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Exact gravitational shock wave solution of higher order theories
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We find anexact ppgravitational wave solution of the fourth-order gravity field equations. Outside the
(5-like) source this is1ota vacuum solution of general relativity. It represents the contribution of the massive,
m=(—B8) %2 spin-two field associated while the Ricci-squared term in the gravitational Lagrangian. The
fourth-order terms tend to make the singularity of the curvature milder at the point where the particle is located.
We generalize this analysis B dimensions, extended sources, and higher than fourth-order theories. We also
briefly discuss the scattering of fields by these kinds of plane gravitational wW&S@&s56-282(196)02018-§

PACS numbd(s): 04.50+h, 04.30.Nk

I. INTRODUCTION 1
Ry~ ERg#,,Jr Agw+ aH,,+pl,,
Higher order theories of gravity are the generally covari-

ant extension of general relativity when one considers in the 167G dl,,
Lagrangian nonlinear terms in the curvature. The field equa- =8wGT,,= —T et 1.2
tions derived by variation of this Lagrangian contain deriva- -g 9

tives of the metric of an order higher than the sec@dept
for the Lovelock’s Lagrangian constructed from the
D-dimensional extension of four-dimensional invarigrith. 1
Historically, they have been introduced by Weyl right after H,,=-2R,,+2g,,0R- EguvR2+2R R,,, (13
general relativity[2]. These theories provided a framework
of where to study the unification of gravity with other fun- and
damental fields, and the possibility of classically avoiding
cosmological singularities. More recently, higher order theo- 1
ries have been shown to lead to inflati@®) and dimensional l="2Ry. DRM,,+§gM,,D R+2RZR,,
reduction without the introduction of any additional scalar
field. Nowadays, among the main motivations for their study 1
are their appearand@s vacuum polarization terme the - EgWRaﬁR“ﬁ. (1.9
one-loop renormalization of fields in curved spacetiéls
and in the low-energy limit of string theof{].

In four dimensions, using the Gauss—Bonnet invariant,
general fourth-ordefquadrati¢ covariant Lagrangian can be
written as

where

Upon linearization of these equations one can see that in
%ddition to the usual graviton field this theory contains a
massive scalar fiel@ related toR and a massive spin-two
field ¢, related toR,, (see Ref[6] for further details.
Asking for both fields to have a real maés recover the

1 GRRg
I=latl.=——| d*xv=a/—2A+R+aR?+8R. R¢*  Newtonian limiy leads to the, so-called, no-tachyon con-
crim 1617Gf o AR+ ARy straints

+167GLy}, (1.9 3a+B=0, B<0. (1.5

where we have not considered surface terms since they will The value of these coupling constants can only be deter-
not contribute to the analysis of the field equations we willmined by experiments or could be computed from a funda-

perform. mental theory that would unify gravity to the other forces in
The field equations derived by extremizing the actlon nature. It is then expected they will be of the order of the
are given by Planck scale.

The quantum properties of these theories have extensively
been discuss€ld]. However, several issues, such as the uni-
*Electronic address: lousto@mail.physics.utah.edu tarity problem[8] and the semiclassical instabiliti¢g], re-
"Present address. main to be solved. In addition, we have not even a complete
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understanding of the proper solutions of fourth-order theo-of motion,x, . The geometry is just flat before and after the
ries. In[10] we have developed a perturbative method to findpass of the wave, i.e., far# 0, and is a special case of plane
solutions of the field equatior{d.2), given a solution to the fronted with parallel rays [fp) waves[17]. Geodesics are
general relativistic problemsee also Refs[11,9]). The then just straight lines outside the wave front and have a
method essentially consists of writing the higher derivativefinite discontinuity(or shift) in thev coordinate as they cross
terms as derivatives of the matter energy-momentum tensar=0 given by[see Ref[18] for the case of the Aichelburg-
T,,. One obtains a series development around the gener8&ex| metric, i.e., Eq(2.10 below]

relativity metric in powers of the coupling constanisand

B. We have thus studied the and 8 corrections to the Av=—1(p)), 2.3
Reissner-Nordstm and straight cosmic string metrig$2]. _ ) _ )

Our perturbative approach, evidently, gives no correctiondhere p; is the coordinate distance from the origivhere
when the matter energy-momentum tensor vanishes. In othéh€ source is locatedo the point where the geodesic reaches
words, the method confirms that vacuum solutiGnsluding u=0. ) _ ) )

A #0) of general relativity are also solutions of higher order ~ There is also an effect of spatial refraction of geodesics
theories. Howeverthe converse is in general not true (See again Ref{18])

Higher order theories have a richer set of vacuum solutions

than general relativity. If we call this s&t0 and the set of cot( 6;,) + coff gre)zl(gpf(pi), (2.9
vacuum solutions of general relativily,gg, its difference, 2

S Aav=2vHo— 2vGR, IS in general a nonempty set. From the o

above-described inability of the perturbative approach to findVhere i, and 6. are the incident and refracted angles, re-
solutions in3. y,/, we can deduce that such solutions, if theyspectwely. Of course, locally physical measurable quantities

exist, have to beonperturbativearounde and 8 equal to involve the relative shift or refraction of nearby geodesics

zero. which involve one further derivative with respect po the

For black hole[13] and de Sittef14] solutions one can CYlindrical coordinate on the plane=0. We shall come
extend the no-hair theorems valid for general relativity toPack to this point by the end of this section when we will
fourth-order theories in the cagg=0. From there we can COMPpute the Riemann tensor components which give the
infer that Sy, black holes will have the form of the Kerr 9€0desic deviation. _
metric plus nonanalytic corrections f only. The perturba- The only nonvanishing components of the Riemann ten-
tive corrections in powers of to the Reissner-Nordstno sor for metric (2'1.) are (apart from the ones obtained by
metric have been given in Refdl5,10. symmetry properties

In Sec. Il we introduce the gravitational shock waves, a 1
special case of @p—wave solution of Einstein equations Riuju:__‘;isz(uaXL)a ij={x}. (2.5
with a §-like source term. We analyze its extension to fourth- 2
order gravity and find the corresponding solution which is an I o
exact proper solution of field equation€l.2). In Sec. Il we APd theto_nlyznlonvanlshmgz (f:omp(t)r:]ents of th;’t R'C%' t;zn-
generalize this exact solution f@-dimensional spacetime, sor ortme ric( .t_)e)are (apart from the ones obtained by
extended sources, and theories of order higher than theyMMetry propertes
fourth. We finally, in the Appendix, deal with the problem of 1
the scattering of a scalar field by these shock wave geom- Ryu=— EVEH(U'XJ.)v (2.6)
etries and compute th8 matrix for the case of a source

obtained by boosting to the speed of light the Kerr metric. Wherer stands for the Laplacian operator in the space.

The curvature scalars formed out of the Ricci squared,
Kretschmann, and curvature scalar tensors all vanish identi-

As pointed out by 't Hooff 16], at energies of the order or cally since
higher than the Planck scale the picture of particles propa-
gating in flat spacetime ceases to be a good approximation.
Interestingly enough the curved metric generated by suc
particles has a remarkable simple form:

Il. GRAVITATIONAL SHOCK WAVES

R=0, R,3R**=0, R,z,;R*7°=0. (2.7

tf’o determine the form of the profile function one considers a
null source represented by the following energy-momentum

ds?=—dudv+H(u,x, )du?+dx*, (2.1 tensor:
where Tuu=o(x)o(u), 2.9

H(u,x,)=f(x,)8(u), u=t—z, v=t+z (2.2  Withall other components vanishing. _ _
Next, one has to impose the field equations to the metric.

This metric represents an impulsive gravitational wave localEinstein equations linearize and reduce to a Poisson equation
ized in the planai=0, i.e., along the motion of the particle. in thex, space{19,18:

The shock wave is accompanying the particle, both traveling
at the speed of light. The profile functidifx, ) is the only
guantity depending on the characteristic of the source. It is
only a function of the coordinates perpendicular to the plane (2.9

1
—E5(u)fo(xL)=87rGTuu=87rGa(xi)6(u).
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The simplest source one can consider is a spinless par- We have thus reduced the original fourth-order problem
ticle, with momentump, represented by,(x,)=pé(x,).  to a second-order one. Now, by making the decomposition
Then, the solution of Eq2.9) is readily found to bein four
dimensions for the sake of simplicjty H(u,x; ) =Hg(u,x; ) +Hggr(U,X, ), (2.13

where the indexQ refers to the purely quadratic part of the
__ P solution, and using the fact thikgg satisfies general relativ-
fer(p) 8G pln(po)' (210 ity equations, Eq(2.12 can be rewritten as

where now the profile function only depends on the radial
distance to the origirp, in the planau=0 (as expected for a
cylindrically symmetric problem p, is an integration con-
stant having the units qgf. We first note here that the above form of the equatiount
Metric (2.1) and(2.10 were originally obtained by Aich- with different constant coefficientshas been found when
elburg and Sex[20] by boosting the Schwarzschild metric analyzing shock waves on curved backgrounds in pure gen-
along the z axis and taking simultaneously the limits eral relativity[18,26—28§.
M—0 andv—1. Let us now consider the simple example of the particle
The explicit form of the profile function have also beenrepresented by the source termry(x,)=pd(x,) (in
found for a variety of source21-29 by use of the above- D=4). The left-hand side of Eq2.14) takes the form of a
sketched procedure. Bessel equation. Our problem can thus be solved in terms of
As explained above one expects the shock wave metric tthe Green'’s function for a cylindrically symmetric problem.
be relevant in processes involving energies of the order orhe solution can then be expressed as
higher than the Planck scale. At such huge energies, higher

Ho(u,x, ) =167GTy,. (2.19

1
Vig o
B

order corrections to the gravitational theory will also be rel- p
evant. It is of interest, then, to study the form of the profile Ho(u,x; )=fo(p)d(u), fo(p)=—8Gply(0)Kg ) ,
function, f, in the fourth-order theory of gravitgl.1). V-8

If one plugs the ansat?.1) for the shock wave into the (219
fourth-order field equationél.2), one obtains again a linear- wherel , andK, are the modified Bessel functions and where
ized equation for the profile function: we have taken into account thgt<0 from the nontachyon

constrainty1.5).

1 PR Finally, the profile function generated by a massless un-
~5[BVL+VIIH(UX)=87CTy, charged particle is
=—%5(U)[ﬁVi+Vf]f(xl) f(p)=—8Gp| Ko ——|+in| Z||. (216
V=B Po
=87Go(x,)o(u). (2.1 Equations(2.1) and (2.16) thus represent the exact solu-

tion to our problem in fourth-order gravity. Note that the
coupling constan& does not appear in the solution. This can
be traced back to the fact that the scalar curvaRjraenti-
cally vanishes for metri€2.1), as can be readily verified.

5 Since in the asymptotic regime, for both small and large
[BVI+1]H(u,x)=Hgr(UXx,). (212 values ofp,

where V4 =V2V? is the fourth-order Laplacian in the per-
pendicular space.
This equation can be integrated twice to give

) for smallp/\/— 8,

~—In< P
KO( P )— 2-8 (2.17

\/?B i N(z—p)_llze __p> or large —
) e ) roren =R

we have then computed the contribution to the shock wavéne dependence o8 is clearly nonperturbative, as expected
of the massivéwith massm= 1/\/— B) spin-two field. In the  from our comments in the Introduction. In fact, fo# 0, the
case of smalp, the profile function assumes the form of an profile (2.16 gives a vacuum solution to the fourth-order
Aichelburg-SexI profile for a pointlike source. Also note thattheory which isnot a solution of general relativity, i.e., it is
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where the particle is located. Even if, as we have seen in Eq.
15 (2.7), for plane gravitational waves the curvature scalars
identically vanish, this does not necessarily imply the gravi-
tational field will be nonsingular at the origin. In fact, for the
cylindrically symmetric situation we are analyzing the only
nonvanishing components of the Riemann tensor for metric
(2.1) are(apart from the ones obtained by symmetry proper-
ties)

fix)

. 2 p
RpUpU:_EapH(uvp)r R¢u¢,u:—zﬁpH(u,p),
(2.18

and the only nonvanishing components of the Ricci tensor
for metric (2.1) is

-05 1 1
Ruw=Gu=— Zap[Pé’pH(uuP)]: EHQ(U-P)-
(2.19
It then follows that components of the Riemann tensor
such as
_ 12
s Rou,=d,H(U,p),
' 1
' Rﬁuu:_—ﬂpH(u,p),

2p

FIG. 1. We compare here the profile function for the general 1
relativistic solution, given by the logarithmic behavior, with the Rguu=§a§H(u,p) (2.20
profile solution of the quadratic theory. It is evident the regularizing
effect of the quadratic terms near the particle, locatedpat ).
We also observe that after a few mass distanoes {/v— 8) from
the origin the two curves become undistinguishable. Her
x=pl/y/— B, and we have substracted an irrelevant constant frorq
Eg. (2.16, and set to one the factor-8Gp. We thus plot
Ko(x) +In(x).

will diverge logarithmically asp— 0. This can be classified
29] as a “parallelly propagated curvature singularity.”
owever, we note here that the singularity is notably milder
han the 142 for general relativity.

Ill. GENERALIZATIONS

in the sets .y . For B—0 we recover the general relativistic ~ Many of the present candidates to unify gravity with other
metric; whilep=0 (no sourcg gives the flat space limit. interactions consideD, the dimensionality of the spacetime,

In Fig. 1 we plot the resulting profile function and com- bigger than four. Since Eq2.11) can be extended to any
pare it to the general relativistic one. The first apparent dif-dimension, we find that thB -dimensional generalization of
ference is the nondivergence in the origin of coordinates, i.e Eq. (2.16) is given by

(—2p)%7 0" oo p 1
ro2-1) ( J—_ﬁ> K( Fﬁ) @D

whereQp_3;=27P2"YT'(D/2—1) is the area unit in th® —3 sphere andp carry units oflength® .
In the case the source term is extended, but keeps its axial symmetry;(ke),=o(p) we have

167Gp
flp)=—15

4-D
ﬁ) 1 3.1)

D-3 Po

f(p)="fsr(p)+ 1677GX2_D/2J:{K2—D/2(X)| bi2—2(1) =1 pa—2(X) Ko pa(1)}r P2 La(r)dr, (3.2

INote that here we refer to the no source case as imposing a boundary condition on the solution such that it represents Minkowski space;
while, when we refer to a vacuum solution fpr£ 0, it is the result of imposing other boundary conditions such that(E46 is the
solution. It is in the same sense that one refers to the Schwarzschild solution as a vacuum solution of Einstein theory Mvhil@ tore
finds Minkowski space.
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where as before the index GR refers to the solution of thavhere them,’'s are constants related algebraically to the
problem in Einstein theory and=p/\/— 8. When the source y,’s and can be seen as the masses of some of the particles
has a# dependence, we can Fourier transform it as well a®f the theory, for examplen,=0 corresponds to the gravi-
the solution and it will look like Eq(3.2) with the index of  ton, m,=(—8) 2 to the massive spin-two field of qua-
the Bessel functions beidghow (in D=4 and where refers  dratic theories, and so on.
to the corresponding Fourier mode 6#). Let H, be a solution of the equationV@—mﬁ)ano.

An interesting example of extended source easily solvabl@henH,==N_,C,H, (with C, constants to be determined
is the boosted straight strin@2]. In four dimensions Eq. by imposing the boundary conditions of our probemill
(2.11) becomes an ordinary fourth-order differential equationbe a general solution to the homogeneous problem associated
with constant coefficients andd{y)-like source. The profile to Eq.(3.6) as can be easily verified. We thus construct the
function then takes the form general solution to the inhomogeneous problem by adding a

particular solution that can be found by use of the Wronski-
f(y)=—8nGp[\V—Be W"=F+yl], (3.3  ans method: i.e.,

PW,(u,r)

wherey refers to the perpendicular distance to the string .
W(u,r) =

measured on the plane=0. One can check that this exactly
corresponds to a particle iD=3 dimensions from expres-
sion (3.1). Still a further generalization of the solution can be done
One can also see the problem of quadratic theories dsy considering the wave traveling on a curved background
giving a correction to the energy-momentum tersarin the  instead of a flat one. This can be performed following the
semiclassical approach to quantum graviwpd think of the steps Dray and 't Hooft made in R¢1.8] for Einstein theory
problem as one for Einstein gravity with an effective sourceand should present no further difficulties than obtaining the
Then, from Eq.(2.12 we have coefficients in the resulting field equationwat 0 [generali-
zation of Eq.(2.1D)].

N
Hp(u,p)=n2l Ho(u,p) 3.7)

1

1
— EVif(XL)ZSWGUeﬁ(XL)I 2B(f—fGR). (3.9 . DISCUSSION

o ) _ We have seen that a nice feature of the exact solution Eq.
Hence the explicit form obre« in terms of integrals obr can (2 1 is the fact that it makes milder the curvature singular-
be read off of Eq(3.2). For example, for the pointlike source iy at the location of the particle generating the gravitational
considered in the generalization of the Aichelburg-Sexl metfig|q. |t is in fact one of the historical classical motivations to
fic, we obtain from Eq(3.1) introduce higher order theories in cosmological scenaria as
we recalled in the Introduction. It is also a desirable feature
2 (—2pB)tPe 2-br p when one thinks of this quadratic theory as an effective one
Ueﬁ(P)ZQD73 I(D/2—1) \/_—’3 Ka-pr2 \/?B ' being the by-produ_ct of the Iow-energy limit of a finite quan-
3.5 tum theory (_)f gravity. We have studied an exact _solu_tlon of
the theory given by the actiofil.1). Among the motivations
for studying this kind of theory we gave the argument of its
similarity with what one finds renormalizing to one loop a
field theory in curved backgrounds. In this case one has also
o take into account nonlocal corrections in the renormalized
Senergy—momentum tensor. That, in fact, can be done taking
into account the results ¢80]. Let us recall that the final
result in this case would be only valid to ordérsince the
renormalized energy-momentum tensor was computed to
that order. This point brings us to the question of “self-
ionsistency” of the perturbative approach discussed in Ref.

which represents aextendeceffective source.

derivatives that will generate field equations with derivative
higher than the fourth, for example, terms IlikR3,
RR,,R*, RMMR““, etc. When we consider solutions to
the field equations of the form E¢R.1) there will not be any
contribution coming from the term&" with n=2 since
R=0 for this metric. Neither terms with contractions of the
curvature tensors involving powers higher than the secon
since the only nonvanishing component of the Ricci tensor i
R,u- Terms involving covariant derivatives of the curvature

9]. There it is in general considered only solutions linear in
(and in the coupling constants and 8) for consistency
. LAY . _— with the field equations which are considered to be only
tensors(like R, \R*"") will, however, give a c_ontrlbsut_lon precise to one loop. This point of view has the advantage of
in the form of higher order Laplacian operatdfike V' in  yqiding the, so-called, runaway solutions; rendering thus,
the above exampleFor a theory containing terms of up o \iinkowski space stable. In our view this procedure is too
powerN in the curvature tensor and its derivatives we expectestrictive and precludes some well-behaved physical solu-
to have the following form of the field equations for a metric tjons (see also Ref[31]). In the case of the plane gravita-
of the type (2.1): tional wave we have studied in this paper we note that the
solution is clearly nonperturbative in the coupling constant
B and still the full solution physically makes sense. The
H(u,x,) “runaway” or “unphysical” solution[ |, does not appear in
Eq. (2.16] is naturally discarded here. In addition, we have
=8mGTy,, (3.9 seen that this kind of gravitational wave will be a solution of

N

N
1 1

== YaVPHux)=—5| [1 (v?-m?)
251 2| n=1
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more general Lagrangian than E@d.1) with field equations
containing derivatives of order higher than the fourth.

Note addedAfter completion of this work we found Ref.
[35] which deals with sourcelegsp waves in higher order
theories. Our results appear to be completely compatible
with those of Ref[35].
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APPENDIX: SCATTERING OF FIELDS
BY SHOCK WAVES

A further interesting application of the gravitational shock
waves was stressed by 't Hodft6]. These geometries are
relevant for ultra-high-energy scattering procesdes.,
Planck scale scatteriipg.et us consider a frame of reference

20 1 L L L 1

where particle one is practically at rest and can be described, g0 0.2 0.4 0.6 0.8 1.0
in a semiclassical approach, by a scalar field satisfying the
Klein-Gordon equation in the curved background generated pla

by particle two, which carries Planckian energies in our cho-

sen system of reference. In this case one can compute the FIG. 2. The profile functiorf (p) = f(p)+8G pIn(a/py) for the

form of the scattering matrik32] and prove that there will  ultrarelativistic Kerr geometry and our approximation foEa to

not be particle production of the scalar other spinfields.  compute the scattering matrix§. For p=a we take the exact

For the axial symmetric case ti&matrix takes the form (Inp) behavior. The approximation is very good nga=0 and
p=a, and allows us to get the relevant featuresSof

o

- - 1 - - iof(p)l4
S(Py1,PL 2, 0)= o o Jo(IpL 1= P 2p)€ p dp.

(Al) (a)Z—iS —isnis/2 isf;
S(0,8)= 551277 1@+ 4TS do(@)S s, (@)
In Ref.[22] the S matrix has been computed and studied for
(22] P ~ 348y ed )T, (A3)

several sources. It is evident from the form of the profile
function (2.16), that it is difficult to find an exact analytic ) )
expression for the correspondilgmatrix. To illustrate the whereq=(|p, 1—p. J)/a, s=2Gpw, the Mandelstam vari-
use of the above expression we shall consider a recent inteable, andS, ,(z) is a Lommel function. A relevant point to
esting resul{25] where the profile function for the ultrarela- see in the structure of th® matrix is whether it has poles
tivistic Kerr geometry was obtained that would eventually correspond to bound states of the sys-
tem. One can sd@4] that the above expression haspoles
in the s variable. This has to do with the fact the source has
an extended nature, as opposed to the boosted Schwarzschild

1 geometry(i.e., Aichelburg-Sexl metri¢ for which there are

x| —In(a+a?—p?)+ 5\/612—/3z (A2)  poles[34] atis a natural number.
The same conclusions apply to the wa2el6). In fact,
now the corrections due to the higher derivative theory pro-

for the boost along the axis of symmetry and whérés the  duces a profile functiofthat is what matters to the scattering
step function. It is still difficult to perform the integration in of scalar fields which is finite atp=0, as we see in Fig. 1.
Eqg. (Al). We thus approximate the profile function to be The same approximation procedure can be also applied to the
constant inside the “ring” of radiug and leave the exact profile (2.16. This time we approximate the profile for, let
logarithmic dependence outside it, as shown in Fig. 2. Oneis say, x<3 by a straight line given by
can easily check that this approximation is good up to ordef(x)=0.43+0.116, and the match to the general relativistic
p* for small p while is also good neap=a wheredf/dp logarithmic behavior foix>3. The nonappearance of poles
diverges. We thus decompose the integration interval intén the S matrix, again can be traced back to the fact that the
two pieces for the dimensionless variable p/a, form 0 to  B-dependent term can be seen as an extended S@aedq.
1 and from 1 to infinity. The final result is given B3] (3.5].

f(p)=—-8GpO(p—a)lnp+8GpB(a—p)
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