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Bethe-Salpeter equation in QCD in a Wilson loop context

N. Brambilla, E. Montaldi, and G. M. Prosperi
Dipartimento di Fisica dell'UniversitaSezione di Milano, INFN, Via Celoria 16, 20133 Milano, Italy
(Received 28 December 1994; revised manuscript received 13 Novembgr 1995

We give a nonperturbative derivation of the Bethe-Salpeter equation in QCD based on the Feynman-
Schwinger path integral representation of the one particle propagator in an external field. We obtain a path
integral representation for a second order quark-antiquark amplitude in which the gauge field appears only
through an appropriate Wilson loop integidl. Then, for such a quantity we derive g BS equation
assuming thatlnW can be written as the sum of a perturbative contribution and an area term as in the
derivation of the heavy quark potential. We also show that, by standard approximations, an effective meson
mass operator can be obtained from our BS kernel. From this the corresponding Wilson loop potential is
recovered, by 1h? expansion, spin-dependent and velocity-dependent terms included. On the contrary, ne-
glecting spin-dependent terms, the relativistic flux tube model is reproduced. The method is illustrated also on
the simplified case of two spinless particles interacting via a scalar field and on a one-dimensional potential
model.[S0556-282(96)02115-7

PACS numbses): 12.38.Aw, 11.10.St, 12.38.Lg, 12.39.Ki

[. INTRODUCTION whereI" denotes an appropriate closed loop in space-time,

Various approaches to the relativistic bound state probler,= 2 AZ\? is a color matrix,P the ordering prescription
in QCD have been considered in the literature in terms oflongI’, and the expectation value stands for a functional
numerical simulations on a latti¢é,2], relativistic Hamilto-  integration on the gauge field alone. By the use of the path
nians[3], and effective Lagrangians. In particular, attemptsintegral representation for a Pauli-type quark propagator in
have been made to apply the Bethe-Salp@&) equation to  an external field, the evaluation of the potential is reduced to
a treatment of the quark-antiquark bound states involvingan evaluation ofV. For such an evaluation the simplest as-
light quarks as well as heavy ones, hoping to obtain a unifiedumption is to writei InW as the sum of a perturbative term
and consistent description of the spectrum and of the propand an area term
erties of the mesons.

In all BS attempts, to our knowledge, the choice of the
long range part of the kernel was purely conjectural and only HINW=1(InW) perit 0 Siin» 1.2
made in such a way that the successful static heavy quark
potential could be recovered in the semirelativistic limit. The
most usual assumptions were those of the so-called scalar being the so-called string tension agg,, the minimal
confinement and vectorial confinement. Both choices, in adarea enclosed by. In Eq.(1.2) ordinary perturbative theory
dition to being not theoretically motivated, meet with con-and lattice theory results are combined. The first quantity is
ceptual and phenomenological difficulties. A scalar-typesupposed to describe the short range forces, the second one
confinement kernel fails in reproducing straight Regge trato correspond to the long range ones. A te@® propor-
jectories[5], yields unstable variational solutiori§], and  tional to thel’ perimeterP can be also included; we do not
generates wrong velocity-dependent potentials in the semiregonsider it explicitly here, since such a term turns out with
lativistic limit [7,8]. Similarly a vectorial-type confinement the same form of the kinetical terms and apparently it can be
kernel generates a wrong spin orbit and velocity-dependernigabsorbed in a redefinition of them. More sophisticated ex-
potential[6,9]. pressions than Ed1.2), based on a perturbative theory in a

For the above reasons a derivation ofj@ BS equation nonperturbative backgrourid], are possible but will not be
from QCD first principles would be highly desirable. One of considered here. Obviously, in the above, confinement is in-
the main difficulties along this line is that the usual justifi- troduced through the second term in Ef.2).
cation of the BS equation works in terms of a resummation In this paper we shall start from E¢l.2) and, using the
of the perturbative expansion and such a method cannot @variant Feynman-Schwinger representation for the full
applied to the case of a confining theory. To overcome théluark propagator in an external figlidther than the semire-
difficulty it is necessary to develop an intrinsically nonper- lativistic one used i110,11)), we shall arrive at a BS equa-
turbative method. We try to do this in the present papertion for a “second order” quark-antiquark Green function.
modifying the approach already followed in the derivation of The need to resort to the second order formalism is related to

the semirelativistic potential for heavy quarks. the use of a path integral representation. In a sense the final
To obtain theqq potential the basic object is the Wilson equation corresponds to the ordinary “first order” BS equa-
loop integral tion as the iterated Dirac equation corresponds to the ordi-
1 nary one.
W= TrPexp{ ig § - dx“A,) , (1.1) Eventually, in the center of mass frame we obtain a kernel
3 of the form
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It should be mentioned that our formalism is strictly re-
lated to that developed by Simonov and collaborators to es-
tablish an effective relativistic Hamiltonid8]. Notice also
that a preliminary account of our results has been already
presented if11] and[12].

From the above kernel, in the limit of large quark masses,
we can obtain a semirelativistic quark-antiquark potential by
standard techniques. Such potential is obviously identical to
the one derived inM10,11], spin- and velocity-dependent
terms included.

On the contrary, if we neglect the spin-dependent terms
and perform an appropriate instantaneous approximation, but
maintain full relativistic kinematics, we obtain the Hamil-
tonian of the so-called relativistic flux tube modéB—15.

We stress that, even if we have not yet performed any
explicit calculation using the full expressidh.3—(1.6), the
results obtained if3,13,8 (which should be considered as
referring to limit cases suggest that our kernél.3)—(1.7)
should overcome all the difficulties encountered with the
phenomenological kernels.

The plan of the paper is the following one. In Sec. Il we
illustrate our nonperturbative method of derivation of the BS
equation in the model case of two spinless particles interact-
ing through a scalar field, to which also the usual perturba-
tive derivation applies: In this way we have in particular the
opportunity of discussing the meaning and the limitations of
the various approximations we have performed. In Sec. lll
we discuss the evaluation ahW. In Sec. IV we introduce
the Feynman-Schwinger representation and obtain a corre-
sponding path integral representation for the second order
qq Green function. In Sec. V we derive the inhomogeneous
BS equation and obtain the kernel given by E4s3—(1.7).

In Sec. VI we write the homogeneous BS equation and dis-
cuss the instantaneous and the semirelativistic potential. Fi-
nally in Sec. VIl we draw some conclusions and make some
additional remarks. The appendixes are devoted to technical

In such equationsrs denotes the strong coupling constant, jetajls and to an illustration of the derivation method for a

D,,(Q) denotes the free gluon propagatand we set

P1tP1 P2+ P2 .,
=% =% Q=p1—P1=P>— P2,
1.7
with g, = —d=q, qp=(8"-F"gk,

Equations(1.3)—(1.7) are the main result of the present

paper.

They have to be considered as the lowest order terms in

one-dimensional potential model.

II. PROPAGATOR AND THE BETHE-SALPETER
EQUATION FOR SCALAR PARTICLES

Let us consider two scalar “material” field$,; and ¢,
interacting through a third scalar field with the coupling
2(0105A+0,p5A)  (typically we may think  of

mixed expansion in the constaat and in the quantity 91=—92=0). After integration overg, and ¢,, the full
oa? (a being a typical length, like the radius of the megon One-particle propagator can be written as
As we shall see, there are indications that the term in

(0a®)? in the expansion is small.

!In the Coulomb gauge we tak®,, with the form

1 1
Doo(X) = — i &(Xo),

Dok=Dyo=0,

4 h k
d'k 1( hk kk)e—ikx_

P ) el ? e

GY (x=y)=(0[T[¢;(x) ;(y)1[0)=(IAV(x,y;A))
_ [DASMIM(A)IAD(x,y;A)
B [DAESMM(A) ’

(2.1

whereAW(x,y:A) is the propagator for the particjein the
external fieldA, Sy(A) is the free action for the field, and
the determinantal factdvl (A) comes from the integration on
the fields¢; :
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de(9#9,+m’—g;A)|~* 1 . ¥ 1 f .
= -0 J) —g?2 | d*xd? Dyx—
det973, ) =1+ 2}2 gJJ d*xA)AL(0)+ 56 | d*xdlyAC)AL (x—y)

M(A)—

=12
2

XAWAP(y=x)+ - oo (2.2

1 .
> ngd4xA(x)A<FJ>(0)+-.-
8\i52

whereA(J) denotes the usual free scalar particle propagator.
The covariant Feynman-Schwinger representatiom\éh(x,y;A) reads

. i (= X s
A(J)(X’y;A):_EL dSJ Dszexp'ideT
y
i (= x (s |1
——EL dsfyDzexp{—lfodr >

where the path integral is assumed to be extended over all péthg”(7) connectingy with x [0<7<s; z(0)=Yy,
z(s)=x]. Obviously in Eg.(2.3) z stands fordz(7)/dr and the “functional measures” are defined as

}

I o3

1 1, 1
_p,uzﬂ_*—ip,u,p'u_zmj—i_zng(z)

) 1
(Z2+m)— 59/A(2)

2N
d*py ---d*py-_1d?py,

PO B LRI pp=|1f
2=\ 50 Z; IN-1) P=l5-

1 4N
DZDPZ<E) d*p;d?z;- - -d*py_1d*zy-1d*py 2.9

(e being the time lattice spacing ard-0 being understogd
Replacing Eq(2.3) in Eqg. (2.1) we obtain

GY(x—y)== f dsf Dzexp{——f dr(22+m?)

<exp| f d A(z)]> (2.5
and, if we take simpiyM (A)=1 (quenched approximatipn

iq. s ig2 (s T
<eXp{ I%f drA(z)]>=exp{—%f drf dT’Dp(Z—Z’)J, (2.6
0 0 0

Dr(x) being now the free propagator for the figddgiven by

d4k e—ikx
De(x)= 2mt K&

Similarly, for the two-particle propagator,

Ga(X1,%2;Y1,Y2) = (O T[B1(X1) a(X2) (Y1) 2(¥2)110) = (1 AP (x1,y1;A) I AP (xz,y2;A))
(1 2 o e X1 X2 i (s1 O o

><< p{ fdrlA(Zl J'deA(Zz)]> 2.7
and[always forM (A)=1]

. . .2
| S: | — 10 S: P

ex &J "drAlzy) + ng dmA(zy) | ) =expl D g‘J dejf 'd7/De(zj—2))
2 Jo 2 iS22 4 Jo o 1 !

_|%J dTlf d'TzD (Zl 22)] (28)

[z; stands forzj(;), z{ for zj(7{)]. In conclusion we have
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X2 i
Ga(X1,X2;Y1,Y2) = ()2f dslf ds, Dzl DzzeXP{_EJ d71(21+m1)__f dTlf d7iDg(z,— 21)]

Y2

. )
1 (s2 o P Y 2, ,
Xexp — 5| dry(zz+my)—— | drp| d7mDe(z,—12z)
2)o 4 Jo 0
i
Xexp{ g:QZf dTlJ' dTZDF(Zl Zz)] (29)

Equation(2.9), using the identities

i s s | S S | B S
exol — glng 1d71f %4 r,De(21-25) :1_%f ldrlf EdraD(zs— 200 glng 1d71f *4riDe(z—2)),
4 Jo 0 4 Jo 0 4 Jo 0

(2.10
X; Xj zi(1;)=¢;
"Dz, .. fd“gf’ DzjfJ "y,
Yj (T) §J Yj

J

becomes, after some manipulation,

4

« @ *® @ a 4 X1 X2 zy(7m1)=§1
X dTl dSl d’7'2 dSZ d §1 d fz Dzl DZZ Dzl
0 1 0 72 z9(1)=¢1 2y(1p)=¢&7

y1
Zy(1p)=&5 S
Xf Dz,De(§1—&o)ex del
Y2

71

S2 [ 92
+f dTé __(Z +m2)__f d'TZ F(ZZ

T2

i9102(1 2
Ga(X1,X2;¥1,Y2) =Ga(X1—Y1) Ga(Xa—Y2) — (E)

i '2 gl T "
i +m1)_7j 47D (2}~ zl)}
L, i .2 g]_ -
X ex . dry| — (z +m1)—T d7iDr(z1— 7))
T | T T
+f “dr) ]exp[— gjlng 1d71f zdréDF(zi—zé)]
0 0 0
i g % S1 ' 1 " ’ " I g g S2 ! 2 " ’ "
xXexp — = dry dTlDF(Zl_Zl)_T dry [ d7De(z,—25)
T 0 72 0

i T s
- glng 1drif sz;DF(z;—zg)]. (2.1
4 0 T

If we replace the last exponential with 1, we obtain immediately the Bethe-Salpeter equation

i 2 92 [+ " ’ "
_—(Z +m2)—Tf ZdTZDF(ZZ_ZZ)

G4(X1'X2,y1a)’2):Gz(Xl_Y1)G2(X2_YZ)_if d4§1f d4§2f d47llf d4772G2(X1_§1)
XGa(Xo= &) 1(€1,62: 11, m2)Ga( 11, 72,Y1,Y2), (2.12

with the ladder approximatiorkernel

1(€1,€2,m1,m2) = 010D (&1~ &) 8 (E1— 11) 84 (E2— ). (2.13
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On the other hand, had we considered even the second term in the expansion of the last exponentialid) Bge would
have obtainedsee Fig. 1 and Appendix)B

1(€1.€2,m1,m2) = 010D (&1~ &) 8%(&1— 1) 8%~ ﬂz)_igigzj d*¢1DE(€1— 171)Ga( 1= £1)Ga( L1~ 1) De(41— m)

X 84 (&, nz)—iglggf d,6%(E1— 11)De(€a— 72)Ga €a— £2)Ga({o— 172)De( 71— {o)

—ig295Dr(&1— 172) G €1~ 71) De(éa— 11) G = 7o) + - - - (2.14

Finally one can go beyond the quenched approximation and take into account additional term&i@)E4fter eliminating
tadpole terms this would amount to replacing E2}8) with

igl S1 |gz S2
ex _J dTlA(Zl)+_J deA(Zz) =eX J dTJJ dT
2 Jo 2 Jo iz 12

XDe(z — &)X [AP(é= 7)) De(n—2))+ - --

De(z=2)+ 2, Jd“éJ d*y

i S S
- glng 1d71f 2d7'2
4 Jo 0

_ 2 g_'z 4 4 — ) e_ 2
Drzi-2)+ 3 5 | d'é | d'aDe(z- O1AL (- 7))

X

XDg(n—25)+

. ] (2.1

and so to insertp; ¢, and ¢, ¢, loops in all possible ways (whereD,=d,—igA, andL g is the gauge-fixing terppin

inside the graph. which the quarks are fermions and have spin &nd the
Notice that the final form of the kernel we have obtainedflavor index.
is expressed as an expansion in the coupling consgaraad In this case we find it convenient to work in the second

g, as in the ordinary derivation. However, in the methodorder formalism.

described, once we have written Eg.8) and set the last As usual the gauge-invariant quark-antiquark Green func-
exponential in Eq(2.1]) equal to 1, Egs(2.12 and(2.13  tion is given by

follow exactly. So perturbative expansion appears only at the

level of successive corrections and not in the basic approxi-

mation. This is the reason for which the method applies even G4 (X1,X2,Y1,Y2)= (0|T[ W5(Xo)U(Xo,Xq) th1(X1)

to QCD when we replace Eq2.8) with Eq. (1.2). Actually,

as we have already mentioned, we shall see that in such a X%(Yl)U(yl,h)@(Yz)HO)

case the kerndl is obtained as an expansion bothadgand
oa?. Obviously by Fourier transformation of E(2.12) we
may pass from this to the more usual momentum counter-
part.

1
= §Tr(U(x2,xl)S(l)(xl,yl;A)

XU(y1,Y2)C 182 (y,,x,;A)C),

3.2
I1l. QUARK-ANTIQUARK PROPAGATOR @2

Let us consider now the case of QCD. The QCD Lagrangwherec denotes the charge-conjugate fiel@sis the charge-
ian is conjugation matrixU the path-ordered gauge string,

Nt U(b,a)=Pbaex;4igfbdx”“AM(x)} (3.3
£=3, dy(iy*D, =M 5 JFuFP Lo (3 ;

(the integration path being an arbitrary line joiniago b),
S®) and S the quark propagators in the external gauge

I=}; . g . 5 ) Z _ field A%, and obviously

_ ID[AIM{(A)f[A]e'SIA)
LAY == D ATM, (A AT

3.4
FIG. 1. Graphical representation of EQ.14). 34
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S[A] being the pure gauge field action akid(A) the deter- S(X,y;A)=(iy"D,+m)A (X,y;A), (3.6
minant resulting from the explicit integration on the fermi-
onic fields[in practice, howeverM;(A)=1 in the adopted we have
approximation.
The propagator§*) and S are supposed to be defined D Di4m2— L goh’E AT v A) = — 4 (x—
by the equatiorifor simplicity from here on we suppress the (D M= 2 9o F L) A7 YiA) (x=y)

particle indexj when there is no ambiguity (3.7)
(iy*D ,—m)S(x,y;A) = 84 (x—y) (3.5  (@"=(i/2)[y*,¥"]). Then, after replacing Eq3.6) in Eq.
a (3.2, we can check that we can take the differential operator
and the appropriate boundary conditions. out of the angle brackets by taking into account gauge in-
Alternatively by putting variance and we can write
|
G Xy, X2:Y1,Y2) = (i Y’fﬁ_xlﬂ"‘ my) (i ‘}’5'9_xzy+ M) HE'(Xq,X2:Y1,Y2), (3.9
with
Gl . 1 (1) . A(2) A
Hz (X1,X2:Y1.Y2) = — §TT<U(X2,X1)AU (X1, Y1, AU (Y1,Y2) A7 (X2, Y2, —A)). (3.9

Here the tilde denotes transposition on the color indices alone, vT;J]LIeare derivatives appropriately defin&d.
Now, notice that for Eq(3.7) the Feynman-Schwinger representation can be written

i [ is
A (x,y;A)= _Efo dSnyTxyEXp[ 5(—DMD"—m2+ 3 gU”VFM)}

i (= x e
:_EL dsfyDszyTXyexp[|f0dr

Py andT,, prescribing the ordering along the path of the color and of the spin matrices, respectively.
Furthermore, as a consequence of a variation in the pdth) — z*(7) + 6z*(7) respecting the extreme points, one has
[remember thaz=2z(7), z'=z(7")]

1 2, 52 z g v
—E(m +2°)+gA,(2)2° + Zo“ F.(2)

] , (3.10

5( nyexp[igfsdr'z“Aﬂ(z)] ) =igfs68/”(z)PXy( —FM,,(z)exp{igfsdr"z’“AM(z’)] ) (3.11
0 0 0

1
with 6S#¥(z) = E(dz”&z”—dz"&z“). So one can write

1 s 5 H s rour ' H s . v
Txyexp( - Zfodra“”m)(nyeXp{lgfodT VA (z )} ) =Txnyyex%lgfodr[zﬂAM(z)vL ot FMV(Z)]],

3.12
and Eq.(3.10 becomes
A (X Y;A)=— IE j:dsfxl)z PXyTXyS?,exp{ i Josdq-[— 1(m?+ '22)+97A#(z_)]] , (3.13
y
with
1(s S
é'f):exr{ — Zfo dro* 55/“’(_)1. (3.19

2We notice that, given a functiondb[ y,,] of the curvey,, with endsa andb, under general regularity condition, the variationdaf
consequent to an infinitesimal modification of the cugpve y+ &y can be expressed as the sum of various terms proportional respectively
to éa, b, and the single elemenssS,,(x) of the surface swept by the curve. Then, the derivatiygsdy,, and 5/ S7(x) are defined by
the equation 6@ =6a’d,pP + SbPdpe® + [ ,657(x) 6O/ 5S7(X). In our case this would amount to putting naively,”
P Sodx A, (x)]=—PT'[[2dx“A,(X)]A () and dyefJdx A, (x)=A,(b)Pf'[ [2dX A, (X)].
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In Eqg. (3.13 it is understood that”(7) has to be put equal ®*(7) after the action ofS3. Alternatively, it is convenient to

write z=z+ ¢, to assume tha$j acts on{(7) with §S**(z) =3 (dz*5{"—dz"5¢*), and to set eventually=0.
Replacing Eq(3.13 in Eq. (3.9) we obtain

i (s1 ) i sz .
HS (X1 ,%2:Y1,Y2) = (3) J dslf ds, , Dz1 , DzzTlelTx s SSZEXP[_EL drl(m§+z§)—§fo drz(m§+z§)}
1 2

x%<TrPrexp[ig fﬁ r d?AM(ﬂ} > (3.15

where nowlI is the closed loop made by the quark world lifig, the antiquark world lind", followed in the reverse
direction, and the two lines;x, andy,y;; z is set equal t(fz zj+{; onT; or simply equal ta on x;X, andy,y;; again the
final limit {;—0 is understood.

Apart from the spin complication8.15 is analogous to Eq2.7) and the Wilson loop integral appearing there is analogous
to the right-hand side of Eq2.8). For this reason before going ahead we need to elaborate furth€t.Bqln QCD such an
equation plays the same role as E2.8) in the scalar model.

IV. WILSON LOOP INTEGRAL

Let us come back to Eq1.2). To make real sense, this equation has to be understood in the quenched approximation
[M{(A)=1]; furthermore, the perturbative term has to be kept at the lowest order. Otherwise, perturbative and nonperturbative
contributions should be untangled and a simple additivity assumption would be no longer correct.

So for the first term in Eq(1.2) we can write

4251 S2 __V2251 st ,
=§g o d7y o d7,D (21— 2,) 22— §9 o dry o dmD,.(21—27)

pert

(INW) per=i In< %TrPexp[ ig % FdzﬂAM(z)] >

. 2 (= 2, e
Xzh'zy —§g . dr, . d7m,D (2~ 2;) 252"+ - - -, 4.1

while for the second term in general we should write

J’tfdtj N au* au,,\ [ au” &u) Ju* gu,,\ 212 s
ot <9t N ON gt oN : 4.2

x"=uk(\,t) being the equation of the minimal surface with we shall writ€ in generalL=1(z;,2,,2;,2,,I') and
contourI".

- 0 0
Let us assume that for fixedwe have Siin= f?dzﬁfyﬁzdzgé(z‘f—zg)L(zl,zz,zl,zz,F)
2
UA(Lt)=2Z{(71(1)), u*(0t)=25(7,(1)). (4.3

= dfd&z —2)2200(21,2,,21,2,.T).
Since Eq.(4.2) is invariant under reparametrizaticm priori f i T2 )L (2,2, 21,2,,T)
the parametet could be everything. However, F; and

I', never go backwards in timé,can be chosen as the ordi- 4.
nary time,u(s,t)=t. Thenry(t) andr,(t) are specified by |n principle this expression can be considered a good ap-

the equation proximation even if the world lines contain pieces going
0 0 backwards in time. In fact, in such a case, if we fix, e.g.,

21(71)=25( 1) =t (4.4 7, Eq.(4.4 has more than one solution i and, ifI"; and

I', are not too much irregular in spa¢etherwiseS,,, is

and we shall set large and the weight of the loop is smalthe minimal sur-

face can be reconstructed as the algebraic sum of various

1/2 .
pieces of surface.

1 gu* du,\ (du” du,\ [du* du,, 2
L= dA|— +| ==
0 gt ON I\ ot N
(4.5
Reparametrization invariance and cumulant expangl6h sug-

Obviously L cannot depend on the extremal poimtg ;) gest the form L=L(2,,2,,21,2,)+ [d7rifdmyLlo(21,25,21,2;
andz,(7,) alone, but it has to depend even on the shape of;,z;,z;,z,)+ - - - with Ly, L,, ... homogeneous functions of de-
the world lines, at least in a neighborhood of such points. S@ree 0 inz,,z, and of degree 1 i} ,2,,2;,2;, . . .
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In practice, to have an explicit expression fgrwe shall  plane and the case in which they are trajectories of the
adopt the straight line approximation consisting of replacingdouble helycoid type. In the semirelativistic limit they are
Smin With the surface spanned by the straight lines connectinglso exact up to second order terms in the ordinary velocities
two equal points o’y andI',. This amounts to taking in [10]. So the approximation seems to be a sensible one.
Egs.(4.2 and (4.9, Notice also that in Eq(4.1) we have neglected the con-
tribution coming from the two strings;x, andy,y,, while
0 _ k _y Sk _ k 1X2 1Y2
unD=t WD =AZy (r (D) + (1= M) Zp(7o(1)). in writing Eqg. (4.6) we have not taken into account two

4.7 border contributions td,,, corresponding tc»((l)ixg and
Then we have yJ#y9. This is correct forx}—y? and x3—y9 large with
X respect to]x—xgl, |yi=yal, X}, and y3-y3. So,

8L =|z,— 7, fo d\{Z2 2% strictly, we are going to obtain a BS equation for a quantity

H, which coincides wittH$' only in the above limit. This is
—[AZy1Zo0+ (1= N) Zpr210] 222, (4.9 immaterial for what_ concerns bound stgtes or asymptotic
states but actuallid 4 is no longer a gauge-invariant quantity.
where T  denotes the transverse component Obviously Eq.(4.8) is not covariant, and so we assume it
'thTz(ahk_fhfk)'zjh with r=z,—2z, and f"=r"/r. Notice in the center of mass frame. Finally we stress that such an
that Eqs.(4.7) and (4.8) are exact equations in two limiting €duation shall be imposed onéfter the application of the
situations, the case in which the two world lines lie on aoperatorsSyt and S2.

V. BETHE-SALPETER EQUATION IN QCD
Substituting Eqs(4.1) and(4.6) into Eq. (3.15 we obtain

o o X1 X2 i (s . i (2 .
H4(X1,X2;Y1,YZ):(%)ZJ dslj ds; | Dz DzszllexzyZSSlS(sgzeXP{ - Ef dry(mf+2))— Ef drp(m3+25)
0 0 Y1 Yo 0 0
2_2 Sy S2 .. 2 Sz Sy L.
+ —ig f drlf d7riD,(z1—21)2,"71" + —|ng drzf d73D (2~ 25) 2525
3 0 0 3 0 0
. [St S2 — . -
—I1 dTl deE(Zl,Zz,Zl,Zz,r) y (51)
0 0
where we have set

E(Zl,Zz,ZLZz,F):§92DW(21_22)Z;1LZ§+05(210_220)21022&-(21,22121,227F)- (5.2

Equation(5.1) is analogous to Eq(2.9); however, the occurrence @, and z, in the interaction term requires a slight
modification of the method used in Sec. Il and specifically a change from the configurational path integral representation to the
phase space one. This can be achieved by performing a Legendre transformation on the quantity occurring in curly bracket
(without the factori). Denoting such quantity b and introducing the momenta,; = — 5@/5'21” we have

. 4 Sy . S2 aE(zl,zé,il,ié,l)
_ 2 ’ AY122 '
Pu1=2Zu1 3g fo dmD,.(21—21)z; fo dr, (9'2‘1‘

IE(21,23,21,2,1)

iy

' 4 2 2 ! o ST\ v 1 !
Pu2=2Zu2— §g Jo d7m,D ,.(2,—2;)2, +J1) dry +.-, (5.3

where the dots stand for possible additional terms due to the explicit depender¢eabnfootnote 3. Equation (5.3



3514 N. BRAMBILLA, E. MONTALDI, AND G. M. PROSPERI 54

cannot be inverted in a closed form with respeciziaand z,; however, we can do this by an expansiorvig=g2/4 and
oa®. At the lowest order we have

&E(zl,zz,pl,pz,F)
apy

si=pt+ 2g? [ *amD,z-zypp- [ Zdry
1 1 3 0 1Y uv\ 41 1/ M1 0 2

. 4 S o s JE(zL,,25,p], ,F)
2=py+ 50| "dniD . @ Bip - [ Mo = PLPal) 5.4
3 0 m 0 z9p2
with
pr=pier. (5.9
In conclusion we findup to a determinantal factor that in this approximation can be set equal to 1
X2
Ha(X1,X2,Y1,Y2) = (%) f dslf ds; Dzlpplfy DzyDp, Ty, T ><2y2$SlS52
2
S1 S2 S1 S2 -
XeX%iJ‘ dTlKl"Fif deKz_if dTlf deE(Zl,Zz,pl,pz,F)"F"' y (56)
0 0 0 0
where
R PPN b T — TNTET

includes the self-interaction term. Notice that here iSSJ' it must be understood that§S*(z)
=3 drj(pf' 6y —pj8Lf)+ - -
Now, using the identity

S1 S2 R — S1 S2 R — T1 S2 S
exf{f dTlf dTZE(Zl!ZZ!pl!DZIF)}:l—i_f dTlf deE(Zl,Zz,pl,pz,F)eX%JA d’Tif dTéE(Zi,Zé,pi,pé,F)],
0 0 0 0 0 0

(5.9
corresponding to Eq2.10, we have
X NE! [ 32
(Xl X2,Y1, yz)—( ) J’ dslf dSZ DZlelf ’DZZDpzTlelTXZyZS(S)lS(S)Z{ ex%|fo dTlK1+|j0 deKz
Y2
(s S2 N
—|JO dTlfO d7oE(z1,2,,p1,p2,T)
(S L[ S2 st S2 N
Xexr{J drlKl+|f d72K2—|f dTiJ dréE(zi,zé,pi,pé,F)H. (5.9
0 0 0 0

To obtain from this an equation analogous to Exj11) we need to commutéf)lé‘gz with E. To this aim, bearing in mind Egs.
(5.2) and(5.7) and going back to the original forii@.5) for L, we find first(see Appendix €

97[9,D 40(21—25) = 9,D (21— 25) 1p5 + 0 8(Z10~ Z30)

5 fsld /fszd /E ! ! ! /F_fd 4
357z ) 9T, 972 (21,23,P1,P2,1) = To| 5

plv(zlu_zé#)_pl,u(zlv_zév) N l
VPl pD(z—2)%+[py- (22— 25)]?

(5.10

and a similar result, with a minus sign in front, for the derivatdé/éS*”(z,). Furthermore,
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i Fld ”Jde E= 0 Jsld "de "E=0 5.1
5521657z Jo VL]0 AT S5 (g 057z Jo 9] AT2ETO: .19
but
52 st (52, , 4 2 s ) ”
STy 55z, JO d7) fo dr5E= 502 0, = 80,0, (85,00, ~ 87,0,)D (21 22). (5.12

Then, taking into account the relation
o1
e’Be A= D, TIALA . [AB]..]]. (5.13
n=0 N
we have

f dnf 7S] ST TE(21,25,P1, P2 DS ES2E0) 7

T*S T*S

1 1f driotn— 0 [ 1f52d' par__ O f d fszd E(Z1.22.p1.02.T)
4 7! T4 T T Z !Z 1 1 1
4 1% 58’“1]}1(2 i) 49 292 5912112(2 2) 1 2 1:Z2,P1,P2

= R(211221pl!p2)1 (514)
with
R=Rperi™ Reont: (5.19
4 2 P 1 4 g 1 BV SO o P
Rpert: - gg Dpo'(zl_ZZ)plpZ_ _0-1 (5 alv 2 ‘91M)Dpa'(zl ZZ)pZ_ _0-2 (5,4;‘9211_ 5V(92,M)Dp0'(21_22)p1
1 /"lvl MH2V2 VY
+ 7z 16 0-2 (5”,1&1111 ﬁl,ul)( 52,,2 ﬁZuz)DpU(Zl_ZZ) (516)
and

L P1(Z1,=25,) = P1u(Z0,— Z2)

|z1— 25| VP10~ PIT

L~ 7

1 1
Reon= 06(Z10— Zzo)[ fo d\ VpIop2e— [AP1TP20t (1—N)ParPiol?— 2 P2ooy

1 u
+Zp1002

Z1,— 2 - Z,,—Z
Vp2V( 1w 2,4/,) pr,( 1v ZV)J. (517}

21— 2| pgo_ pgT

Notice that in Eq(5.14 we have eventually suppressed reference to the ITbapd this amounts to adopting the straight line
approximation.

Finally setting

Ho(x—y)=— %fowdsjnyszTxyéﬁexp‘ i f:dTK] , (5.18

we can write Eq(5.9) as

Ha(X1,X2;Y1,Y2) = HSP (X1 =y ) HE (X2~ y2)

X2 S1 S2
-7 f ds; f ds; Dlepl f Dz,Dp;Tyy, Ty, fo dry fo d7oR(21,2,P1,P2) St S
Y2

(S [ s2 Rt S2
xexp[lf dTiK1+'j dTéKé—If drif dTéE(zi,zé,pl,pz,F)]. (5.19
0 0 0 0

At this point, to go ahead it is necessary to take explicitly into account the discrete form @.E§. If we set
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Pexp{ig é dz*A ,(2) M)} (5.20
r o 2 .

by manipulation in part similar to those performed on E211), we obtain the following the Bethe-Salpeter equation for
H, (see Appendix D for details and Appendix A for illustration of a potential mpdel

= Pl;[ U(z,,24-1)= Pexp[ ig; (zZh—z_ A,

H4(X1,X2;,Y1,Y2) = H(zl)(xl_h)H(zz)(Xz_YZ) —i J' d4§1d4§2d4771d4772H(21)(X1_ §1)H(22>(X2— ENN(E1,62,m1,7m2)

XHa(171,72:Y1,Y2)s (5.21
with
d*k,d*k +
(1,62, m1,m2) = — f (2177_)82 512771:52 klrk2)exp{_|[(§l n1)K1+ (€2— 72)Ko]}- (5.22

In conclusion, in momentum space, after taking the Fourier transform,
L, . d*k, d*%, . o
(277)45(p1+p2—p1—pg)l(pl,pz;pl.pz)=—4f d4§1d4§2f d*n,d*n, WWG (P -k)6a 1P ko) &

&1+ m §2+ 72
2 2

XR Ky Ky | €/(P1 ko mti(py—ka)m (5.23

we obtain at the lowest order ims and inca? the kernel given in Eq91.3—(1.7).

VI. HOMOGENEOUS EQUATION AND EFFECTIVE obtained from i(k k',P) by setting kozkéz 75(W1
HAMILTONIAN +Wp)/2— py(Wy+wp)/2  with w;= \/mj2+ k* and w]
Let us now consider the usual decomposition offthen = Vm; +k*’. Then we put
a single bound state contributior (27)*8*(py+p,
p:—Pp5)H, denotes the Fourier trasform bff]: K) = | 2wa(K)wa(k) (= dk-®o(Kk
== 6.3
QDP( ) Wl(k)+W2(k) i kO P( ) ( )

. P g(k)Dg(k’
Ha(k,k',P)=> —Béz) ;(2 )+regular terms,
= -

A and integrate oveky andkg, using

(6.
1
where we have explicitly introduced the total momentum f dko(k0+ 71Mg)2—KZ—mZ+ie
P=p;+p, and the relative momenta= »,p,— ,p, and
K'=72p1— 1715 with n1=my/(My+my) and v 1
7,=m,/(m;+m,) [®g(k) being a kind of second order BS (—ko+ 7,mg)2—k2—m3+ie
wave functior. Replacing Eq(6.1) in the momentum space
inhomogeneous BS equation corresponding to(E@.1) and — W1+ W, 1 6.4
taking the limit P>—m3 in the usual way, we obtain the T W, mE— (Wt wy)? '
homogeneous equation
We obtain
o (k)=—if a HSY (9, Pg+k)HS (1,Pg—K) 2
B (2m)3 12 1B 2 \72'B [w1(K) +Wa(K) ] @m(K)

X1(k,k';Pg)®g(k'), (6.2 K W ()T wy(K)-
+f 2m° N 2wy (kwy(k) st kK

which is more appropriate for the bound state problem. No-

tice thatPg=(mg,0) and the center of mass frame are ex- w4 (k") +wsy(k") ,
plicitly understood. <\ W‘Pms(k )
From Eq.(6.2) in the so-called instantaneous approxima-
tion we can also have an effective square mass operator or an = mé(pms(k), (6.5

effective Hamiltonian. The instantaneous approximation

consists in replacing in E46.2) H(‘)(p) with the free propa-  which is the eigenvalue equation for the squared mass opera-
gatori/(p?—m?) and the kernel(k k’;P) with I,nst(k k") tor,
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M2=MS+U. (6.6) with
ith My= \m{+k2+ \m5+k? and
wi 0=mi ym; <k|V|k’)=W W +w’+w’<k|u|k,>+'”
; y 1 2 1 2
KUK = o[22 gy [Pt
(k|U] >_(277)3 2W1W2Iin3t( K 2wiwy '’ _ 1 ! linst( K K+ - (6.9
6.7 ~ 2™ awawawgwg " -

The quadratic form of Eq6.6) obviously derives from the ) ] )

second order character of the formalism we have used. Whgre the ellipses stand for higher order termsainand
should be mentioned that for light mesons this form seems tg@~ and kinematical factors equal to 1 on the energy shell
be phenomenologically favoured with respect to the lineaf@ve been neglected. If in the potentidlas given by Eq.

one. (6.9 we neglect the spin-dependent terms, we reobtain the
appropriate ordering prescripti¢hl,14. Precisely, working
M=My+V, (6.8 in the Coulomb gauge the resulting potential is
|
1 4 1 1 [(k—k')-q]?
IN— T 24 7 4
<k|V|k > 2,”_2 3“5[ (k/_k)2+q10q20(k/_k)2[q + (k/_k)Z
1 J' ot 1 020 J10 010920 |yl ol
+ derel® T — 1 =g - g5+ -——\g3— g5+ ( csin— +arcsin—|  + - -,
(2m)® 2 Qo1 d20( 910 G0~ G Q2o\/q20 ar |a 010l 020

(6.10

with g=(k+k")/2, gjo=[w;(k) +w;(k")]/2, and where again kinematical factors equal to 1 on shell have been disregarded.
On the contrary, by performing arf expansion in Eq(6.9 we find theqq potential at m? order,
)

, 1 ol 4 a 1 (q-Q)?] 4. 1 agr 1 ayr
<k|V|k>=—§asg262—;za—§2—sz { ?- as -

m? mm,Q? ? | 3 2m; 3 2m, r3
4  a ki+k{ hoh I 1 ag rhrk  ghk Wk 4 oas 2w
+ = + —|k' )+ = —— — | |k’ += — o
3 2mm, "2 (01t 02)| Kl 3]k 3 mm, K375~ 73 )|k owoat 3 m,m, 3 °+ 72
of1 1 L el @ ki+k/ o*l‘+a‘; el
6l mz g mmy) KA KD = Fena Tt g (K T
2\ M T T (611

with g=(k+k’)/2 andQ=k—k’ as usual.
In the coordinate representation we may also write

4« 4 « 1 rhrk 4 1 agr 1 ar| 4 « rx
V=—z—dor+z— [—(5hk+—2—)qhqk} ——ias( - 2 )+— : z(al+az).(_73q_)
W

3r 3mm,| 2r r 3 2my r 2m, r 3 2mim
1 Qg 3(0’1 I’)(a’z-r) g1 0> 4 Qg 2 gl 1l 1 2
3 m;m, ro s 3 mm 3 (o 02)6\3(”_5 m m2  mym, {arrtw
oloy o3\ [r gi| 1l ar 1 ayr
- =+=||=-xq|-=|———— .
Z(mi m3) \r 977 m r m, r | (6.1

where nowqg stands for the momentum operator and and the syinypltands for the Weyl ordering prescription. Notice the
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non-Hermitian ternfsin the Dirac matricesy; and a,. Such terms can be eliminated by performing a Foldy-Wouthuysen
transformation with the non-Hermitian generator
i i

Szz_mlal'q_z_mzaz'q’ (6.13

and we end up with the & potential

1+1
mi - m;

VZ

1
2m1m2 r J:]_ 6mJ

__4as 1 4@ ok sheky ahok 2 1 1
V——§T+ffr+ |§—(5 +rrpip; W_E ~—{orpiriw— Gm—lm{ﬂrplT'pzT}w+§
4 ag

—=—+or
3r

1/da; o

1 1 4
+5(573")[Wsl'(”pl)‘m_%%'”xp”

1 as
+—— = —3[S,- (rXp)—S;- (rxpy)]

X J—
mim, 3 r

1 4
m,m, 3¢S

13 8
{;;[Fz(syr)(sz-n—sl-sz +?a\?<r>sl-sz}, 6.14

which coincides with the semirelativistic potential as ob-admissible, as occurs for the perturbative contribution or in
tained in[10,11]. cumulant expansiofil6] (see footnote JI but dependence of
the integrand on higher derivatives in the parametgrand
75> would not enable one to carry on the argument.
VII. CONCLUSIONS A second point concerns the significance of the lowest
order BS kernel we have derived. As the analysis in terms of
potentials shows, the inclusion of termsdg is essential for

fpr tc:ut:,\hevaluagon t(')f thek\gmfr?n éo?p wgt;gral, V‘t’.e h?ve de'an understanding of the fine and hyperfine structures. For
rived the quark-antiquark Bethe-Salpe(BE) equation from what concerns the importance of4%)? contributions an

QC.D' The assumpt_lons are _the same previously l.JSEd for ﬂ]ﬁdication can be obtained considering the corresponding
derivation of a semirelativistic heavy quark potential and th erms in the relativistic flux tube model. Neglecting the Cou-

technique is strictly similar. The kernel is constructed as aNomb terms. in the equal mass case the center of mass Hamil-
Expaasi\;n(i;uﬁ andoa’ and at the lowest order is given by o ian tor such a model at ther&?)? order can be written
gs.(1.3—(1.7).
The BS equation that has been obtained is a second ordger']
one, analogous in some way to the iterated Dirac equation.
Correspondingly, by instantaneous approximation, one cap|:2\/m2qu
obtain from Eq.(6.2 an effective square mass operator

In conclusion, under the assumptiqds?) and(4.1), (4.8

which is given by Eqs(6.6) and (6.7). or | ym?+q? lg| Im?+q?
i 2 i + = arcsin +
At the lowest order inag and oa® even a linear mass 2 o] \/szqz M+ P

operator can be written with a potentilgiven by Eq.(6.9).
Then, neglecting the spin-dependent term¥jnthe Hamil-

2,2 2 2
. L r< me+
tonian for the relativistic flux tube model comes out. On the d A

Vm*+g® gy

arcsin
contrary, by a 1 expansion and an appropriate Foldy- 1607 Vm?+g? |l Vm®+q?
Wouthuysen transformation the ordinary semirelativistic po- 12
tential is reobtained. AL S 7.0
In Eq. (5.21) or (6.4) a color-independent dressed quark m?+g° ’ :

propagator appears which is defined by E§s?) and(5.18).

NOt'Ce th.at only the perturbative expansion gives a Contrlbui/vhere the appropriate ordering is understood. To better ap-
tion to this quantity.

A few additional remarks are in order preciate the relative magnitude of the two potential terms let
! ; ' ., us consider the case of smaglf (small angular momentu
First of all, notice that the result does not depend strictl a ( 9 m

on Eq.(4.8) but on the possibility of writing the interaction in which the above equation becomes simply
term as an integral on the world lines of the quark and the )
antiquark. Multiple integrations of the same type would be 1— 1 oy

_ 2. o2 L
H=2\ym“+qg°+or 6m2+q2+

2.2 2
4Such terms become, however, Hermitian with reference to the T o ar +... (7.2
metric operatory?y3. 36 (m*+g°)7* ' '
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We notice that ins wave only theor terms survive. Then, one dimension with the Hamiltonian

taking into account thaa~1/(om)’®, g~1/a, and assum-

ing typically ~ ¢=0.17 Ge\f, m,;=0.35 GeV, m, p?

=1.7 GeV, andn,=5 GeV we find that for th@ wave the H= m+U(x,p)=HO+U (A1)
last term in Eq.(7.2) is of the order of the 2%, 0.1%, and

0.006% of the preceding one for thau, cc, andbb sys- _ L

tems, respectively. This would correspond to contributions®nd the corresponding Scliinger propagators

tothe mass of the meson of about 8, 0.2, and 0.01 MeV. The

inclusion of the Coulomb term would redueeand improve K(xy,t)=(x[e"™My), Ko(x,y,t)=(x|e""o]y).
the result. In thaiu case, e.g., it would amount to cutting the (A2)
above contribution by a factor of 2. Therefore only in this

last case would the- term be of any significance. From the operatorial identity

Finally let us come to the problem of the type of confine-
ment, which has been largely discussed in the literature. By )
this terminology what is usually meant is the tentative as- e*iH‘=e’iH0t—if dt’e Hot-tye-iHt"  (A3)
sumption of a BS(first orde) confining kernelK of the 0
instantaneous form

we obtain the equation

K 2m)r 2 (7.3
— — ar 5 ~a .
conf 77_2 Q4 .
_ ) K(x,y,t)=Ko(x,y,t)—iJ dt’f dgf dyKo(x,&t—t")
or even the covariant counterpart of it, 0
i oo 1 (UMK (my.t), (A%)
Keon= —(2) F?aa (7-4)

which is somewhat analogous to the nonhomogeneous
wherel is a combination of Dirac matrices. Typically the Bethe-Salpeter equation in configuration space.
casesI'=1 (scalar confinementT' ={v> (vectorial con- We want to derive Eq(1.4) by means of the path-integral
finementy, or a combination of them have been considered. formalism.

Equation(7.4) is immediately ruled out by the fact that,  Let us take
even if formally it corresponds to E¢7.3) (by instantaneous
approximation, actually, due to the strong infrared singular- U=V(x) +{W(x)p% ora» (A5)
ity, it gives results very different from E¢7.3) [17]. As well
known, Eq.(7.3) with I'=1 was motivated by the fact that it
reproduces the static potentialr and the spin-dependent
potential as obtained in the Wilson loop context. As we al-
ready mentioned, however, this choice gets both into phe-
nomenological and theoretical difficultie) It gives a first . . p’2
order velocity-dependent relativistic correction to the poten- K(x,y,t)=J' DzDpexp iJ dt'| p'z' — ——V(Z)
tial which differs from the Wilson loop oné¢l10,11]; (2) y 0 2m
yields unstable variational solutiof§]; (3) it does not seem
to agree with the heavy meson d4#8,5,4, and does not .
—W(z')p 2” ,

where{ },.4 stands for some ordering prescription. In terms
of the path integral we can write, in phase space,

reproduce straight line Regge trajector[€s6]. The choice (AB)
I'= 4945 does not meet difficulty?), but it gives both wrong
velocity and spin-dependent potentials. )

On the contrary, even if we have not yet attempted calcuwith z'=z(t"), p’=p(t'), andz’ =dz(t")/dt’". In Eq.(A.6)
lations directly with the kernel established in this paper, venjthe functional “measures” are supposed to be defined by
encouraging results have been obtained in the context of the
relativistic flux tube model13], of the dual QCD[18], and m \N2
of the effective relativistic Hamiltoniaf3], formalisms that DZZ(Z—.) dz;---dzy_q,
are all strictly related to ours. Therefore the complicated mo- me
mentum dependence appearing in E4s3)—(1.7) seems es- ig \N2
sential to understand both the light and the heavy meson Dp:(m) dpy---dpy-1dpy, (A7)
phenomenology.

and again the end points andy stand for the condition

Zo=Y, zy=X. As is well known(see, e.g.[19]) the ordering

prescription is concealed under the particular discretization
Here we illustrate the method used in the paper for theadopted in the limit procedure implied in the definition of

derivation of the BS equation on a potential-type model. LetEq. (A6).

us consider the model made by a nonrelativistic particle in Let us first consider the ca¥¥=0. In this case there is no

APPENDIX A: ONE-DIMENSIONAL POTENTIAL
THEORY
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ordering problem and it is possible to perform explicitly the

. . . .. o ) t X t 'Z”2
p integration in I'Eq.(AE'S) obtaining the path-integral repre K(x,y,t)=Ko(x,y,t)—if dt’J DzV(Z')ex ij dt’m—
sentation in configuration space, 0 y t 2

X t '2,2
K(x,y,t)=J Dzex;{ij dt’(mE—V(z’)
y 0

Then using the identity

X X
¢ ¢ sz-~=fd§szj§Dz-~ (A11)
exp(—if dt'V(z'))zl—if dt'v(z') y £
0 0 [having identifiedz(t’) = £], can be rewritten in the form
v (A4) with (£]U] 7)=V(£) 8(¢— 7).

X exp( =i f dt"V(Z")), In the general case/(x) #0, it is convenient to work with
0 the original path-integral representation in phase space, Eq.
(A9) (AB6), and it is necessary to use discretized expressions ex-

plicitly. For Weyl ordering in Eq(A5) the correct discreti-

one obtains zation is the midpoint one. We can write therefore

.I/2
t’ VA t
+i dt”m——if dt"v(z") |, Al10
. (A8) fo 27, ()) (A10)

which, taking into account that

1 p2 Z,t+2,-1
. n n n—
K(X,y,t)=WJ dedZN1de1"‘d21dpleXV{|r§l [pn(zn_znl)_s %4‘ 2 )
Z0+ 2,
+W ”T”l> pﬁ“) (A12)
and use the discrete counterpart of E49),
N z,+z z,+2 N Zp+2 Zp+2
expl —ie > | V| Tt ew| T 2 =1-ie Y, |V R pw| DR 2
n=1 2 2 R=1 2 2
R-1
z,+z_ Z,+z_
xexp{—isZ ro ol r ol pf} . (A13)
=1 2 2

Then we have

N N 2
.1 : p
K(X!yrt):KO(X!yvt)_IS(Zﬂ_)NRZl f dedZN*l. ' dzldplex4 Ian {pn(zn_znl)_sﬁ ]
2
Zpt g1 Pn Zyt2Zy
o) CAVERS S

N
) 1
=K0(X,y,t)_|82 deRf dzg-; mj dpndzydpn-1- - dZg110PR+ 1
R=1 (27)

— | P&

R-1
ex;{i E [pn(zn_znl)_8
n=1

N 2

' prll| 1 J ZrtZr-1 ZRYZR-1) 2| ipnizn-zm T
xexp||n=§R:+l Pn(Za—24-1) SZmHZW dpr V( > )+W 2 )PR e'PRIZRTZR-1 (27T)R71
. f dpg-1dzz—p: - - dp;ePR-1(fR-177R-2)

R-2 2

z,+2z,- Z,+2z,-

o] 13, | e o] o | 2 | | 1

n=1 m 2 2

which in the continuous limit reads
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K(x,y,t)zKo(x,y,t)—iJotdt'f dgf d7Ko(X,&t—t)IW(&mK(7y.t), (A15)
with
|W(g,77)=%f dpM&T” +W £m p?|elPle=m), (A16)
Passing to momentum space
R(k,q,t):fdxf dye KK (x,y,t)eld, (A17)

we can also write

Et+ny

~ 1 _
| W(k,q)zzJ’ dgdpdne'<Pk>§[v(§+2")+w( 5 2

o~ ~ k+q)?2
p?|e ! P=V7=V(k—q)+W(k—q) -

1
E<kv(x)+ Z{p.{p,W(X)}}‘q>- (A18)

Equation(A15) is equivalent to Eq(A4) and the kernel reduces to the Fourier transformation of the \64g¢=0.
Had we considered the symmetric ordering in E&5) we should have replaced, in Eq&13) and (A14),

Zn+znfl
-+
V( 2 )

Znt2zy-1) ,
2 pn

with
1 1 ,
E[V(Zn)""v(znfl)]'i_ E[W(Zn)_{'w(znfl)]pn ,

and the result would be

~ 1 . V(§)+V W(&)+W . ~ ~ k?+q?
k=5 dédpdne'(p"‘)g[ 7T HETTD el it =T + W)

1
=(kIVO0 + 3 {P2WOOHa). (A19)

APPENDIX B: BEYOND THE LADDER APPROXIMATION

As an example let us derive the contribution in E&}14) corresponding to the crossed diagram in Fig. 1. Let us expand the
last exponentia(call it BL) in Eqg. (2.11 (which was previously simply replaced with: 1

i 2 P2 .
I g 1 Sl ! 1 n ! " I g 2 52 ! 2 4 ! " I g 1g2 n ’ 52 ! ! !
BL:[l_TJ dTlfo dTlDF(Zl_Zl)_Tf defo d75De(2,—25) — 4 fo dTlf d’TzDF(Zl_ZQ)"_"'}-
™ 2

b (B1)

The contribution corresponding to the crossed diagf@m) is the one coming from the last term inside the curly brackets in
Eq. (B1). We can write
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1 2 rep o o 3 X X; 3 13 7 S
CD=—%%(—) f drlf dslf dTZJ dszf d“glj d4§2J 1:Dzlf szzf 1Dzlf szzf 1drif “d7,D¢
4 4 2 0 T1 0 Ty I3 & Y1 Y2 0 2

(B2)

i
X(Zi_zé)DF(fl_fz)eXP[_ ZJ drj
1
ifszd
-3 ) 7
xexp{—
i
9192J j dr3D F(ZZ_ZZ)]
9192 4 4 4 4
d%ny [ A%y | d%¢1 | d¥DE(€1—62)De(m1— 72) dTl dTl dsl d7'2 de dSz
i (s1
szlf Dzlf Dzlf Dzzf Dz, Dzzexp|——f dr]
&1 71 Y1 72 & Y2 2 m

Jonf 1[0
o2l

i (7 n| on 9 m 7" 910 T ”
_Efo drz 252+ m2+ zzf 2d7De(2} } 12] 1d7 f d7De(Z)— )}

.2 i
e} T T T T : i T
xexp{ . Tlf /1d f 1dT/// F(Z,jt ///)_ _J 2d fo sz/ F(ZZ Z/ZH)— gzng /1dTgf0 sz,ZIDF(ZZ_ZIZ, }
71 1

In conclusion, replacing again the last exponential in @) with 1, we have

| 232+ m2+ —f”d 7/'De(Z)— )}

let2+m2+ _f 2d ///D (Z ///):“

g
EII_2+m]_+ 1f WDF( ///)
2 Jo

i
- Ef dTZ

Z +m2+ f 2d ///DF( /// :|

2
gl " "
z’1”2+m§+? Tld 1D(Zy —2,)

_IE TldTZ ”2+ml+ _f 1d ///D (Z m
2 L

" 2N
7,+m3+ —f d7yD(Zy—2y)

_IE Tzd " 252+m2+ f 2d WD(Z m)

Z +m1 2 le d N/DF(Z m)}

CD__glgzj' d4§1f d4§2f d47hf d* 7D (€1~ 72)De(E2— 171)Go(X1— €1)Go(E1— 11)

X Go(Xa—€2)Go 72— €2)Ga( 11, m2:Y1,Y2), (B3)

which apart from a reordering of the various factors and awith
redenomination of the variables corresponds to the last term
in Eq. (2.14). The method can be immediately extended to

Aut au,\ [ du” du aut qu,\ 2142
higher order terms iBL or iterated on Eq(B2). =| - ——£ Y EA—
g a(B2) S(u) (at at)(ax (7)\)+((9t ax” ’
APPENDIX C: FUNCTIONAL DERIVATIVES OF THE (C2
AREA TERM
u#=u#(\,t) being the equation of the minimal surface en-
We prove Eq(5.10.

closed by the loop. Obviously* must be the solution of the
Let us first consider the confinement part and go back tg-,or equations

the original Eq.(4.2). We write

(1 a oS g aS
S [0t ["anst0 . 2 o _as
™)y Jo (u) €D AN (UM aN) i A(Iutl at) 0,

(C3
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satisfying the boundary conditionsi*(1t)=2z4(t) and au,,

u#(0t)=2z5(t). Then, considering an infinitesimal variation szlu_zzft:ru (C8
of the world line of the quark 1zj'(t) — z5'(t) + 6z (t), even

u#(\,t) must changeu”(\,t)—u*(\,t)+ su#(\,t), and and

one has

5Smin: J' dtf d)\

.\ IS y
d(url at) at

SSmi r,z,,—r,z
Sn__ Tt D (C9)
0S(z1)  [—Zr2+(z,-1)%]Y2

A(IUMIIN) IN ou
98 Using Eq.(C9) (having replaced the velocities with the mo-
f d'{—g © , menta and Egs(5.2) and(4.5), we obtain the second term in
d(gulon) == |, " Eq.(5.10.
(C4) Let us come to the perturbative part. Consider a variation
Z,—24+ 624; then,
where 6z§(t) is assumed to vanish out of a small neighbor-
hood of a specific value df Finally taking into account that f dle +0%2d 72D (21— 22) 75 (C10

JuH(1t) e CE
(?t _Zl(t)! ( ) s s,
=f dle drs
0 0

+216219,D (21— 2,)Z5

SuM(Lt)=6z4(1),

5-Z€Dp¢7( Z1— 22)

one obtains

au,, .
+ (9)\ Zl Z1,
1

auM . ou,\ .
N Zl” Klzlf‘

oz]

au,
-z N

2[ (dzy' 6z —dz]62f)

8Smin= f dt

[S])\ 1 52 :
:f 5SDVJO dTZ[O’)VDpo'(Zl_ZZ)_apDvo(zl_ZZ)]Zgy

whence
) &u 2 ) au 2\ —1/2 6 fsl J’Sz o _ -
X|—Z§(5) +{21.(X) ] (C6) 59.“/(21) 0 GI7'1 0 d7-2p1Dpo'(Zl 22)p2
1 1
and, more explicitly, _ [ 00 _ sp N
- 0 dTZ(é,u&lV 51/(91,(1,)Dp0'(21 22)p21 (Cll)
8Smin  (9U,lIN)121,— (U, [IN)121,

85S(z) [—32 AU I 2+ (21 (ulaN) <) 212 and we recover the first term in E(.10.

Vo [ z(oulan)it (20 (9uloN),)7) (C7) From Egs(C9) and(C10) even Egs(5.11) and(5.12 can

be directly obtainedinotice thatz; # z; or z; #z, have to be
Then, passing to the straight line approximation we have assumed in Eq5.1]) in the case of a second derivatjve

APPENDIX D: DISCRETE FORM FOR THE PATH-INTEGRAL REPRESENTATION OF THE Qg PROPAGATOR

Taking explicitly into account the discrete form of E.19 and using Eq(5.20 we have

Ha(X1,X2;Y1,Y2) =Ha(Xa = Y1) Ha(X2—Y2) = 22 2 (ZW)N1+NZJd p1,d*zyy- - -d* ZIN, - 1d* Pin,

N7=0 N5=0 .o
1 2 1R, tZ1Rr, -1 Z2r, T Z2R,-1
4, 4 4 4 1 1 2 2
Xf d%p21d™zyy - - d"Zon,— 107 Pan, Ty, T XY > 2R > , > 'P1RrP2R
Ri=1 Ro=1
; 2 2
nglsézeXP{'zl 21 {_pjn(zjn_zjnl)“’ E(pjn_mj)
j=1n=

Zjn’+zjn’—1_zjn'+zjn’—1 P "
2 2 |PinPin

Ritl No Zin, F 210, -1 Zon, T Zon,-1
. 1 1 2 2
—ig? 2: 2 E( 5 : 5 PinyPany -+ | (- (D1)
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If we neglect in the exponent the term§nJ R 12 A L me p and En —122]2—}? +lE((zlnlJr Z1n,-1)/
l
2,(22n2+ zan,l)/Z,plnl,er,z, ...), corresponding in the contlnuous to the quanfdl Eq. (2.1])],

f de dT"DMV(Z _Z/I)p v// (DZ)

and

71 S2
fo dﬂf drE(z;,25,p1,P5, - - -)- (D3)
2
Equation(D1) can be written

© 0

1

i 1
X1,X H(x H,(x L —fd“z d*pir d*zir, 15—
Ha(X1.X2,Y1,Y2) =Ha(X1—y1)Ha(X2—Y2) 2€ 21 R221 N12R1 NZZRZ (2m)° 1R, 0 'P1Rr, 0 Z1R; 12m)?

X2

1R, -1
Dz,Dp, Dz,Dp,

Dzlpplf ,
1

2R, +1

1
f d*zpr d4sz2d sz—lf

Z1R;+1

Y2

2 Ny
R,-1 e
X j ’ DZZDpszlleszzzR T T p]’ Z =2 { - pjn(zjn - Zjnf 1) + E ( pjzn - m]2)

N
2 1
+ 3 E D,uvp]npjn’ ]eXJl _|2 p]R(Z]R JRj—l)]
n’ =Rj+1
21R1+21R171 22R2+22R2*l T4 T 2 i
<R T g P1R P2R ) Taypy, Ty, So 576X 2 21 [ Pin(Zjn—Zjn-1)
RUT R (290 42001 Zon,+Zony-1
1 1 2 2
+5 (pjﬂ my)+ 39282 2 D PiuPjnr ]-e® E1 n221 2 ’ 2 Piny:Pan, | |- oY

ny

which, going back to the continuous, corresponds to(BE®1) with the kernel given by Eq5.22.
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