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We find anexact pp-gravitational wave solution of the fourth-order gravity field equations. Outside the
(d-like! source this isnot a vacuum solution of general relativity. It represents the contribution of the massive
m5(2b)21/2, spin-two field associated while the Ricci-squared term in the gravitational Lagrangian. Th
fourth-order terms tend to make the singularity of the curvature milder at the point where the particle is locate
We generalize this analysis toD dimensions, extended sources, and higher than fourth-order theories. We als
briefly discuss the scattering of fields by these kinds of plane gravitational waves.@S0556-2821~96!02018-8#

PACS number~s!: 04.50.1h, 04.30.Nk
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I. INTRODUCTION

Higher order theories of gravity are the generally cova
ant extension of general relativity when one considers in
Lagrangian nonlinear terms in the curvature. The field eq
tions derived by variation of this Lagrangian contain deriv
tives of the metric of an order higher than the second~except
for the Lovelock’s Lagrangian constructed from th
D-dimensional extension of four-dimensional invariants@1#!.
Historically, they have been introduced by Weyl right aft
general relativity@2#. These theories provided a framewo
of where to study the unification of gravity with other fun
damental fields, and the possibility of classically avoidi
cosmological singularities. More recently, higher order the
ries have been shown to lead to inflation@3# and dimensional
reduction without the introduction of any additional scal
field. Nowadays, among the main motivations for their stu
are their appearance~as vacuum polarization terms! in the
one-loop renormalization of fields in curved spacetimes@4#
and in the low-energy limit of string theory@5#.

In four dimensions, using the Gauss–Bonnet invarian
general fourth-order~quadratic! covariant Lagrangian can b
written as

I5I G1I m5
1

16pGE d4xA2g$22L1R1aR21bRmnR
mn

116pGLm%, ~1.1!

where we have not considered surface terms since they
not contribute to the analysis of the field equations we w
perform.

The field equations derived by extremizing the actionI
are given by

*Electronic address: lousto@mail.physics.utah.edu
†Present address.
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Rmn2
1

2
Rgmn1Lgmn1aHmn1bImn

58pGTmn82
16pG

A2g

]I m
]gmn , ~1.2!

where

Hmn522R;mn12gmnhR2
1

2
gmnR

212RRmn , ~1.3!

and

Imn522Rm;na
a 1hRmn1

1

2
gmnhR12Rm

aRan

2
1

2
gmnRabR

ab. ~1.4!

Upon linearization of these equations one can see that
addition to the usual graviton field this theory contains
massive scalar fieldf related toR and a massive spin-two
field cmn related toRmn ~see Ref.@6# for further details!.
Asking for both fields to have a real mass~to recover the
Newtonian limit! leads to the, so-called, no-tachyon con
straints

3a1b>0, b<0. ~1.5!

The value of these coupling constants can only be det
mined by experiments or could be computed from a fund
mental theory that would unify gravity to the other forces i
nature. It is then expected they will be of the order of th
Planck scale.

The quantum properties of these theories have extensiv
been discussed@7#. However, several issues, such as the un
tarity problem@8# and the semiclassical instabilities@9#, re-
main to be solved. In addition, we have not even a comple
3854 © 1996 The American Physical Society
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54 3855EXACT GRAVITATIONAL SHOCK WAVE SOLUTION OF . . .
understanding of the proper solutions of fourth-order the
ries. In@10# we have developed a perturbative method to fin
solutions of the field equations~1.2!, given a solution to the
general relativistic problem~see also Refs.@11,9#!. The
method essentially consists of writing the higher derivativ
terms as derivatives of the matter energy-momentum ten
Tmn . One obtains a series development around the gene
relativity metric in powers of the coupling constantsa and
b. We have thus studied thea and b corrections to the
Reissner-Nordstro¨m and straight cosmic string metrics@12#.

Our perturbative approach, evidently, gives no correctio
when the matter energy-momentum tensor vanishes. In ot
words, the method confirms that vacuum solutions~including
LÞ0) of general relativity are also solutions of higher orde
theories. However,the converse is in general not true.
Higher order theories have a richer set of vacuum solutio
than general relativity. If we call this setSVHO and the set of
vacuum solutions of general relativitySVGR, its difference,
SDV5SVHO2SVGR, is in general a nonempty set. From th
above-described inability of the perturbative approach to fi
solutions inSDV , we can deduce that such solutions, if the
exist, have to benonperturbativearounda andb equal to
zero.

For black hole@13# and de Sitter@14# solutions one can
extend the no-hair theorems valid for general relativity
fourth-order theories in the caseb50. From there we can
infer that SDV black holes will have the form of the Kerr
metric plus nonanalytic corrections inb only. The perturba-
tive corrections in powers ofb to the Reissner-Nordstro¨m
metric have been given in Refs.@15,10#.

In Sec. II we introduce the gravitational shock waves,
special case of app–wave solution of Einstein equations
with ad-like source term. We analyze its extension to fourth
order gravity and find the corresponding solution which is a
exact proper solution of field equations~1.2!. In Sec. III we
generalize this exact solution toD-dimensional spacetime,
extended sources, and theories of order higher than
fourth. We finally, in the Appendix, deal with the problem o
the scattering of a scalar field by these shock wave geo
etries and compute theS matrix for the case of a source
obtained by boosting to the speed of light the Kerr metric

II. GRAVITATIONAL SHOCK WAVES

As pointed out by ’t Hooft@16#, at energies of the order or
higher than the Planck scale the picture of particles prop
gating in flat spacetime ceases to be a good approximati
Interestingly enough the curved metric generated by su
particles has a remarkable simple form:

ds252dudv1H~u,x'!du21dx'
2 , ~2.1!

where

H~u,x'!5 f ~x'!d~u!, u5t2z, v5t1z. ~2.2!

This metric represents an impulsive gravitational wave loc
ized in the planeu50, i.e., along the motion of the particle
The shock wave is accompanying the particle, both traveli
at the speed of light. The profile functionf (x') is the only
quantity depending on the characteristic of the source. It
only a function of the coordinates perpendicular to the pla
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of motion,x' . The geometry is just flat before and after th
pass of the wave, i.e., foruÞ0, and is a special case of plan
fronted with parallel rays (pp) waves @17#. Geodesics are
then just straight lines outside the wave front and have
finite discontinuity~or shift! in thev coordinate as they cross
u50 given by@see Ref.@18# for the case of the Aichelburg-
Sexl metric, i.e., Eq.~2.10! below#

Dv52 f ~r i !, ~2.3!

wherer i is the coordinate distance from the origin~where
the source is located! to the point where the geodesic reache
u50.

There is also an effect of spatial refraction of geodesi
~see again Ref.@18#!

cot~u in!1cot~u re!5
1

2
]r f ~r i !, ~2.4!

whereu in and u re are the incident and refracted angles, r
spectively. Of course, locally physical measurable quantit
involve the relative shift or refraction of nearby geodesic
which involve one further derivative with respect tor, the
cylindrical coordinate on the planeu50. We shall come
back to this point by the end of this section when we w
compute the Riemann tensor components which give
geodesic deviation.

The only nonvanishing components of the Riemann te
sor for metric ~2.1! are ~apart from the ones obtained by
symmetry properties!

Riu ju52
1

2
] i j
2H~u,x'!, i , j5$x'%. ~2.5!

And the only nonvanishing components of the Ricci te
sor for metric ~2.1! are ~apart from the ones obtained by
symmetry properties!

Ruu52
1

2
¹'
2H~u,x'!, ~2.6!

where¹'
2 stands for the Laplacian operator in thex' space.

The curvature scalars formed out of the Ricci square
Kretschmann, and curvature scalar tensors all vanish ide
cally since

R[0, RabR
ab[0, RabgdR

abgd[0. ~2.7!

To determine the form of the profile function one considers
null source represented by the following energy-momentu
tensor:

Tuu5s~x'!d~u!, ~2.8!

with all other components vanishing.
Next, one has to impose the field equations to the metr

Einstein equations linearize and reduce to a Poisson equa
in the x' space@19,18#:

2
1

2
d~u!¹'

2 f ~x'!58pGTuu58pGs~x'!d~u!.

~2.9!
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3856 54M. CAMPANELLI AND C. O. LOUSTO
The simplest source one can consider is a spinless
ticle, with momentump, represented bysp(x')5pd(x').
Then, the solution of Eq.~2.9! is readily found to be~in four
dimensions for the sake of simplicity!

fGR~r!528GplnS r

r0
D , ~2.10!

where now the profile function only depends on the rad
distance to the origin,r, in the planeu50 ~as expected for a
cylindrically symmetric problem!. r0 is an integration con-
stant having the units ofr.

Metric ~2.1! and~2.10! were originally obtained by Aich-
elburg and Sexl@20# by boosting the Schwarzschild metri
along the z axis and taking simultaneously the limit
M→0 andv→1.

The explicit form of the profile function have also bee
found for a variety of sources@21–25# by use of the above-
sketched procedure.

As explained above one expects the shock wave metri
be relevant in processes involving energies of the orde
higher than the Planck scale. At such huge energies, hig
order corrections to the gravitational theory will also be r
evant. It is of interest, then, to study the form of the profi
function, f , in the fourth-order theory of gravity~1.1!.

If one plugs the ansatz~2.1! for the shock wave into the
fourth-order field equations~1.2!, one obtains again a linear
ized equation for the profile function:

2
1

2
@b¹'

41¹'
2 #H~u,x'!58pGTuu

52
1

2
d~u!@b¹'

41¹'
2 # f ~x'!

58pGs~x'!d~u!. ~2.11!

where¹'
45¹'

2¹'
2 is the fourth-order Laplacian in the per

pendicular space.
This equation can be integrated twice to give

@b¹'
211#H~u,x'!5HGR~u,x'!. ~2.12!
ar-
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We have thus reduced the original fourth-order proble
to a second-order one. Now, by making the decompositio

H~u,x'!5HQ~u,x'!1HGR~u,x'!, ~2.13!

where the indexQ refers to the purely quadratic part of th
solution, and using the fact thatHGR satisfies general relativ-
ity equations, Eq.~2.12! can be rewritten as

F¹'
21

1

bGHQ~u,x'!516pGTuu . ~2.14!

We first note here that the above form of the equation~but
with different constant coefficients! has been found when
analyzing shock waves on curved backgrounds in pure g
eral relativity @18,26–28#.

Let us now consider the simple example of the partic
represented by the source termsp(x')5pd(x') ~in
D54). The left-hand side of Eq.~2.14! takes the form of a
Bessel equation. Our problem can thus be solved in term
the Green’s function for a cylindrically symmetric problem
The solution can then be expressed as

HQ~u,x'!5 f Q~r!d~u!, f Q~r!528GpI0~0!K0S r

A2b
D ,

~2.15!

whereI 0 andK0 are the modified Bessel functions and whe
we have taken into account thatb,0 from the nontachyon
constraints~1.5!.

Finally, the profile function generated by a massless
charged particle is

f ~r!528GpFK0S r

A2b
D 1 lnS r

r0
D G . ~2.16!

Equations~2.1! and ~2.16! thus represent the exact solu
tion to our problem in fourth-order gravity. Note that th
coupling constanta does not appear in the solution. This ca
be traced back to the fact that the scalar curvatureR, identi-
cally vanishes for metric~2.1!, as can be readily verified.

Since in the asymptotic regime, for both small and lar
values ofr,
K0S r

A2b
D 55 ;2 lnS r

2A2b
D for smallr/A2b,

;S 2r

pA2b
D 21/2

expS 2r

A2b
D for larger/A2b,

~2.17!
r

we have then computed the contribution to the shock wa
of the massive~with massm51/A2b) spin-two field. In the
case of smallr, the profile function assumes the form of an
Aichelburg-Sexl profile for a pointlike source. Also note tha
ve

t

the dependence onb is clearly nonperturbative, as expected
from our comments in the Introduction. In fact, forrÞ0, the
profile ~2.16! gives a vacuum solution to the fourth-orde
theory which isnot a solution of general relativity, i.e., it is
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in the setSDV . Forb→0 we recover the general relativist
metric; whilep50 ~no source! gives the flat space limit.1

In Fig. 1 we plot the resulting profile function and com
pare it to the general relativistic one. The first apparent
ference is the nondivergence in the origin of coordinates,

FIG. 1. We compare here the profile function for the gene
relativistic solution, given by the logarithmic behavior, with t
profile solution of the quadratic theory. It is evident the regulariz
effect of the quadratic terms near the particle, located at (r50).
We also observe that after a few mass distances (m51/A2b) from
the origin the two curves become undistinguishable. H
x5r/A2b, and we have substracted an irrelevant constant f
Eq. ~2.16!, and set to one the factor28Gp. We thus plot
K0(x)1 ln(x).
ic

-
dif-
i.e.,

where the particle is located. Even if, as we have seen in
~2.7!, for plane gravitational waves the curvature scala
identically vanish, this does not necessarily imply the gra
tational field will be nonsingular at the origin. In fact, for th
cylindrically symmetric situation we are analyzing the on
nonvanishing components of the Riemann tensor for me
~2.1! are~apart from the ones obtained by symmetry prop
ties!

Rruru52
1

2
]r
2H~u,r!, Rfufu52

r

2
]rH~u,r!,

~2.18!

and the only nonvanishing components of the Ricci ten
for metric ~2.1! is

Ruu5Guu52
1

2r
]r@r]rH~u,r!#5

1

2b
HQ~u,r!.

~2.19!

It then follows that components of the Riemann tens
such as

Rrur
v 5]r

2H~u,r!,

Rfuu
f 52

1

2r
]rH~u,r!,

Rruu
r 5

1

2
]r
2H~u,r! ~2.20!

will diverge logarithmically asr→0. This can be classified
@29# as a ‘‘parallelly propagated curvature singularity.
However, we note here that the singularity is notably mild
than the 1/r2 for general relativity.

III. GENERALIZATIONS

Many of the present candidates to unify gravity with oth
interactions considerD, the dimensionality of the spacetime
bigger than four. Since Eq.~2.11! can be extended to any
dimension, we find that theD-dimensional generalization o
Eq. ~2.16! is given by

ral
e
ing

ere
rom
ki space;
f ~r!52
16pGp

VD23
F ~22b!22D/2

G~D/221! S r

A2b
D 22D/2

K22D/2S r

A2b
D 1

1

~42D ! S r

r0
D 42DG , ~3.1!

whereVD2352pD/221/G(D/221) is the area unit in theD23 sphere andGp carry units oflengthD24.
In the case the source term is extended, but keeps its axial symmetry, i.e.,s(x')5s(r) we have

f ~r!5 f GR~r!116pGx22D/2Èx

$K22D/2~x!I D/222~r !2I D/222~x!K22D/2~r !%r D/221s~r !dr, ~3.2!

1Note that here we refer to the no source case as imposing a boundary condition on the solution such that it represents Minkows
while, when we refer to a vacuum solution forrÞ0, it is the result of imposing other boundary conditions such that Eq.~2.16! is the
solution. It is in the same sense that one refers to the Schwarzschild solution as a vacuum solution of Einstein theory, while forM→0 one
finds Minkowski space.
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where as before the index GR refers to the solution of t
problem in Einstein theory andx5r/A2b. When the source
has au dependence, we can Fourier transform it as well
the solution and it will look like Eq.~3.2! with the index of
the Bessel functions beingl now ~in D54 and wherel refers
to the corresponding Fourier mode inu).

An interesting example of extended source easily solva
is the boosted straight string@22#. In four dimensions Eq.
~2.11! becomes an ordinary fourth-order differential equatio
with constant coefficients and ad(y)-like source. The profile
function then takes the form

f ~y!528pGp@A2be2uyu/A2b1uyu#, ~3.3!

where y refers to the perpendicular distance to the strin
measured on the planeu50. One can check that this exactl
corresponds to a particle inD53 dimensions from expres-
sion ~3.1!.

One can also see the problem of quadratic theories
giving a correction to the energy-momentum tensor~as in the
semiclassical approach to quantum gravity! and think of the
problem as one for Einstein gravity with an effective sourc
Then, from Eq.~2.12! we have

2
1

2
¹'
2 f ~x'!58pGseff~x'!5

1

2b
~ f2 fGR!. ~3.4!

Hence the explicit form ofseff in terms of integrals ofs can
be read off of Eq.~3.2!. For example, for the pointlike source
considered in the generalization of the Aichelburg-Sexl m
ric, we obtain from Eq.~3.1!

seff~r!5
2

VD23

~22b!12D/2

G~D/221! S r

A2b
D 22D/2

K22D/2S r

A2b
D ,

~3.5!

which represents anextendedeffective source.
Another kind of generalization is to consider a gravita

tional Lagrangian containing terms in the curvature and
derivatives that will generate field equations with derivativ
higher than the fourth, for example, terms likeR3,
RRmnR

mn, Rmn;lR
mn;l, etc. When we consider solutions to

the field equations of the form Eq.~2.1! there will not be any
contribution coming from the termsRn with n>2 since
R[0 for this metric. Neither terms with contractions of th
curvature tensors involving powers higher than the seco
since the only nonvanishing component of the Ricci tenso
Ruu . Terms involving covariant derivatives of the curvatur
tensors~like Rmn;lR

mn;l) will, however, give a contribution
in the form of higher order Laplacian operators~like ¹'

6 in
the above example!. For a theory containing terms of up to
powerN in the curvature tensor and its derivatives we expe
to have the following form of the field equations for a metr
of the type ~2.1!:

2
1

2(n51

N

gn¹'
2nH~u,x'!52

1

2 F )
n51

N

~¹22mn
2!GH~u,x'!

58pGTuu , ~3.6!
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where themn’s are constants related algebraically to th
gn’s and can be seen as the masses of some of the partic
of the theory, for example,m150 corresponds to the gravi-
ton, m25(2b)21/2 to the massive spin-two field of qua-
dratic theories, and so on.

Let Hn be a solution of the equation (¹22mn
2)Hn50.

ThenHhom5(n51
N CnHn ~with Cn constants to be determined

by imposing the boundary conditions of our problem!, will
be a general solution to the homogeneous problem associa
to Eq. ~3.6! as can be easily verified. We thus construct th
general solution to the inhomogeneous problem by adding
particular solution that can be found by use of the Wronsk
ans method: i.e.,

Hp~u,r!5 (
n51

N

Hn~u,r!ErWn~u,r !

W~u,r !
dr. ~3.7!

Still a further generalization of the solution can be don
by considering the wave traveling on a curved backgroun
instead of a flat one. This can be performed following th
steps Dray and ’t Hooft made in Ref.@18# for Einstein theory
and should present no further difficulties than obtaining th
coefficients in the resulting field equation atu50 @generali-
zation of Eq.~2.11!#.

IV. DISCUSSION

We have seen that a nice feature of the exact solution E
~2.16! is the fact that it makes milder the curvature singular
ity at the location of the particle generating the gravitationa
field. It is in fact one of the historical classical motivations to
introduce higher order theories in cosmological scenaria
we recalled in the Introduction. It is also a desirable featu
when one thinks of this quadratic theory as an effective on
being the by-product of the low-energy limit of a finite quan
tum theory of gravity. We have studied an exact solution o
the theory given by the action~1.1!. Among the motivations
for studying this kind of theory we gave the argument of it
similarity with what one finds renormalizing to one loop a
field theory in curved backgrounds. In this case one has al
to take into account nonlocal corrections in the renormalize
energy-momentum tensor. That, in fact, can be done taki
into account the results of@30#. Let us recall that the final
result in this case would be only valid to order\ since the
renormalized energy-momentum tensor was computed
that order. This point brings us to the question of ‘‘self
consistency’’ of the perturbative approach discussed in Re
@9#. There it is in general considered only solutions linear i
\ ~and in the coupling constantsa andb) for consistency
with the field equations which are considered to be on
precise to one loop. This point of view has the advantage
avoiding the, so-called, runaway solutions; rendering thu
Minkowski space stable. In our view this procedure is to
restrictive and precludes some well-behaved physical so
tions ~see also Ref.@31#!. In the case of the plane gravita-
tional wave we have studied in this paper we note that th
solution is clearly nonperturbative in the coupling constan
b and still the full solution physically makes sense. Th
‘‘runaway’’ or ‘‘unphysical’’ solution @ I 0 does not appear in
Eq. ~2.16!# is naturally discarded here. In addition, we hav
seen that this kind of gravitational wave will be a solution o
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more general Lagrangian than Eq.~1.1! with field equations
containing derivatives of order higher than the fourth.

Note added.After completion of this work we found Ref
@35# which deals with sourcelesspp waves in higher order
theories. Our results appear to be completely compat
with those of Ref.@35#.
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APPENDIX: SCATTERING OF FIELDS
BY SHOCK WAVES

A further interesting application of the gravitational sho
waves was stressed by ’t Hooft@16#. These geometries ar
relevant for ultra-high-energy scattering processes~i.e.,
Planck scale scattering!. Let us consider a frame of referenc
where particle one is practically at rest and can be descri
in a semiclassical approach, by a scalar field satisfying
Klein-Gordon equation in the curved background genera
by particle two, which carries Planckian energies in our c
sen system of reference. In this case one can compute
form of the scattering matrix@32# and prove that there wil
not be particle production of the scalar~or other spin! fields.
For the axial symmetric case theSmatrix takes the form

S~pW',1 ,pW',2 ,v!5
1

2pE0
`

J0~ upW',12pW',2ur!eiv f ~r!/4r dr.

~A1!

In Ref. @22# theSmatrix has been computed and studied
several sources. It is evident from the form of the profi
function ~2.16!, that it is difficult to find an exact analytic
expression for the correspondingS matrix. To illustrate the
use of the above expression we shall consider a recent i
esting result@25# where the profile function for the ultrarela
tivistic Kerr geometry was obtained

f ~r!528GpQ~r2a!lnr18GpQ~a2r!

3F2 ln~a1Aa22r2!1
1

2a
Aa22r2G ~A2!

for the boost along the axis of symmetry and whereQ is the
step function. It is still difficult to perform the integration i
Eq. ~A1!. We thus approximate the profile function to b
constant inside the ‘‘ring’’ of radiusa and leave the exac
logarithmic dependence outside it, as shown in Fig. 2. O
can easily check that this approximation is good up to or
r4 for small r while is also good nearr5a whered f /dr
diverges. We thus decompose the integration interval
two pieces for the dimensionless variabler̃5r/a, form 0 to
1 and from 1 to infinity. The final result is given by@33#
.

ible
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e

e
ed,
the
ted
o-
the

or
le

ter-
-

e
t
ne
der

nto

S~q,s!5
~a!22 is

2pq
$22 iseis/2J1~q!1qis@ isJ0~q!S2 is,21~q!

2J1~q!S12 is,0~q!#%, ~A3!

whereq5(upW',12pW',2u)/a, s52Gpv, the Mandelstam vari-
able, andSm,n(z) is a Lommel function. A relevant point to
see in the structure of theS matrix is whether it has poles
that would eventually correspond to bound states of the s
tem. One can see@24# that the above expression hasnopoles
in thes variable. This has to do with the fact the source ha
an extended nature, as opposed to the boosted Schwarzsc
geometry~i.e., Aichelburg-Sexl metric!, for which there are
poles@34# at is a natural number.

The same conclusions apply to the wave~2.16!. In fact,
now the corrections due to the higher derivative theory pr
duces a profile function~that is what matters to the scattering
of scalar fields! which is finite atr50, as we see in Fig. 1.
The same approximation procedure can be also applied to
profile ~2.16!. This time we approximate the profile for, let
us say, x,3 by a straight line given by
f (x)>0.43x10.116, and the match to the general relativist
logarithmic behavior forx.3. The nonappearance of pole
in theSmatrix, again can be traced back to the fact that th
b-dependent term can be seen as an extended source@see Eq.
~3.5!#.

FIG. 2. The profile functionf̃ (r)5 f (r)18Gpln(a/r0) for the
ultrarelativistic Kerr geometry and our approximation forr<a to
compute the scattering matrix,S. For r>a we take the exact
(lnr) behavior. The approximation is very good nearr50 and
r5a, and allows us to get the relevant features ofS.
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