
oland

t stellar
ions at
modify

PHYSICAL REVIEW D 15 SEPTEMBER 1996VOLUME 54, NUMBER 6

0556-2821/
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We derive general expressions for the cross section of neutrino scattering on electrons in dense, ho
matter, in the presence of strong magnetic fields. Numerical calculations of the scattering cross sect
various densities, temperatures, and magnetic fields are performed. Strong, quantizing magnetic fields
significantly the angular and energy dependence of the scattering cross section.@S0556-2821~96!02118-2#

PACS number~s!: 95.30.Cq, 97.60.Bw
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I. INTRODUCTION

Neutrinos play a crucial role in the gravitational collap
of massive, evolved stellar cores, which is thought to be
the origin of type-II supernova explosions. During the infa
phase, when the collapsing stellar core increases its ce
density from the initial;1010 g cm23 to the supernuclear
one, exceeding 1014 g cm23, a large number of electron neu
trinos is produced, as a result of electron captures on pro
~both free protons and those bound in nuclei!. The role of
neutrinos of other flavors is, during the infall phase, neg
gible. The fate of electron neutrinos is determined by
opacity of the collapsing core, which, in turn, is determin
by their interaction with the dense, hot medium. The ma
source of neutrino opacity is the elastic scattering on nuc
which leads to neutrino trapping atr;101221013 g cm23.
Simple estimates suggest that scattering of neutrinos on
generate electrons is not important as a source of opa
therefore, this process was not included in the earlier c
lapse simulations~see, e.g.,@1# and the references therein!.
However, as pointed out in@2–4#, and confirmed recently in
@5#, neutrino-electron scattering is a significant source
matter entropy increase as well as of core deleptonizat
and, therefore, its inclusion is important for the reliable d
termination of the fate of the collapsing core.

The special role of the neutrino-electron scattering~NES!,

n1e→n1e, ~1!

results from the fact that it can be accompanied by a sign
cant energy transfer, in contrast with the case of neutri
nucleus or neutrino-nucleus scattering, which are to a v
good approximation elastic~conservative!. Electron capture
on free protons~which is a main source of electron neutr
nos! produces neutrinos, which are ‘‘hotter’’ than the matt
~i.e., their mean energy is significantly larger than that c
responding to matter temperature!. As the neutrinos flow
from denser to less dense layers of the collapsing core,
excess is even higher than the local one. Energy is tra
ferred from neutrinos to matter mostly by NES, which ten
to equilibrate neutrinos and matter. Because on average
trinos lose energy in the NES, this process decreases
mean neutrino energy, and in consequence, increase
5496/54~6!/3706~16!/$10.00
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mean free path~the neutrino mean free path scales as th
inverse square of the neutrino energy!: down-scattered neu-
trinos escape more easily from the collapsing core. On t
other hand, neutrino down-scattering heats the matter~in-
creases the matter entropy!, which increases the free proton
fraction, and this accelerates electron captures. Both effe
lead to significantly higher deleptonization of the collapsin
core~as compared to the case with NES turned off, see@5#!,
which turns out to be crucial for the energetics of the pos
bounce shock, and to the eventual success or failure of
shock to produce an explosion of the collapsing star.

While observations tell that young neutron stars posses
very strong magnetic field~external magnetic field of radio
pulsarsB;101221013G, the internal magnetic field can be
significantly higher, e.g.,B;1015 G!, the mechanism of its
formation is still a matter of debate. Even less is know
about the role of the magnetic field during collapse. Th
initial ~primordial! field of the collapsing core could be
greatly amplified due to the huge compression of the mat
of very high conductivity. Superstrong magnetic field
(;1015 G! could also be generated in collapsing and rota
ing cores@6–8#. If present, such strong magnetic fields coul
influence NES by modifying the motion of electrons in th
hot dense plasma. This could lead to anisotropies in the sc
tering process, implying possible anisotropies and asymm
tries in the collapse and explosion.

The problem of NES in a hot, dense plasma in the absen
of a magnetic field was studied by numerous authors~see,
e.g.,@9,10#!. In the present paper we calculate the cross se
tion of this process in the presence of a strong magnetic fie
The elementary process we consider here is related to t
other weak interaction processes in a hot, dense, magnet
plasma which were considered recently in a paper coa
thored by one of the authors@11#: neutrino-pair synchrotron
radiation by electrons,e2→e21n1 n̄, and the neutrino-pair
emission from the electron-positron annihilation
e21e1→n1 n̄. The formulas obtained in the present pape
thus complete the general study of weak interaction pr
cesses involving electrons, positrons, and neutrinos in h
dense, magnetized plasma.

In Sec. II we briefly present our formalism. The exac
calculation of the NES cross section in magnetized plasma
described in Sec. III. In Sec. IV we show, using the quas
3706 © 1996 The American Physical Society
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54 3707NEUTRINO-ELECTRON SCATTERING IN A DENSE . . .
classical approximation, convergence of our result to t
zero-field limit. Numerical results, obtained for various com
binations of hot plasma parameters, neutrino energies,
magnetic field strengths, are presented in Sec. V. Section
contains a discussion of our results and the conclusion. F
mulas for the transition amplitude are collected in Append
A. In Appendix B we rederive a compact expression for th
cross section in absence of a magnetic field. In Appendix
we give an alternative form of the cross section atB50,
which proves to be useful in our discussion of the limitin
behavior of the cross section at low magnetic field strengt

II. GENERAL FORMALISM

Let us consider NES~1! in a strong uniform magnetic
field B directed along thez axis. We will use the standard
Weinberg-Salam-Glashow weak interaction theory. Our r
sults will be valid for all neutrino flavors. Since typical en
ergies of neutrinos, relevant for the infall phase of gravit
tional collapse, are greater than a few MeV, we can adopt
approximation of massless neutrinos. On the other ha
these typical energies are much smaller than themWc

2;70
GeV, the rest-mass energy of the intermediate bosons. Th
fore the process of scattering~1! can be described by a sim-
plest ‘‘four-tail’’ diagram.

We use exact wave functions of relativistic electrons in
magnetic field, with the Landau gauge of the vector potent
A (Ax52yB, Ay5Az50). We specify the quantum state
of electrons by four quantum numbers:pz , px , n, ands ~see,
e.g., @12#!. Here pz is the electron momentum alongB, px
determines they coordinate of the electron guiding cente
y5y052cpx /(eB), n50,1, . . . enumerates the Landa
energy levels, and s denotes the electron helicity
@s52sgn(pz) for n50 and s561 for n.0#. We will
mostly use the unitskB5\5c51, expressing momenta in
units ofmec, energies~and temperature! in mec

2, and mag-
netic fields in units ofB05me

2c3/(\e)'4.41431013 G.
Then the electron energy is

«5«n~pz!5A112nb1pz
2, ~2!

whereb5B/B0 is the dimensionless magnetic field.
Let us denote the initial state in process~1!, correspond-

ing to an electron stateupz ,px ,n,s& and incident neutrino
momentumk, by u i &. The final state will be denoted by
u f &5upz8 ,px8 ,n8,s8,k8&. The electron and neutrino energies
corresponding tou i & and u f & states, are«, v and «8, v8,
respectively. The probability of the transitionu i &→u f &, per
unit time, is given by the Fermi golden rule:

dwf i52pd~«81v82«2v!uVf i u2dr f , ~3!

where

dr f5
Lx
2p

dpx8
Lz
2p

dpz8
V

~2p!3
dk8 ~4!

is the density of states of particles after scattering (Lz and
Lx are the normalization lengths, andV is the normalization
volume!, andVf i is the matrix element, calculated for the
‘‘four-tail’’ diagram of process~1!.
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Calculation of the matrix element is straightforward an
analogous to the case of synchrotron neutrino-pair emiss
(e→e1n1 n̄; see, e.g.,@13#!. The final result is

uVf i u25
~2p!2GF

2

LxLzV
2 d~px81kx82px2kx!

3d~pz81kz82pz2kz!C
i jSiSj* , ~5!

whereGF is the Fermi weak-coupling constant,i and j are
four-tensor indices (i , j50,1,2,3),

Ci j5
1

vv8
~kik8 j1k8 ikj2gi j klkl81 iei j lmklkm8 !, ~6!

ki5(v,k), ei j lm is the antisymmetric unit tensor, andSi is
the transition amplitude of the four-current for the NES
given by Eq. ~A1!. We introduce the cross section
ds f i5Vdwf i of the NES by

ds f i5
GF
2

~2p!2
Ci jSiSj* d~«81v82«2v!

3d~px81kx82px2kx!

3d~pz81kz82pz2kz!dpx8dpz8dk8, ~7!

and perform averaging over initial and summation over fin
electron states,

ds5
b

~2p!2(n50

` E
2`

1`

dpz (
n850

` E
2`

1`

dpx8E
2`

1`

dpz8

3 (
s,s8561

f ~12 f 8!ds f i , ~8!

where

f5 f ~«!5FexpS «2m

T D11G21

~9!

is the Fermi-Dirac distribution of the electrons in the initia
state, whilef 85 f («8) is same quantity for electrons in the
final state,T is temperature of matter, andm is the electron
chemical potential~in units ofmec

2). Note that the electron
number density@in units of (mec/\)

3# is given by

ne5
b

~2p!2(n50

` E
2`

1`

dpz (
s561

f . ~10!

Taking into account thatdk85v82dv8dV8 (dV8 being a
solid angle element alongk8) and introducing the quantities

Ai j5 (
s,s8561

SiSj* , D5««8Ci jAi j , ~11!

we come to the following general expression for the diffe
ential cross section of NES in dense magnetized plasma
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ds

dv8dV8
5
GF
2bv82

~2p!4 (
n,n850

` E
2`

1`dpz
««8

3d~«81v82«2v! f ~12 f 8!D. ~12!

Explicit formulas for the quantitiesAi j andD are given in
Appendix A. These quantities are expressed in terms of
Laguerre functionsFn8,n(u) defined by Eq.~A5!. The La-
guerre functions which appear most frequently in the form
las are denoted, for the sake of convenience, asF1, F2, F3,
F4: they are defined in Eq.~A4!.

III. SCATTERING CROSS SECTION

Equation ~12! expresses the differential scattering cro
section as a sum over Landau level numbers of the initial
final electrons and an integral overpz . The integrand con-
tains the energy conservingd function, so that integration
over pz can be done analytically. For this purpose, we wr

d~«81v82«2v!5(
l

«l«l8

u«l8pzl2«lpzl8 u
d~pz2pzl!,

~13!

wherel enumerates all those~‘‘resonant’’! sets of energies
and longitudinal momenta«,pz ,«8,pz8 which satisfy the con-
servation laws

«81v85«1v,

pz81kz85pz1kz . ~14!

It is convenient to introduce the quantities

D5v2v8,

d5kz2kz85vcosq2v8cosq8,

j5D22d25v2sin2q1v82sin2q8

22vv8~12cosq cosq8!,

x52j, ~15!

whereq andq8 are the polar angles ofk and k8, respec-
tively. It is also suitable to define the cyclotron harmon
numbern5un82nu in such a way thatn>0. An analysis of
possible solutions,l, of Eqs. ~14!, to be used in Eq.~13!,
reveals four different cases, determined by signs ofD and
j. We label these cases by A1, A2, B1, and B2, and disc
them below.

Case A1. (D>0,j>0). In this case we always hav
n.n8. Equations~14! are then satisfied forn>nmin and
n<nmax, where

nmin5IntFAj

b SAj

2
11D G11,

nmax5IntH 1

2b F S nb

Aj
2

Aj

2 D 221G J , ~16!
the

u-

ss
and

ite

ic

uss

e

and where Int(a) denotes the integral part ofa. For eachn
andn there are two solutionsl51,2:

«15
uDu
j S nb2

j

2D1
udu
j
AS nb2

j

2D
2

2«n0
2 j,

pz15F udu
j S nb2

j

2D 1
uDu
j
AS nb2

j

2D
2

2«n0
2 jG

3sgn~D!sgn~d!,

«25
d2«n0

2 1~nb2j/2!2

uDuS nb2
j

2D1uduA~nb2j/2!22«n0
2 j

,

pz25

D2«n0
2 2S nb2

j

2D
2

udu~nb2j/2!1uDuA~nb2j/2!22«n0
2 j

sgn~D!sgn~d!,

«1,28 5«1,21D,

pz1,28 5pz1,21d. ~17!

Final result reads

ds

dv8dV8
5

GF
2b

~2p!4
v82

3 (
n5nmin

`

(
n50

nmax

(
l51,2

D~n,n1n,«l ,«l8 ,pzl ,pzl8 !

A~nb2j/2!22«n0
2 j

3 f ~«l!@12 f ~«l8 !#. ~18!

Case A2. (D>0,j,0). In this case there are no restric-
tions on possible values ofn andn8 and there is only a single
solution of Eq.~14!. However, it is convenient to separate
this solution into two sets corresponding ton<n8 and
n.n8 ~labeled, respectively, as ‘‘1’’ and ‘‘2’’!:

«15
d2«n0

2 1~nb1x/2!2

uDu~nb1x/2!1uduA~nb1x/2!21«n0
2 x

,

pz15
D2«n0

2 2~nb1x/2!2

udu~nb1x/2!1uDuA~nb1x/2!21«n0
2 x

3sgn~D!sgn~d!,

«185«11D,

pz18 5pz11d, ~19!

and
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«285
uDu
x S nb1

x

2D1
udu
x

A~nb1x/2!21«n80
2 x,

pz28 5F udu
x S nb1

x

2D1
uDu
x

A~nb1x/2!21«n80
2 xG

32sgn~D!sgn~d!,
«25«282D,

pz25pz28 2d. ~20!

The final expression for the cross section can be written
ds

dv8dV8
5

GF
2b

~2p!4
v82F (

n50

`

(
n50

` D~n,n1n,«1 ,«18 ,pz1 ,pz18 !

A~nb1x/2!21«n0
2 x

f ~«1!@12 f ~«18!#

1 (
n51

`

(
n850

` D~n81n,n8,«2 ,«28 ,pz2 ,pz28 !

A~nb1x/2!21«n80
2 x

f ~«2!@12 f ~«28!#G . ~21!
-
-

sin-

h
on
lo-

-

o

Case B1. (D,0,j>0). In this case, only the electro
transitions withn.n8 are allowed. Analogously to case A1
there exists the lowest cyclotron harmonics,n5nmin , and
the highest final Landau leveln85nmax8 :

nmin5IntFAj

b SAj

2
11D G11,

nmax8 5IntH 1

2b F S nb

Aj
2

Aj

2 D 221G J . ~22!

There are two roots of Eqs.~14! for eachn andn8:

«185
uDu
j S nb2

j

2D1
udu
j
AS nb2

j

2D
2

2«n80
2 j,

pz18 5F udu
j S nb2

j

2D 1
uDu
j
AS nb2

j

2D
2

2«n80
2 jG

3sgn~D!sgn~d!,

«285
d2«n80

2
1~nb2j/2!2

uDu~nb2j/2!1uduA~nb2j/2!22«n80
2 j

,

pz28 5
D2«n80

2
2~nb2j/2!2

udu~nb2j/2!1uDuA~nb2j/2!22«n80
2 j

3sgn~D!sgn~d!,

«1,25«1,28 2D,

pz1,25pz1,28 2d. ~23!

The cross section reads
n
, ds

dv8dV8
5

G2b

~2p!4
v82 (

n5nmin

`

(
n850

nmax8

3 (
l51,2

D~n81n,n8,«l ,«l8 ,pzl ,pzl8 !

A~nb2j/2!22«n80
2 j

3 f ~«l!@12 f ~«l8 !#. ~24!

The square-root denominators in Eqs.~18! and ~21! for
cases A1 (n5n82n) and B1 (n5n2n8), respectively, can
be presented in the symmetric form

A@~n82n!b2j/2#22«n0
2 j5A@~n2n8!b2j/2#22«n80

2 j

5 1
2A~«1

22j!~«2
22j!, ~25!

where«1,25u«n807«n0u. In these cases, the domain of sum
mation overn and the lowest Landau level number corre
sponds to the inequality

j<j15«1
25

4n2b2

~«n801«n0!
2 , ~26!

and the scattering cross section exhibits the square-root
gular features whenj approaches the thresholdsj1, corre-
sponding to the electron transitionsn→n85n1n ~case A1!
andn8→n1n ~case B1!. Such features are associated wit
the behavior of the density of states for magnetized electr
gas and are known to appear for, e.g., electromagnetic cyc
tron radiation@14#.

Case B2. (D,0,j,0). As in case A2, there are no re
strictions on possible values ofn andn8, and single solution
of Eqs. ~14! can be split into two sets corresponding t
n<n8 andn.n8 ~we label them as ‘‘1’’ and ‘‘2,’’ respec-
tively!:

«15
uDu
x S nb1

x

2D1
udu
x
AS nb1

x

2D 21«n0
2 x,
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pz15F udu

x
S nb1

x

2
D 1

uDu

x
AS nb1

x

2
D 2

1«n0
2 xG

3sgn~D!sgn~d!,

«185«11D,

pz18 5pz11d, ~27!

and

«285
d2«n80

2
1~nb1x/2!2

uDu~nb1x/2!1uduA~nb1x/2!21«n80
2 x

,

pz28 5
D2«n80

2
2~nb1x/2!2

udu~nb1x/2!1uDuA~nb1x/2!21«n80
2 x

3sgn~D!sgn~d!,

«25«182D,

pz25pz28 2d. ~28!

The cross section can then be written as
ds

dv8dV8
5

G2b

~2p!4
v82F (

n51

`

(
n50

` D~n,n1n,«1 ,«18 ,pz1 ,pz18 !

A~nb1x/2!21«n0
2 x

f ~«1!@12 f ~«18!#

1 (
n50

`

(
n850

` D~n81n,n8,«2 ,«28 ,pz2 ,pz28 !

A~nb1x/2!21«n80
2 x

f ~«2!@12 f ~«28!#G . ~29!
e

q

e
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he
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te
-
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n
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g

ns
Similar to Eq.~25!, the square-root denominators in Eq
~21! and ~29! can also be written in the symmetric form

A@~n82n!b1x/2#22«n0
2 x5A@~n2n8!b1x/2#22«n80

2 x

5 1
2A~«1

21x!~«2
21x!. ~30!

Note that, in the case A2~B2!, the contributions from the
transitions withn8<n (n<n8) decrease with decreasingx,
and vanish atx50. In each case, forj5x50, some reso-
nant electron states have infinite energies and therefor
not contribute to the cross section, but there are always
resonant states with finite energies. Therefore, forj5x50,
expressions obtained in cases A1 and A2~B1 and B2! give
the same results for the scattering cross section.

If D50, thenj can take only nonpositive values, and E
~21! and ~29! derived for cases A2 and B2, respective
coincide.

IV. ZERO-FIELD LIMIT

The neutrino-electron scattering forB50 has been con
sidered by numerous authors~see, e.g.,@5,9,15#, and refer-
ences therein!. For a degenerate electron gas, the scatte
cross section can be then presented in a quite compact
involving standard Fermi integrals. In view of the fact th
we could not find in the literature a complete and convinc
derivation of theB50 expression for the scattering cro
section, we preferred to rederive it in Appendix B. Of cour
this expression for the scattering cross section should b
obtained as a limit of the expressions presented in Sec. I
the case when the quantization of the electron motion in
s.

do
the

s.
ly,

-

ring
form
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ss
se,
re-

II in
the

plane perpendicular toB becomes negligible. The effect of
the magnetic field is small, when the energy difference b
tween neighboring Landau levels is much smaller than t
temperature of the matter,«n11,02«n,0!T. Since
«n11,02«n,052b/(«n11,01«n,0), and the energies of the
most populated electron states can be approximated by
electron chemical potential~assuming m@1), «n11,0
;«n,0;m, we arrive at the conditionb!mT. Under such a
condition, the expressions given by Eqs.~18!, ~21!, ~24!, and
~29! should converge to theB50 expressions given by Eqs.
~B1! and ~B23!.

Analytical demonstration of such a convergence is qui
complicated, due to the strongly different forms of final ex
pressions for the scattering cross section in the case o
magnetized plasma~Sec. III! and in theB50 case~Appen-
dix B!, respectively. We will prove that our general equatio
~12! reproduces correctly the limit ofB→0. To facilitate the
proof, we transform the expressions forB50, introducing an
arbitrary z axis and rearranging the order of integration ove
initial and final momenta of the electron in the correspondin
cylindrical coordinates~see Appendix C!.

The zero-field limit of Eq.~12! can be obtained using the
quasiclassical expressions for the Laguerre functio
Fn8n(u) which enter the quantityD ~Appendix A!. In our
limiting case, high Landau levels are involved,n@1 and
n8@1, and we can neglect the difference betweenF1

2, F2
2,

F3
2 andF4

2. All these functions are then equal to~see, e.g.,
@12#!

F25
2b

pA~p1
22q'

2 !~q'
22p2

2!
, ~31!
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wherep1,25p'8 6p' . Then, using the recurrent relations fo
the Laguerre functions@12#, we have

p'p'8F1F25
~p'

22p'8
2!22~p'

21p'8
2!q'

2

2q'
2 F2,

p'p'8F3F45
p'
21p'8

22q'
2

2
F2,

p'~F1F31F2F4!5
p'
22p'8

21q'
2

q'

F2,

p'8 ~F1F41F2F3!5
p'
22p'8

22q'
2

q'

F2,

p'~F1F32F2F4!5p'8 ~F1F42F2F3!50. ~32!

Substitution of Eqs.~31! and ~32! into Eq. ~A7! gives the
quasiclassical expression ~C19! for the quantity
Q5D/(2F2). Finally, replacing the summation overn and
n8 in Eq. ~12! by integration overp'

2 andp'8
2

(
n,n8
→E E dp'

2dp'8
2

4b2
, ~33!

we get Eq.~C18!, obtained for the case of zero magnet
field. This strictly proves that our expression for the cro
section of neutrino scattering on magnetized electrons,
~12!, tends to the familiar cross section in the limit o
B→0.

V. NUMERICAL RESULTS

We have calculated the NES cross section using the
pressions presented in Sec. III, for a broad choice of phys
conditions in dense, hot, magnetized plasma. These co
tions were determined by the values of the dimensionl
parametersm, T, andb. The calculations were done for th
scattering of electron neutrino (CV'0.96,CA50.5), al-
though the general expressions of Sec. III can be applied
the scattering of neutrino of any flavor.

We have used a simple approximate treatment of the
gularities, appearing in cases A1 and B1. Namely, when
culating the square-root denominators according to Eq.~25!,
we were making the replacement

«1
22j→~«11Aj!A~«12Aj!21g2. ~34!

Here,g has the meaning of a width of the electron ener
levels, determined by an appropriate mechanism of
excitation of the electron states. For the interior of a neut
star, the most important are the electron-nucleus collisio
Assuming that the electrons are degenerate and neglec
the quantization of their transverse motion, we may estim
the widths by the well-known result for the frequency of th
electron-nucleus Coulomb collisions@16#

gcoll'
4a f
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3p
Zm, ~35!
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where a f51/137 is the fine structure constant,Z is the
nucleus charge number, andm is the electron chemical po-
tential. In the range of temperatures and densities, for whi
NES is most important during the infall stage of gravitationa
collapse (kBT;122 MeV, r;101021012 g cm23, see
@5#!, we expectZ;30235.

In order to visualize the different domains of the NES in
magnetized plasma, which were discussed in Sec. III~cases
A1, A2, B1, and B2!, we present in Fig. 1 the differential
cross section for this process as a function of the initial ne
trino energy. The bottom panel of this figure shows the d
pendence of the parameterj on the energy transfer. We also
show the threshold valuesj1 associated with the electron
transition from (v.v8, case A1! or to (v,v8, case B1! the
ground Landau level for different cyclotron harmonic num
bersn, and connect them with the corresponding seesaw-li
peaks, associated with the square-root singularities in t
electron density of states.

It should also be noted that peaks of another kind appe
in the cross section near the boundaries separating doma
A1 and A2, and B1 and B2, respectively. They are associat

FIG. 1. The differential neutrino-electron scattering cross se
tion ~in units of s054GF

2/p51.764310244 cm2) as the function
of the energy of the incident neutrino~top panel! and the corre-
sponding dependence of the parameterj ~bottom panel!. The hori-
zontal lines show the thresholdsj1 associated with the electron
transition from~to! the ground Landau level for different harmonics
numbersn, and dashed vertical lines label the square-root featur
of the cross section corresponding to the thresholds. The symb
A1, A2, B1, and B2 denote the domains of the cross section, d
scribed by Eqs.~18!, ~21!, ~24!, and~29!, respectively. The value of
m corresponds torZ/A51.94531011 g cm23. The part of the cross
section inside the bar in the left bottom corner of the top plot i
shown separately in Fig. 2.
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with those ‘‘resonant’’ electron energies which grow infi
nitely at j approaching zero. For cases A1 and B1, the
energies are labeled by ‘‘2’’ and ‘‘1,’’ respectively@see Eqs.
~17! and ~23!#. For the domain ofj,0, the energies of the
electron transitions withn85n (n50) become infinite at
j→0; they are labeled by ‘‘1’’ and ‘‘2’’ for cases A2 and
B2, respectively@see Eqs~21! and~29!#. Since with increas-
ing energy the cross section grows as energy squared
above-discussed features produce narrow peaks with am
tudes determined by the condition«'m or «8'm. The peak
shapes are also determined by the Fermi-Dirac distribu
of electrons: note that the factorf (12 f 8) is a peaked func-
tion of initial ~final! neutrino energy at the low energy tran
fer (uDu&T). Two examples of such peaks are seen in Fig
they are associated there with the electron transiti
n52→n851 ~case B1!, andn51→n851 ~case B2!.

A sequence of plots in Fig. 3 shows the convergence
the scattering cross section to the zero-field limit. Calcu
tions were performed for different strengths of the magne
field, at fixed values of the electron chemical potential a
temperature which are similar to those prevailing in the ou
shells of a collapsing core where NES is important. The i
tial neutrino energies were also chosen to be similar to
mean neutrino energies in these shells~see @5#!. With the
decrease of the magnetic field, the quantum oscillations
the cross section become less pronounced, and deviation
its low and high initial neutrino energy tails from the zer
field limit ~see left panel of Fig. 3! disappear.

At B50, the geometry of the NES can be described
only one parameter, which is the scattering angleu between
the neutrino momenta,k8 andk. At the presence of the mag
netic field, the geometry is more complicated, sinceu is
determined by three independent variables, cou
5cosq cosq81sinq sinq8cos(a2a8). The cross section be
comes then quite sensitive to a choice ofq andq8. In par-
ticular, these angles determine the boundaries of the dom
A21B2. Denoting them byv r ,l ~at fixedv8) and byv r ,l8 ~at
fixed v), we can find from the conditionj50 the relation

FIG. 2. The behavior of the cross section near the boundar
the domains B1 and B2. The peaks labeled by the square and
angle correspond to the transitionsn52→n851 and
n51→n851, respectively.
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sin2q
v r ,l

v8
5sin2q8

v r,l8

v

512cosq cosq8

6A@12cos~q2q8!#@11cos~q1q8!#.

~36!

Note that the lower and the upper boundaries coincide at
q5q8 or q52q8.

In Figs. 4 and 5 we present the cross section for the scat-
tering angleu590°, for two limiting cases, when the scat-
tered neutrino propagates in the plane ‘‘k-B,’’ or in the di-
rection perpendicular to this plane, respectively. We have
calculated, under these kinematical conditions, the cross sec
tion as the function ofv8 at different polar anglesq of the
incident neutrino.

In Fig. 4, eight examples of the cross section versus en-
ergy plots are shown, which correspond tou590°, and for
q varying from zero to 315°~with steps of 45°). As we see,
the shapes of all cross section plots are strikingly different.
The dependence of the cross section onq in the case of the

y of
tri-

FIG. 3. The influence of the magnetic field on the NES cross
section. The left panel shows the cross section as the function of the
incident neutrino energy atv8515. The right panel presents the
dependence of the cross section on the energy of the scattered ne
trino atv515. Dashed lines show the cross sections at zero mag-
netic field. The calculations were done form560 ~which corre-
sponds torZ/A.1.931011 g cm23), andT53.
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FIG. 4. The cross section for the case whe
the scattered neutrino propagates in the pla
‘‘ k-B’’ and the angle of scattering~betweenk8
and k! is u590°. The scattering cross section
are shown as the functions ofv8/v, at different
anglesq betweenk andB. Dashed curves corre-
spond to the zero-field limit.
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scattering in the plane ‘‘k-B’’ has the periodicity of 360°,
since at fixed scattering angle differentq correspond to dif-
ferentq8, while the cross section is determined by both pol
angles. Let us notice specific features of the plots forq50
andq5180°, where the domain A21B2 in the cross section
is the widest (v l850, v r852v), and the plots forq5135°
and q5315°, when this domain vanishes completely. F
q5135° andq5315°, bothD andj are equal to zero at the
boundary of the domains A1 and B1, so that all the ‘‘res
nant’’ electron energies become infinite@see Eqs.~17! and
~23!#. This leads to the deep minima in the cross secti
around the pointv85v, at which the cross section is strictly
equal to zero.

When the scattered neutrino propagates transversely tB
and the angle of scattering,u, is fixed, the shape of the cross
section is determined only by the polar angle of the incide
neutrino. In this case, the cross section is invariant with r
spect to the replacement ofq by 360°2q, which is demon-
strated in Fig. 5. One can notice that the influence of ma
netic field on the cross section is most significant
q590°, where the quantum~oscillatory! features appear
near the maximum of the cross section, and the domain wi
out quantum singularities~A21B2! vanishes. Comparison of
this example with those shown in Fig. 4 allows one to co
ar

or

o-

on

o

nt
e-

g-
at

th-

n-

clude that the quantum oscillations are most pronounced
the cross section, when both incident and scattered neut
move transversely to the strong magnetic field.

To conclude our analysis, we show in Fig. 6 how th
presence of the magnetic field breaks the invariance of
cross section with respect to the exchange of directions ok
and k8. We have seta5a8545° and computed the cross
section for different pairs ofq↔q8. One can see that the
regions of prominent quantum oscillations are different f
all pairsq↔q8. On the other hand, one can notice that th
effect of anisotropy is correlated with the specific directio
of the propagation of one of the neutrinos~incident or scat-
tered! relative to the magnetic field. Namely, in the cas
when the initial~final! neutrino momentum is parallel toB,
there is a strong decrease of the cross section for the neut
energy loss@Fig. 6~a!#. This effect is reversed~increase of
cross section for energy loss!, if the initial or final neutrino
momentum is antiparallel toB @Fig. 6~b!, see also examples
shown in Fig. 4#.

Numerical results, presented in this section, were obtain
for selected sets of the input parameters entering the exp
sions for the scattering cross section. These results were u
to show some characteristic features of the neutrino-elect
scattering in a hot, dense magnetized plasma. Both the
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mulas and numerical results are quite complex. Therefore
make our results usable for interested workers in this fie
the FORTRAN program is available upon request from one
the authors.1

VI. DISCUSSION AND CONCLUSIONS

We have considered the NES in a dense, hot, degene
plasma, under conditions expected to prevail during the in
phase of the gravitational collapse, and assuming the p
ence of a strong magnetic field. Our results show that
magnetic field modifies the energy dependence of the s
tering cross section, and introduces an anisotropy correl
with the direction ofB. The quantization of the electron mo
tion induces the appearance of an oscillatory behavior of
cross section as a function of the energy transfer. The am
tude of the oscillations and the distance between th
strongly depend on the magnetic field strength.

Among the neutrino processes which are relevant for
infall phase of gravitational collapse, the neutrino-electr
scattering is the most sensitive one to the presence
strong magnetic field. It should be noted, however, tha
very strong magnetic field, exceeding 1015 G, influences also
the rate of electron captures on protons, which produce e
tron neutrinos during the infall stage. Generally, the prese
of a strong magnetic field decreases the rate of electron
tures@17#. However, this effect can be neglected for the de
sities greater than 1010 g cm23, and therefore will not play a
significant role for the collapse scenario, where the elect

1V. G. Bezchastnov. Electronic address: vit@astro.ioffe.rssi.ru

FIG. 5. The same as in Fig. 4, for the case when the scatt
neutrino propagates transverse to the plane ‘‘k-B.’’
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captures take place mainly at the density close to the tr
ping density.

The presence of a strong magnetic field implies a ve
strong sensitivity of the differential cross section for the NE
on the spatial direction of neutrino momenta, as well as
the energy transfer. This could lead to anisotropies a
asymmetry in the heating of matter, due to anisotropic e
ergy transfer from neutrinos to matter, as well as to the a
isotropic and/or asymmetric momentum transfer to the m
ter. Both effects could contribute to asymmetry an
anisotropy of the subsequent explosion of the outer layers
collapsing core.

Both anisotropy and sensitivity to the energy transfer b
come dramatically large for a sufficiently strong magnet
field, which by itself could influence the dynamics of co
lapsing layers of the stellar core. Let us define the limitin
value of the magnetic field,Bdyn, by Bdyn

2 /(8p)5Pmatter.
For B!Bdyn the direct effect of the magnetic field on the
dynamics of a layer can be neglected, while forB*Bdyn the
magnetic field modifies in an essential way the equation
state of a given layer of the collapsing core. We ha
Bdyn5531015(Pmatter/10

30 dyncm22)1/2 G. Using the re-
sults of numerical simulations of@5#, we find that for the
layers in which the neutrino-electron scattering is importa
Bdyn;1015 G. Our numerical results show, that the effects
the magnetic field on the NES become very strong for a fie
strength of the order ofBdyn. It should be mentioned, how-
ever, that the fact that the local magnetic field strength e
ceedsBdyn does not mean that the magnetic field influenc
in a crucial way the dynamics of collapse: the effect of th
local pressure on the dynamics of collapsing outer layers
not very important during the infall phase.
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APPENDIX A

The structure of the transition amplitude of the fou
current Si5(S0,S) for the NES is similar to that for the
neutrino synchrotron process~see, e.g.,@11,13#!. We have

S05@CV~aa81ss8bb8!2CA~as8b81a8sb!#a0,

S5@CV~as8b81a8sb!2CA~aa81ss8bb8!#a,
~A1!

where

a05AA8F31ss8BB8F4 ,

a15A8BseiwF11s8B8Ae2 iwF2 ,

a252 iA8BseiwF11 is8B8Ae2 iwF2 ,

a35AA8F32ss8BB8F4 . ~A2!

red
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FIG. 6. The effect of the replacemen
q8↔q on the scattering cross section
strong magnetic field.
e
l
cat-
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In the above formulas,

S a

b D 5
1

A2
S 16

1

« D 1/2,
S ABD 5

1

A2 S 16
spz

A«221
D 1/2, ~A3!

F15Fn821,n~u!, F25Fn8,n21~u!,

F35Fn821,n21~u!, F45Fn8,n~u!, ~A4!

and

Fn8,n~u!5S n8!

n!
un2n8D 1/2e2u/2Ln8

n2n8~u! ~A5!
is a Laguerre function,Lp
q(u) being an associated Laguerr

polynomial. In Eq.~A1! CV andCA are the vector and axia
vector weak interaction constants, respectively. For the s
tering of electron neutrino~via charged and neutral currents!,
one hasCV52 sin2uW10.5 andCA50.5, while for the scat-
tering of muonic or tauonic neutrinos~neutral currents only!,
CV852 sin2uW20.5 andCA8520.5. HereuW is the Weinberg
angle, sin2uW.0.23.

The only difference with respect to the case of the ne
trino synchrotron radiation, is that in our casew in Eq. ~A2!
is an angle betweenk'8 2k' and thex axis, and the argumen
of the Laguerre functions isu5(k'8 2k')

2/(2b).
Calculation of the four-tensorAi j yields
A001A335~CV
21CA

2 !S 11
pzpz8

««8
D ~F3

21F4
2!22CVCAS pz« 1

pz8

«8
D ~F3

22F4
2!,

A002A3352~CV
21CA

2 !
p'p'8

««8
F3F41

CV
22CA

2

««8
~F3

21F4
2!,

A111A225~CV
21CA

2 !S 12
pzpz8

««8
D ~F1

21F2
2!2

CV
22CA

2

««8
~F1

21F2
2!12CVCAS pz« 2

pz8

«8
D ~F1

22F2
2!,

A112A2252~CV
21CA

2 !
p'p'8

««8
cos~2w!F1F2 ,
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A011A10

cosw
52~CV

21CA
2 !Fp'

«
~F1F31F2F4!1

p'8

«8
~F1F41F2F3!G12CVCAFp'pz8

««8
~F1F32F2F4!2

p'8 pz
««8

~F1F42F2F3!G ,
A012A10

i sinw
5~CV

21CA
2 !Fp'

«
~F1F32F2F4!1

p'8

«8
~F1F42F2F3!G22CVCAFp'pz8

««8
~F1F31F2F4!2

p'8 pz
««8

~F1F41F2F3!G ,
A021A20

sinw
52~CV

21CA
2 !Fp'

«
~F1F31F2F4!1

p'8

«8
~F1F41F2F3!G12CVCAFp'pz8

««8
~F1F32F2F4!2

p'8 pz
««8

~F1F42F2F3!G ,
A022A20

i cosw
52~CV

21CA
2 !Fp'

«
~F1F32F2F4!1

p'8

«8
~F1F42F2F3!G12CVCAFp'pz8

««8
~F1F31F2F4!2

p'8 pz
««8

~F1F41F2F3!G ,
A031A3052~CV

21CA
2 !S pz« 1

pz8

«8
D ~F3

21F4
2!12CVCAS 11

pzpz8

««8
D ~F3

22F4
2!,

A032A3050,

A121A2152 sin~2w!~CV
21CA

2 !
p'p'8

««8
F1F2 ,

A122A21

i
5~CV

21CA
2 !S 12

pzpz8

««8
D ~F1

22F2
2!2

CV
22CA

2

««8
~F1

22F2
2!12CVCAS pz« 2

pz8

«8
D ~F1

21F2
2!,

A131A31

cosw
5~CV

21CA
2 !Fp'pz8

««8
~F1F31F2F4!1

p'8 pz
««8

~F1F41F2F3!G22CVCAFp'

«
~F1F32F2F4!2

p'8

«8
~F1F42F2F3!G ,

A132A31

i sinw
5~CV

21CA
2 !Fp'pz8

««8
~F1F32F2F4!1

p'8 pz
««8

~F1F42F2F3!G22CVCAFp'

«
~F1F31F2F4!2

p'8

«8
~F1F41F2F3!G ,

A231A32

sinw
5~CV

21CA
2 !Fp'pz8

««8
~F1F31F2F4!1

p'8 pz
««8

~F1F41F2F3!G22CVCAFp'

«
~F1F32F2F4!2

p'8

«8
~F1F42F2F3!G ,

A232A32

i cosw
52~CV

21CA
2 !Fp'pz8

««8
~F1F32F2F4!1

p'8 pz
««8

~F1F42F2F3!G12CVCAFp'

«
~F1F31F2F4!2

p'8

«8
~F1F41F2F3!G ,

~A6!

wherep'5A2nb andp'8 5A2n8b. The symmetric part ofAi j corresponds to Eqs.~15! of @11#.
Let q and a be polar and azimuthal angles of the incident neutrino momentum (kx5v sinqcosa, ky5v sinqsina,

kz5v cosq), while q8 anda8 be the same angles for the scattered neutrino. Then

D5~11cosq cosq8!$~CV
21CA

2 !~««81pzpz8!~F3
21F4

2!22CVCA~«8pz1«pz8!~F3
22F4

2!%1~12cosq cosq8!

3$~CV
21CA

2 !~««82pzpz8!~F1
21F2

2!2~CV
22CA

2 !~F1
21F2

2!12CVCA~«8pz2«pz8!~F1
22F2

2!%

1sinqsinq8cos~a2a8!$2~CV
21CA

2 !p'p'8F3F41~CV
22CA

2 !~F3
21F4

2!%12sinq sinq8cos~a1a822w!

3~CV
21CA

2 !p'p'8F1F22~cosq1cosq8!$~CV
21CA

2 !~«8pz1«pz8!~F3
21F4

2!22CVCA~««81pzpz8!~F3
22F4

2!%

2~cosq2cosq8!$~CV
21CA

2 !~««82pzpz8!~F1
22F2

2!2~CV
22CA

2 !~F1
22F2

2!12CVCA~«8pz2«pz8!~F1
21F2

2!%

2@sinqcos~a2w!1sinq8 cos~a82w!#$~CV
21CA

2 !@p'«8~F1F31F2F4!1p'8 «~F1F41F2F3!#

22CVCA@p'pz8~F1F32F2F4!2p'8 pz~F1F42F2F3!#%1@sinq cos~a2w!2sinq8cos~a82w!#

3$~CV
21CA

2 !@p'pz8~F1F32F2F4!1p'8 pz~F1F42F2F3!#22CVCA@p'«8~F1F31F2F4!2p'8 «~F1F41F2F3!#%

1@cosqsinq8cos~a82w!1cosq8sinq cos~a2w!#$~CV
21CA

2 !@p'pz8~F1F31F2F4!1p'8 pz~F1F41F2F3!#
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22CVCA@p'«8~F1F32F2F4!2p'8 «~F1F42F2F3!#%1@cosq sinq8cos~a82w!2cosq8sinq cos~a2w!#

3$~CV
21CA

2 !@p'«8~F1F32F2F4!1p'8 «~F1F42F2F3!#22CVCA@p'pz8~F1F31F2F4!2p'8 pz~F1F41F2F3!#%. ~A7!
m

s

is
One can see thatD and, thus, the scattering cross sectio
depends ona2a8 rather than on the azimutal anglesa and
a8 separately:

sin~a2w!5
k'8

q'

sin~a2a8!,

sin~a82w!5
k'

q'

sin~a2a8!,

cos~a2w!5
1

q'

@k'8 cos~a2a8!2k'#,

cos~a82w!5
1

q'

@k'8 2k'cos~a2a8!#,

cos~a1a822w!5
1

q'
2 @~k'

21k'8
2!cos~a2a8!22k'k'8 #,

~A8!

where

k'5v sinq,

k'8 5v8sinq8,

q'5@k'
21k'8

222k'k'8 cos~a2a8!#1/2. ~A9!

Equations~A8! cannot be used directly whenq'50, i.e.,
when v5v8 and a5a8 simultaneously. If, however,
a5a8 one has

sin~a2w!5sin~a82w!50,

cos~a2w!5cos~a82w!5sgn~v82v!,

cos~a1a822w!51, ~A10!

where sgn(x)51 for x>0 and sgn(x)521 for x,0.
When substitutingD into Eq. ~12!, one should set

«85«1v2v8 andpz85pz1kz2kz8 .

APPENDIX B

Let us consider the neutrino scattering on non-magnetiz
electrons, whose quantum states are determined by the
mentum p and helicity s. The differential cross section
ds f i is calculated in the straightforward manner, using th
Fermi Golden rule. After the averaging over the states
initial and final electrons, we obtain

ds

dv8dV8
5
2GF

2v8

~2p!5v
~C1I 11C2I 21C3I 3!, ~B1!

whereC15(CV1CA)
2, C25(CV2CA)

2, C35CA
22CV

2 ,
n

ed
o-

e
of

I 15I 1~k,k8!5E dpdp8

««8
d~4!~p81k82p2k! f ~12 f 8!~pk!

3~p8k8!,

I 25I 2~k,k8!5I 1~2k8,2k!,

I 35I 3~k,k8!

5~kk8!E dpdp8

««8
d~4!~p81k82p2k! f ~12 f 8!.

~B2!

Here,p5(«,2p) andk5(v,2k) are the four-momenta of
electron and neutrino before scattering, andp85(«8,2p8)
and k5(v8,2k8) are the four-momenta of these particle
after scattering,f5 f («) and f 85 f («8) are the Fermi-Dirac
functions given by Eq. ~9!, with «5A11p2 and
«85A11p82.

The four-dimensionald function in Eq.~B2! describes the
conservation of momentum

p2p85q, ~B3!

whereq5k82k, and of energy,

«82«5D, ~B4!

whereD5v2v8. Let us first perform the integration over
p8. We use the spherical coordinates with the polar ax
alongq to integrate overp. This yields

I 15I 1~v,v8,cosu!

52pE
0

`p2dp

««8
f ~12 f 8!E

21

1

dhd~«82«2D!I ~«,«8!,

I 25I 2~v,v8,cosu!5I 1~2v8,2v,cosu!,

I 35I 3~v,v8,cosu!

52pvv8~12cosu!E
0

`p2dp

««8

3 f ~12 f 8!E
21

1

dhd~«82«2D!. ~B5!

Here, u is the angle betweenk and k8, h is cosine of the
polar angle of the electron momentump, and

I ~«,«8!5
1

2pE0
2p

db~pk!~p8k8!, ~B6!

whereb is the azimuthal angle ofp.
Furthermore, we transform the energy conservingd func-

tion in Eq. ~B5! as
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d~«82«2D!5
«8

qA«221
d~h2h0!, ~B7!

where

h05
«D2vv8~12cosu!

qA«221
, ~B8!

«85«1D, and

q5Av21v8222vv8cosu. ~B9!

The conditionh0
251 determines the minimal electron e

ergy, which contributes to the integrals~B5!:

«min5
1

2 S qA11
2

vv8~12cosu!
2D D . ~B10!

Using Eq.~B7!, we obtain

I 352p
vv8

q
~12cosu!E

«min

`

d« f ~12 f 8!. ~B11!

Evaluation ofI 1 is more complicated because of the pre
ence of the integral~B6!. The latter integral is equal to

I5«v«8v82«vpi8ki82«8v8piki1pikipi8ki81 1
2 ptr

2ktr
2 ,

~B12!

where the subscripts ‘‘i ’’ and ‘‘tr’’ denote the vector com-
ponents parallel and perpendicular toq, respectively. The
electron momentum components determined by conserva
laws are given by

pi5
1

2q
~«822«22q2!,

pi85
1

2q
~«822«21q2!,

ptr
25

1

2q2
@2q412~«21«8212!2q22~«22«82!2#,

~B13!

and the neutrino momentum components expressed thro
v, v8 and cosu are

ki5
v

q
~v2v8cosu!, ki85

v8

q
~v cosu2v8!,

ktr
25

v2v82

q2
sin2u. ~B14!

Using Eqs.~B13! and ~B14!, we obtain

I52p
v2v82

q4
~12cosu!2~a01a1«1a2«

2!, ~B15!

where
-

s-

tion

ugh

a05v2F ~v2v8cosu!22
v82sin2u

2
2

q2~11cosu!

2v2~12cosu!G ,
a15v@2v21vv8~32cosu!2v82~113 cosu!#,

a25v21v821vv8~31cosu!. ~B16!

The coefficientsa0, a1, anda2 coincide, respectively, with
the coefficientsC, B, andA given by Eqs.~16!–~18! of @5#.
Analogously to Eq.~B11! we obtain

I 152p
v2v82

q5
~12cosu!2E

«min

`

d«~a01a1«1a2«
2!

3 f ~12 f 8!. ~B17!

In order to integrate over electron energy in Eqs.~B11!
and ~B17!, we use the energy conservation,~B4!, and the
identity

f ~12 f 8!5 f gS 2
D

T D ~ f2 f 8!, ~B18!

where

f g~x!5
1

exp~x!21
~B19!

is independent of electron energy«. Our final result can be
expressed in terms of the integrals

E
«min

`

d«~ f2 f 8!5TG0 ,

E
«min

`

d« «~ f2 f 8!5T2G11T«minG0 ,

E
«min

`

d« «2~ f2 f 8!5T3G212T2«minG11T«min
2 G0 ,

~B20!

where

Gk5Gk~y,y8!5Fk~y8!2Fk~y!,

y5y01
D

2T
, y85y02

D

2T
,

y05
1

2T S 2m2qA11
2

vv8~12cosu!
D , ~B21!

and

Fk~y!5E
0

` jkdj

11exp~j2y!
~B22!

is a standard Fermi integral.
Finally, using Eqs.~B18! and ~B20!, we obtain
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I 152p
v2v82

q5
~12cosu!2f gS 2

D

T DT
3@a0G01a1~TG11«minG0!

1a2~T
2G212T«minG11«min

2 G0!#,

I 25I 2~v,v8,cosu!5I 1~2v8,2v,cosu!,

I 352p
vv8

q
~12cosu! f gS 2

D

T DTG0 . ~B23!

This result coincides with Eq.~13! of @5#.

APPENDIX C

In this appendix, we transform the general expression
the NES cross section atB50, introducing an arbitraryz
axis and integrating over orientations of the electron m
menta in the corresponding perpendicular plane. Letb and
b8 be the azimuthal angles of the vectorsp' andp'8 , respec-
tively, andx be the angle betweenp' andp'8 It is evident
that

dpdp85 1
4dpzdpz8 dp'

2dp'8
2dx db. ~C1!

From Eqs.~B1! and ~B2! we obtain

ds

dv8dV8
5

GF
2v8

2~2p!5vE E
0

`

dp'
2dp'8

2E
2`

1`dpz
««8

3d~«81v82«2v! f ~12 f 8!R, ~C2!

where

R5R11R21R3 ,

R15C1E
0

2p

dxE
0

2p

db d~p'8 1k'8 2p'2k'!~pk!~p8k8!,

R25C2E
0

2p

dxE
0

2p

db d~p'8 1k'8 2p'2k'!~pk8!~p8k!,

R35C3~kk8!E
0

2p

dxE
0

2p

db d~p'8 1k'8 2p'2k'!.

~C3!

Our aim is to integrate overx andb in Eq. ~C3!. We use
the conservation of the transverse electron moment
which implies

p'2p'8 5q' , ~C4!

where q'5k'8 2k' . Combined with the relationb8
5b1x, Eq. ~C4! leads to the following equations for cosb
and sinb:

~p'2p'8 cosx!cosb1p'8 sinx sinb5q'cosw,

2p'8 sinx cosb1~p'2p'8 cosx!sinb5q'sinw, ~C5!
for

o-

m,

wherew is the azimuthal angle ofq' . From Eq.~C5! we
obtain

cosb5
1

q'

@~p'2p'8 cosx!cosw2p'8 sinx sinw#,

sinb5
1

q'

@p'8 sinxcosw1~p'2p'8 cosx!sinw#, ~C6!

and

cosb85
1

q'

@~p'cosx2p'8 !cosw2p'sinx sinw#,

sinb85
1

q'

@p'sinx cosw1~p'cosx2p'8 !sinw#. ~C7!

From the squared equation~C4!, we determine two possible
‘‘resonant’’ values ofx which contribute to the integrals
over the directions ofp' andp'8 :

cosxl5
p'
21p'8

22q'
2

2p'p'8
,

sinxl5~21!l
A~p1

22q'
2 !~q'

22p2
2!

2p'p'8
, ~C8!

wherel51,2 andp1,25p'8 6p' . We can rewrite thed func-
tion in Eqs.~C3! as

d~p'8 1k'8 2p'2k'!5
2

A~p1
22q'

2 !~q'
22p2

2!

3 (
l51,2

d~x2xl!d~b2bl!,

~C9!

where the anglesbl are determined by Eqs.~C6! and ~C7!
with x5xl . This yields

R35
4C3vv8Q3

A~p1
22q'

2 !~q'
22p2

2!
, ~C10!

where

Q3512cosq cosq82sinq sinq8cos~a2a8!. ~C11!

In this caseq andq8 are the polar angles, anda anda8 are
the azimuthal angles ofk andk8, respectively.

The expression forR1 contains the quantity

~pk!~p8k8!5~«v2pzkz2p'k'!~«8v82pz8kz82p'8 k'8 !,
~C12!

in which k'p' andk'8 p'8 depend on the integration variable



3720 54V. G. BEZCHASTNOV AND P. HAENSEL
x. Using Eqs.~C6! and~C7!, we can explicitly express these
terms throughx:

p'k'5
p'k'

q'

@~p'2p'8 cosx!cos~a2w!

1p'8 sinx sin~a2w!#,
p'8 k'8 5
p'8 k'8

q'

@~p'cosx2p'8 !cos~a82w!

1p'sinx sin~a82w!#. ~C13!

This gives
R15
4C1vv8Q1

A~p1
22q'

2 !~q'
22p2

2!
, ~C14!

where

vv8Q15~«v2pzkz!~«8v82pz8kz8!2
p'8 k'8

q'

~«v2pzkz!~p'cosx2p'8 !cos~a82w!2
p'k'

q'

~«8v82pz8kz8!

3~p'2p'8 cosx!cos~a2w!1
p'p'8 k'k'8

q'
2 @~p'2p'8 cosx!~p'cosx2p'8 !cos~a2w!cos~a82w!

1p'p'8 sin
2x sin~a2w!sin~a82w!#, ~C15!

cosx and sinx are given by Eq.~C8!. Notice that the terms proportional to sinx do not contribute toQ1 since they cancel out
after summation overl51,2. Introducing cos(a2a8) and cos(a1a822w) and using Eq.~C8!, we obtain

Q15««81pzpz8cosq cosq82«pz8cosq82«8pzcosq2~«2pzcosq!sinq8cos~a82w!
p'
22p'8

22q'
2

2q'

2~«82pz8cosq8!sinq cos~a2w!
p'
22p'8

21q'
2

2q'

1sinq sinq8cos~a1a822w!
~p'

22p'8
2!22~p'

21p'8
2!q'

2

4q'
2

1sinqsinq8cos~a2a8!
p'
21p'8

22q'
2

4
. ~C16!

In analogy with Eq.~C14!, we have

R25
4C1vv8Q2

A~p1
22q'

2 !~q'
22p2

2!
, ~C17!

whereQ2 is obtained fromQ1 by replacingq8↔q, a8↔a. The final expression for the NES cross section reads

ds

dv8dV8
5
2GF

2v82

~2p!5
E E dp'

2dp'8
2

A~p1
22q'

2 !~q'
22p2

2!
E

2`

1`dpz
««8

d~«81v82«2v! f ~12 f 8!Q, ~C18!

where the integration domain over the transverse electron momenta is restricted by the inequalitiesp2>q' andup1u<q' . The
quantityQ5C1Q11C2Q21C3Q3 is explicitly given by the expression

Q5~11cosq cosq8!~CV
21CA

2 !~««81pzpz8!1~12cosq cosq8!@~CV
21CA

2 !~««82pzpz8!2~CV
22CA

2 !#

1sinq sinq8cos~a2a8!F ~CV
21CA

2 !
p'
21p'8

22q'
2

2
1~CV

22CA
2 !G1sinqsinq8cos~a1a822w!~CV

21CA
2 !

3
~p'

22p'8
2!22~p'

21p'8
2!q'

2

2q'
2 2~cosq1cosq8!~CV

21CA
2 !~«8pz1«pz8!2~cosq2cosq8!2CVCA~«8pz2«pz8!

2@sinqcos~a2w!1sinq8cos~a82w!#~CV
21CA

2 !F«8
p'
22p'8

21q'
2

2q'

1«
p'
22p'8

22q'
2

2q'
G
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2@sinq cos~a2w!2sinq8cos~a82w!#2CVCAF«8
p'
22p'8

21q'
2

2q'

2«
p'
22p'8

22q'
2

2q'
G

1@cosq sinq8cos~a82w!1cosq8sinq cos~a2w!#~CV
21CA

2 !Fpz8 p'
22p'8

21q'
2

2q'

1pz
p'
22p'8

22q'
2

2q'
G

2@cosq sinq8cos~a82w!2cosq8sinqcos~a2w!#2CVCAFpz8 p'
22p'8

21q'
2

2q'

2pz
p'
22p'8

22q'
2

2q'
G . ~C19!
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