensor

hab5gab1ef~k1ak2b1k2ak1b! ~A3!

acts as a projection operator into the two-spheres. Sinc
Bab

6 5ha
ghb

dk6g;d is symmetric and its trace-free part van-
ishes, the twist and the shear are zero. The expansion is

Q65Ba
6a5

2

r
k6

a r ;a , ~A4!

wherer is the natural radius function.
Using the Einstein’s equations, one can derive two usefu

expressions for the directional derivatives of the expansions
The formula corresponding to the Raychaudhuri equation is

k6
a Q6;a52 1

2Q6
21b6Q628pTabk6

a k6
b , ~A5!

whereTab is the stress tensor of the matter fields. The cross
focusing equation gives the derivative in the another nul
direction:
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k7
a Q6;a52Q1Q22~k7

a f ;a1b7!Q62
1

r2
e2 f

18pTabk1
a k2

b . ~A6!

If either of the two expansionsQ1 or Q2 vanishes on a
sphere of symmetry, the sphere is called amarginal sphere.
The closure of a hypersurface foliated by marginal sphere
called atrapping horizon. A marginal sphere on the horizo
with Q150 is calledfuture if Q2,0 andpast if Q2.0. It
is calledouter if k2

a Q1;a,0 andinner if k2
a Q1;a.0. If the

weak energy condition holds, outer horizons are spacelike
null, while inner horizons are timelike or null. In both case
they are null in the k1

a direction if and only if
Tabk1

a k1
b 50.

The name ‘‘inner’’ for horizons satisfyingk2
a Q1;a.0

can be misleading though. These inner horizons can sepa
a trapped region from an asymptotically flat untrapped
gion. A future horizon which is a smooth connected hyp
surface can be outer in one region and change to be inne
another region, simply by becoming timelike throughingo-
ing null directions. For example, in certain cases of pressu
less dust collapse, the horizon can be timelike inner in
region close to the regular center, analogously to the cos
logical horizon in a collapsing universe. Going outward
this horizon becomes ingoing null at a two-sphere, and t
it is spacelike outer. Asymptotically, in the Scwarzschild r
gion, the horizon becomes null again, but then in the out
ing direction~see Fig. 3!.

Following Hayward@5#, we define thetrapping gravityof
an outer trapping horizon by the formula

kH5 1
2A2efk2

a Q1;a. ~A7!

Changingk1
a and k2

a one can see thatkH is invariantly
defined only on the trapping horizon, whereQ150. Using
the cross-focusing equation~A6!,

kH5
1

2
A 1

r2
28pefTabk1

a k2
b . ~A8!

In the vacuum case we get the familiar 1/2r value, agreeing
with surface gravity of the Schwarzschild solution. Whi
is
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kH is defined on the trapping horizon of dynamical space
times, the surface gravity is defined on the event horizon o
stationary solutions. For stationary spacetimes the two kind
of horizons coincide. However, in general, the value of the
trapping gravitykH is different from the value of the surface
gravity. This is the case even for the Reissner-Nordstro¨m
solution, the surface gravity of which is

k5
1

r h
2Am22e25

1

2r h
S 12

e2

r h
2D , ~A9!

where m is the mass,e is the charge parameter, and
r h5m1Am22e2. The value of the trapping gravity is

kH5
1

2r h
2Ar h22e2. ~A10!

For fixedm, k is a monotonically decreasing function ofe,
while kH is not monotonic.k5kH only for e50 and
e5m.

Working in the null coordinate system~8! wherer5r, we
can choose

k1
a 5S 1, F2G,0,0D , k2

a 5~0,21,0,0!. ~A11!

Thene2 f5G andQ15F/rG. SinceF50 on the horizon,

kH5
1

2G
A1

r h
F ,r . ~A12!

Comparing with Eqs.~29! and ~30!, we obtain the relation
between our dynamical surface gravityk, the trapping grav-
ity kH , and the temperature termQ in Eq. ~39!:

k14pE
r h

`

r
]Trr
]v

dr52r hGkH
2 58pQ, ~A13!

where the integral is calculated along a constantv ingoing
null line. We can see that the surface gravity agrees with th
trapping gravity only in some special cases.
.
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