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A three-dimensional black hole solution of Einstein equations with a negative cosmological cons
coupled to a conformal scalar field is given. The solution is static, circularly symmetric, asymptotically ant
Sitter–type and nonperturbative in the conformal field. The curvature tensor is singular at the origin whil
scalar field is regular everywhere. The condition that the Euclidean geometry be regular at the horizon fix
temperature to beT59 r1/16p l

2. Using the Hamiltonian formulation including boundary terms of the Euclid
ean action, the entropy is found to be23 of the standard value (14A), and in agreement with the first law of
thermodynamics.@S0556-2821~96!02516-7#
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I. INTRODUCTION

In the last ten years, three-dimensional gravity has b
come a popular laboratory to understand the fundamental
classical and quantum gravity@1#. Thus, the discovery of a
black hole solution in 211 dimensions@2# has further con-
tributed to the interest in three-dimensional gravity. A com
plete review about this black hole can be found in@3#.

Several generalizations of this solution have been co
structed. For instance, minimally and nonminimally couple
dilaton fields with various black holes~charged and un-
charged, spinning and nonspinning! @4–6# are known. For
other interesting extensions see@3# and references therein.

The purpose of this article is to report on an exact bla
hole solution conformally coupled to a massless scalar fi
in 211 dimensions. The solution is static, circularly symme
ric, and asymptotically anti–de Sitter–type and it possesse
curvature singularity at the origin. The scalar field is regul
everywhere, has a fixed form, and cannot be obtained a
perturbation around a matter-free massive black hole. T
system can be shown to have a well-defined thermodyna
behavior.

Here, we consider gravity with cosmological consta
conformally coupled to a massless scalar field inD dimen-
sions. The action is

I5I G1I C ~1!

with

I G5
1

2kE dDxA2g@R12l22# ~2!

and
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1

2E dDxA2g@gmn¹mC¹nC1jDRC2#, ~3!

whereR is the scalar curvature andjD5 1
4(D22)/(D21).

The value ofjD is chosen so thatI C be invariant under
conformal transformations

gmn→V2~x!gmn ,C→V12 D/2~x!C. ~4!

This coupling, including electromagnetism but witho
cosmological constant in four dimensions, was previou
considered by Bocharova, Bronnikov, and Melnikov@7# and
Bekenstein~BBMB! @8,9# ~see also@10#!. The uncharged
BBMB black hole solution is static, spherically symmetri
and asymptotically flat~there is no cosmological constant!.
The metric is the extreme Reissner-Nordstro¨m metric solu-
tion and the scalar field is unbounded at horizon. In@9# it is
shown that this divergence is not physically troublesome

Recently, the uniqueness of the BBMB black hole h
been established@11# and it was shown to be the only static
spherically symmetric, asymptotically flat black hole sol
tion of the Einstein-conformal field equations in four spac
time dimensions@12#.

Below, we present a black hole solution for the syste
described in Eq.~1! in three dimensions.

II. BLACK HOLE SOLUTIONS

In three dimensions, the action reads

I5E d3xA2gFR12l22

2k
2 1

2 g
mn¹mC¹nC2 1

16 RC2G ,
~5!

where2 l22 is the cosmological constant andC is the mass-
less conformal scalar field.

The field equations are

Gmn2 l22gmn2kTmn50 ~6!
3830 © 1996 The American Physical Society
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and

hC2 1
8 RC50, ~7!

whereh[gmn¹m¹n is the Laplace-Beltrami operator in th
metricgmn and the matter stress tensor is

Tmn5¹mC¹nC2 1
2 gmng

ab¹aC¹bC

1 1
8 @gmnh2¹m¹n1Gmn#C2. ~8!

It is straightforward to check that by virtue of Eq.~7!, the
stress tensor is traceless. This, in turn, implies that the
ometry has a constant scalar curvature:

R526l22. ~9!

We look for static, circularly symmetric, three
dimensional metrics whose expression in polar coordina
takes the form

ds252N2~r !F~r !dt21F21~r !dr21r 2du2, ~10!

where 0<r,` is the proper radial coordinate an
0<u<2p. The solution is easily obtained fixing the tim
scale so thatN(r )51. Working with the advanced time co
ordinatev5t1*F21(r )dr, the r2r equation of Eq.~6! im-
poses the constraint

05~C8!22 1
8 ~C2!9, ~11!

where prime denotes radial derivative. The above equa
can be written as 05C4(C22)9 whose general solution is

C~r !5
A

Ar1B
A,B5 const. ~12!

Comparing the curvature for the metric~10! with Eq. ~9!,
one obtains directly

F~r !5
r 2

l 2
2a2

b

r
a,b5const. ~13!

The v
v equation imposes the following relations among t

constants of integration

a53B2l22, b52B3l22, A5A8B

k
, B>0. ~14!

Thus, we obtain the black hole solution

F~r !5
1

l 2 F r 223B22
2B3

r G5
~r1B!2~r22B!

rl 2
, ~15!

together with the matter field configuration

C~r !5A 8B

k~r1B!
, ~16!

which can be explicitly checked to solve Eq.~7!. It is easily
shown in the advanced time coordinates that the sur
whereF vanishes (r52B[r1) is null @13#.
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The asymptotic behavior of the metric is truly anti–d
Sitter @i.e., g00;r 21O(r 0), without terms linear inr #.
Therefore, as shown in@14#, the asymptotic symmetry group
is the conformal one, which contains the anti–de Sitter grou
as a subgroup.

The Riemann tensor is singular at the origin as can
shown by evaluating the Kretschmann scalar

RmnlrRmnlr5
12~r 612B6!

l 4r 6
. ~17!

This is the only singularity and is hidden by the event hor
zon.

The massless conformal scalar fieldC is regular every-
where. Although one might expect the scalar field to endo
the black hole with a hair, it should be noted that the solutio
is characterized by only one constant which, as we will sho
below, is related with the mass. Therefore, the presence
the scalar field does not generate an independent additio
charge to the black hole, i.e., the scalar field produces
new hair. Furthermore, the solution presented here does
differ in the asymptotic region from a matter-free black hole

III. THERMODYNAMICS

The Hamiltonian form of the action~5! is given by

I5E @p i j ġi j1PĊ2NH2NiH i #d
2xdt1BH, ~18!

whereBH is a surface term.
In order to study the thermodynamics of this system w

consider the minisuperspace of static, circularly symmetr
geometries as described by~10!, and scalar fields that depend
only on the radial coordinate. The equations of motion ob
tained in this way are the same as Eqs.~6!, and ~7! after
imposing the above restrictions. Thus, reducing the Ham
tonian action~18! to the minisuperspace gives

I522p~ t22t1!E N~r !H~r !dr1BH ~19!

with

H5
1

2k
$F8~12z!22Fr @z92z21~z8!2# ~20!

2~2F1F8r !z822rl 22%, ~21!

z[
k

8
C2. ~22!

The partition function for a thermodynamical ensemble
identified with the Euclidean path integral in the saddle-poi
approximation around the Euclidean continuation of the cla
sical solution@15#. In this approximation the Euclidean ac-
tion is related to the thermodynamic functions~in units
where\5kB51 andk58p) by

I E5
free energy

T
5
M

T
2S, ~23!
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whereT, M , S denote temperature, mass, entropy, resp
tively and the Euclidean actionI E is related to the Lorentzian
action by

I E52 i I , t5 i t . ~24!

The Euclidean continuation of the metric is

dsE
25N2~r !F~r !dt21F~r !21dr21r 2du2 ~25!

with t1<t<t2 periodic, r>r1 , and the scalar field un-
changed.

The condition that the geometries allowed in the variatio
should contain no conical singularities at the horizon impli

~t22t1!F8ur5r1
54p, ~26!

which directly yields the temperature@N(r )51#

T[b215
1

t22t1
~27!

5
9r1

16p l 2
. ~28!

We now turn to the evaluation of the Euclidean action
the Euclidean solution. The classical solution is static a
satisfies the constraintH50 and, therefore, the action at th
classical solution is given by a boundary termBE . This
boundary term must be such that the geometry~25! be a true
extremum among the class of metrics satisfying the rig
boundary conditions@16,17#.

At infinity, we demand that the variations of the field
behave as

dN50, ~29!

dF→2d
3r1

2

4l 2
, ~30!

dz→
dr1

2r
. ~31!

At the horizon, we impose the regularity condition~26!,

bF8ur5r1
54p ~32!

and

~dF !r1
1F8ur5r1

dr150, ~33!

which is required by the definition of the horizon
F(r1)50. And, (dN) r1

50.
The variation of the scalar field at the horizon is obtain

by varying it with respect tor1 , maintaining the functional
form of the classical solution,z5r1 /(2r1r1). Hence,

dz5
2

9r1
dr1 . ~34!

The variation of the Euclidean action is
c-

n
s

at
d

ht

d

dI E5
b

8
@~12z2r z8!dF1~F8r14Fr z21z8!dz

22Frdz8# r1

` 1dBE1 terms vanishing on shell.

~35!

For convenience, we writeBE5BE(`)1BE(r1). The con-
tribution from infinity is

dBE~`!5bdS 3r1
2

32l 2D . ~36!

One can note here that the scalar field does not contribute
surface term at infinity. This is yet another indication of the
nonexistence of charges associated to the conformal sca
field.

At the horizon, we have

dBE~r1!5b@ 1
9 dF1 1

36 F8dr1#, ~37!

which, in view of Eqs.~32! and ~33!, can be written as

dBE~r1!52
p

3
dr1 . ~38!

Combining Eqs.~36! and ~38!, the Euclidean action is
found to be

I E5b
3r1

2

32l 2
2

p

3
r11B0, ~39!

whereB0 is an arbitrary constant independent of the fields a
the boundaries. Imposing thatI E50 for r1→0, one finds
thatB050. If we compare the above expression forI E with
Eq. ~23!, we learn that the energy and entropy are

M5
3r1

2

32l 2
, ~40!

S5
pr1

3
, ~41!

respectively. With these expressions, one can check that t
first law of thermodynamics

dM5TdS ~42!

is satisfied.

IV. CONCLUDING REMARKS

The inclusion of the cosmological constant is absolutely
necessary for obtaining the black hole solution. In spite o
the fact that the matter coupling in Eq.~1! is of the same
form as that of the BBMB theory, the resulting black holes
are entirely different: The BBMB solution is asymptotically
flat and is an extreme Reissner-Nordstro¨m hole, whereas the
solution introduced here is asymptotically anti–de Sitter an
nonextreme. Furthermore, one can readily see that the ans
~10! (N51) does not yield an extension of the BBMB solu-
tion with cosmological constant in four dimensions.

The question of whether this solution represents a hair
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black hole depends on the definition of hair one uses. I
very broad sense, any matter field that can be sustained
black hole could be regarded as some kind of hair, as it is
case at hand. However, in a more strict sense, it is neces
for the matter field to carry an independently conserv
charge, which does not occur in our case.

Another point of interest consists in looking for time
dependent solutions. The existence of these solutions c
show that a black hole can be regarded as the result of
lapsed matter fields@18–22#. However, the system of mass
less conformal scalar matter field coupled to gravity, assu
ing a stationary, spherically symmetric geometry@i.e.,
F5F(r ,t) and C5C(r ,t)#, gives rise to the samestatic
solution ~Birkhoff’s theorem!.

A related question is whether the static solution presen
here is stable under linear perturbations. The question ca
addressed for the case of circularly symmetric perturbati
and will be discussed elsewhere@23#.

We note that the entropy differs by a factor of2
3 from the

‘‘area law’’ (p/2) r1 . This deviation from the area law wa
also found in other systems of matter fields coupled to gr
n a
by a
the
sary
ed

-
ould
col-
-
m-

ted
n be
ons

s
av-

ity @24#. In @25,26# this deviation is also shown to arise i
‘‘dirty’’ black hole and in systems of black holes coupled
strings.

Note added. A family of solutions of scalar-tensor field
coupled to gravity in 211 dimensions was recently reporte
@27#. It seems that the solution presented here might be
tained as a special, particularly simple, case among m
others, but this is not completely clear to these authors at
moment.
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