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Surface gravity in dynamical spherically symmetric spacetimes
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A definition of surface gravity at the apparent horizon of dynamical spherically symmetric spacetimes is
proposed. It is based on a unique foliation by ingoing null hypersurfaces. The function parametrizing the
hypersurfaces can be interpreted as the phase of a light wave uniformly emitted by some far-away static
observer. The definition gives back the accepted value of surface gravity in the static case by virtue of its
nonlocal character. Although the definition is motivated by the behavior of outgoing null rays, it turns out that
there is a simple connection between the surface gravity, the acceleration of any radially moving observer, and
the observed frequency change of the infalling light signal. In particular, this gives a practical and simple
method of how any geodesic observer can determine surface gravity by measuring only the redshift of the
infalling light wave. The surface gravity can be expressed as an integral of matter field quantities along an
ingoing null line, which shows that it is a continuous function along the apparent horizon. A formula for the
area change of the apparent horizon is presented, and the possibility of thermodynamical interpretation is
discussed. Finally, concrete expressions of surface gravity are given for a number of four-dimensional and
two-dimensional dynamical black hole solutiofS0556-282196)05518-X

PACS numbsds): 04.70.Bw, 04.70.Dy

[. INTRODUCTION the boundary of negative energy states. Hence we expect that
some naturally generalized surface gravity for apparent hori-
There has been renewed interest in spherically symmetrizons will have a crucial role as a physical quantity in dy-
spacetimes in the past half decade. The unexpected complexamical spacetimes.
ity of the problem is well illustrated by the large number of It is possible to formulate a local dynamical analogue of
new “dirty” black hole solutions. An important result black hole thermodynamics even for apparent horizons that
proved by Vissef[1] is that these stationary matter fields are not spherically symmetric. Using a null tetrad formalism,
always decrease the surface gravity compared to the san@ollins [4] has derived a formula for the area change of the
mass vacuum black hole. Dynamical spherically symmetri@pparent horizon, which can be interpreted as a generalized
spacetimes were initially studied mainly to check the validityfirst law of thermodynamics. However, the temperature term
of the cosmic censorship hypothesis. More recently, supin this equation is tetrad dependent, and no unique tetrad
ported by powerful numerical methods, considerable efforthoice is made in the nonstationary case. This ambiguity
has been focused on near-critical collapsing solutions at theeflects the difficulty of selecting an appropriate distance
black hole formation threshold. function along the apparent horizon. HaywdH has used
The fundamental question is, what physical quantities ar¢he natural distance defined by the spacetime metric, al-
describing these spherically symmetric collapses? Undoubthough this choice is divergent in the stationary limit when
edly, local quantities such as a now well-defined gravitathe horizon becomes null. Hayward also presents the ana-
tional mass function and densities belonging to the mattelogues of the zeroth and second laws of thermodynamics,
fields are essential. Because of their importance in the staand defines a dynamical counterpart of surface gravity,
tionary case, we expect that generalizations of thermodyealled trapping gravity. Unfortunately, when specializing to
namical quantities will also play a major role. For stationarystatic spherically symmetric spacetimes again, the trapping
black holes, the surface gravity is proportional to the tem-gravity does not agree with the accepted value of surface
perature of the Hawking radiation. On the other hand, congravity even for charged Reissner-Nordstrdolack holes
sidering the collapse of a spherical shell, Hisc¢2k pro-  (see the Appendix
posed to identify one-quarter of the area of the apparent There are two basic ways to introduce surface gravity in
horizon as the gravitational entropy. Furthermore, Hajicekstationary spacetimes. The first, physically more direct
[3] suggested that the Hawking effect is associated with thenethod is in terms of the acceleration of stationary observers
apparent horizon rather than the event horizon, since the apear the black hole horizon. This form of the definition
parent horizon in spherically symmetric spacetimes acts agroves to be very difficult to generalize. In dynamical spheri-
cally symmetric spacetimes, the observers moving on con-
stant radius orbits are the most natural analogues of the static
“Present address: Research Institute for Particle and Nuclear Physbservers. However, their acceleration has a qualitatively
ics, H-1525 Budapest 114, P.O.Box 49, Hungary; Electronic addifferent behavior, being proportional to the matter density
dgess: gfodor@rmk530.rmki.kfki.hu instead of any possible generalization of surface gravity.
Present address: Department of Physics, Tokyo Institute of Tech- The second, mathematically more straightforward ap-
nology, Oh-Okayama, Megro, Tokyo 152, Japan; Electronic ad{proach is to define surface gravity as the inaffinity of the
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eral dynamical case the apparent horizon ceases to be nutegular matter field quantities along an ingoing null curve
and there is no geodesic contained in the horizon. Howevegoming from past null infinity. In Sec. V, an equation for the

in spherical symmetry, the outgoing radial light rays are necarea change of the apparent horizon is presented. The possi-
essarily geodesics, and they are locally constant radius orbitility of interpreting it as a dynamical first law of black hole
when they cross the apparent horizon. Hence it is natural thermodynamics is discussed. In Sec. VI, the value of the
attempt to generalize surface gravity as the inaffinity of thessurface gravity is calculated for several exact solutions.
outgoing null orbits[6]. The concept of inaffinity is defined These include the charged Vaidya metric, self-similar scalar
only with respect to a preferred parametrization of thefield solutions, (}1)-dimensional dilaton gravity and ho-
curves. The main difficulty is how to choose this particularM0genous dust ball collapse. In the Appendix, while exam-

parametrization, considering that one has to get back thif!ind the properties of null congruences, Hayward's defini-
Killing time in the stationary limit. The normalization of the

tion of trapping gravity is reviewed in the spherically
Killing vector is defined at spacelike infinity, which shows SYMmetic case, and the relation to our formulation is dis-
that our definition cannot be local either.

cussed. We use units in which the gravitational constant and

The most important idea in this paper is to parametrize '[héhe speed of light satistg=c=1.
outgoing null geodesics using a natural spherically symmet-
ric foliation of ingoing null hypersurfaces. We assume that Il. DYNAMICAL SURFACE GRAVITY
the labeling of these hypersurfaces is defined by the proper
time of a static observer at infinity. This foliation can be : T o
most easily observed by any dynamical observer, simply b y t_he behavior O.f Fhe timelike Killing vectgj® at the e_vent
observing a radio wave emitted uniformly by a far-away ref- orizon. The definition has a nonlocal characterédfis a

erence clock. We can interpret the function generating thi&iing vector field, thenb¢® is also a Killing vector for any

foliation as a global advanced-time coordinate. We will seeconstantb. This changes the value of the surface gravity

that for static observers in a static spherically symmetri(:frgm « 10 bx. Therefore one must fix the.n?xrmahzatlon of
spacetime, this advanced-time parameter agrees with tHe - |N€ obvious way to do it is to requiré’¢,=—1 at
Killing time, which ensures that our surface gravity indeegspacelike |nf|n[ty. To calcula}te surface gravity, either one has
reduces to the accepted value in the nondynamical case. t© know the Killing vector field globally or one has to per-

Our natural ingoing null foliation will allow us not only to M an integration between the horizon and spacelike infin-
give a clear physical interpretation of surface gravity, but'y 0 determine the “anomalous redshift factof1].

also to prescribe the most practical way to measure it in any 1here are several equivalent expressions which can be
static or dynamical spherically symmetric spacetime. Anyﬁsed to define surface gravity in stationary spacetimes. The

observer moving along a timelike orbit can precisely mea-_mOSt appropriate for generalizing into dynamical spacetimes

sure the apparent change of frequency of a standard radio bt
light signal falling in from the far-away asymptotically flat P
region. We can find an explicit relation between this fre- §°Ep=n&" @)
guency change and the acceleration of the observer. In par-
ticular, for any geodesic observer crossing the horizon, th&ince the wave vector of a light signal is an affine null geo-
proper time derivative of the redshift of the infalling wave is desic, k has the physical meaning of determining the fre-
exactly equal to the surface gravity. This is particularly in-quency decrease, or in other words tedshift of an outgo-
teresting, since it means that surface gravity can be deteid light signal moving along the horizon. Heneedescribes
mined by performing simple frequency measurements onlythe “energy loss” of a photon trying to climb out of the
Another physical approach, which may lead to a differentblack hole, but only able to move exactly along the constant
(but still not loca) definition of surface gravity, is by using a radius horizon. No such frequency change occurs for a light
fully dynamical generalization of the Hartle-Hawking for- signal moving exactly along the horizon of an extreme
mula [7]. Assuming that the apparent horizon area correReissner-Nordstra black hole, although the redshift of a
sponds to the entropy of a dynamical black hf#8 this  photon escaping from very close to the horizon to infinity
formula may be interpreted as a generalized first law of blaclean be still arbitrarily large.
hole thermodynamics. It has been pointed out by Coll#js In any spherically symmetric spacetime there is a natural
that the temperature term appearing in this equation can cofoliation by ingoing spherically symmetrioull hypersur-
respond to some possible generalization of surface gravitfaces. Let us suppose that these hypersurfaces are param-
only in the near-stationary limit. Furthermore, this tempera-€trized by a functiom . If the spacetime is asymptotically flat
ture term can change in a noncontinuous way along the haat past null infinity, we can make the functionunique (up
rizon whenever there is a jump in the matter field densityto an additive constaniby requiring thaté*v.,=1 at past
This happens, for example, at the surface of a collapsing stanull infinity, where& is the asymptotic Killing vector. This
In contrast, as we will see, our dynamical surface gravity igequirement means that is fixed by the proper time of a
always continuous for regular matter fields. far-away stationary observer. We can consider the function
Dynamical surface gravity is defined in Sec. Il, using thev as a global advanced-time coordinate. The parametrization
inaffinity of outgoing null rays at the apparent horizon. In of the null surfaces can be more conveniently fixed using the
Sec. lll, a method is described for how any observer, whicinatural radial function p instead of &% At infinity
crosses the horizon in an arbitrary way, can measure surfaégé,=—1, p'“p.,=1, and ¢%p.,=0. Hence in place of
gravity by observing light signals falling in from infinity. In  ¢“v.,=1 we can equivalently require“v.,=1 at past null
Sec. IV, the surface gravity is expressed as an integral dhfinity.

The surface gravity, of stationary spacetimes is defined
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Multiplying the formulak®k?,=kk® by v., ,

K= v;akﬁk;“ﬁz kB(v;ak“);B— k“ka;aBI - k“kﬁv;aﬁ.

-h.o-ri.z-o-;z—. . reference (3)
: clock

Y Since v'%v.,5=v"Pv.4,=0, for any scalar functiora the
Q&“ vectork®*=k*+av’* will also satisfyx=—k*kPv.,z. This
o > shows that the fundamental structure is not the vector field
R k<, but the functiorv determining the null foliation. We only
£ have to assume th&t® points in a radial direction and
| g k“.,=1. Since no derivative dk* appears, it is enough to
p=const choose any such vector at only one point and no need to

construct a vector field. The vect&f can be not only null
but also timelike or spacelike.

null
p~const

|
geodesic

FIG. 1. An illustration of our dynamical surface gravity defini- Definiti Gi foliati by | . I
tion. The functionv parametrizing the null foliation is fixed by the elinition. ©5iven a foliation by Ingoing nult-hypersur-

proper timer of a far-away reference clock. The velocity vector of face_& parametrized by a functlop .WhICh satisfies
the clock agrees with the asymptotic Kiling vectd’, and V;aP’ “=1 (OF §°v;,=1) at past null infinity, thesurface
¢, =1. The surface gravity describes the inaffinity of bath ~ gravity at some point of the spacetime is defined as
andk® (black arrows, as long as they are tangent to a geodesic and
k., =k".,=1. The white arrow represents the affine geodesic k= _kak'gv;aﬁ' (4)
wave vectorl“ of some outgoing light signal crossing the horizon.
The “frequency” |*v.,, is a decreasing function of the advanced wherek® is a vector pointing in a radial direction and satis-
time v. fying k“v.,=1.

Given any radially directed geodesic, we can parametrize

In a static spherically symmetric spacetime the Killing it by the advanced time. Then the tangent vect&® satis-

vector ¢* is defined everywhere, and it is easy to see thatiesk®y.,=1 and the geodesic equatiEﬁFIZflﬁz?T('“. Multi-
&“v., 1s constant along the ingoing constantines: plying Byv;a, we getk=« (see Fig. 1

Consequencd-or any radial geodesic with tangent vector

. - 1 . k* satisfyingk®v.,=1, the surface gravitx describes the
Bl e — a8 —¢ar.i B — T ’
0P (E0;0)ip=V 0 E(wp T 58V 0:8)=0- (D natinity of the geodesic as

Henceé&®v.,=1 everywhere. This means that for static ob- kPkp= kk®. )
servers the advanced time agrees with the Killing time,
apart from an observer-dependent additive constant deter- The physically most relevant case is wh&fi is the
mining the time “zero.” unique outgoing null vector crossing the apparent horizon
In a dynamical spacetime the apparent horizon is not nuland satisfyingk®v.,= 1. At the horizon of static black holes
anymore, and there is no geodesic contained in the horizomhis null vector agrees with the Killing vector, and our defi-
However, outgoing radial null curves are always geodesigition gives the standard value of surface gravity. The physi-
because of spherical symmetry. Furthermore, since the exal meaning of the dynamical is the same as in the station-
pansion of outgoing null rays vanishes at the apparent horiary case. An outgoing light signal moves along a locally
zon, the outgoing null curves are locally constant radius orconstant radius orbit when it crosses the apparent horizon.
bits when they cross the horizon. Hence instead of theSince the parametrization is not affine,x determines the
Killing vector, which is very problematic to generalize to frequency decrease, that is, treslshiftof the light signal at
dynamical spacetimes, we will use the inaffinity of an out-the horizon(see Fig. 1 Physically, the photon loses its “en-
going null vector fieldk® to define surface gravity. The null ergy” because of the attractivity of the black hole.
condition and the spherical symmetry only fix the direction What happens if we try to calculate the surface gravity
of k. The most difficult problem is how to fix the normal- using a different parametrization of the null hypersurfaces, a
ization of this vector field. Since we want our definition to functionv which is not asymptotically well behaving at past
give back the usual value for the surface gravity when speny|| infinity? Then we gefc= _Ea’gﬁg‘aﬁ for somek® sat-
cializing to static spacetimeky should agree with the Kill- ’
ing vector £¢ on a static horizon. We can assure this by
requiringk®v.,=1 at every point of the spacetinisee Fig.
1). This determine&® uniquely in a nonlocal way. Because
k® is geodesic everywhere, the relatibﬁk;“ﬁz xk® can be
used to define at every point of the spacetime which can be
reached by an ingoing radial light ray coming from past null
infinity. However, on physical grounds, we are interested in
the value of the surface gravity only at the apparent horizon.
Sincek“p.,=0 only on the apparent horizon, the physical Hence the physical surface gravity is related to the un-
significance ofx is much less clear elsewhere. physicalx as

isfying E“E;azl. The physical parametrization always can
be obtained by a relabeling of the null surfacegv(?i).
Sincek®v.,=dv/dv=v', we have to rescale the vectof
and use&k“=k“*/v’ to ensure thak“v.,=1. Then

1 -~
K:_kakﬁv;aﬁz—(U—,)zk"‘kﬁ(v’v,a);ﬁ. (6)
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1_ i 1_ (1) \ 0
VT Y T ) @)
. R . ~ T * =
where the primes denote derivatives with respeai.to ffjff.rf'&"
Given the functionv, one can choose it as one of the horizon  Ag reference
coordinates in a null coordinate systert=(v,r,6,¢). The . clock
metric takes the form &0‘{
u S o
ds?’=—Fdv?+2Gdvdr+ p?dQ?, (8) ! ’
] observer I
whereF, G, andp are functions ob andr, andG>0. The \L Av
only remaining freedom is in choosing thecoordinate. Us- !
ing the Christoffel symbols in this coordinate system, from . b -+ velocity". define the funct
_ ; _rl_ . 2. t , t t
Eq. (4) we haveK—k“kﬁT}lB , and, SlnCd—‘lzz—F%Z—O, B ven qn (o] s_erve_r WI. ve OCII}F e Ine the tunction
f=u%.,. If there is an infalling light wave emitted by a far-away
G F static clock with frequencyw.., the observer measures=fw.,
K=F111=E’U + Z_Gr 9 frequency. For a geodesic observer, the surface gravigyequal to

the derivative of the redshift with respect to the proper time,

. . . i.e., k=u®z, wherez=1/f—1.
independently of the radius functign If we chooser as an " '

outgoing null coordinate, then we obtain a double-null coor-
dinate system witlF =0 andx=G , /G. Another convenient
choice isr=p, which we will use in most of the paper.

There is a very intimate connection between the accelera-
tion of radially moving observers, the advanced timeand

the dynamical surface gravity. Consider an arbitrary con-
gruence of curves in the constant angle radial plane, gener-
1. PHYSICAL IMPLICATIONS ated by some vector field®*. We do not assume that the

The familiar method of determining the surface gravity of €ONdruénce 1s geodesic, and it can be not only t!mehke but
a stationary black hole is by measuring the acceleration o Iso aspacellke or nu_II. Ifa wea defmg _the functioh b.y
observers moving along the Killing orbits near the horizon.! = Y“V:a: the vaector fielk®=u®/f satisfies the normaliza-
Using the coordinate syste(8) wherer = p, the most natu- 10N conditionk®,,=1 neeﬁdt—id in the definition of. We
ral generalization of the Killing vector i§*=(1,0,0,0), be- dpfme the vector field*=u U which is J_ust the accelera-
cause it satisfie§“p,,= 0, and reduces to the Killing vector lon when u® is a mnormalized velocity vector. Then
in the static case. Sincg*é,=—F, the velocity of the ob- a“=f°kPkis+fkkPf ;. Multiplying this byv,,, using the
servers moving along these constant radius orbits ifact that the derivative ok“v., vanishes, and substituting

u”=(1/yF,0,0,0). Their acceleration &*=uu?; and the defining relatior(4) of «, we get
G F, F,\2 a“v;a=f2K+u"‘f;a. (12
o Ba _ v , v
£r¢afa, < +—2G +_2F (10

If the congruence is geodesic, thea*=0 and
k=u*(1/f).,. This is not very surprising, since we have
seen in the previous section thadescribes the inaffinity of

ny geodesic parametrized by The important thing is that
or timelike u® the functionf has a simple physical interpre-
tation and can be very easily measured. Sie@1“v.,,, the
value off gives the ratio of the global advanced time change
Av and the observer’s proper time chanye along the orbit

t (see Fig. 2

In stationary spacetimds =0, and comparing with Eq9)
we can see that this expression gives In a dynamical
spherically symmetric spacetime the derivative of the radiu
function p=r vanishes in outgoing null directions at the
points of the apparent horizon. SinceGZ,0,0) is such a
null vector field, this means th&=0 there. However, from
Einstein’s equations we hawe ,=—-8wpGT,,, and hence
F,/F and g“gaaﬁaﬁ in general diverges at the apparen

horizon. The only combination which is always finite is do
(£°¢,)%aPag. It is proportional toT,zé*¢# instead ofx, f= (13)
and zero in the static case. From these arguments we can see dr

that in dynamical spacetimes the acceleration of constantra- . . ) .
dius observers cannot be used to define any generalization &onsidering a light signal emitted by a static observer at

surface gravity at the apparent horizon. To illustrate thefinity with frequency w.., the observed frequency is
problem more concretely, let us consider the Vaidya space® = f@- . Introducing the redshift factor
time, for which G=1, F=1-2m(v)/r, and p=r. Then

k=m/r2, and 7= =E—1 (14)
1) f '
s 5 m 2m’ \?
gréalfag=| o - (1D the surface gravity is
This diverges at the apparent horizer-2m, whenever K=U%Z :d_z (15)

m’=dm/dv #0. @ dr
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This shows that for any geodesic observer, the proper-timé,«. The functionf,, can be interpreted as a generalized red-
derivative of the observed redshift of a standard light or rashift factor. It is finite for dynamical spacetimes, but always
dio signal is equal to the surface gravity Since such fre- diverges in the static limit.

guency changes can be very easily and most precisely deter-

mined, this is the most practical method of measuring IV. INTEGRAL FORMULA
surface gravity in spherically symmetric spacetimes, even in . )
the static case. In the coordinate systemds?=—Fdv?+2Gdvdr

The proper time is measured by a clock carried by thet r*(d¢?+sinfode?), the independent components of the
observer. Actually, since we have not used that the norm ofinstein’s equations are
u®is —1, 7 does not even have to be proper time; it is °G
enough if it is proportional to it. But to get the physica| 877Trr=—’r, (18)
the frequencyw,, of the light signal must be determined by rG
the proper time of a static clock at infinity. To measure the
surface gravity of the apparent horizon, the observer must
actually cross the horizon. If the apparent horizon is space-
like, the observer is unable to send the result of the measure-
ment back to infinity. The utmost an observer far from the 2
black hole can know is the approximate value ofat the 87T, = 2(FM,+GM,), (20
event horizon, even if the physical meaningrofs not clear

2G
877Tvr:_r_2M,rv (19)

there. However, we expect that dynamical surface gravity 2 r2 M
will play the most important role in the case of evaporating 877(1'99— ZTaa) =gkt (21)
black hole models, when the apparent horizon is timelike and
located outside the event horizon. where
Equation(12) provides the most practical way of measur-
ing surface gravity for nongeodesic radially moving observ- r F G, F;
ers as well. In our null coordinate system let M=3l1"G2. *=3 T25° (22)
f2ET1 andT, is the stress tensor of matter fields. Using the radius
us= ( f,w,o,o), (16)  function p, the local massM can be expressed in a

coordinate-system-invariant form &=p(1—p'“p.,)/2.
Defining the vector€*=(1,0,0,0) and/*=(0,—1,0,0),
assumingf=0. Sinceg,zutuf=7+1 andg,euuf=0,a we have T,=&¢T,; T,=—-¢7/PT,; and
general observer moving in a radial direction can be deII'”=/'“/5Ta,B. The vector/“ can be easily constructed in
scribed by the velocity® , while u$ is the outward-pointing any coordinate system, since it is future directed null and
normal vector to the orbits. Definingf =ufu?. ; we have  /“p;o=—1. However, for, only its direction is fixed lo-
' cally by &%.,=0 and the normalizatioré*é,=—F is
known only after globally constructing the asymptotically
(17) well-behaving foliation given bw. The best one can do
locally is to define the Kodama vectp8] {“ by {“p.,=0
and % ,=2M/p—1=F/G?. Then£%=G¢*. Since the co-
tangent vectorp.,=(0,1,0,0) can be easily constructed in
any coordinate system, it is useful to write the more covari-
ant combination of Eqg19) and (20):

ag:—
*oz+1

(k—ufzg)us.
This follows from the fact that? has to be parallel to

us , and that by contracting with., we get back Eq(12).
The norm ofu¢ is 1, and the acceleratida®| can be di-

rectly measured, whilaéz;ﬁ can be determined by observ- 1Y
ing the frequency change of light signals falling in from 87T, e 3 (23
infinity.

All observers who measure a constant redshlfave ac- Using Eq.(18) and assuming tha® approaches 1 at past

celeration proportional to the surface gravity Hence, to  null infinity, G can be expressed as an integral of local quan-
find the natural generalization of the static observers, one hagies along an ingoing radial null line:

to look for those solutions of the equatiorf f.,=0 which
reduce to the Killing orbits in the static limit. Unfortunately,
in general, this equation is too difficult to solve analytically.
One has the freedom to specify the valuef afs initial data
on some surface, for example, on the apparent horizon. Ahis shows thaG=1 in the whole outer vacuum region. If
natural choice to fiX is by requiringu to be tangent to the the matter fields satisfy the weak energy condition, tBeis
horizon. In general, each orbit determinedusyf. ,=0 will nonincreasing in ingoing null directions anek@=<1. After

be tangent to the horizon at only one point, and since thegalculatingG, evenF can be determined locally from the
never cross into the other side, the apparent horizon wilexpressior(22) of the local massk=G?(1—2M/r).

emerge as the “envelope” of these orbits. The acceleration From Eq.(21), « can be expressed as an integral along an
of the observers at the moment of touching the horizon isngoing radial null curve:

InG= —477f rT,dr. (29

r
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© (2M 164 In the static cas&=0, and this reduces to the formula de-
K= f G(rT —z Toot4mT, " |dr. (25  termining the “anomalous redshift$= — InG given by Vis-
' ser[1]. From Eq.(30), using the fact that on the horizon
r=2M and e—2S+P=0, we get the surface gravity of

SinceG is not a local quantity, before calculatingone has -
a ty g static black hole$1]:

to evaluate the integrdR4) to getG at every point of the
null line. Using the expression fdr,, from

_ S 1-87r? 34
2 F ) K= Z( mree). (39
Ta :aTvr'i‘ @Trr—’_r_z-r&{)a (26)
V. AREA LAW
we can get ) . :
Trying to obtain a dynamical analogue of the second law
M 2 M of thermodynamics, we calculate the advanced time deriva-
Grz| =2G| Ty =T+ =z Tpy— 13|, (270 tive of the apparent horizon area. The radius and the local
! mass of the apparent horizon are related by 2M,,. Since
which gives another integral formula far dr, _dM, dry,
—_— )= + JR—
M o 6 dv 2dv (M‘U M. dv)' (35)
K:G—2+f 27G| T, +T,%— —ZTM)dr. (28
r r r we have
This latter expression is especially useful if there are vacuum dry, 2M ,
regions. o m (36)
.

Using Eq.(23),
Since at the horizor=0 andT,,=GT," from Egs.(19)
. (29) and(20) we get

A

26 |4t
ot 47Trﬁ

The best we can do for th8 , /G term in the expressio(D) Mi=—4mriT, . M, =—75—=T,. 37

of « is to take the derivative of Eq24). We obtain h

The change of the horizon area is

6| amT,+ 4F AL 30
(=G|4T | —4m | T dr (30 dAy_ dry 47r38nT,, 8
— = 7Trh = r .
. . o . d d Gp(4ar T, +1/2r
After G is already known, the partial derivative can be writ- v v n(4mTaTy )
ten in a coordinate-system-invariant form, as a Lie derivativqsing Eq.(30), we get
along the vector field*=GZ*:
s oI _ 42t (39)
rr Ja ’ - 7Trh R
W:/ /‘BEGévTa,B. (31) dv
where

In the static cas€“ is the Killing vector and the integral
term vanishes. ;

It is instructive to introduce a basis carried by observers ®:Gh(477rhTr + 2,
moving along the constant radius orbits. Setting (40)
n,=(G/\F)p., and t*=(1/JF)&%, we have n®n,=1,
u“u,=-—1, andu“n,=0. The measured energy density is In the quasistationary limit the integral term becomes negli-
s:Taﬁt“tﬂ, the radial energy flow i§=Taﬂt“n'B, and the gible, and we obtain an expression corresponding to the
radial pressure i§=Taﬁn“nB. We have the ingoing null Hartle-Hawking formula[7]. If we identify one-quarter of

vectort®—n®=(\/F/G)/“. Then the apparent horizon area as the gravitational entf@by
then we may interpret Eq39) as a generalized first law of
G? e—2S+P black hole thermodynamics.

— Ja g a__a BBy —
T =Tap/ /" F Tap(t*—n*)(t"=n") 1—(2M/r)’ One of the problems with the temperature tebmis that

(32 it can be a noncontinuous function along the apparent hori-
, zon if there is a sudden change in the matter density. When-
Since /% is regular, this shows that —2S+P must ap- ever there is a ]ump iﬁ'”, the integrand in Eq(40) be-
proach zero at the horizon. Similarly we can getcomes unbounded adl stops being continuous too. On the
T,,=G(S—e¢), T,,=Fe, andT,'=P—S. Substituting into  other hand, since every quantity remains regular in the inte-

Eq. (24), gral form (25) of «, our dynamical surface gravity is always
continuous when the energy densities are bounded. Another

ING= _47war(8_25+ P) dr. (33) difficulty is that ©® is not necessarily positive. Since the ra-

r 1= (2M/r) dius functionp is always constant in the outgoing null direc-
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A
aaan  — h
trapped.'-: region // g 0z Ah;a_477rh GhTuu- (43
0 The fact that the temperature term appears under a square
1

root follows from the unnatural normalization of the vector
z“. Substituting from Eq(A13) in the Appendix, we get the
form of the first law given by Haywar{b].

regular center

vacuum

) . ) VI. EXAMPLES
FIG. 3. Conformal diagram describing the collapse of an inho-

mogeneous dust ball. The apparent horizon is timelike inner be- The simplest spherically symmetric dynamical spacetime
tween the point#A and B, spacelike outer betwee® andC, and  for which we can calculate surface gravity is the charged
null in the vacuum region. If there is a sudden change in the denVaidya metric[9], describing a massless, charged null fluid
sity, for example, at the surface of the ball, then the direction of thefalling into a charged black hole. In the coordinate system
horizon changes noncontinuously there. Depending on the initia{8) we haveG=1, F=1—2m(v)/r+e(v)?/r?, andp=r,
density distribution, a null singularity may appear at the center, anénd it follows from Eq.(9) that k= m/r?—e?/r3. Since the
near it the apparent horizon has to become spacelike outer againradius of the outer and inner apparent horizons is

=m=/m?—¢€2, the horizon surface gravity is
tion at the horizondr,,/dv and henceldA,,/dv are always 9 Y

positive for spacelike and negative for timelike apparent ho- 1 o2 1

rizons. If the weak energy condition holds, th&p,=0 on K+:_( 1— —2‘) =+ Jm’—¢e?, (44)

the right-hand side of E¢39), and® =0 for spacelike while T o2r. rs I

O =<0 for timelike horizons. Furthermore, under the weak

energy condition, spacelike horizons are outer, while timein local agreement with the Reissner-Nordstrgalue. The

like horizons are inner according to the classification of Hay-surface gravity is always positive for the outer and negative

ward [5] (see the Appendix Hence one would expect that for the inner horizon. Taking a partial derivative of E44),

horizons, separating an asymptotically flat region from theye can see that charging this type of black hole always de-

black hole region, are always spacelike. However, as we wiltreases its outer-horizon surface gravity. If the infalling mat-

see in the next section when studying the example of preser is not charged and satisfies the energy conditions, then

sureless dust collapse, near the center the apparent horizgm/gv =0, and the inner-horizon surface gravity is always a

can become timelikésee Fig. 3 This timelike region is  decreasing function of time. The outer-horizon surface grav-

separated form the outer spacelike region by points whergy also decreases for not very strongly charged black holes

the horizon is ingoing null. In black hole evaporation modelswhich satisfy 4?<3m?.

the energy condition is violated, andT,,<0, then®>0 Our next example is the Roberts solutid®], describing

for timelike apparent horizons. the self-similar collapse of a massless scalar field. The metric
One would expect that the change of the black hole masg; ds’=—hdud + p2dQ?, where h=1 and

appears in the first law of thermodynamics. Instead, the?=[(1—p?)v?—2vu+u?]/4. For parameter valugs>1,

right-hand side of Eq(39) describes the ingoing energy flux this solution describes the formation of an unboundedly in-

across the apparent horizon. Unfortunately, there is no dire@reasing mass black hole, with a spacelike apparent horizon

relation between this energy flux and the change of the locat u=(1— p?)v. Since from Eq.(9) we havex=h ,/h=0

mass along the horizon. Becausg=2My, always holds on  everywhere, the surface gravity is zero all along the apparent

the horizon, horizon. This indicates that the Roberts solution describes an

extreme black hole, analogously to tlee=m Reissner-
1 1 dA_dMy (47  Nordstran metric.
8w 2ry dv  dv ’ However, not all self-similar black holes have vanishing

L . surface gravity. There is a conformally coupled scalar coun-
which is independent of the surface gravity. From B2)  yornart of the Roberts solutiofL1]. The two metrics are

we can see that the horizon va!ue'hfv is proportlo_nal to related by a conformal transformat|od~2 —hdudy
the derivative of the local mass in the constant radius outgo- 52402
dQ?, wherep 2 —hp andh is a function ofu, v, and

ing null direction. Hence
d p. The new apparent horizon is determineddy=0. There,

dA, using Eq.(9),
=GyM, . (42)
dv :
1~ 1 ) 1 )
Unfortunately the derivatives in the two sides of the equation K= ﬁh'”: - ?(p ),U=2—pg[U—(l— pv]. (49

are taken in different spacetime directions.

When the horizon is spacelike, there is a unique outgoing
unit-vector z* tangent to the horizon, satisfyingf'z,=1. The horizon exists forp>1, and it is a spacelike self-
Although z* determines a natural local specification of dis- similarity surface given byu=c(1—p?)v/4, wherec is a
tance along the horizon, it has the disadvantage of divergingonstant weakly depending gn 2.535<¢<2.6667. Substi-
in the static limit. Using Eq(30), (37), and(40) we get tuting into the surface gravity formula,
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_ 8(4—c)
= UBlc—2)+ (p—1)c7]

0. (46) a=c 2

2
cosz> (50

After the moment of black hole formation, the surface grav-and ¢ is some constant. The proper time is

ity gradually decreases to zero from an infinitely big initial 7= C(#%+ siny)/2. We match to a Schwarzschild solution at

value, as the mass increases unboundedly. the world line of a dust particle at= ¢,. The mass param-
Our third example is thé€l+1)-dimensional dilaton grav- eter of the external solution m= (c/2)sin3wo, and the maxi-

ity proposed by Callan, Giddings, Harvey, and Stromingermal radius of the ball is,=csing,. The apparent horizon is

(CGHS [12]. It is defined by the action represented by the timelike surfage= w— 2. This timelike
horizon is a future inner trapping horizon in Hayward'’s clas-
1 sification[5] (see the Appendjx Using Eq.(9), the surface
S= ZJ dXZ\/—_g[ e 2[R+4(V¢)>+4N?] gravity belonging to the null foliationo =75+ is
k= —coty. Unfortunately, the parametrizatian is not as-

N ymptotically well behaving when continued into the vacuum
2 (Vfi)z}, (47) region. Hence we will have to use the transformation for-
=1 mula (7) to get the physical surface gravit¢, where
v=t+r+2min(r/2m—1) is the regular null coordinate in
the external Schwarzschild region. Looking from the vacuum
region, the matching boundary is generated by radial null

N =

whereg,z is the two-dimensional metricp is the dilaton
field, f; are matter fields, and is a cosmological constant. It

is +convenient to use a double-null. c'oordinate system, o odesics with maximal radius,. The radius and proper
(x”,x7), and denote the only nonvanishing component Ofjme of such geodesic can be expressed using a parameter
the metric byg, _ = — 2e2~. Considering (IX)e ¢ as a ra- 7 as

dius function, the apparent horizon is locatedatp=0. It

follows from the field equations that one can always intro- 7\2 1 rg _

duce a coordinate system whese= ¢. The static vacuum r=ro COSE) =5\ gp(ntsing. (53)
solution of the model is given bye 2P=eg 2¢

= m/\—\?x"x", wherem is a parameter giving the mass of Sincer andr have to agree at both sides of the boundary, the
the black hole. The asymptotically normed Killing vector of parameter also agrees with the inner time coordinateAt

this solution isé“=(Ax",—\x"), and using Eq(1), we get  the boundaryg = 7+ ¢, and, hence,

k=N\, independently of the black hole mass. We will see

shortly that our dynamical surface gravity always agrees ,:d_v:d_v:d_vﬂ+d_vﬂ£: ro(cosy/2)3
With_the cosmological constant, even fqr nonvacuum dy—f’ T dv dyp drdyp dtdrdy singecos go— 5/2)°
namical solutions. Suppose that we are given any asymptoti- (52)

cally flat nonvacuum dynamical solution of the field equa- _
tions. Since the solution approaches the static vacuur®iNCev =(m—2y)+ ¢ at the horizon and = 7+ yy at the
solution at large distances, the parametrization defined b}natchmg surface, we havg=m—¢— . The final result
el =\x* has to be asymptotically well behaving for any for the surface gravity is

solution. In the ¢,x™) coordinate system the nonvanishing
metric component ig,_=e"’g, _. Since on the apparent
horizon 9, ¢=0, that is,d,g, =0, from Eq.(9) the dy-
namical surface gravity is

- Singr
N A osing[sin( g+ ) 12]° [cog ¢r— o) +2C0%24)

—3cos ¢t i) . (53
= 1 9,0, =N\. (48) At the surface of the balk=1/4m, which shows that our
g,- 7Y dynamical surface gravity indeed changes continuously

along the apparent horizon. At the central singularity the
There exists a semiclassical model proposed by Russeurface gravity diverges to minus infinity.
Susskind, and ThorlaciudgkST) [13], which reduces to the
previously discussed CGHS theory at the classical level. The VIl. SUMMARY AND DISCUSSION
vacuum solutions have identical forms in the two models. By
the same argument as in the previous paragraph, one can In this paper we have proposed a definition of surface
show that the surface gravity of any asymptotically flat dy-gravity on the apparent horizon of spherically symmetric dy-
namical black hole solution of this theory is equal to thenamical black holes. Since in stationary spacetimes the sur-
cosmological constank =X\, on the apparent horizon. face gravity is not a local quantity, our definition cannot be
As our last example, we calculate the apparent horizohocal either. The necessary nonlocal structure is an asymp-
surface gravity of a uniform density dust ball collapsing fromtotically regular foliation by ingoing null hypersurfaces. The
the rest. The internal region is equivalent to a part of thgesulting dynamical surface gravity is proportional not only

Friedmann cosmology, to the frequency decrease of the outgoing light rays, but also
to the acceleration of some special family of observers. Fur-
ds?=a?(—dp?+dy?+sirfydQ?), (49)  thermore, any observer can easily measure it by observing

the apparent redshift of standard light signals falling in from
where infinity.
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We have also seen that the area change of the appareshist collapse the surface gravity takes its maximal value ex-
horizon, which may be essential in possible thermodynamiactly where the apparent horizon becomes an ingoing null
cal interpretations, becomes directly proportional to the surhypersurface.
face gravity only in the stationary limit. On the other hand,
althou_gh it is_ well kn_own that stationary bla(_:k holes em_it ACKNOWLEDGMENTS
Hawking radiation with temperature proportional to their
surface gravity, it is unclear whether or not a dynamical ana- We would like to thank Dr. J. Soda for suggesting that we
logue of this statement can be formulated. There have beeghould calculate the surface gravity of black holes in the
attempts to define the dynamical temperature only atdpe  exactly solvable two-dimensional dilaton gravity models.
proximate event horizon of Vaidya spacetini@4]. If there ~ One of the authoréG.F) would like to thank the members of
was discrepancy between the temperature and the surfatike Cosmology and Gravitation Laboratory of Nagoya Uni-
gravity, it might be linked with the nonthermal nature of the versity for their kind hospitality and acknowledges the sup-

Hawking radiation. port of OTKA Grant No. T 017176.
Based on the study of the examples in the previous sec-
tion, we can have a number of conjectures on the general APPENDIX

dynamical behavior of surface gravity in spherically sym-
metric spacetimes. It is natural to expect that the surface In this appendix we review some important properties of
gravity of evaporating black holes is always a positive andadial null congruences in spherically symmetric spacetimes.
nondecreasing function of time. This case is especially imWe mostly follow the approach of Haywaf8]. Denote the
portant, since if similarly to the quasistatic limit there was afuture-directed null vector fields generating the congruences
close relation between the temperature of(thermal part of by k§ andk® pointing in the outgoing and ingoing future
the) Hawking radiation and the surface gravity, then thisradial null directions, respectively. Define the normalization
would be the strongest support in favor of our definitions.function f by k%k_,=—e". Because of spherical symme-
Although these kinds of calculations are extremely difficulttry, k¢ are geodesics, although they are not necessarily af-
to perform in four-dimensional Einstein theory, it is very finely parametrized:
encouraging that the dynamical surface gravity of black
holes in the exactly solvable two-dimensional dilaton gravity KA k&.5=b, k%, kP k% ;=b_k%. (A1)
models (CGHS and RST is a positive mass-independent ' '
constant, in accordance with the Hawking temperature cal- Given two intersecting ingoing and outgoing foliations of
culations[15]. null hypersurfaces determined by constant valueg‘ofind

If the matter fields falling into the black hole satisfy the ¢~ there are two obvious ways to define the null vector
energy conditions, then according to the classification Oﬁelds. The first is to set. ,= — &, . Thenb. =0 andk? are

Hayward[5] (see the Appendjx the apparent horizon is ei- afine geodesics. The other way is to define the null vector
ther spacelike outer or timelike inner. From the examples itg|qs by

seems very likely that spacelike outer horizons always have
non-negative surface gravity which decreases in the outgoing
direction in most of the physically relevant cases. The sur- ki =
face gravity of timelike inner horizons is probably always a -
decreasing function of time if the singularity is in the future. ) ) o N
Since the surface gravity is continuous, it is initially positive [N this case the inaffinity parameters are= —k%f, .

even in the inner region. However, if this inner region is  The tensor

large enough, then the surface gravity can become negative ;

there. Nap=dapte (KoK pgtk_ Kip) (A3)

It is possible that the positivity of may be proved some- o ] ]
how by the integra| formu|d25), if one uses the energy aC+tS as a pI’OJectlon Opel’ator into the tWO-Sphel’eS. Since
conditions and that® <r outside the horizon. Although Eq. Bas=hhgK- .5 is symmetric and its trace-free part van-
(21) gives us the derivative of in the ingoing null direction, ishes, the twist and the shear are zero. The expansion is
there are no similar relations for the other directional deriva-
tives. Substituting Eqg26) and (19) into Eq. (21), we get

d )“
F . (A2)

= a

2
®+=Bi“=;k‘;p;a, (A4)

(59

K==z Too~ g Tt |7

87G 4k ZG(M)
r
;

wherep is the natural radius function.

Using the Einstein’s equations, one can derive two useful
At the apparent horizof =0 andr=2M. Since outside of expressions for the directional derivatives of the expansions.
the horizonr >2M, the third term is negative for spacelike The formula corresponding to the Raychaudhuri equation is
outer and positive for timelike inner horizofsee Fig 3. At
the boundary of these two regions, where the horizon is in- K{O.,,=—302+b.0.-87T,zkik?, (A5)
going null, x , is exactly the horizon directional derivative,
and its signature is determined only by the signature of thevhereT ,; is the stress tensor of the matter fields. The cross-
angular directional pressure (3T ,,. In particular, for col-  focusing equation gives the derivative in the another null
lapsing dustl ,,=0 andx ,=0. This indicates that in case of direction:



54 SURFACE GRAVITY IN DYNAMICAL SPHERICALLY ... 3891

ky is defined on the trapping horizon of dynamical space-

kK$O.,,=—0,0_—(k&if ,+b:)0. - ;ze_f times, the surface gravity is defined on the event horizon of
stationary solutions. For stationary spacetimes the two kinds
+877Taﬁkik€ . (A6)  of horizons coincide. However, in general, the value of the

trapping gravityxy is different from the value of the surface

If either of the two expansion® , or ®_ vanishes on a gravity. This is the case even for the Reissner-Nordstro
sphere of symmetry, the sphere is calletharginal sphere  solution, the surface gravity of which is
The closure of a hypersurface foliated by marginal spheres is
called atrapping horizon A marginal sphere on the horizon 1 - 1 e?
with ® . =0 is calledfutureif ® _<0 andpastif ® _>0. It K= pzvm—e =2_fh 1- )
is calledouterif k2®.,<0 andinnerif k20 ,.,>0. If the "
weak energy condition holds, outer horizons are spacelike Qfhere m is the mass,e is the charge parameter, and

null, while inner hOFIZOﬂS are t|_mel|l_<e or_nuII. In both €ases,. _m+ Jm?—e?. The value of the trapping gravity is
they are null in the k§ direction if and only if

T.skikf =0. 1

The name “inner” for horizons satisfying*® ,.,>0 KH:?\/rh_ez' (A10)
can be misleading though. These inner horizons can separate h
a trapped region from an asymptotically flat untrapped re¢
gion. A future horizon which is a smooth connected hyper- ..o xy is not monotonic.x=«y only for e=0 and
surface can be outer in one region and change to be inner n_
another region, simply by becoming timelike throuigigo- Wérking in the null coordinate syste(8) wherer = p, we
ing null directions. For example, in certain cases of pressure:. . -hoose P
less dust collapse, the horizon can be timelike inner in a
region close to the regular center, analogously to the cosmo- =
logical horizon in a collapsing universe. Going outwards, ki:(l,—,o,o), k®=(0,~1,0,0. (A11)
this horizon becomes ingoing null at a two-sphere, and then 2G
it is spacelike outer. Asymptotically, in the Scwarzschild re- L ] .
gion, the horizon becomes null again, but then in the outgoJhene™'=G and® , =F/rG. SinceF=0 on the horizon,

ing direction(see Fig. 3.

2 (A9)

or fixedm, « is a monotonically decreasing function ef

Following Hayward 5], we define tharapping gravityof 1 1 ALD
an outer trapping horizon by the formula Kn=5a E ! (A12)
kp=3\—e'k2 0, (A7) Comparing with Eqs(29) and (30), we obtain the relation

between our dynamical surface gravity the trapping grav-

Changingk? and k% one can see thaty is invariantly ity x, and the temperature ter@ in Eq. (39):

defined only on the trapping horizon, whee, =0. Using
the cross-focusing equatidib),

= 4T, ,
Kk+4m | r dr=2r,Gk,=870, (A13)
" Jv

1 /1 ;
Kn=5 ;2—8we TapkikE. (A8)
where the integral is calculated along a constarihgoing
In the vacuum case we get the familiar A/2alue, agreeing null line. We can see that the surface gravity agrees with the
with surface gravity of the Schwarzschild solution. While trapping gravity only in some special cases.

[1] M. Visser, Phys. Rev. 46, 2445(1992. [10] M. D. Roberts, Gen. Relativ. Gravi2l, 907 (1989; Y.
[2] W. A. Hiscock, Phys. Rev. [0, 1336(1989. Oshiro, K. Nakamura, and A. Tomimatsu, Prog. Theor. Phys.
[3] P. Hajicek, Phys. Rev. 36, 1065(1987. 91, 1265(1994.
[4] W. Collins, Phys. Rev. D5, 495(1992. [11] H. P. Oliveira and E. S. Cheb-Terrab, Class. Quantum Grav.
[5] S. A. Hayward, Phys. Rev. B9, 6467(1994. 13, 425(1996.
[6] B. Carter, inGeneral Relativity: An Einstein Centenary Sur- [12] C. G. Callan, S. B. Giddings, J. A. Harvey, and A. Strominger,
vey, edited by S. W. Hawking and W. Isra@Cambridge Uni- Phys. Rev. D45, R1005(1992.
versity Press, Cambridge, England, 1879 [13] J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Re¢7D
[7] S. W. Hawking and J. B. Hartle, Commun. Math. Phgg, 533(1993.
283(1972. [14] R. Balbinot, Class. Quantum Gra¥, 573(1984); C. Kim, E.
[8] H. Kodama, Prog. Theor. Phy83, 1217(1980. Choi, S. K. Kim, and J. Yang, Phys. Lett. 241, 238(1989.

[9] B. T. Sullivan and W. Israel, Phys. Lef9A, 371(1980. [15] A. Strominger, Report No. hep-th/95010@inpublished



