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Conformally dressed black hole in 2+ 1 dimensions
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A three-dimensional black hole solution of Einstein equations with a negative cosmological constant
coupled to a conformal scalar field is given. The solution is static, circularly symmetric, asymptotically anti—de
Sitter—type and nonperturbative in the conformal field. The curvature tensor is singular at the origin while the
scalar field is regular everywhere. The condition that the Euclidean geometry be regular at the horizon fixes the
temperature to b&=9r , /16m12. Using the Hamiltonian formulation including boundary terms of the Euclid-
ean action, the entropy is found to Iéa)f the standard value;llA), and in agreement with the first law of
thermodynamics.S0556-282(96)02516-7

PACS numbe(s): 04.20.Jb, 04.70.Bw, 97.60.Lf

I. INTRODUCTION 1

le=— EJ d®x—-g[g"'V, ¥V, ¥+ &RYZ, (3)
In the last ten years, three-dimensional gravity has be-

come a popular laboratory to understand the fundamentals @fhereR is the scalar curvature angh=3(D—2)/(D—1).

classical and quantum gravifit]. Thus, the discovery of a The value of&, is chosen so thatc be invariant under
black hole solution in 21 dimensiong2] has further con-  conformal transformations

tributed to the interest in three-dimensional gravity. A com-
plete review about this black hole can be found3h 9, —Q4(X)g,, Y01 P2x)w. (4)
Several generalizations of this solution have been con-
structed. For instance, minimally and nonminimally coupled ~This coupling, including electromagnetism but without
dilaton fields with various black hole&charged and un- cosmological constant in four dimensions, was previously
charged, spinning and nonspinnjng—6] are known. For considered by Bocharova, Bronnikov, and MelniKay and
other interesting extensions sg8 and references therein. Bekenstein(BBMB) [8,9] (see also[10]). The uncharged
The purpose of this article is to report on an exact blackBBMB black hole solution is static, spherically symmetric,
hole solution conformally coupled to a massless scalar fiel@nd asymptotically flatthere is no cosmological constant
in 2+1 dimensions. The solution is static, circularly symmet-The metric is the extreme Reissner-Nordstraetric solu-
ric, and asymptotically anti—de Sitter—type and it possessestn and the scalar field is unbounded at horizon[9hit is
curvature singularity at the origin. The scalar field is regularshown that this divergence is not physically troublesome.
everywhere, has a fixed form, and cannot be obtained as a Recently, the uniqueness of the BBMB black hole has
perturbation around a matter-free massive black hole. Theeen establisheld 1] and it was shown to be the only static,
system can be shown to have a well-defined thermodynamigpherically symmetric, asymptotically flat black hole solu-

behavior. tion of the Einstein-conformal field equations in four space-
Here, we consider gravity with cosmological constanttime dimensiong12]. .
conformally coupled to a massless scalar fieldDirdimen- Below, we present a black hole solution for the system
sions. The action is described in Eq(1) in three dimensions.
I=lg+lc (1) ll. BLACK HOLE SOLUTIONS
with In three dimensions, the action reads
R+212
1 = | B3xJ/—gl ——— — Lgur _ 1y?
IG:_J d°x/—g[R+21"?] @ | fd xV=9| =% 304V, UV, ¥ — 5 RV2|,
2k
5
and where—1"~2 is the cosmological constant alidis the mass-
less conformal scalar field.
. The field equations are
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0556-2821/96/54)/38304)/$10.00 54 3830 © 1996 The American Physical Society



54 CONFORMALLY DRESSED BLACK HOLE IN 21 DIMENSIONS

and

OV - §RY=0, (7

3831

The asymptotic behavior of the metric is truly anti—de
Sitter [i.e., goo~r2+0(r°, without terms linear inr].
Therefore, as shown ifi14], the asymptotic symmetry group
is the conformal one, which contains the anti—de Sitter group

where[1=g*"V ,V, is the Laplace-Beltrami operator in the as a subgroup.

metricg,,, and the matter stress tensor is
T,=V, YV, ¥—-1g9,,09%V,¥V,¥
+5[9,,0-V,V,+G,,]¥2 (8

It is straightforward to check that by virtue of E€), the

The Riemann tensor is singular at the origin as can be
shown by evaluating the Kretschmann scalar

N 12(r8+2B°)
R*® pRMW\p:T

(17)

This is the only singularity and is hidden by the event hori-

stress tensor is traceless. This, in turn, implies that the gesgp.

ometry has a constant scalar curvature:

The massless conformal scalar field is regular every-
where. Although one might expect the scalar field to endow

R=—61"2 ©) i ir, i i
the black hole with a hair, it should be noted that the solution

We look for static, circularly symmetric, three- is charqcterized by pnly one constant which, as we will show
dimensional metrics whose expression in polar coordinateQ€/0W, is related with the mass. Therefore, the presence of
takes the form the scalar field does not generate an independent additional
charge to the black hole, i.e., the scalar field produces no
new hair. Furthermore, the solution presented here does not
differ in the asymptotic region from a matter-free black hole.

ds?=—N2(r)F(r)dt®+F~1(r)dr’+r2d6?, (10
where Osr<« is the proper radial coordinate and
0=6=<2m. The solution is easily obtained fixing the time
scale so thaN(r)=1. Working with the advanced time co-
ordinatev =t+ [F~1(r)dr, ther —r equation of Eq(6) im-
poses the constraint

IlIl. THERMODYNAMICS

The Hamiltonian form of the actio(b) is given by

|= i gii + PW—N.7—N'.7]d*xdt+B,,, (18
0:(\1,/)2_ %(\I,2)//, (11) f [77 glj |] H ( )
where prime denotes radial derivative. The above equatioWhereBH is a surface term.

can be written as @\1,4(\1,72)" whose general solution is In order to study the thermodynamics of this system we
consider the minisuperspace of static, circularly symmetric

geometries as described t0), and scalar fields that depend
only on the radial coordinate. The equations of motion ob-
tained in this way are the same as E(®, and (7) after
imposing the above restrictions. Thus, reducing the Hamil-
tonian action(18) to the minisuperspace gives

W(r)= A,B= const. (12

A
\Jr+B
Comparing the curvature for the metrig0) with Eq. (9),
one obtains directly

r? b | =—2m(t,—t fN JA(r)dr+B 19
F(r)=1z—a—— ab=const. (13) m(tz=ty) | N(O).Z(r)dr+By (19
L . . with
The ,” equation imposes the following relations among the
constants of integration 1
A= AF' (1=0=2Fr[{"= N (20
8B K
a=3B2%72, b=2B%72 A=+\/— B=0.(14
“ —(2F+F'r)¢ =273, (21)
Thus, we obtain the black hole solution
K
— A2
1], , 2B% (r+B)*(r—2B) 5‘8‘1’ ‘ (22
FiN=p|r"-38"~——|=——7z— (19
The partition function for a thermodynamical ensemble is
together with the matter field configuration identified with the Euclidean path integral in the saddle-point
approximation around the Euclidean continuation of the clas-
8B sical solution[15]. In this approximation the Euclidean ac-
W(r)= r<B) (16)  tion is related to the thermodynamic functiofi® units

whereh=kg=1 andx=81) by
which can be explicitly checked to solve EQ). It is easily
shown in the advanced time coordinates that the surface
whereF vanishes (=2B=r ) is null [13].

_ freeenergy M

S -5, (23
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whereT, M, S denote temperature, mass, entropy, respec- B .
tively and the Euclidean actidr is related to the Lorentzian SNe=gl(1={=rg)oF+(F'r+aFri ") 6¢
action by

—2Fr 54“’]?1 + 6Bg+ terms vanishing on shell.

(39

For convenience, we writBg=Bg()+Bg(r,). The con-
ds2=N?(r)F(r)d7?+F(r)~*dr?+r2d¢?> (25 tribution from infinity is

lge=—il, 7=it. (24)

The Euclidean continuation of the metric is

with 7y <7<, periodic, r=r,, and the scalar field un-
changed.
The condition that the geometries allowed in the variation
should contain no conical singularities at the horizon impliesOne can note here that the scalar field does not contribute to
surface term at infinity. This is yet another indication of the

6Bg(»)=p6

3r2
372)- (36)

(Tz_Tl)F’|r:r+:4’7T, (26) nonexistence of charges associated to the conformal scalar
field.
which directly yields the temperatufé(r)=1] At the horizon, we have
TEB_].: 1 (27) 5BE(r+):B[%5F+31_6F,5r+]= (37)
R which, in view of Egs.(32) and(33), can be written as
_9ry 28 -
~16m12° (28) SBe(r ) == 2 o 39)

We now turn to the evaluation of the Euclidean action at Combining Egs.(36) and (38), the Euclidean action is
the Euclidean solution. The classical solution is static a”qound to be '

satisfies the constrainZ=0 and, therefore, the action at the

classical solution is given by a boundary teg. This 32
boundary term must be such that the geomé26) be a true IE:B3_22_ 3+t Bo. (39
extremum among the class of metrics satisfying the right
boundary condition$16,17). o ~ whereBy, is an arbitrary constant independent of the fields at
At |nf|n|ty, we demand that the variations of the fields the boundaries. |mposing thii[g:O for r+%0, one finds
behave as thatB,=0. If we compare the above expression fgrwith
Eq. (23), we learn that the energy and entropy are
SN=0, 29 g.(23 ay py
3r2
3r2 M==52. (40)
SF——d4m7, (30)
St S=— (42)
TR (32)
respectively. With these expressions, one can check that the
At the horizon, we impose the regularity conditi¢26), first law of thermodynamics
BF'|r—r, =4m (32) dM=TdS (42)
is satisfied.
and
(5F)r++|:,|r:r+5r+:0’ (33 IV. CONCLUDING REMARKS

. ] ) o . The inclusion of the cosmological constant is absolutely
which is required by the definition of the horizon necessary for obtaining the black hole solution. In spite of
F(r;)=0. And, (6N), =0. the fact that the matter coupling in E¢l) is of the same

The variation of the scalar field at the horizon is obtainedform as that of the BBMB theory, the resulting black holes
by varying it with respect to ., maintaining the functional are entirely different: The BBMB solution is asymptotically

form of the classical solution;=r , /(2r+r.). Hence, flat and is an extreme Reissner-Nordstrbole, whereas the
solution introduced here is asymptotically anti—de Sitter and
2 nonextreme. Furthermore, one can readily see that the ansatz
o= E&Jf ' (34) (10) (N=1) does not yield an extension of the BBMB solu-

tion with cosmological constant in four dimensions.
The variation of the Euclidean action is The question of whether this solution represents a hairy
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black hole depends on the definition of hair one uses. In &y [24]. In [25,26 this deviation is also shown to arise in

very broad sense, any matter field that can be sustained by“dirty” black hole and in systems of black holes coupled to

black hole could be regarded as some kind of hair, as it is thetrings.

case at hand. However, in a more strict sense, it is necessary Note addedA family of solutions of scalar-tensor fields

for the matter field to carry an independently conservedtoupled to gravity in 21 dimensions was recently reported

charge, which does not occur in our case. [27]. It seems that the solution presented here might be ob-
Another point of interest consists in looking for time- tained as a special, particularly simple, case among many

dependent solutions. The existence of these solutions coulsthers, but this is not completely clear to these authors at the

show that a black hole can be regarded as the result of cotnoment.

lapsed matter fieldgl8—22. However, the system of mass-
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