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Neutrino-electron scattering in a dense magnetized plasma
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We derive general expressions for the cross section of neutrino scattering on electrons in dense, hot stellar
matter, in the presence of strong magnetic fields. Numerical calculations of the scattering cross sections at
various densities, temperatures, and magnetic fields are performed. Strong, quantizing magnetic fields modify
significantly the angular and energy dependence of the scattering cross J&0i656-282196)02118-2

PACS numbdss): 95.30.Cq, 97.60.Bw

I. INTRODUCTION mean free pathithe neutrino mean free path scales as the
inverse square of the neutrino energgown-scattered neu-
Neutrinos play a crucial role in the gravitational collapsetrinos escape more easily from the collapsing core. On the
of massive, evolved stellar cores, which is thought to be abther hand, neutrino down-scattering heats the mditer
the origin of type-Il supernova explosions. During the infall creases the matter entrgpyvhich increases the free proton
phase, when the collapsing stellar core increases its centrfxaction, and this accelerates electron captures. Both effects
density from the initial~10" g cm 2 to the supernuclear lead to significantly higher deleptonization of the collapsing
one, exceeding 26 g cm 3, a large number of electron neu- core(as compared to the case with NES turned off, [$dk
trinos is produced, as a result of electron captures on protonghich turns out to be crucial for the energetics of the post-
(both free protons and those bound in nucldihe role of bounce shock, and to the eventual success or failure of the
neutrinos of other flavors is, during the infall phase, negli-shock to produce an explosion of the collapsing star.
gible. The fate of electron neutrinos is determined by the While observations tell that young neutron stars possess a
opacity of the collapsing core, which, in turn, is determinedvery strong magnetic fieldexternal magnetic field of radio
by their interaction with the dense, hot medium. The mainpulsarsB~ 10>~ 10'3G, the internal magnetic field can be
source of neutrino opacity is the elastic scattering on nucleisignificantly higher, e.g.B~ 10" G), the mechanism of its
which leads to neutrino trapping at~10'2— 10" gcm 3. formation is still a matter of debate. Even less is known
Simple estimates suggest that scattering of neutrinos on debout the role of the magnetic field during collapse. The
generate electrons is not important as a source of opacitynitial (primordia) field of the collapsing core could be
therefore, this process was not included in the earlier colgreatly amplified due to the huge compression of the matter
lapse simulationgsee, e.g.[1] and the references ther&in of very high conductivity. Superstrong magnetic fields
However, as pointed out if2—4], and confirmed recently in  (~10' G) could also be generated in collapsing and rotat-
[5], neutrino-electron scattering is a significant source ofing coreg6—8]. If present, such strong magnetic fields could
matter entropy increase as well as of core deleptonizationnfluence NES by modifying the motion of electrons in the
and, therefore, its inclusion is important for the reliable de-hot dense plasma. This could lead to anisotropies in the scat-
termination of the fate of the collapsing core. tering process, implying possible anisotropies and asymme-
The special role of the neutrino-electron scatte(iNgS),  tries in the collapse and explosion.
The problem of NES in a hot, dense plasma in the absence
v+e—v+e, (1 of a magnetic field was studied by numerous autheses,
e.g.,[9,10)). In the present paper we calculate the cross sec-
results from the fact that it can be accompanied by a signifition of this process in the presence of a strong magnetic field.
cant energy transfer, in contrast with the case of neutrinoThe elementary process we consider here is related to two
nucleus or neutrino-nucleus scattering, which are to a vergther weak interaction processes in a hot, dense, magnetized
good approximation elasticonservative Electron capture plasma which were considered recently in a paper coau-
on free protongwhich is a main source of electron neutri- thored by one of the authof&1]: neutrino-pair synchrotron
nos produces neutrinos, which are “hotter” than the matterradiation by electrong™ —e™ + v+ v, and the neutrino-pair
(i.e., their mean energy is significantly larger than that coremission from the electron-positron  annihilation,
responding to matter temperaturéds the neutrinos flow e~ +e*— v+ v. The formulas obtained in the present paper
from denser to less dense layers of the collapsing core, thidwus complete the general study of weak interaction pro-
excess is even higher than the local one. Energy is transesses involving electrons, positrons, and neutrinos in hot,
ferred from neutrinos to matter mostly by NES, which tendsdense, magnetized plasma.
to equilibrate neutrinos and matter. Because on average neu- In Sec. Il we briefly present our formalism. The exact
trinos lose energy in the NES, this process decreases tlalculation of the NES cross section in magnetized plasma is
mean neutrino energy, and in consequence, increases iescribed in Sec. lll. In Sec. IV we show, using the quasi-
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classical approximation, convergence of our result to the Calculation of the matrix element is straightforward and
zero-field limit. Numerical results, obtained for various com-analogous to the case of synchrotron neutrino-pair emission
binations of hot plasma parameters, neutrino energies, an@g— e+ v+ v; see, e.g.[13]). The final result is

magnetic field strengths, are presented in Sec. V. Section VI

contains a discussion of our results and the conclusion. For- (27)2G2

mulas for the transition amplitude are collected in Appendix |Vfi|2:W5(p>,<+ k= Px—ky)

A. In Appendix B we rederive a compact expression for the x=z

cross section in absence of a magnetic field. In Appendix C X 8(pa+k,—p,— k,)CIS S, (5)

we give an alternative form of the cross sectionBat 0,

behavior of the cross section at low magnetic field strengthsoyr-tensor indicesi(j=0,1,2,3),

Il. GENERAL FORMALISM . 1 - - . -

Cll=— (Kk'I+ k'K — g KK/ +ie™kkl),  (6)
Let us consider NES1) in a strong uniform magnetic ww

field B directed along the axis. We will use the standard - i . ) )

Weinberg-Salam-Glashow weak interaction theory. Our rek'=(w.k), _e”'m is the antisymmetric unit tensor, arg is

sults will be valid for all neutrino flavors. Since typical en- the transition amplitude of the four-current for the NES,

ergies of neutrinos, relevant for the infall phase of gravita-given by Eq. (Al). We introduce the cross section

tional collapse, are greater than a few MeV, we can adopt thloi=Vdw; of the NES by

approximation of massless neutrinos. On the other hand,

these typical energies are much smaller thanng2~ 70 z

F

GeV, the rest-mass energy of the intermediate bosons. There- doyi= (2m)2 CISS d(s'+w'—s—w)
fore the process of scatteririy) can be described by a sim-
plest “four-tail” diagram. X O(py+ Ky = Px—ky)

We use exact wave functions of relativistic electrons in a
magnetic field, with the Landau gauge of the vector potential
A (A=-yB, Ay=A,=0). We specify the quantum states ] o ] .
of electrons by four quantum numbeps;, p,, n, ands (see, and perform averaging over initial and summation over final
e.g.,[12]). Herep, is the electron momentum alor®, p,  electron states,
determines they coordinate of the electron guiding center
y=yo=—cp,/(eB), n=0,1, ... enumerates the Landau b < [+~ T L
energy levels, ands denotes the electron helicity do= WZ«O . dp, 2 . dpxﬁx dp,
[s=—sgn(p,) for n=0 ands==+1 for n>0]. We will n=0
mostly use the unitkg=#%A=c=1, expressing momenta in
units of m.c, energiegand temperatujen m.,c?, and mag- P>
netic fields in units ofBy=mZ2c%/(he)~4.414x 10" G.
Then the electron energy is

e=¢g,(py)=+1+2nb+ pzz, (2)

ex;{s 'M) +1
whereb=B/B, is the dimensionless magnetic field. T

Let us denote the initial state in proceds, correspond- o o ] o
ing to an electron Statﬁ)Z,pX ,n,s> and incident neutrino is the Fer.mI—DII’aC d|S-tr|bUt|0n of the electrons in the initial
momentumk, by |i). The final state will be denoted by State, whilef’=f(s") is same quantity for electrons in the
|fy=|p..p..n",s'.k’). The electron and neutrino energies, final state,T is temperature of mgtter, and is the electron
corresponding tdi) and |f) states, ares, o ande’, o’ chemical potentia(in units of m.,c<). Note that the electron

respectively. The probability of the transitigiy—|f), per ~ Number densitfin units of (mec/#)*] is given by
unit time, is given by the Fermi golden rule:

X 8(p,+k,—p,—k,)dp,dp,dk’, 7)

f(l_f,)dO'fi, (8)

s,s'=+1
where

-1

f=f(e)=

(©)

b <& (+

dwii=2md(e' + ' —&—w)|Vy|*dpy, ) ne:(ZW)ZnZo —o dpzszz:l f (10
here
W Taking into account thatlk’ = w'?dw’dQ’ (dQ’ being a
L, , vV solid angle element alonlg’) and introducing the quantities
deZEdPXEdpszk 4
. . . . Aj= 2SS, D=es'ClAy, (1D
is the density of states of particles after scatterihg &nd ss'=+1

L, are the normalization lengths, ahdis the normalization
volume, and Vy; is the matrix element, calculated for the we come to the following general expression for the differ-
“four-tail” diagram of process(1). ential cross section of NES in dense magnetized plasma



3708

do G2bw'?

+=dp,
o7 = > —
dw'dQ (277)4 =0

—o0 88’

Xo(e'+w' —e—w)f(1-1")D. (12

Explicit formulas for the quantitieg;; andD are given in

Appendix A. These quantities are expressed in terms of the

Laguerre functions=,,, ,(u) defined by Eq.(A5). The La-

guerre functions which appear most frequently in the formu-

las are denoted, for the sake of conveniencer g, F3,
F,: they are defined in EqA4).

Ill. SCATTERING CROSS SECTION

Equation (12) expresses the differential scattering cross
section as a sum over Landau level numbers of the initial and

final electrons and an integral ovpg. The integrand con-
tains the energy conserving function, so that integration

over p, can be done analytically. For this purpose, we write

! ! 8)\8),\
Se'+to' —e—w)=, T 79(Pz—Pa),
X lexpa—e\pal

(13

where\ enumerates all thosgresonant”) sets of energies
and longitudinal momenta, p,,&’,p, which satisfy the con-
servation laws

'+t =+,

Ptk =p,+k,. (14)
It is convenient to introduce the quantities
A=w—w’,
6=k,—k,=wcos)—w'cosd’,
E=A?— 8= w’sif 9+ o' *si o’
—2ww’(1—cosd cosy’),
x=-¢, (15

whered and &' are the polar angles & andk’, respec-

tively. It is also suitable to define the cyclotron harmonic

numberv=|n’—n| in such a way that=0. An analysis of
possible solutions), of Egs.(14), to be used in Eq(13),
reveals four different cases, determined by signacénd

&. We label these cases by Al, A2, B1, and B2, and discuss

them below.

Case Al. A=0,£=0). In this case we always have

n>n’. Equations(14) are then satisfied for= v, and
N<nNay Where

vmin=|nt \/FE \/754‘1 +1,
1(/vb \/E 2
nmax=lnt[ E (E—7> —l]}, (16)
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and where Int§) denotes the integral part af For eachv
andn there are two solutions=1,2:

A ) 2
81:%( vb- g) +%\/( vb= §) —&noé,

2
e

xsgr(A)sgrn(é),

Pz1=

8%e2,+ (vb— £12)?
§
2

Er=

|A|( vb— 2| +]8](vb—&/2)>—eoé

g 2
Azsﬁo—( vb— E)

27| 5/(vb— £12) + | A|(vb— £12)7— o20f

p sgn(A)sgr(6),

-
81’2— & 1'2+ A y

P12= P2t 6. (17)

Final result reads

do
de'dQ’ (2m7)

GZb

12
7w

Nmax

D(n,n+v,ey,&x,Pn  Po)
V(vb—£/2)2—&2,¢

>

v=vmin N=0 \=1,2

Xf(e)[1-1(e))].

(18)

Case A2. A=0,£<0). In this case there are no restric-
tions on possible values afandn’ and there is only a single
solution of Eq.(14). However, it is convenient to separate
this solution into two sets corresponding to<n’ and
n>n’ (labeled, respectively, as “1” and “2):

528ﬁ0+(vb+)(/2)2
€1= > >
|A|(vb+ x/2)+| 8]\ (vb+ x/2)2+ 2 x

A282,— (vb+ x/2)?
Pzt |8|(vh+ x/2) + |A|\(vb+ x/2)2+ e2 x
Xsgn(A)sgn(6),

e1=e1tA,

P2 =Pzt 4, (19)

and
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A ) =gl—A,
£9= |X| (Vb %\/(Vb+)(/2)2+8§,0)(, f27 2
, |l A Pr2=Ps— 6. (20
= X vb+ 7\/(Vb+)(/2)2+8§,0)( ©o

X 2sgrn(A)sgn(é), The final expression for the cross section can be written as

do Géb o w D(n,n+v,e1,81,P1.Pp)
dw’dQ’:(Zw [2 2 —
=0n=0 \/(Vb+)(/2)2+8§0)(

C & DN +v,ne5,85,P50,P0)

fe)[1—f(e1)]

+ f(ex)[1—f(el)]]. 21
VZ]‘ n'=0 \/(Vb+X/2)2+8ﬁ’OX ( 2)[ ( 2)] ( )
|
Case B1. A<0,£=0). In this case, only the electron do Nax

transitions withn>n" are allowed. Analogously to case Al,

:(2 )40)/2 2 E

there exists the lowest cyclotron harmoniess vy,;,, and do'dQ’ Y= Trmin 1 =0
the highest final Landau level' =n/,.: , , , ,
% D(n"+w,n" &y ,&),PaPn)
Xf(e)[1-f(ep)]. (24)
—Int vb \/— 1 22 The square-root denominators in Eq$8) and (21) for
\/— 2 ' cases Al ¢=n’'—n) and B1 w=n—n"), respectively, can

be presented in the symmetric form
There are two roots of Eq$14) for eachv andn’;

VI(n"=n)b— 27— e2,é=\[(n—n")b— £/27— &7, ¢
, 1A 3 |5|\/ % PR sy sy
ei=rg| b= 5| g V| 5] —ehet, =e2-8(e2-8, (25

wheree; ,= e+ £/ IN these cases, the domain of sum-
| 8] £\ A £\2 mation overv and the lowest Landau level number corre-
vb— = ( —&,0 sponds to the inequality

[

X sgn(A)sgn(4), 41°h?
= -
g gl 81 (Sn’0+8n0)2’ (26)
262, .+ (vb— £/2)?
= 7 and the scattering cross section exhibits the square-root sin-
|A|(vb—£/2)+]4] \/( vb—£/2) ey o€ gular features whe approaches the thresholds, corre-
sponding to the electron transitions-n’=n+ v (case Al
Azsﬁ,o—(vb—§/2)2 andn’—n+v (case B]. Such features are associated with
» the behavior of the density of states for magnetized electron
|8](vb—&/2)+|A[\/(vb— E2)2— 2, ¢ gas and are known to appear for, e.g., electromagnetic cyclo-
tron radiation[14].
X sgr(A)sgr( ), Case B2. A<0,£<0). As in case A2, there are no re-

strictions on possible values ofandn’, and single solution
of Egs. (14) can be split into two sets corresponding to
n<n’ andn>n’ (we label them as “1” and “2,” respec-
tively):

o
€12= €10~ A,

P212=Pj10— 6. (23

€ :H( vb+ K) +@\/( vbh+ X
The cross section reads Ty 2] x 2

2
+8n0X,
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|5| X |A| Y 2 , Azsﬁ,o—(vb+xl2)2
py=|—| vb+—| +— vb+ — +sﬁ0)( Pz2= > 2
X 2] «x 2 |8](vb-+ x12)+ | A\ (vb+ x/2)2+ 62, o

X sgr(A)sgn(d), X sgr(A)sgn(d),
g1=g,+A,
P;1=Pzut S, 27 e2=e1~4,

and
528§,0+ (vb-i—)(/Z)2 Pz2=Pz~ 0. 8
£y= ,
|Al(vb+ x/2)+] 4] \/( v+ x/2)2+ €2, o x The cross section can then be written as

do G?%b

) “ D(n,n+tv,eq,81,P21,Pz)
j— i

— w > f(e)[1—f(ep)]
do'dQ’ (2m)* y=1n=0 \/(Vb+X/2)2+8ﬁoX

“ D(n"+v,n',e5,85,P2,Pz) ,
3 fe)[1—f(eh)]]. (29)
v=0p’'=0 \/(Vb+X/2)2+8i/oX

+

o0

Similar to Eq.(25), the square-root denominators in Egs. plane perpendicular t8 becomes negligible. The effect of
(21) and(29) can also be written in the symmetric form the magnetic field is small, when the energy difference be-
tween neighboring Landau levels is much smaller than the

N —mb+ x/212— 2. x=-(Nn—n" )b+ x/2]2— &2, temperature of the matter,e,,q10—£,0<T. Since
VI )b+ X121 sfox= I )b+ xI2)"—en10x ent10—&no=2b/(ens10t&n0), and the energies of the

=12+ ) (e2+x). (300  most populated electron states can be approximated by the
electron chemical potential(assuming u>1), ep410

Note that, in the case APB2), the contributions from the ~€no~ &, We arrive at the conditiob<,T. Under such a
transitions withn’<n (n<n’') decrease with decreasing  condition, the expressions given by E¢88), (21), (24), and
and vanish ajy=0. In each case, fof=y=0, some reso- (29 should converge to thB=0 expressions given by Egs.
nant electron states have infinite energies and therefore d&1) and(B23). _ _ _
not contribute to the cross section, but there are always the Analytical demonstration of such a convergence is quite
resonant states with finite energies. Therefore gery=0, comp!lcated, due to the s_trongly dlfferent fo_rms of final ex-
expressions obtained in cases Al and (82 and B2 give  Pressions for the scattering cross section in the case of a
the same results for the scattering cross section. magnetized plasméSec. II) and in theB=0 case(Appen-

If A=0, then¢ can take only nonpositive values, and Eqs_dIX B), respectively. We will prove that our general equation

(21) and (29) derived for cases A2 and B2, respectively, (12) reproduces correctly the limit &— 0. To facilitate the
coincide. proof, we transform the expressions &0, introducing an

arbitrary z axis and rearranging the order of integration over
initial and final momenta of the electron in the corresponding
cylindrical coordinategsee Appendix €

The neutrino-electron scattering f8r=0 has been con-  The zero-field limit of Eq(12) can be obtained using the
sidered by numerous authofsee, €.g.[5,9,15, and refer- qua5|cla35|gal expressions fpr the Laguerre functions
ences therejn For a degenerate electron gas, the scatterin%/n(u) which enter the quantitp (Appendix A). In our
cross section can be then presented in a quite compact forfiniting case, high Landau levels are involvea1 and
involving standard Fermi integrals. In view of the fact thatn’>1, and we can neglect the difference betwéen F3,
we could not find in the literature a complete and convincingF3 and F3. All these functions are then equal (see, e.g.,
derivation of theB=0 expression for the scattering cross [12])
section, we preferred to rederive it in Appendix B. Of course,
this expression for the scattering cross section should be re- ) 2b
obtained as a limit of the expressions presented in Sec. Il in Fo= 2 2
the case when the quantization of the electron motion in the W\/(pl_ql)(qL_ p2)

IV. ZERO-FIELD LIMIT

, (31)
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wherep; ,=p| =p, . Then, using the recurrent relations for

the Laguerre functiongl2], we have | B1 B2
, (p?—p1??=(pf +pA)a? =
p.p FiFo= Z(ﬁ F?, \% 10° : 1 1['
3 /\ I o= |
p2+p°—q? 5 ! e s o] | |
p.p]FaF,=——F—F? N p=60,T=3,w=20 1 |
’ 2 S 10 I 0=0, o' =90° I I
| o [e] i
2_ 2442 | |9=60 ',19:90 | |:
R T
3 . A U T L A B L IR
T
2 12 2 [ P Lol
|
pi(FiF,+ F2F3)ZMF2, 2000 ! ' { I = : }
& - 6 RERENE
, RERRVAE
pL(F1F3—F3F4)=p; (F1F4—F3F3)=0. (32 w 5 Ly I
- _ _ 1000 s LT -
Substitution of Eqs(31) and (32) into Eq. (A7) gives the I 3 I i/
quasiclassical expression(C19 for the quantity 5 : 'i/ ]
Q=D/(2F?). Finally, replacing the summation overand 1 -
n’ in Eq. (12) by integration ovep? andp'? 0
............. | IR S S P | |
E depfdpiz - 1 2 3 4
— 7
n,n’ 4b= 7 w/w

we get Eq.(C18), obtained for the case of zero magnetic  FIG. 1. The differential neutrino-electron scattering cross sec-
field. This strictly proves that our expression for the crosstion (in units of 0q=4G2/7=1.764x10 * cm?) as the function
section of neutrino scattering on magnetized electrons, Ef the energy of the incident neutrindop panel and the corre-
(12), tends to the familiar cross section in the limit of sponding dependence of the parametébottom panel The hori-
B—O0. zontal lines show the thresholds associated with the electron
transition from(to) the ground Landau level for different harmonics
numbersy, and dashed vertical lines label the square-root features
of the cross section corresponding to the thresholds. The symbols

We have calculated the NES cross section using the eyAl, A2, B1, and B2 denote the domains of the cross section, de-
pressions presented in Sec. I, for a broad choice of physicdicribed by Eqs(18), (21), (24), and(29), respectively. The value of
conditions in dense, hot, magnetized plasma. These condit corresponds tpZ/A=1.945<10" g cm™®. The part of the cross
tions were determined by the values of the dimensionlessection inside the.barlln the left bottom corner of the top plot is
parameterg:, T, andb. The calculations were done for the Shown separately in Fig. 2.

scattering of electron neutrinoC(,~0.96Cx=0.5), al- \here ¢,=1/137 is the fine structure constard, is the

though the general expressions of Sec. Il can be applied fof | -jeus charge number, apdis the electron chemical po-

the scattering of neutrino of any flavor. _tential. In the range of temperatures and densities, for which

We have used a simple approximate treatment of the SinyEg js most important during the infall stage of gravitational
gularities, appearing in cases Al and B1. Namely, when Ca'(:ollapse keT~1—-2 MeV, p~10°—10" gcm3, see

culating the square-root denominators according to(E%), [5]), we expecZ~ 30— 35
we were making the replacement ' :

V. NUMERICAL RESULTS

In order to visualize the different domains of the NES in a
) — magnetized plasma, which were discussed in SedcHses
81_§H(81+\/E)V(81_\/g) Ty (34) Al, A2, B1, and B2, we present in Fig. 1 the differential
) ] cross section for this process as a function of the initial neu-
Here, y has the meaning of a width of the electron energyy ing energy. The bottom panel of this figure shows the de-
levels, determined by an appropriate mechanism of dependence of the parametgion the energy transfer. We also
excitation of the electron states. For the interior of a neutrorypay the threshold values, associated with the electron
star, the most important are the electron-nucleus collisionsyansition from >’ case Alor to (w<w', case Blthe

Assuming that the electrons are degenerate and neglectingoynd Landau level for different cyclotron harmonic num-

the qL_Jantization of their transverse motion, we may estimatgerSV, and connect them with the corresponding seesaw-like
the widths by the well-known resullt for the frequency of the yeays  associated with the square-root singularities in the
electron-nucleus Coulomb collision$6] electron density of states.

It should also be noted that peaks of another kind appear
(35) in the cross section near the boundaries separating domains
Al and A2, and B1 and B2, respectively. They are associated

401?
Yeoll™ EZ/JH
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10°
r B1

do/ (ay ' dQI)

do/ (og d’ dQI)
—
OI\)
T

10 r\ | 1 [} 1
0.4 0.5 0.6 0.7

w/w/

do/ (o &’ dQ/)

FIG. 2. The behavior of the cross section near the boundary of
the domains B1 and B2. The peaks labeled by the square and tri-
angle correspond to the transitonsn=2—n'=1 and
n=1—-n’=1, respectively.

ae)

with those “resonant” electron energies which grow infi- <
nitely at ¢ approaching zero. For cases Al and B1, these
energies are labeled by “2” and “1,” respectivelgee Egs.
(17) and (23)]. For the domain o£<0, the energies of the
electron transitions witm’=n (»=0) become infinite at
£—0; they are labeled by “1” and “2” for cases A2 and
B2, respectivelyfsee Eqg21) and(29)]. Since with increas-
ing energy the cross section grows as energy squared, the
above-discussed features produce narrow peaks with ampli-
tudes determined by the conditien=w ore’~u. The peak £, 3. The influence of the magnetic field on the NES cross
shapes are also determined by the Fermi-Dirac distributiogection. The left panel shows the cross section as the function of the
of electrons: note that the facté(1—f’) is a peaked func- incident neutrino energy ab’=15. The right panel presents the
tion of initial (final) neutrino energy at the low energy trans- dependence of the cross section on the energy of the scattered neu-
fer (JA|<T). Two examples of such peaks are seen in Fig. 2{rino at w=15. Dashed lines show the cross sections at zero mag-
they are associated there with the electron transitionsetic field. The calculations were done fpr=60 (which corre-
n=2-n'=1 (case B}, andn=1—n'=1 (case B2 sponds tgpZ/A=1.9x 10" gcm™3), andT=3.

A sequence of plots in Fig. 3 shows the convergence of
the scattering cross section to the zero-field limit. Calcula-
tions were performed for different strengths of the magnetic
field, at fixed values of the electron chemical potential and

do/ (op dw

!

w
sinzﬁw—r,"zsinzﬁ’ —
w w

temperature which are similar to those prevailing in the outer =1-cosd cos¥’

shells of a collapsing core where NES is important. The ini- + [1-cog9—9")][L+cog o+ 9)].
tial neutrino energies were also chosen to be similar to the

mean neutrino energies in these shédse[5]). With the (36)

decrease of the magnetic field, the quantum oscillations of
the cross section become less pronounced, and deviations gﬂt
its low and high initial neutrino energy tails from the zero- =
field limit (see left panel of Fig.)3disappear.

e that the lower and the upper boundaries coincide at
9 or 9=—-19".
In Figs. 4 and 5 we present the cross section for the scat-

- . tering angle#=90°, for two limiting cases, when the scat-
At B=0, the geometry of the NES can be described bytered neutrino propagates in the plank-B,” or in the di-

ohnly one .parameter, W’hIChdlli the Ecattenng ar(g:mer;[ween rection perpendicular to this plane, respectively. We have
the neutrino moment&’ andk. At the presence of the mag- . |cyjated, under these kinematical conditions, the cross sec-

netic field, the geometry is more complicated, sin8s (o a5 the function ofs’ at different polar angles of the
determined by three independent variables, 6cosincident neutrino.

= cos cosd’ +sind sind’cos@—a’). The cross section be- | Fig. 4, eight examples of the cross section versus en-
comes then quite sensitive to a choicedoindd'. In par-  ergy plots are shown, which correspondéte 90°, and for
ticular, these angles determine the boundaries of the domai varying from zero to 315%with steps of 45°). As we see,
A2+ B2. Denoting them byo, | (at fixedw") and byw/ | (at  the shapes of all cross section plots are strikingly different.
fixed w), we can find from the conditio§=0 the relation The dependence of the cross sectiondom the case of the
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do/ (o4 dw’ d€)

do/ (0 dw’ d)

- FIG. 4. The cross section for the case when
]  the scattered neutrino propagates in the plane
“k-B” and the angle of scatteringbetweenk’

— 10°F 3 and k) is #=90°. The scattering cross sections
% . 3 are shown as the functions af /w, at different
~y WF ) 3 anglesd betweerk andB. Dashed curves corre-
":; ok / ] spond to the zero-field limit.

s 1L 9=90" ]

=] 2 3

9=135°

do/ (o do’ dY)

0.03 0.1 0.3 1 0.03 0.1 0.3 1
/ /
w fw w fw

scattering in the plane K-B” has the periodicity of 360°, clude that the quantum oscillations are most pronounced in
since at fixed scattering angle differefitcorrespond to dif- the cross section, when both incident and scattered neutrino
ferentd’, while the cross section is determined by both polarmove transversely to the strong magnetic field.
angles. Let us notice specific features of the plotsderO To conclude our analysis, we show in Fig. 6 how the
and¥=180°, where the domain A2B2 in the cross section presence of the magnetic field breaks the invariance of the
is the widest ¢ =0, o/ =2w), and the plots fory=135°  cross section with respect to the exchange of directioris of
and J=315°, when this domain vanishes completely. Forandk’. We have setx=a’'=45° and computed the cross
¥=135° and¥=315°, bothA and¢ are equal to zero at the section for different pairs ofy— J'. One can see that the
boundary of the domains Al and B1, so that all the “reso-regions of prominent quantum oscillations are different for
nant” electron energies become infiniteee Eqs(17) and  all pairs 3+ &'. On the other hand, one can notice that the
(23)]. This leads to the deep minima in the cross sectioreffect of anisotropy is correlated with the specific direction
around the poink' = w, at which the cross section is strictly of the propagation of one of the neutrin@scident or scat-
equal to zero. tered relative to the magnetic field. Namely, in the case
When the scattered neutrino propagates transversdy to when the initial(final) neutrino momentum is parallel 1,
and the angle of scattering, is fixed, the shape of the cross there is a strong decrease of the cross section for the neutrino
section is determined only by the polar angle of the incidentnergy losgFig. 6@]. This effect is reversedincrease of
neutrino. In this case, the cross section is invariant with recross section for energy Igssf the initial or final neutrino
spect to the replacement of by 360°— 9, which is demon- momentum is antiparallel tB [Fig. 6(b), see also examples
strated in Fig. 5. One can notice that the influence of magshown in Fig. 4.
netic field on the cross section is most significant at Numerical results, presented in this section, were obtained
9=90°, where the quantunfoscillatory) features appear for selected sets of the input parameters entering the expres-
near the maximum of the cross section, and the domain withsions for the scattering cross section. These results were used
out quantum singularitie@®2+ B2) vanishes. Comparison of to show some characteristic features of the neutrino-electron
this example with those shown in Fig. 4 allows one to con-scattering in a hot, dense magnetized plasma. Both the for-
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— captures take place mainly at the density close to the trap-

] ping density.

The presence of a strong magnetic field implies a very
3 strong sensitivity of the differential cross section for the NES
on the spatial direction of neutrino momenta, as well as on
E the energy transfer. This could lead to anisotropies and
— asymmetry in the heating of matter, due to anisotropic en-
] ergy transfer from neutrinos to matter, as well as to the an-
] isotropic and/or asymmetric momentum transfer to the mat-
3 ter. Both effects could contribute to asymmetry and
] anisotropy of the subsequent explosion of the outer layers of
E collapsing core.

3 Both anisotropy and sensitivity to the energy transfer be-
] come dramatically large for a sufficiently strong magnetic
field, which by itself could influence the dynamics of col-
EASE . - lapsing layers of the stellar core. Let us define the limiting
s [ B value of the magnetic fieldBgyy,, by Bgy,/(STr): P matter-

i 3 For B<Bgy, the direct effect of the magnetic field on the
3 dynamics of a layer can be neglected, while Boe By, the
magnetic field modifies in an essential way the equation of
3 state of a given layer of the collapsing core. We have

R : Bayn=5X 10"(Paef10% dyneni?)M? G. Using the  re-
L (¥=225") | ] sults of numerical simulations db], we find that for the
0.03 0.1 03 1 layers in which the neutrino-electron scattering is important,
W Jw Bayn~ 10" G. Our numerical results show, that the effects of
the magnetic field on the NES become very strong for a field
o strength of the order dBgy,,. It should be mentioned, how-

FIG. 5. The same as in Fig. 4, for the case when the scattereg, o1 “that the fact that the local magnetic field strength ex-
neutrino propagates transverse to the plake: ceedsBg,, does not mean that the magnetic field influences
a crucial way the dynamics of collapse: the effect of the
cal pressure on the dynamics of collapsing outer layers is
hot very important during the infall phase.

do/ (oy do’ dQ/)

do/ (o9 du’ d2)

9=135°

do/ (ay d' dQ/)

mulas and numerical results are quite complex. Therefore, trg
make our results usable for interested workers in this field
the FORTRAN program is available upon request from one of

the authors.
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tering cross section, and introduces an anisotropy correlate&IOIe ©D.G. Yak_ovlev for “Sef!“ dlscussmns_ and for helptul

with the direction ofB. The quantization of the electron mo- remarks concerning the analytical part of this work.

tion induces the appearance of an oscillatory behavior of the

cross section as a function of the energy transfer. The ampli- APPENDIX A

tude of the oscillations and the distance between them The structure of the transition amplitude of the four-

strongly depend on the magnetic field strength. current S'=(S°,9) for the NES is similar to that for the

Among the neutrino processes which are relevant for thee\trino synchrotron procegsee, e.g.[11,13). We have
infall phase of gravitational collapse, the neutrino-electron

scattering is the most sensitive one to the presence of a S’=[Cy(aa’+sS BB')—Ca(as' B’ +a’'sp)]a’,
strong magnetic field. It should be noted, however, that a L , L

very strong magnetic field, exceeding*1@, influences also S=[Cv(as'f’ +a'sp)—Calaa’+ss f')]a

the rate of electron captures on protons, which produce elec- (A1)
tron neutrinos during the infall stage. Generally, the presencghere
of a strong magnetic field decreases the rate of electron cap- 0 , ooy
tures[17]. However, this effect can be neglected for the den- a’=AA'F3+ssBB'F,,
sities greater than 16 gcm ™3, and therefore will not play a al— A’BSd?F. +5'B' Ae I°F
significant role for the collapse scenario, where the electron 1 2

We have considered the NES in a dense, hot, degener
plasma, under conditions expected to prevail during the infal
phase of the gravitational collapse, and assuming the pre
ence of a strong magnetic field. Our results show that th

a’=—iA'Bsé*F,+is’'B’Ae '“F,,

v. G. Bezchastnov. Electronic address: vit@astro.ioffe.rssi.ru a’=AA'F;—ssBB'F,. (A2)
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do/ (o do dQ/)

FIG. 6. The effect of the replacement
3 ¥’ on the scattering cross section in
strong magnetic field.

/| rael

In the above formulas,

gy

1 S 1/2
\/E e’—1

Flen’—l,n(u)v F2:Fn’,n—1(u)a

A
B

Fs=Fp_1np-1(U), F4=Fq (W),
and

n'!

0.1 0.3, 1
w Jw

is a Laguerre functionLg(u) being an associated Laguerre
polynomial. In Eq.(Al) Cy, andC, are the vector and axial
vector weak interaction constants, respectively. For the scat-
tering of electron neutrin¢via charged and neutral currents
one hasCy=2 sirf4,+0.5 andC,=0.5, while for the scat-
tering of muonic or tauonic neutringeeutral currents on)y
(A3)  C|,=2sirf6,—0.5 andC,= —0.5. Hered,, is the Weinberg
angle, siRfy=0.23.
The only difference with respect to the case of the neu-
trino synchrotron radiation, is that in our cagen Eq. (A2)
(A4) is an angle betweek| —k, and thex axis, and the argument
of the Laguerre functions is= (k| —k,)?/(2b).
Calculation of the four-tensok;; yields

1/2
Fn/,n(u)z(n—"u””'> e 2L " (u) (A5)

Aot Azs=(CH+CZ)

Ago—Agz=2(Ci+ Ci)? FaFy+

_ Pab;

8/

1

A1+ A= (CH+CR)

A1~ Ay=2(C5+C3)

PPz\ 5 o P: Pzl o, 5
oo’ (F3+F3)—2C,Cp 8+8, (F3—F2,
’ 2 2
PP Cy—Ca
T(F§+Fi),
ci—Ca P, P,
(Fi+F9)—— 7 (FI+F5)+2C,Ca| — — 7 |(FI=F3),

PP cos20)FiFs,

&
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ApitA !
Ao Ao e O P AP s FaF)+ B (R Fa) | +20,04 PP (1 o)~ Bl - F2F3)}
Ao~ Asg ’
iOlsTgo (CV+CA) (F Fs—F F4)+p, (FiF4—F F3)} 2C,Cp plp/Z(F Fat+FaFg) — pLF:z(F Fit+Fs F3)}
Aozt Ago Pl PLP; pIp
Tsing (CV+CA) (F FatFaFg)+ ,(F Fa+FaF3) +ZCVCA /Z(FlFs 2F4)_ - /Z(F Fa—FaF3) |,
Ag—A ’
%&fo —cz+c|P —(FiF5—F F4)+p, (F1Fa—FoF3)| +2C,Col = p,Z(F FatFoFy) — pi?Z(F F4+F2F3)}
L S P )
Aoz~ Az=0,
Azt Aa=25i20)(Cot CIPPEF
A=Ay PR pzpz 2 C2 C2 2 Pz pz
i—:(CV+CA) (Fi~F)———— (F 2)+ZCVCA T |(FI+F3),
Azt Agy PLP; pLp - p P! -
o~ (Ut CR)| G (FiFst FoF o) + S35 (FiFat FoFs) |~ 2CyCal - (FiFs—FoFa) ~ 7 (FiFa— FoFs) |
Az~ Asg PP, pLP P Pl
Trene ~(CUHCR| S (FiFa=FoFa) 5 (FiFy—FoF) | =2C\Cal = (FiFst FoFa) = (FiFatFoF)
Azt Az pLp, pLp _ p P -
“ang ~(CUHCR| 7 (FaFat FoFa) + 25 (FiFat FoFg) | ~2C\Cal - (FiFs—FoFa) = (FiFa—FoF) .
Az~ Agp P.P; pJ_ p PL Pl
Tcosmp —(C{+CR) rZ(F Fs—FaFy)+ rZ(F Fs—F3F3) [+2CyCp ?(F1F3+F2F4)_?(F1F4+F2F3) :
(A6)

wherep, =+2nb andp] = y2n’'b. The symmetric part of;; corresponds to Eqg15) of [11].

Let & and a be polar and azimuthal angles of the incident neutrino momentiy ¢ sindcosy, k,= w sindsina,

k,= w cos9), while 9’ anda’ be the same angles for the scattered neutrino. Then

D=(1+cosdcosd’){(Ci+Ca)(ee’ +pp.)(F3+F3)—2C,Ca(e'p,+ep.)(F53—F3)}+(1—cosd cosd’)
X{(Cy+CR)(ss’ —p,py) (F1+F3)—(Cy—CR(Fi+F3)+2CyCale’p,—ep;) (FI—F3)}
+sindsind’ cof a— a’'){2(CZ+C2)p, p|FsF 4+ (Ci— C2)(F3+F25)} +2sind sind’ cog a+ a’ —2¢)
X (C§+CRp.p] FiF,—(cost+cost’ ){(Cy+CR) (&' p,+ep;)(F5+F5) —2C,Ca(ze’ +p,py) (F5—F2)}
— (cos¥—cosd' ){(CG+CR)(s&" —p,p;) (Fi—F3) — (C{—CR)(Fi—F3)+2C\Ca(e'p,~£p;) (Fi+F3)}
—[sindcog a—¢)+sind’ coga’ — @) {(C{+CRIP e’ (F1Fa+FaFy)+ple(FiFs+FoFg)]
—2C\yCAlp, p;(F1F3—F3F4)—p; pAF1F4—F,F3) ]} +[sind cog a— ¢)—sind’'coga’ — ¢)]
X{(CG+CRIPLPL(F1F3—FoF ) +p) po(F1F4—F3F3)]—2CyCalpLe’ (F1F3+FoF,) —ple(FiF 4+ FoF3) 1}

+[cosdsing’ cog a’ — ¢) +cosd’ sind cog a— ¢) {(C3+ CA)[p, po(F1F3+F,F4) +p| pF1F4+F,F3)]
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—2C\Calp. e’ (FiF3—F,;F,) —p; e(F1F4—F,F3) ]} +[cosd sind’ cog e’ — ¢) —cosd’ sind cof a— ¢)]

X{(CG+CRIPp e (FiFa—FoF,)+ple(F1F4—F3F3)]1—2CyCalpypy(F1F 3+ FaF ) —pl pA(F1F4+FoF3) 1} (A7)

One can see thdd and, thus, the scattering cross section

. ' dpdp, 4)
depends ormr— ' rather than on the azimutal anglesand ~ 11=11(k,k")= 8¢

e’

(p'+k'=p=k)f(1-1")(pk)

a' separately:
, X (p'k),
. __L. o

Sm(a’_ﬁo)—qLSIn(a a )! |2:|2(k,k’):|l(_k,;_k)y

) ki ) |3:|3(k,k,)

sin(a’'—¢)=—sin(a—a'),
L dpdp’

:(kkf)f—,5<4>(p’+k’—p—k)f(l—f’).
1 EE
cos(a—q:)=I[kLCOSa—a’)—kl], (B2)

1 Here,p=(e,—p) andk=(w,—k) are the four-momenta of
coda’—¢)=—[k| —k, coga—a')], electron and neutrino before scattering, grid=(s’,—p’)
ar andk=(w',—k’) are the four-momenta of these particles
after scatteringf =f(e) andf’=f(¢’) are the Fermi-Dirac

cofa+a' —2¢)= iz[(kf +k/?)coga—a’)—2k, k! ], functions given by Eg. (9), with s=.1+p? and
e g’ =\1+p'?
(A8) The four-dimensionad function in Eq.(B2) describes the
where conservation of momentum

k, = wsind, p—p'=q, (B3)
whereq=k’—k, and of energy,
ki =w'sind’, a 9y
e'—e=A, (B4)
q, =[k*+k[>—2k, k| coga—a')]*2 (A9)
whereA=w—w'. Let us first perform the integration over
Equations(A8) cannot be used directly whem, =0, i.e., p’. We use the spherical coordinates with the polar axis
when w=w’ and a=«a’ simultaneously. If, however, alongq to integrate ovep. This yields
a=a' one has

sinfa—g)=sin(a’ —¢)=0,

l1=11(w,0',cod)

o [P [P st :
coga— @)= coda’ — ¢) =S w’ — ), —27Tf0 o f(1 f)f_ldnﬁ(s e—A)l(e,&’"),

cofa+a’'—2¢)=1, (A10) lr,=1)(w,0',co¥)=1,(—w',—w,cod),
where sgnk) =1 for x=0 and sgnf)=—1 for x<0. I3=13(w,0',coP)
When substitutingD into Eqg. (12), one should set 24
e'=etw—o' andp,=p,+k,—k;. =27-rww’(1—cos9)f P /p
0o €€
APPENDIX B L
Let us consider the neutrino scattering on non-magnetized Xf(1-1") f_ld’75(8/_ e—4). (BS)

electrons, whose quantum states are determined by the mo-

mentum p and helicity s. The differential cross section Here, 4 is the angle betweek andk’, 7 is cosine of the
doy; is calculated in the straightforward manner, using thepolar angle of the electron momentymand

Fermi Golden rule. After the averaging over the states of

initial and final electrons, we obtain ) 1 (2= o
I(e,e ):ﬁ dB(pk)(p'k’), (B6)
2 0
do 2Grw
do'dQ’ :(277)5w(C1I1+C2|2+C3|3)’ (B1) where g is the azimuthal angle gi.

Furthermore, we transform the energy consenarfgnc-
whereC;=(Cy+C,)?, C,=(Cy—Cp)? C3=C3—CZ, tion in Eq.(B5) as
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! h cosh)? w'?sifd  g%(1+cos)
[ — _ an= — CcO - - f
oe'—e=A) qm‘s(” 70) (B7) oT@leT@ 2 20%(1—cosd)
where a=w[20’+ ww'(3—cost)—w'?(1+3 cod)],
eA—wo'(1—cosh) (B8 a,=w?+ w'?+ wo' (3+cos). (B16)
o= > .
qve -1 The coefficientsay, a;, anda, coincide, respectively, with
'— et A and the coefficientsC, B, andA given by Eqs(16)—(18) of [5].
e =evTAh, an Analogously to Eq(B11) we obtain
q=Vo’+o'’— 2w’ co. (B9) 0’w'? "
l,=27—= (1—c039)2f de(ag+ae+aye?)
The condition73=1 determines the minimal electron en- q €min
ergy, which contributes to the integraB5): X f(1—f") (B17)
8min:1<q \/1+ ,;—A). (B10) In order to integrate over electron energy in E(311)
2 oo'(1-cos) and (B17), we use the energy conservatigi®4), and the
. . identity
Using Eq.(B7), we obtain
A
oo’ © f(a—-f")=f,| —=|(f—1"), B18
I3=2wT(1—cosﬁ) de f(1—-1"). (B1)) ( ) 7( T)( ) (B18)
here

w
Evaluation ofl ; is more complicated because of the pres-

ence of the integralB6). The latter integral is equal to

(B19)

1
1= e =1
I =8w8’w’—swp”’ kﬁ —s’w’p”k”-l— p”kaH,kH’ + % pt2r|?2é, EXF(X) 1

is independent of electron energy Our final result can be
where the subscripts|* and “tr” denote the vector com- expressed in terms of the integrals
ponents parallel and perpendicular qp respectively. The

electron momentum components determined by conservation
laws are given by

de(f—f')=TG,,

€min

_ 12 2 2 ”
=5 (e 2 —e?=ad), de e(f—1')=T?Gy1+ TeminGo.

€min

T (o122 2 o
P[=5q (e me"+aY), de e2(f— ) = T3G+ 2T2 Gy + Te 2y Go,
. min (BZO)
Pi= el '+ 2(e%+ e 2+ 2) %07 — (e7—'9)7),
q where
(B13)
G=G(y,y)=F(y")—F ,
and the neutrino momentum components expressed through =Gy YD =Ry —Fdy)
w, o' and co9 are A A
© W Y=Yot o Y =Yo~ oy
ki=—(w—w'cos), ki=—(wcof#—w'),
I™q 1™ q
2 2 \/1 —2 B21
) w’w'? Yo=or|e#™d +ww'(1—COS9) (B2
kG =——%—sir’. (B14)
q
and
Using Egs.(B13) and (B14), we obtain £de
w’w'? Fe(y)= fo Trexpé—y) (B22)

| =27 o (1—cos¥)?(ap+aje+aye?), (B15)

is a standard Fermi integral.
where Finally, using Egqs(B18) and (B20), we obtain
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22 A where ¢ is the azimuthal angle off, . From Eq.(C5) we
=27 (1—cos)f,, 5T obtain
X[apGo+ay(TG1+ eminGo)

+ay(T?Gy+ 2Te G+ £5iGo) 1.

lo=1l(w,0",cod)=1,(—w',— w,cod),

’

0w A
l3=2 (1—coa9)fy( - ?)TGO. (B23)
This result coincides with Eq13) of [5].

APPENDIX C

In this appendix, we transform the general expression for

the NES cross section &=0, introducing an arbitraryg

1 o
cos8=-L(p.~ p| cosy)cosp— p/ siny sing],

_ 1 ) _
sing= q—[pLSInxcosw(pL—chosx)smqo], (Co)
1

and

1 o
cos3’ =I[(picosx— p)cosp—p, siny sine],

1
sing’ =q—[plsinx cosp+(p,cosy—pj)sing]. (C7)
L

axis and integrating over orientations of the electron mo-

menta in the corresponding perpendicular plane. g etnd

B’ be the azimuthal angles of the vectprsandp] , respec-

tively, and y be the angle betweem andp] It is evident
that

dpdp’=3dp,dp; dpidp|*dx dB. (€1
From Egs.(B1) and(B2) we obtain
2 o
dwddQ’:ZiS-ra))5 jf dpidp! f_m%
X8(e'+w' —e—w)f(l—f)R, (C2
where
R=R;+R,+Rj,

Ri=C, [ "o Tdg alpL + KL —p—k (PR,
2w 2w , ,
Ro=C, x| dB a(pL + KL —p, k(K ('K,

2 2
R3=C3(kk’)f0 deo dB é(pl +ki—p.—k)).
(C3)

Our aim is to integrate ovey and B in Eq. (C3). We use

From the squared equatig@4), we determine two possible
“resonant” values of y which contribute to the integrals
over the directions op, andp] :

pf+p°—a’

AT

Vpi—a?)(af —pd)
2p.p;

siny, =(—1)* , (C8)

wherex=1,2 andp; ,=p; £ p, . We can rewrite theé func-
tion in Egs.(C3) as

2
V(pI—a?)(q?—p3)

S(pl+ki—p.—k)=

X 2, 8(x—xn)8(B—By),
A=1,2
(C9)

where the angle@, are determined by Eq$C6) and (C7)
with xy=x, . This yields

4C3(1)(1)IQ3
3= )
V(pi—a?)(aZ —p3)

(C10

the conservation of the transverse electron momentumyhere

which implies

p,—p. =0, (CH

where q, =k —k, . Combined with the relationg’

=B+ x, Eqg. (C4) leads to the following equations for g&s

and sirg:
(p.— P} cosy)cogB+ p| siny sinB=q, cosp,
(CH

—p_ siny cog8+ (p, — p; cosy)sinB=q, sing,

Q;=1-cosdcosy’ —sindsind’'cofa—a’). (Cl])

In this cased andd' are the polar angles, andanda’ are
the azimuthal angles & andk’, respectively.
The expression foR; contains the quantity

(PK)(p'K")=(ew—pKk,—p. Kk )(e' 0" —pk;—pK]),
(C12

in whichk, p, andk| p; depend on the integration variable
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x- Using Eqs(C6) and(C7), we can explicitly express these p k!
terms throughy: pik} == —[(p.cos—p)coga’ ~¢)
kaf%[(prpicosx)coia—cp) Fpsinysin(a’ = ¢)]. (€13
+pisinysin(a—¢)], This gives
|
4Cs00 Qy (C14

NP (P -pd)
where

! !

j(ew—pzkz><picosx—p1>cos<a'—<p

p k ! ! ! !
ww Ql (8(,0 P z)(8 w _pzk) lLl (¢'w _pzkz)

, (o , ) )
><(m—lmcosx)cos(oz—so)+—L ; —[(p.— p.cosy)(p,cosy—p;)coga—¢)coga’ — ¢)
1

+p,psifysin(a—g)sin(a’ —¢)], (C19

cosy and siry are given by Eq(C8). Notice that the terms proportional to gido not contribute t&®; since they cancel out
after summation ovex =1,2. Introducing cog{—«') and cosg+a’—2¢) and using Eq(C8), we obtain

2_ 12 2
Q1:88'+pZDQCOSﬁCOSﬁ’—SDQCOS&'—S'DZCO&?—(S—pZCOSﬁ)Sinﬁ’COSa’,—QD)%
L
2_1312)2 (n2 4 p'?)gP
—(s’—p;cosﬁ”)sinﬂcos(a—go) pL q +sindsind' coga+a’ — )(IOL P (zpl P %
ZqL 4qL
2,242
+sinﬁsinﬁ’cos(a—a’)w. (C19
In analogy with Eq(C14), we have
4C 00’
100’ Q; (C17

V=)@ -pd)’

whereQ), is obtained fromQ; by replacingd’ <~ ¥, a' < «. The final expression for the NES cross section reads

do _2G,2:a)’2 dpid +:x:dpz ,
do'd’ " (2m)° /] =D (e - J e’ +o’—e—a)l(1-1)0, (19

where the integration domain over the transverse electron momenta is restricted by the inegyalitiesand|p,|<q, . The
quantityQ=C;Q;+ C,Q,+ C3Q3 is explicitly given by the expression

Q=(1+cosd cosy’)(CE+Ca)(es’+p,py)+(1—cosd cosd’ )[(Ci+CA)(se’ —p,p;)—(CZ—C2)]

. . p12_+pjl_2_qJ2_ 2 2 . . 2 2
+sind sind’ cofa—a') er(CV—CA) +sindsind’ cog a+a’ —2¢)(Cy+Ca)

(Ci+CR)

(p?—p!?)%=(p+p*)q?

20 —(cos¥+cosd’)(C3+ C3) (&' p,+eps)— (cosd—cosd' )2C,Ca(e’' p,— epl)
1L

pi-pi?+al  pi-pi*-qf
+e
2q, 2q,

—[sindcog a— ¢)+sind’'cog a’ — ¢)](CZ+C3)| &’
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2 12 2 2 12 2
— + _ _
_[Sind cog a— o) — sind" cog a’ — )]2CyCal &' P Pe 1AL PLTPITAL

8[

29, 29,
2_ 2, 42 2_ 122
+[cosd sind’ cog a’ — @)+ cosd' sind cod a— ¢)|(CZ+ C3)| p. PP 74, Zpl Pr — 4
29, 29,
2_ 124 42 2 42 2
—[cosd sind’'coq a’ — ¢) — cosd’ sindcod a— ¢)]2CyCa| P, T ZpL S . (C19
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