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We give a nonperturbative derivation of the Bethe-Salpeter equation in QCD based on the Feynm
Schwinger path integral representation of the one particle propagator in an external field. We obtain a
integral representation for a second order quark-antiquark amplitude in which the gauge field appears
through an appropriate Wilson loop integralW. Then, for such a quantity we derive aqq̄ BS equation
assuming thati lnW can be written as the sum of a perturbative contribution and an area term as in
derivation of the heavy quark potential. We also show that, by standard approximations, an effective m
mass operator can be obtained from our BS kernel. From this the corresponding Wilson loop potenti
recovered, by 1/m2 expansion, spin-dependent and velocity-dependent terms included. On the contrary,
glecting spin-dependent terms, the relativistic flux tube model is reproduced. The method is illustrated als
the simplified case of two spinless particles interacting via a scalar field and on a one-dimensional pote
model.@S0556-2821~96!02115-7#

PACS number~s!: 12.38.Aw, 11.10.St, 12.38.Lg, 12.39.Ki
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I. INTRODUCTION

Various approaches to the relativistic bound state probl
in QCD have been considered in the literature in terms
numerical simulations on a lattice@1,2#, relativistic Hamilto-
nians@3#, and effective Lagrangians. In particular, attemp
have been made to apply the Bethe-Salpeter~BS! equation to
a treatment of the quark-antiquark bound states involv
light quarks as well as heavy ones, hoping to obtain a unifi
and consistent description of the spectrum and of the pr
erties of the mesons.

In all BS attempts, to our knowledge, the choice of th
long range part of the kernel was purely conjectural and o
made in such a way that the successful static heavy qu
potential could be recovered in the semirelativistic limit. Th
most usual assumptions were those of the so-called sc
confinement and vectorial confinement. Both choices, in
dition to being not theoretically motivated, meet with co
ceptual and phenomenological difficulties. A scalar-ty
confinement kernel fails in reproducing straight Regge t
jectories @5#, yields unstable variational solutions@6#, and
generates wrong velocity-dependent potentials in the sem
lativistic limit @7,8#. Similarly a vectorial-type confinemen
kernel generates a wrong spin orbit and velocity-depend
potential@6,9#.

For the above reasons a derivation of aqq̄ BS equation
from QCD first principles would be highly desirable. One
the main difficulties along this line is that the usual justifi
cation of the BS equation works in terms of a resummati
of the perturbative expansion and such a method canno
applied to the case of a confining theory. To overcome
difficulty it is necessary to develop an intrinsically nonpe
turbative method. We try to do this in the present pap
modifying the approach already followed in the derivation
the semirelativistic potential for heavy quarks.

To obtain theqq̄ potential the basic object is the Wilso
loop integral

W5
1

3 K TrPexpS ig R G dxmAmD L , ~1.1!
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whereG denotes an appropriate closed loop in space-tim

Am5 1
2 Am

ala is a color matrix,P the ordering prescription
along G, and the expectation value stands for a function
integration on the gauge field alone. By the use of the pa
integral representation for a Pauli-type quark propagator
an external field, the evaluation of the potential is reduced
an evaluation ofW. For such an evaluation the simplest as
sumption is to writei lnW as the sum of a perturbative term
and an area term

i lnW5 i ~ lnW!pert1sSmin , ~1.2!

s being the so-called string tension andSmin the minimal
area enclosed byG. In Eq. ~1.2! ordinary perturbative theory
and lattice theory results are combined. The first quantity
supposed to describe the short range forces, the second
to correspond to the long range ones. A termCP propor-
tional to theG perimeterP can be also included; we do not
consider it explicitly here, since such a term turns out wit
the same form of the kinetical terms and apparently it can
reabsorbed in a redefinition of them. More sophisticated e
pressions than Eq.~1.2!, based on a perturbative theory in a
nonperturbative background@4#, are possible but will not be
considered here. Obviously, in the above, confinement is
troduced through the second term in Eq.~1.2!.

In this paper we shall start from Eq.~1.2! and, using the
covariant Feynman-Schwinger representation for the fu
quark propagator in an external field~rather than the semire-
lativistic one used in@10,11#!, we shall arrive at a BS equa-
tion for a ‘‘second order’’ quark-antiquark Green function
The need to resort to the second order formalism is related
the use of a path integral representation. In a sense the fi
equation corresponds to the ordinary ‘‘first order’’ BS equa
tion as the iterated Dirac equation corresponds to the or
nary one.

Eventually, in the center of mass frame we obtain a kern
of the form
3506 © 1996 The American Physical Society
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Î ~p1 ,p2 ;p18 ,p28!5 Î pert~p1 ,p2 ;p18 ,p28!1 Î conf~p1 ,p2 ;p18 ,p28!
~1.3!

(p181p285p11p2), with

Î pert516p
4

3
asHDrs~Q!q1

rq2
s2

i

4
s1

mn~dm
rQn2dn

rQm!

3q2
sDrs~Q!1

i

4
s2

mn~dm
sQn2dn

sQm!q1
rDrs~Q!

1
1

16
s1

m1n1s2
m2n2~dm1

r Qn1
2dn1

r Qm1
!

3~dm2

s Qn2
2dn2

s Qm2
!Drs~Q!J 1••• ~1.4!

and

Î conf5E d3reiQ•rJ~r ,q1 ,q2!, ~1.5!

with

J~r ,q1 ,q2!5
2sr

q101q20
Fq202 Aq102 2qT

2

1q10
2 Aq202 2qT

2 1
q10
2 q20

2

uqTu

3S arcsinuqTuq10
1arcsin

uqTu
q20

D G12s
s1
knq20q1nr

k

rAq102 2qT
2

22s
s2
knq10q2nr

k

rAq202 2qT
2

1•••. ~1.6!

In such equationsas denotes the strong coupling constan
Drs(Q) denotes the free gluon propagator,1 and we set

q15
p11p18

2
, q25

p21p28

2
, Q5p12p185p282p2 ,

~1.7!

with q152q25q, qT
h5(dhk2 r̂ hr̂ k)qk.

Equations~1.3!–~1.7! are the main result of the presen
paper.

They have to be considered as the lowest order terms
mixed expansion in the constantas and in the quantity
sa2 (a being a typical length, like the radius of the meson!.
As we shall see, there are indications that the term
(sa2)2 in the expansion is small.

1In the Coulomb gauge we takeDrs with the form

D00~x!52
1

4p

1

uxu
d~x0!,

D0k5Dk050,

Dhk52E d4k

~2p!4
1

k2 S dhk2
khkk

k2 De2 ikx.
t,

t

in a

in

It should be mentioned that our formalism is strictly re
lated to that developed by Simonov and collaborators to
tablish an effective relativistic Hamiltonian@3#. Notice also
that a preliminary account of our results has been alrea
presented in@11# and @12#.

From the above kernel, in the limit of large quark masse
we can obtain a semirelativistic quark-antiquark potential
standard techniques. Such potential is obviously identica
the one derived in@10,11#, spin- and velocity-dependen
terms included.

On the contrary, if we neglect the spin-dependent ter
and perform an appropriate instantaneous approximation,
maintain full relativistic kinematics, we obtain the Hami
tonian of the so-called relativistic flux tube model@13–15#.

We stress that, even if we have not yet performed a
explicit calculation using the full expression~1.3!–~1.6!, the
results obtained in@3,13,8# ~which should be considered a
referring to limit cases!, suggest that our kernel~1.3!–~1.7!
should overcome all the difficulties encountered with th
phenomenological kernels.

The plan of the paper is the following one. In Sec. II w
illustrate our nonperturbative method of derivation of the B
equation in the model case of two spinless particles intera
ing through a scalar field, to which also the usual perturb
tive derivation applies: In this way we have in particular th
opportunity of discussing the meaning and the limitations
the various approximations we have performed. In Sec.
we discuss the evaluation ofi lnW. In Sec. IV we introduce
the Feynman-Schwinger representation and obtain a co
sponding path integral representation for the second or
qq̄ Green function. In Sec. V we derive the inhomogeneo
BS equation and obtain the kernel given by Eqs.~1.3!–~1.7!.
In Sec. VI we write the homogeneous BS equation and d
cuss the instantaneous and the semirelativistic potential.
nally in Sec. VII we draw some conclusions and make so
additional remarks. The appendixes are devoted to techn
details and to an illustration of the derivation method for
one-dimensional potential model.

II. PROPAGATOR AND THE BETHE-SALPETER
EQUATION FOR SCALAR PARTICLES

Let us consider two scalar ‘‘material’’ fieldsf1 andf2
interacting through a third scalar fieldA with the coupling
1
2 (g1f1

2A1g2f2
2A) ~typically we may think of

g152g25g). After integration overf1 and f2 , the full
one-particle propagator can be written as

G2
~ j !~x2y!5^0uT@f j~x!f j~y!#u0&5^ iD~ j !~x,y;A!&

[
*DAeiS0~A!M ~A!iD~ j !~x,y;A!

*DAeiS0~A!M ~A!
, ~2.1!

whereD ( j )(x,y;A) is the propagator for the particlej in the
external fieldA, S0(A) is the free action for the fieldA, and
the determinantal factorM (A) comes from the integration on
the fieldsf j :
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M ~A!5 )
j51,2

Fdet~]m]m1mj
22gjA!

det~]m]m1mj
2! G21/2

511
1

2 (
j51,2

H 2gjE d4xA~x!DF
~ j !~0!1

1

2
gj
2E d4xd4yA~x!DF

~ j !~x2y!

3A~y!DF
~ j !~y2x!1 •••J 1

1

8 S (
j51,2

gjE d4xA~x!nF
~ j !~0!1••• D 21•••, ~2.2!

whereDF
( j ) denotes the usual free scalar particle propagator.

The covariant Feynman-Schwinger representation forD ( j )(x,y;A) reads

D~ j !~x,y;A!52
i

2E0
`

dsE
y

x

DzDpexpH i E
0

s

dtF2pmż
m1

1

2
pmp

m2
1

2
mj
21

1

2
gjA~z!G J

52
i

2E0
`

dsE
y

x

DzexpH 2 i E
0

s

dtF12 ~ ż21mj
2!2

1

2
gjA~z!G J , ~2.3!

where the path integral is assumed to be extended over all pathszm5zm(t) connectingy with x @0<t<s; z(0)5y,
z(s)5x#. Obviously in Eq.~2.3! ż stands fordz(t)/dt and the ‘‘functional measures’’ are defined as

Dz5S 1

2p i« D 2Nd4z1•••d4zN21 , Dp5S i«2p D 2Nd4p1 •••d4pN21d
4pN ,

DzDp5S 1

2p D 4Nd4p1d4z1•••d4pN21d
4zN21d

4pN ~2.4!

(« being the time lattice spacing and«→0 being understood!.
Replacing Eq.~2.3! in Eq. ~2.1! we obtain

G2
~ j !~x2y!5

1

2E0
`

dsE
y

x

DzexpH 2
i

2E0
s

dt~ ż21mj
2!J K expH ig j

2 E
0

s

dtA~z!J L , ~2.5!

and, if we take simplyM (A)51 ~quenched approximation!,

K expH ig j

2 E
0

s

dtA~z!J L 5expH 2
ig j

2

4 E
0

s

dtE
0

t

dt8DF~z2z8!J , ~2.6!

DF(x) being now the free propagator for the fieldA given by

DF~x!5E d4k

~2p!4
e2 ikx

k2
.

Similarly, for the two-particle propagator,

G4~x1 ,x2 ;y1 ,y2!5^0uT@f1~x1!f2~x2!f1~y1!f2~y2!#u0&5^ iD~1!~x1 ,y1 ;A!iD~2!~x2 ,y2 ;A!&

5S 12D 2E0`ds1E0`ds2Ey1
x1
Dz1E

y2

x2
Dz2expH 2

i

2E0
s1
dt1~ ż1

21m1
2!2

i

2E0
s2
dt2~ ż2

21m2
2!J

3K expH ig12 E
0

s1
dt1A~z1!1

ig2
2 E

0

s2
dt2A~z2!J L ~2.7!

and @always forM (A)51#

K expH ig12 E
0

s1
dt1A~z1!1

ig2
2 E

0

s2
dt2A~z2!J L 5expH (

j51,2

2 ig j
2

4 E
0

sj
dt jE

0

t j
dt j8DF~zj2zj8!

2 i
g1g2
4 E

0

s1
dt1E

0

s2
dt2DF~z12z2!J ~2.8!

@zj stands forzj (t j ), zj8 for zj (t j8)#. In conclusion we have
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G4~x1 ,x2 ;y1 ,y2!5~ 1
2 !2E

0

`

ds1E
0

`

ds2E
y1

x1
Dz1E

y2

x2
Dz2expH 2

i

2E0
s1
dt1~ ż1

21m1
2!2

ig1
2

4 E
0

s1
dt1E

0

t1
dt18DF~z12z18!J

3expH 2
i

2E0
s2
dt2~ ż2

21m2
2!2

ig2
2

4 E
0

s2
dt2E

0

t2
dt28DF~z22z28!J

3expH 2
ig1g2
4 E

0

s1
dt1E

0

s2
dt2DF~z12z2!J . ~2.9!

Equation~2.9!, using the identities

expH 2
ig1g2
4 E

0

s1
dt1E

0

s2
dt2DF~z12z2!J 512

ig1g2
4 E

0

s1
dt1E

0

s2
dt2DF~z12z2!expH 2

ig1g2
4 E

0

t1
dt18E

0

s2
dt28DF~z182z28!J ,

~2.10!

E
yj

xj
Dzj•••5E d4j jE

zj ~t j !5j j

xj
DzjE

yj

zj ~t j !5j j
Dzj•••,

becomes, after some manipulation,

G4~x1 ,x2 ;y1 ,y2!5G2~x12y1!G2~x22y2!2
ig1g2
4 S 12D 2

3E
0

`

dt1E
t1

`

ds1E
0

`

dt2E
t2

`

ds2E d4j1E d4j2E
z1~t1!5j1

x1
Dz1E

z2~t2!5j2

x2
Dz2E

y1

z1~t1!5j1
Dz1

3E
y2

z2~t2!5j2
Dz2DF~j12j2!expH E

t1

s1
dt18F2

i

2
~ ż

1

82
1m1

2!2
ig1

2

4 E
t1

t18dt19DF~z182z19!G
1E

t2

s2
dt28F2

i

2
~ ż

2

82
1m2

2!2
ig2

2

4 E
t2

t28dt29DF~z282z29!G J
3expH E

0

t1
dt18F2

i

2
~ ż

1

82
1m1

2!2
ig1

2

4 E
0

t18dt19DF~z182z19!G
1E

0

t2
dt28F2

i

2
~ ż

2

82
1m2

2!2
ig2

2

4 E
0

t28dt29DF~z282z29!G J expH 2
ig1g2
4 E

0

t1
dt18E

0

t2
dt28DF~z182z28!J

3expH 2
ig1

2

4 E
t1

s1
dt18E

0

t1
dt19DF~z182z19!2

ig2
2

4 E
t2

s2
dt28E

0

t2
dt29DF~z282z29!

2
ig1g2
4 E

0

t1
dt18E

t2

s2
dt28DF~z182z28!J . ~2.11!

If we replace the last exponential with 1, we obtain immediately the Bethe-Salpeter equation

G4~x1 ,x2 ,y1 ,y2!5G2~x12y1!G2~x22y2!2 i E d4j1E d4j2E d4h1E d4h2G2~x12j1!

3G2~x22j2!I ~j1 ,j2 ;h1 ,h2!G4~h1 ,h2 ,y1 ,y2!, ~2.12!

with the ladder approximationkernel

I ~j1 ,j2 ,h1 ,h2!5g1g2DF~j12j2!d
4~j12h1!d

4~j22h2!. ~2.13!
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On the other hand, had we considered even the second term in the expansion of the last exponential in Eq.~2.11!, we would
have obtained~see Fig. 1 and Appendix B!

I ~j1 ,j2 ,h1 ,h2!5g1g2DF~j12j2!d
4~j12h1!d

4~j22h2!2 ig1
3g2E d4z1DF~j12h1!G2~j12z1!G2~z12h1!DF~z12h2!

3d4~j22h2!2 ig1g2
3E dz2d

4~j12h1!DF~j22h2!G2~j22z2!G2~z22h2!DF~h12z2!

2 ig1
2g2

2DF~j12h2!G2~j12h1!DF~j22h1!G2~j22h2!1•••. ~2.14!

Finally one can go beyond the quenched approximation and take into account additional terms in Eq.~2.2!. After eliminating
tadpole terms this would amount to replacing Eq.~2.8! with

K expH ig12 E
0

s1
dt1A~z1!1

ig2
2 E

0

s2
dt2A~z2!J L 5expH (

j51,2
2
ig j

2

4 E
0

sj
dt jE

0

t j
dt j8FDF~zj2zj8!1 (

i51,2

gi
2

2 E d4jE d4h

3DF~zj82j!3@DF
~ i !~j2h!#2DF~h2zj8!1•••G2

ig1g2
4 E

0

s1
dt1E

0

s2
dt2

3FDF~z12z2!1 (
i51,2

gi
2

2 E d4jE d4hDF~z12j!@DF
~ i !~j2h!#2

3DF~h2z2!1•••G J ~2.15!
nd

nc-

ge
and so to insertf1f1 andf2f2 loops in all possible ways
inside the graph.

Notice that the final form of the kernel we have obtaine
is expressed as an expansion in the coupling constantsg1 and
g2 as in the ordinary derivation. However, in the metho
described, once we have written Eq.~2.8! and set the last
exponential in Eq.~2.11! equal to 1, Eqs.~2.12! and ~2.13!
follow exactly. So perturbative expansion appears only at t
level of successive corrections and not in the basic appro
mation. This is the reason for which the method applies ev
to QCD when we replace Eq.~2.8! with Eq. ~1.2!. Actually,
as we have already mentioned, we shall see that in suc
case the kernelI is obtained as an expansion both inas and
sa2. Obviously by Fourier transformation of Eq.~2.12! we
may pass from this to the more usual momentum count
part.

III. QUARK-ANTIQUARK PROPAGATOR

Let us consider now the case of QCD. The QCD Lagran
ian is

L5(
f51

Nf

c̄ f~ ig
mDm2mf !c f2

1

4
FmnF

mn1LGF ~3.1!

FIG. 1. Graphical representation of Eq.~2.14!.
d

d

he
xi-
en

h a

er-

g-

~whereDm5]m2 igAm andLGF is the gauge-fixing term!, in
which the quarks are fermions and have spin andf is the
flavor index.

In this case we find it convenient to work in the seco
order formalism.

As usual the gauge-invariant quark-antiquark Green fu
tion is given by

G4
GI~x1 ,x2 ,y1 ,y2!5

1

3
^0uT@c2

c~x2!U~x2 ,x1!c1~x1!

3c̄1~y1!U~y1 ,y2!c̄2
c~y2!#u0&

5
1

3
Tr^U~x2 ,x1!S

~1!~x1 ,y1 ;A!

3U~y1 ,y2!C
21S~2!~y2 ,x2 ;A!C&,

~3.2!

wherec denotes the charge-conjugate fields,C is the charge-
conjugation matrix,U the path-ordered gauge string,

U~b,a!5PbaexpH igE
a

b

dxmAm~x!J ~3.3!

~the integration path being an arbitrary line joininga to b),
S(1) and S(2) the quark propagators in the external gau
field Am, and obviously

^ f @A#&5
*D@A#M f~A! f @A#eiS@A#

*D@A#M f~A!eiS@A# , ~3.4!



or
n-

54 3511BETHE-SALPETER EQUATION IN QCD IN A WILSON . . .
S@A# being the pure gauge field action andM f(A) the deter-
minant resulting from the explicit integration on the ferm
onic fields@in practice, however,M f(A)51 in the adopted
approximation#.

The propagatorsS(1) andS(2) are supposed to be define
by the equation~for simplicity from here on we suppress th
particle indexj when there is no ambiguity!

~ igmDm2m!S~x,y;A!5d4~x2y! ~3.5!

and the appropriate boundary conditions.
Alternatively by putting
i-

d
e

S~x,y;A!5~ ignDn1m!Ds~x,y;A!, ~3.6!

we have

~DmD
m1m22 1

2 gsmnFmn!Ds~x,y;A!52d4~x2y!

~3.7!

„smn5( i /2) @gm,gn#…. Then, after replacing Eq.~3.6! in Eq.
~3.2!, we can check that we can take the differential operat
out of the angle brackets by taking into account gauge i
variance and we can write
s

vely
G4
GI~x1 ,x2 ;y1 ,y2!5~ ig1

m]̄x1m1m1!~ ig2
n]̄x2n1m2!H4

GI~x1 ,x2 ;y1 ,y2!, ~3.8!

with

H4
GI~x1 ,x2 ;y1 ,y2!52

1

3
Tr^U~x2 ,x1!Ds

~1!~x1 ,y1 ;A!U~y1 ,y2!D̃s
~2!~x2 ,y2 ;2Ã!&. ~3.9!

Here the tilde denotes transposition on the color indices alone, while]̄xjm are derivatives appropriately defined.2

Now, notice that for Eq.~3.7! the Feynman-Schwinger representation can be written

Ds~x,y;A!52
i

2E0
`

dsPxyTxyexpH is2 ~2DmD
m2m21 1

2 gsmnFmn!J
52

i

2E0
`

dsE
y

x

DzPxyTxyexpH i E
0

s

dtF2
1

2
~m21 ż2!1gAr~z!żr1

g

4
smnFmn~z!G J , ~3.10!

Pxy andTxy prescribing the ordering along the path of the color and of the spin matrices, respectively.
Furthermore, as a consequence of a variation in the pathzm(t)→zm(t)1dzm(t) respecting the extreme points, one ha

@remember thatz[z(t), z8[z(t8)#

dS PxyexpH igE
0

s

dt żmAm~z!J D 5 igE
0

s

dSmn~z!PxyS 2Fmn~z!expH igE
0

s

dt8żm8Am~z8!J D , ~3.11!

with dSmn(z)5
1
2
(dzmdzn2dzndzm). So one can write

TxyexpS 2
1

4E0
s

dtsmn
d

dSmn~z! D S PxyexpH igE
0

s

dt8żm8Am~z8!J D 5TxyPxyexpH igE
0

s

dt@ żmAm~z!1 1
4 smnFmn~z!#J ,

~3.12!

and Eq.~3.10! becomes

Ds~x,y;A!52
i

2 E
0

`

dsE
y

x

DzPxyTxyS0sexpH i E
0

s

dt@2 1
2 ~m21 ż2!1gż̄mAm~ z̄!#J , ~3.13!

with

S0s5expF2
1

4E0
s

dtsmn
d

dSmn~ z̄!
G . ~3.14!

2We notice that, given a functionalF@gab# of the curvegab with endsa andb, under general regularity condition, the variation ofF
consequent to an infinitesimal modification of the curveg→g1dg can be expressed as the sum of various terms proportional respecti
to da, db, and the single elementsdSrs(x) of the surface swept by the curve. Then, the derivatives]̄ar, ]̄br andd/dSrs(x) are defined by
the equation dF5dar]̄arF1dbr]̄brF1*gdSrs(x)dF/dSrs(x). In our case this would amount to putting naively]̄a

r

Pf@*a
bdxmAm(x)#52Pf8@*a

bdxmAm(x)#Ar(a) and ]̄br*a
bdxmAm(x)5Ar(b)Pf8@*a

bdxmAm(x)#.
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In Eq. ~3.13! it is understood thatz̄m(t) has to be put equal tozm(t) after the action ofS0s . Alternatively, it is convenient to
write z̄5z1z, to assume thatS0s acts onz(t) with dSmn(z)5 1

2 (dz
mdzn2dzndzm), and to set eventuallyz50.

Replacing Eq.~3.13! in Eq. ~3.9! we obtain

H4
GI~x1 ,x2 ;y1 ,y2!5~ 1

2 !2E
0

`

ds1E
0

`

ds2E
y1

x1
Dz1E

y2

x2
Dz2Tx1y1Tx2y2S0

s1S0
s2expH 2

i

2E0
s1
dt1~m1

21 ż1
2!2

i

2E0
s2
dt2~m2

21 ż2
2!J

3
1

3 K TrPGexpH ig R G dz̄mAm~ z̄!J L , ~3.15!

where nowG is the closed loop made by the quark world lineG1 , the antiquark world lineG2 followed in the reverse
direction, and the two linesx1x2 andy2y1; z̄ is set equal toz̄j5zj1z j onG j or simply equal toz on x1x2 andy2y1; again the
final limit z j→0 is understood.

Apart from the spin complications~3.15! is analogous to Eq.~2.7! and the Wilson loop integral appearing there is analogo
to the right-hand side of Eq.~2.8!. For this reason before going ahead we need to elaborate further Eq.~1.2!. In QCD such an
equation plays the same role as Eq.~2.8! in the scalar model.

IV. WILSON LOOP INTEGRAL

Let us come back to Eq.~1.2!. To make real sense, this equation has to be understood in the quenched approxi
@M f(A)51#; furthermore, the perturbative term has to be kept at the lowest order. Otherwise, perturbative and nonpert
contributions should be untangled and a simple additivity assumption would be no longer correct.

So for the first term in Eq.~1.2! we can write

i ~ lnW!pert5 i lnK 13TrPexpH ig R Gdz
mAm~z!J L

pert

5
4

3
g2E

0

s1
dt1E

0

s2
dt2Dmn~z12z2!ż1

mż2
n2

2

3
g2E

0

s1
dt1E

0

s1
dt18Dmn~z12z18!

3 ż1
mż18

n2
2

3
g2E

0

s2
dt2E

0

s2
dt28Dmn~z22z28!ż2

mż28
n1•••, ~4.1!

while for the second term in general we should write

Smin5E
t i

t f
dtE

0

1

dlF2S ]um

]t

]um

]t D S ]un

]l

]un

]l D1S ]um

]t

]um

]l D 2G1/2, ~4.2!
ap-
g
.,

ous

-

xm5um(l,t) being the equation of the minimal surface wit
contourG.

Let us assume that for fixedt we have

um~1,t !5z1
m
„t1~ t !…, um~0,t !5z2

m
„t2~ t !…. ~4.3!

Since Eq.~4.2! is invariant under reparametrization,a priori
the parametert could be everything. However, ifG1 and
G2 never go backwards in time,t can be chosen as the ord
nary time,u0(s,t)[t. Thent1(t) andt2(t) are specified by
the equation

z1
0~t1!5z2

0~t2!5t ~4.4!

and we shall set

L5E
0

1

dlF2S ]um

]t

]um

]t D S ]un

]l

]un

]l D1S ]um

]t

]um

]l D 2G1/2.
~4.5!

Obviously L cannot depend on the extremal pointsz1(t1)
andz2(t2) alone, but it has to depend even on the shape
the world lines, at least in a neighborhood of such points.
h

i-

of
So

we shall write3 in generalL5L(z1 ,z2 ,ż1 ,ż2 ,G) and

Smin5E
y1
0

x1
0

dz1
0E

y2
0

x2
0

dz2
0d~z1

02z2
0!L~z1 ,z2 ,ż1 ,ż2 ,G!

5E
0

s1
dt1E

0

s2
dt2d~z1

02z2
0!ż1

0ż2
0L~z1 ,z2 ,ż1 ,ż2 ,G!.

~4.6!

In principle this expression can be considered a good
proximation even if the world lines contain pieces goin
backwards in time. In fact, in such a case, if we fix, e.g
t1 , Eq. ~4.4! has more than one solution int2 and, ifG1 and
G2 are not too much irregular in space~otherwiseSmin is
large and the weight of the loop is small!, the minimal sur-
face can be reconstructed as the algebraic sum of vari
pieces of surface.

3Reparametrization invariance and cumulant expansion@16# sug-
gest the form L5L1(z1 ,z2 ,ż1 ,ż2)1*dt18*dt28L2(z1 ,z2 ,ż1 ,ż2 ;
z18 ,z28 ,ż18 ,ż28)1••• with L1 , L2 , . . . homogeneous functions of de
gree 0 inż1 ,ż2 and of degree 1 inż18 ,ż28 ,ż19 ,ż29 , . . . .
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In practice, to have an explicit expression forL, we shall
adopt the straight line approximation consisting of replacin
Smin with the surface spanned by the straight lines connect
two equal points onG1 andG2 . This amounts to taking in
Eqs.~4.2! and ~4.5!,

u0~l,t !5t, uk~l,t !5lz1
k
„t1~ t !…1~12l!z2

k
„t2~ t !….

~4.7!

Then we have

ż1
0ż2

0L5uz12z2u E
0

1

dl$ż10
2 ż20

2

2@l ż1Tż201~12l!ż2Tż10#
2%1/2, ~4.8!

where T denotes the transverse compone
żj T
h 5(dhk2 r̂ hr̂ k) żj

h with r5z12z2 and r̂ h5r h/r . Notice
that Eqs.~4.7! and ~4.8! are exact equations in two limiting
situations, the case in which the two world lines lie on
g
ing

nt

a

plane and the case in which they are trajectories of
double helycoid type. In the semirelativistic limit they ar
also exact up to second order terms in the ordinary velocit
@10#. So the approximation seems to be a sensible one.

Notice also that in Eq.~4.1! we have neglected the con
tribution coming from the two stringsx1x2 andy1y2 , while
in writing Eq. ~4.6! we have not taken into account two
border contributions toSmin corresponding tox1

0Þx2
0 and

y1
0Þy2

0 . This is correct forx1
02y1

0 and x2
02y2

0 large with
respect to ux12x2u, uy12y2u, x1

02x2
0 , and y1

02y2
0 . So,

strictly, we are going to obtain a BS equation for a quant
H4 which coincides withH4

GI only in the above limit. This is
immaterial for what concerns bound states or asympto
states but actuallyH4 is no longer a gauge-invariant quantity

Obviously Eq.~4.8! is not covariant, and so we assume
in the center of mass frame. Finally we stress that such
equation shall be imposed onlyafter the application of the
operatorsS0

s1 andS0
s2 .
n to the
bracket
V. BETHE-SALPETER EQUATION IN QCD

Substituting Eqs.~4.1! and ~4.6! into Eq. ~3.15! we obtain

H4~x1 ,x2 ;y1 ,y2!5~ 1
2 !2E

0

`

ds1E
0

`

ds2E
y1

x1
Dz1E

y2

x2
Dz2Tx1y1Tx2y2S0

s1S0
s2expH 2

i

2E0
s1
dt1~m1

21 ż1
2!2

i

2E0
s2
dt2~m2

21 ż2
2!

1
2

3
ig2E

0

s1
dt1E

0

s2
dt18Dmn~ z̄12 z̄18!zG18

nzG1
n81

2

3
ig2E

0

s2
dt2E

0

s2
dt28Dmn~ z̄22 z̄28!zG2

mzG2
n8

2 i E
0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,zG1 ,zG2 ,G!J , ~5.1!

where we have set

E~z1 ,z2 ,ż1 ,ż2 ,G!5
4

3
g2Dmn~z12z2!ż1

mż2
n1sd~z102z20!ż10ż20L~z1 ,z2 ,ż1 ,ż2 ,G!. ~5.2!

Equation ~5.1! is analogous to Eq.~2.9!; however, the occurrence ofż1 and ż2 in the interaction term requires a slight
modification of the method used in Sec. II and specifically a change from the configurational path integral representatio
phase space one. This can be achieved by performing a Legendre transformation on the quantity occurring in curly
~without the factori ). Denoting such quantity byF and introducing the momentapm j52dF/d żj

m we have

pm15 żm12
4

3
g2E

0

s1
dt18Dmn~ z̄12 z̄18!zG18

n1E
0

s2
dt28

]E~ z̄1 ,z̄28 ,zG1 ,zG28 ,G!

] ż1
m

1•••,

pm25 żm22
4

3
g2E

0

s2
dt28Dmn~ z̄22 z̄28!zG28

n1E
0

s1
dt18

]E~ z̄18 ,z̄2 ,zG18 ,zG2 ,G!

] ż2
m

1•••, ~5.3!

where the dots stand for possible additional terms due to the explicit dependence onG ~cf. footnote 1!. Equation~5.3!
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cannot be inverted in a closed form with respect toż1 and ż2; however, we can do this by an expansion inas5g2/4p and
sa2. At the lowest order we have

ż1
m5p1

m1
4

3
g2E

0

s1
dt18Dmn~ z̄12z18! p̄18

n2E
0

s2
dt28

]E~ z̄1 ,z̄28 ,p̄1 ,p̄28 ,G!

]p1
m 1•••,

ż2
m5p2

m1
4

3
g2E

0

s2
dt28Dmn~ z̄22 z̄28! p̄28

n2E
0

s1
dt18

]E~ z̄e18 ,z̄2 ,p̄18 ,p̄28 ,G!

]p2
m 1•••, ~5.4!

with

p̄ j
m5pj

m1 ż j
m . ~5.5!

In conclusion we find~up to a determinantal factor that in this approximation can be set equal to 1!

H4~x1 ,x2 ,y1 ,y2!5~ 1
2 !2E

0

`

ds1E
0

`

ds2E
y1

x1
Dz1Dp1E

y2

x2
Dz2Dp2Tx1y1Tx2y2S0

s1S0
s2

3expH i E
0

s1
dt1K11 i E

0

s2
dt2K22 i E

0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!1•••J , ~5.6!

where

Kj52pj• żj1
1

2
~pj

22mj
2!1

2

3
g2E

0

sj
dt j8Dmn~ z̄j2 z̄j8! p̄ j

mp̄ j
n81••• ~5.7!

includes the self-interaction term. Notice that here inS0
sj it must be understood that dSmn(zj )

5 1
2 dt j (pj

mdz j
n2pj

ndz j
m)1•••.

Now, using the identity

expH E
0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!J 511E

0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!expH E

0

t1
dt18E

0

s2
dt28E~ z̄18 ,z̄28 ,p̄18 ,p̄28 ,G!J ,

~5.8!

corresponding to Eq.~2.10!, we have

H4~x1 ,x2 ;y1 ,y2!5~ 1
2 !2E

0

`

ds1E
0

`

ds2E
y1

x1
Dz1Dp1E

y2

x2
Dz2Dp2Tx1y1Tx2y2S0

s1S0
s2H expF i E

0

s1
dt1K11 i E

0

s2
dt2K2G

2 i E
0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!

3expF i E
0

s1
dt1K11 i E

0

s2
dt2K22 i E

0

t1
dt18E

0

s2
dt28E~ z̄18 ,z̄28 ,p̄18 ,p̄28 ,G!G J . ~5.9!

To obtain from this an equation analogous to Eq.~2.11! we need to commuteS0
s1S0

s2 with E. To this aim, bearing in mind Eqs.
~5.2! and ~5.7! and going back to the original form~4.5! for L, we find first~see Appendix C!

d

dSmn~z1!
E
0

s1
dt18E

0

s2
dt28E~z18 ,z28 ,p18 ,p28 ,G!5E

0

s2
dt28F43 g2@]nDms~z12z28!2]mDns~z12z28!#p2

s1sd~z102z208 !

3
p1n~z1m2z2m8 !2p1m~z1n2z2n8 !

A~p10
2 2p1

2!~z12z28!21@p1•~z12z28!#2
1•••G ~5.10!

and a similar result, with a minus sign in front, for the derivatived/dSmn(z2). Furthermore,
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d2

dSmn~z1!dS
rs~z18!

E
0

s1
dt19E

0

s2
dt29E5

d2

dSmn~z2!dS
rs~z28!

E
0

s1
dt19E

0

s2
dt29E50, ~5.11!

but

d2

dSm1n1~z1!dS
m2n2~z2!

E
0

s1
dt19E

0

s2
dt29E5

4

3
g2~dm1

r ]n1
2dn1

r ]m1
!~dm2

s ]n2
2dn2

s ]m2
!Drs~z12z2!. ~5.12!

Then, taking into account the relation

eABe2A5 (
n50

`
1

n!
@A,@A, . . . @A,B# . . . ##, ~5.13!

we have

E
0

s1
dt1E

0

s2
dt2St12«

t11«St22«
t21«E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!~St12«

t11«St22«
t21«

!21

5S 12
1

4E0
s1
dt18s1

m1n1
d

dSm1n1~ z̄ 18!
D S 12

1

4E0
s2
dt28s2

m2n2
d

dSm2n2~ z̄ 28!
D E

0

s1
dt1E

0

s2
dt2E~ z̄1 ,z̄2 ,p̄1 ,p̄2 ,G!

5R~z1 ,z2 ,p1 ,p2!, ~5.14!

with

R5Rpert1Rconf, ~5.15!

Rpert52
4

3
g2HDrs~z12z2!p1

rp2
s2

1

4
s1

mn~dm
r ]1n2dn

r]1m!Drs~z12z2!p2
s2

1

4
s2

mn~dm
s]2n2dn

s]2m!Drs~z12z2!p1
r

1
1

16
s1

m1n1s2
m2n2~dm1

r ]1n1
2dn1

r ]1m1
!~dm2

s ]2n2
2dn2

s ]2m2
!Drs~z12z2!J ~5.16!

and

Rconf5sd~z102z20!H Uz12z2U E
0

1

dlAp102 p202 2@lp1Tp201~12l!p2Tp10#
22

1

4
p20s1

mn
p1n~z1m2z2m!2p1m~z1n2z2n!

uz12z2uAp102 2p1T
2

1
1

4
p10s2

mn
p2n~z1m2z2m!2p2m~z1n2z2n!

uz12z2uAp202 2p2T
2 J . ~5.17!

Notice that in Eq.~5.14! we have eventually suppressed reference to the loopG and this amounts to adopting the straight lin
approximation.

Finally setting

H2~x2y!52
i

2E0
`

dsE
y

x

DzDpTxyS0sexpH i E
0

s

dtKJ , ~5.18!

we can write Eq.~5.9! as

H4~x1 ,x2 ;y1 ,y2!5H2
~1!~x12y1!H2

~2!~x22y2!

2
i

4E0
`

ds1E
0

`

ds2E
y1

x1
Dz1Dp1E

y2

x2
Dz2Dp2Tx1y1Tx2y2E0

s1
dt1E

0

s2
dt2R~z1 ,z2 ,p1 ,p2!S0

s1S0
s2

3expH i E
0

s1
dt18K181 i E

0

s2
dt28K282 i E

0

t1
dt18E

0

s2
dt28E~z18 ,z28 ,p1 ,p2 ,G!J . ~5.19!

At this point, to go ahead it is necessary to take explicitly into account the discrete form of Eq.~5.19!. If we set
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PexpH ig R Gdz
mAm~z!J 5P)

G
U~zn ,zn21!5PexpH ig(

G
~zn

m2zn21
m !AmS zn1zn21

2 D J ~5.20!

by manipulation in part similar to those performed on Eq.~2.11!, we obtain the following the Bethe-Salpeter equation fo
H4 ~see Appendix D for details and Appendix A for illustration of a potential model!

H4~x1 ,x2 ;y1 ,y2!5H2
~1!~x12y1!H2

~2!~x22y2!2 i E d4j1d
4j2d

4h1d
4h2H2

~1!~x12j1!H2
~2!~x22j2!I ~j1 ,j2 ;h1 ,h2!

3H4~h1 ,h2 ;y1 ,y2!, ~5.21!

with

I ~j1 ,j2 ,h1 ,h2!524E d4k1d
4k2

~2p!8
RS j11h1

2
,
j21h2

2
,k1 ,k2Dexp$2 i @~j12h1!k11~j22h2!k2#%. ~5.22!

In conclusion, in momentum space, after taking the Fourier transform,

~2p!4d~p11p22p182p28! Î ~p1 ,p2 ;p18 ,p28!524E d4j1d
4j2E d4h1d

4h2E d4k1
~2p!4

d4k2
~2p!4

e2 i ~p12k1!j12 i ~p22k2!j2

3RS j11h1

2
,
j21h2

2
,k1 ,k2Dei ~p182k1!h11 i ~p282k2!h2, ~5.23!

we obtain at the lowest order inas and insa2 the kernel given in Eqs.~1.3!–~1.7!.
ra-
VI. HOMOGENEOUS EQUATION AND EFFECTIVE
HAMILTONIAN

Let us now consider the usual decomposition of theĤ4 in
a single bound state contribution@(2p)4d4(p11p2
2p182p28)Ĥ4 denotes the Fourier trasform ofH4#:

Ĥ4~k,k8,P!5(
B

FB~k!F̄B~k8!

P22mB
2 1regular terms,

~6.1!

where we have explicitly introduced the total momentu
P5p11p2 and the relative momentak5h2p12h1p2 and
k85h2p182h1p28 with h15m1 /(m11m2) and
h25m2 /(m11m2) @FB(k) being a kind of second order BS
wave function#. Replacing Eq.~6.1! in the momentum space
inhomogeneous BS equation corresponding to Eq.~5.21! and
taking the limit P2→mB

2 in the usual way, we obtain the
homogeneous equation

FB~k!52 i E d4k8

~2p!4
Ĥ2

~1!~h1PB1k!Ĥ2
~2!~h2PB2k!

3 Î ~k,k8;PB!FB~k8!, ~6.2!

which is more appropriate for the bound state problem. N
tice thatPB5(mB,0) and the center of mass frame are e
plicitly understood.

From Eq.~6.2! in the so-called instantaneous approxim
tion we can also have an effective square mass operator o
effective Hamiltonian. The instantaneous approximati
consists in replacing in Eq.~6.2! Ĥ2

( j )(p) with the free propa-
gator i /(p22m2) and the kernelÎ (k,k8;P) with Î inst(k,k8)
m

o-
x-

a-
r an
on

obtained from Î (k,k8,P) by setting k05k085h2(w1

1w18)/22h1(w21w28)/2 with wj5Amj
21k2 and wj8

5Amj
21k28. Then we put

wP~k!5A 2w1~k!w2~k!

w1~k!1w2~k!
E

2`

`

dk0FP~k! ~6.3!

and integrate overk0 andk08 , using

E dk0
1

~k01h1mB!22k22m1
21 i«

3
1

~2k01h2mB!22k22m2
21 i«

52p i
w11w2

w1w2

1

mB
22~w11w2!

2 . ~6.4!

We obtain

@w1~k!1w2~k!#2wmB
~k!

1E d3k8

~2p!3
Aw1~k!1w2~k!

2w1~k!w2~k!
Î inst~k,k8!

3Aw1~k8!1w2~k8!

2w1~k8!w2~k8!
wmB

~k8!

5mB
2wmB

~k!, ~6.5!

which is the eigenvalue equation for the squared mass ope
tor,
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M25M0
21U, ~6.6!

with M05Am1
21k21Am2

21k2 and

^kuUuk8&5
1

~2p!3
Aw11w2

2w1w2
Î inst~k,k8!Aw181w28

2w18w28
.

~6.7!

The quadratic form of Eq.~6.6! obviously derives from the
second order character of the formalism we have used
should be mentioned that for light mesons this form seems
be phenomenologically favoured with respect to the line
one.

In more usual terms one can also write

M5M01V, ~6.8!
. It
to
ar

with

^kuVuk8&5
1

w11w21w181w28
^kuUuk8&1•••

5
1

~2p!3
1

4Aw1w2w18w28
Î inst~k,k8!1•••, ~6.9!

where the ellipses stand for higher order terms inas and
sa2 and kinematical factors equal to 1 on the energy she
have been neglected. If in the potentialV as given by Eq.
~6.9! we neglect the spin-dependent terms, we reobtain t
Hamiltonian of the relativistic flux tube model@13# with an
appropriate ordering prescription@11,14#. Precisely, working
in the Coulomb gauge the resulting potential is
rded.

e

^kuVuk8&52
1

2p2

4

3
asH 1

~k82k!2
1

1

q10q20~k82k!2 Fq21 @~k2k8!•q#2

~k82k!2 G J
1

1

~2p!3
E d3rei ~k82k!•r

sr

2

1

q101q20
H q20q10

Aq102 2qT
21

q10
q20

Aq202 2qT
21

q10q20
uqTu

S arcsin uqTu
uq10u

1arcsin
uqTu
uq20u

D J 1•••,

~6.10!

with q5(k1k8)/2, qj05@wj (k)1wj (k8)#/2, and where again kinematical factors equal to 1 on shell have been disrega
On the contrary, by performing a 1/m2 expansion in Eq.~6.9! we find theqq̄ potential at 1/m2 order,

^kuVuk8&52
4

3
as

1

2p2Q2 2
s

p2

1

Q4 2
4

3

as

2p2

1

m1m2Q
2 Fq22 ~q•Q!2
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4

3
iasK kUS 1
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r 3
2

1

2m2

a2•r

r 3 D Uk8L
1
4

3
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2m1m2
«hkl

kl1kl8

2
~s1

h1s2
h!K kU r kr 3Uk8L 1

1

3
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m1m2
K kUS 3r hr kr 5

2
dhk

r 3 D Uk8L s1
hs2

k1
4

3

as

m1m2

2p

3
s1•s2

2
s

6 S 1
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2 1

1

m2
2 2

1

m1m2
D ^kuqT

2r uk8&2
s

2
«hkl

kl1kl8

2 S s1
h

m1
2 1

s2
h

m2
2D K kU r kr Uk8L

1
s i

2 K kUS 2
1

m1

a1•r

r
1

1

m2

a2•r

r D Uk8L 1•••, ~6.11!

with q5(k1k8)/2 andQ5k2k8 as usual.
In the coordinate representation we may also write

V52
4

3

as

r
1sr1

4

3

as

m1m2
H 1

2r S dhk1
r hr k

r 2 DqhqkJ
W

2
4

3
iasS 1
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a1•r

r 3
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a2•r
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~s11s2!•
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1
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2

s1•s2

r 3 G1
4

3

as

m1m2

2p

3
~s1•s2!d

3~r !2
s

6 S 1
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2 1

1

m2
2 2

1
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D $qT

2r %W

2
s

2 S s1
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2 1

s2

m2
2D •S rr 3qD 2

s i

2 F 1m1

a1•r

r
2

1

m2

a2•r

r G , ~6.12!

where nowq stands for the momentum operator and and the symbol$ %W stands for the Weyl ordering prescription. Notice th
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non-Hermitian terms4 in the Dirac matricesa1 anda2 . Such terms can be eliminated by performing a Foldy-Wouthuy
transformation with the non-Hermitian generator

S5
i

2m1
a1•q2

i

2m2
a2•q, ~6.13!

and we end up with the 1/m2 potential

V52
4

3

as

r
1sr1

1

2m1m2
H 43 as

r
~dhk1 r̂ hr̂ k!p1

hp2
kJ

W

2(
j51

2
1

6mj
2 $srpjT

2 %W2
1

6m1m2
$srp1T•p2T%W1

1

8 S 1

m1
2 1

1

m2
2D¹2

3S 2
4

3

as

r
1sr D 1

1

2 S 43 as

r 3
2

s

r D F 1m1
2S1•~r3p1!2

1

m2
2S2•~r3p2!G1

1

m1m2

4

3

as

r 3
@S2•~r3p1!2S1•~r3p2!#

1
1

m1m2

4

3
asH 1

r 3 F 3r 2 ~S1•r !~S2•r !2S1•S2G1
8p

3
d3~r !S1•S2J , ~6.14!
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let
which coincides with the semirelativistic potential as ob
tained in@10,11#.

VII. CONCLUSIONS

In conclusion, under the assumptions~1.2! and~4.1!, ~4.8!
for the evaluation of the Wilson loop integral, we have de
rived the quark-antiquark Bethe-Salpeter~BS! equation from
QCD. The assumptions are the same previously used for
derivation of a semirelativistic heavy quark potential and th
technique is strictly similar. The kernel is constructed as
expansion inas andsa2 and at the lowest order is given by
Eqs.~1.3!–~1.7!.

The BS equation that has been obtained is a second o
one, analogous in some way to the iterated Dirac equati
Correspondingly, by instantaneous approximation, one c
obtain from Eq. ~6.2! an effective square mass operato
which is given by Eqs.~6.6! and ~6.7!.

At the lowest order inas and sa2 even a linear mass
operator can be written with a potentialV given by Eq.~6.9!.
Then, neglecting the spin-dependent terms inV, the Hamil-
tonian for the relativistic flux tube model comes out. On th
contrary, by a 1/m expansion and an appropriate Foldy
Wouthuysen transformation the ordinary semirelativistic p
tential is reobtained.

In Eq. ~5.21! or ~6.4! a color-independent dressed quar
propagator appears which is defined by Eqs.~5.7! and~5.18!.
Notice that only the perturbative expansion gives a contrib
tion to this quantity.

A few additional remarks are in order.
First of all, notice that the result does not depend strict

on Eq.~4.8! but on the possibility of writing the interaction
term as an integral on the world lines of the quark and t
antiquark. Multiple integrations of the same type would b

4Such terms become, however, Hermitian with reference to t
metric operatorg1

0g2
0 .
-

-

the
e
an

rder
on.
an
r

e
-
o-

k

u-

ly

he
e

admissible, as occurs for the perturbative contribution or
cumulant expansion@16# ~see footnote 1!, but dependence of
the integrand on higher derivatives in the parameterst1 and
t2 would not enable one to carry on the argument.

A second point concerns the significance of the lowe
order BS kernel we have derived. As the analysis in terms
potentials shows, the inclusion of terms inas

2 is essential for
an understanding of the fine and hyperfine structures.
what concerns the importance of (sa2)2 contributions an
indication can be obtained considering the correspond
terms in the relativistic flux tube model. Neglecting the Co
lomb terms, in the equal mass case the center of mass Ha
tonian for such a model at the (sa2)2 order can be written
@14#

H52Am21q2

1
sr

2 FAm21q2

uqTu
arcsin

uqTu

Am21q2
1Am21qr

2

m21q2G
1

s2r 2

16qT
2

m21qr
2

Am21q2
FAm21q2

uqTu
arcsin

uqTu

Am21q2

2Am21qr
2

m21q2G 21•••, ~7.1!

where the appropriate ordering is understood. To better
preciate the relative magnitude of the two potential terms
us consider the case of smallqT ~small angular momentum!
in which the above equation becomes simply

H52Am21q21sr S 12
1

6

qT
2

m21q2
1••• D

1
s2r 2

36

qT
2

~m21q2!3/2
1•••. ~7.2!he
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We notice that ins wave only thesr terms survive. Then,
taking into account thata;1/(sm)1/3, q;1/a, and assum-
ing typically s50.17 GeV2, mu50.35 GeV, mc
51.7 GeV, andmb55 GeV we find that for thep wave the
last term in Eq.~7.2! is of the order of the 2%, 0.1%, and
0.006% of the preceding one for theuū, cc̄, andbb̄ sys-
tems, respectively. This would correspond to contributio
tothe mass of the meson of about 8, 0.2, and 0.01 MeV. T
inclusion of the Coulomb term would reducea and improve
the result. In theuū case, e.g., it would amount to cutting th
above contribution by a factor of 2. Therefore only in th
last case would thes2 term be of any significance.

Finally let us come to the problem of the type of confine
ment, which has been largely discussed in the literature.
this terminology what is usually meant is the tentative a
sumption of a BS~first order! confining kernelK of the
instantaneous form

K̂conf52~2p!3G
s

p2

1

Q4 ~7.3!

or even the covariant counterpart of it,

K̂conf52~2p!3G
s

p2

1

Q4 , ~7.4!

whereG is a combination of Dirac matrices. Typically the
casesG51 ~scalar confinement!, G5g1

0g2
0 ~vectorial con-

finement!, or a combination of them have been considered
Equation~7.4! is immediately ruled out by the fact that

even if formally it corresponds to Eq.~7.3! ~by instantaneous
approximation!, actually, due to the strong infrared singula
ity, it gives results very different from Eq.~7.3! @17#. As well
known, Eq.~7.3! with G51 was motivated by the fact that it
reproduces the static potentialsr and the spin-dependen
potential as obtained in the Wilson loop context. As we a
ready mentioned, however, this choice gets both into ph
nomenological and theoretical difficulties:~1! It gives a first
order velocity-dependent relativistic correction to the pote
tial which differs from the Wilson loop one@10,11#; ~2!
yields unstable variational solutions@6#; ~3! it does not seem
to agree with the heavy meson data@7,8,5,6#, and does not
reproduce straight line Regge trajectories@5,6#. The choice
G5g1

0g2
0 does not meet difficulty~2!, but it gives both wrong

velocity and spin-dependent potentials.
On the contrary, even if we have not yet attempted calc

lations directly with the kernel established in this paper, ve
encouraging results have been obtained in the context of
relativistic flux tube model@13#, of the dual QCD@18#, and
of the effective relativistic Hamiltonian@3#, formalisms that
are all strictly related to ours. Therefore the complicated m
mentum dependence appearing in Eqs.~1.3!–~1.7! seems es-
sential to understand both the light and the heavy mes
phenomenology.

APPENDIX A: ONE-DIMENSIONAL POTENTIAL
THEORY

Here we illustrate the method used in the paper for t
derivation of the BS equation on a potential-type model. L
us consider the model made by a nonrelativistic particle
ns
he

e
is

-
By
s-

.
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r-

t
l-
e-
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the
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one dimension with the Hamiltonian

H5
p2

2m
1U~x,p!5H01U ~A1!

and the corresponding Schro¨dinger propagators

K~x,y,t !5^xue2 iHt uy&, K0~x,y,t !5^xue2 iH0tuy&.
~A2!

From the operatorial identity

e2 iHt5e2 iH0t2 i E
0

t

dt8e2 iH0~ t2t8!Ue2 iHt 8, ~A3!

we obtain the equation

K~x,y,t !5K0~x,y,t !2 i E
0

t

dt8E djE dhK0~x,j,t2t8!

3^juUuh&K~h,y,t8!, ~A4!

which is somewhat analogous to the nonhomogeneo
Bethe-Salpeter equation in configuration space.

We want to derive Eq.~1.4! by means of the path-integral
formalism.

Let us take

U5V~x!1$W~x!p2%ord, ~A5!

where$ %ord stands for some ordering prescription. In term
of the path integral we can write, in phase space,

K~x,y,t !5E
y

x

DzDpexpH i E
0

t

dt8F p8ż82
p82

2m
2V~z8!

2W~z8!p82G J , ~A6!

with z85z(t8), p85p(t8), andż85dz(t8)/dt8. In Eq. ~A.6!
the functional ‘‘measures’’ are supposed to be defined by

Dz5S m

2p i« D N/2dz1•••dzN21 ,

Dp5S i«

2pmD N/2dp1•••dpN21dpN , ~A7!

and again the end pointsx and y stand for the condition
z05y, zN5x. As is well known~see, e.g.,@19#! the ordering
prescription is concealed under the particular discretizatio
adopted in the limit procedure implied in the definition o
Eq. ~A6!.

Let us first consider the caseW50. In this case there is no
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ordering problem and it is possible to perform explicitly the
p integration in Eq.~A6! obtaining the path-integral repre-
sentation in configuration space,

K~x,y,t !5E
y

x

DzexpF i E
0

t

dt8Smż82

2
2V~z8!D G . ~A8!

Then using the identity

expS 2 i E
0

t

dt8V~z8! D 512 i E
0

t

dt8V~z8!

3expS 2 i E
0

t8
dt9V~z9! D ,

~A9!

one obtains
K~x,y,t !5K0~x,y,t !2 i E
0

t

dt8E
y

x

DzV~z8!expS i E
t8

t

dt9m
ż92

2

1 i E
0

t8
dt9m

ż92

2
2 i E

0

t8
dt9V~z9!D , ~A10!

which, taking into account that

E
y

x

Dz•••5E djE
j

x

DzE
y

j

Dz••• ~A11!

@having identifiedz(t8)5j#, can be rewritten in the form
~A4! with ^juUuh&5V(j)d(j2h).

In the general caseW(x)Þ0, it is convenient to work with
the original path-integral representation in phase space,
~A6!, and it is necessary to use discretized expressions
plicitly. For Weyl ordering in Eq.~A5! the correct discreti-
zation is the midpoint one. We can write therefore
K~x,y,t !5
1

~2p!N
E dpNdzN21dpN21•••dz1dp1expS i(

n51

N H pn~zn2zn21!2«F pn22m1VS zn1zn21

2 D
1WS zn1zn21

2 D pn2G J D ~A12!

and use the discrete counterpart of Eq.~A9!,

expH 2 i« (
n51

N FVS zn1zn21

2 D 1WS zn1zn21

2 D pn2G J 512 i« (
R51

N FVS zR1zR21

2 D 1WS zR1zR21

2 D pR2 G
3expH 2 i« (

r51

R21 FVS zr1zr21

2 D 1WS zr1zr21

2 D pr2G J . ~A13!

Then we have

K~x,y,t !5K0~x,y,t !2 i«
1

~2p!N(
R51

N E dpNdzN21•••dz1dp1expH i (
n5R

N Fpn~zn2zn21!2«
pn
2

2mG J
3FVS zR1zR21

2 D 1WS zR1zR21

2 D pR2 GexpS i (
n51

R21 H pn~zn2zn21!2«F pn22m1VS zn1zn21

2 D 1WS zn1zn21

2 D pn2G J D
5K0~x,y,t !2 i« (

R51

N E dzRE dzR21H 1

~2p!N2RE dpNdzNdpN21•••dzR11dpR11J
3expH i (

n5R11

N Fpn~zn2zn21!2«
pn
2

2mG J 1

2pE dpRFVS zR1zR21

2 D 1WS zR1zR21

2 D pR2 GeipR~zR2zR21!
1

~2p!R21

3E dpR21dzR22•••dp1e
ipR21~zR212zR22!

3expS i (
n51

R22 H pn~zn2zn21!2«F pn22m1VS zn1zn21

2 D 1WS zn1zn21

2 D pn2G J D , ~A14!

which in the continuous limit reads
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K~x,y,t !5K0~x,y,t !2 i E
0

t

dt8E djE dhK0~x,j,t2t8!IW~j,h!K~h,y,t8!, ~A15!

with

IW~j,h!5
1

2pE dpFVS j1h

2 D1WS j1h

2 D p2Geip~j2h!. ~A16!

Passing to momentum space

K̃~k,q,t !5E dxE dye2 ikxK~x,y,t !eiqy, ~A17!

we can also write

I˜W~k,q!5
1

2pE djdpdhei ~p2k!jFVS j1h

2 D1WS j1h

2 D p2Ge2 i ~p2q!h5Ṽ~k2q!1W̃~k2q!S k1q

2 D 2
[ K kUV~x!1

1

4
$p,$p,W~x!%%UqL . ~A18!

Equation~A15! is equivalent to Eq.~A4! and the kernel reduces to the Fourier transformation of the caseW(x)50.
Had we considered the symmetric ordering in Eq.~A5! we should have replaced, in Eqs.~A13! and ~A14!,

VS zn1zn21

2 D1WS zn1zn21

2 D pn2
with

1

2
@V~zn!1V~zn21!#1

1

2
@W~zn!1W~zn21!#pn

2 ,

and the result would be

Ĩ S~k,q!5
1

2pE djdpdhei ~p2k!jFV~j!1V~h!

2
1
W~j!1W~h!

2
p2Ge2 i ~p2q!h5Ṽ~k2q!1W̃~k2q!

k21q2

2

[^kuV~x!1
1

2
$p2,W~x!%uq&. ~A19!

APPENDIX B: BEYOND THE LADDER APPROXIMATION

As an example let us derive the contribution in Eq.~2.14! corresponding to the crossed diagram in Fig. 1. Let us expand
last exponential~call it BL) in Eq. ~2.11! ~which was previously simply replaced with 1!:

BL5H 12
ig1

2

4 E
t1

s1
dt18E

0

t1
dt19DF~z182z19!2

ig2
2

4 E
t2

s2
dt28E

0

t2
dt29DF~z282z29!2

ig1g2
4 E

0

t1
dt18E

t2

s2
dt28DF~z182z28!1•••J .

~B1!

The contribution corresponding to the crossed diagram~CD! is the one coming from the last term inside the curly brackets
Eq. ~B1!. We can write



3522 54N. BRAMBILLA, E. MONTALDI, AND G. M. PROSPERI
CD52
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4 S 12D

2E
0

`

dt1E
t1

`
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`
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dt18E
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dt28DF

~B2!
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2
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4 E
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dt19E
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t2
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52
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2

16 S 12D
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`
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`
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`
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Dz2expH 2
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2
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2
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2

2 Et28
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i

2Et2
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2 Et2
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g1
2

2 E0t19 dt1-DF~z192z1-!G
2

i

2E0
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dt29F ż2921m2

21
g2
2
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4 E

0

t18dt19E
0

t2
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3expH 2
ig1

2

4 E
t18
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dt19E

0
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ig2
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4 E
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0
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ig1g2
4 E

t18
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dt19E

0
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dt29DF~z192z29!J .

In conclusion, replacing again the last exponential in Eq.~2.2! with 1, we have

CD52g1
2g2

2E d4j1E d4j2E d4h1E d4h2DF~j12h2!DF~j22h1!G2~x12j1!G2~j12h1!

3G2~x22j2!G2~h22j2!G4~h1 ,h2 ;y1 ,y2!, ~B3!
-

which apart from a reordering of the various factors and
redenomination of the variables corresponds to the last t
in Eq. ~2.14!. The method can be immediately extended
higher order terms inBL or iterated on Eq.~B2!.

APPENDIX C: FUNCTIONAL DERIVATIVES OF THE
AREA TERM

We prove Eq.~5.10!.
Let us first consider the confinement part and go back

the original Eq.~4.2!. We write

Smin5E
t i

t f
dtE

0

1

dlS~u!, ~C1!
a
erm
to

to

with

S~u!5F2S ]um

]t

]um

]t D S ]un

]l

]un

]l D1S ]um

]t

]um

]l D 2G1/2,
~C2!

um5um(l,t) being the equation of the minimal surface en
closed by the loop. Obviouslyum must be the solution of the
Euler equations

]

]l

]S
]~]um/]l!

1
]

]t

]S
]~]um/]t !

50, ~C3!
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satisfying the boundary conditionsum(1,t)5z1
m(t) and

um(0,t)5z2
m(t). Then, considering an infinitesimal variatio

of the world line of the quark 1,z1
m(t)→z1

m(t)1dz1
m(t), even

um(l,t) must change,um(l,t)→um(l,t)1dum(l,t), and
one has

dSmin5E
t i

t f
dtE

0

1

dlF ]S
]~]um/]l!

]

]l
dum

1
]S

]~]um/]t !

]

]t
dumG5E

t i

t f
dtF ]S

]~]um/]l!
dumG

l51

,

~C4!

wheredz1
m(t) is assumed to vanish out of a small neighbo

hood of a specific value oft. Finally taking into account that

dum~1,t !5dz1
m~ t !,

]um~1,t !

]t
5 ż1

m~ t !, ~C5!

one obtains
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]l D
1

1S ]um

]l D
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ż1
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5
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1

2
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]l D
1
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~C6!

and, more explicitly,

dSmin
dSmn~z1!

5
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@2 ż1
2~]u/]l!1

21~ ż1•~]u/]l!1!
2#1/2

.

~C7!

Then, passing to the straight line approximation we have
n

r-

]um

]l
5z1m2z2m5rm ~C8!

and

dSmin
dSmn~z1!

5
rmż1n2r nż1m

@2 ż1
2r 21~ ż1•r !2#1/2

. ~C9!

Using Eq.~C9! ~having replaced the velocities with the mo
menta! and Eqs.~5.2! and~4.5!, we obtain the second term in
Eq. ~5.10!.

Let us come to the perturbative part. Consider a variati
z1→z11dz1; then,

d1E
0

s2
dt1E 10s2dt2ż1

rDrs~z12z2!ż2
s ~C10!

5E
0
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dt2Fd ż1

rDrs~z12z2!

1 ż1
rdz1

n]nDrs~z12z2!ż2
s

5E dSrnE
0

s2
dt2@]nDrs~z12z2!2]rDns~z12z2!# ż2

s ,

whence

d

dSmn~z1!
E
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s1
dt1E

0

s2
dt2p1

rDrs~z12z2!p2
s

5E
0

s2
dt2~dm

r ]1n2dn
r]1m!Drs~z12z2!p2

s , ~C11!

and we recover the first term in Eq.~5.10!.
From Eqs.~C9! and~C10! even Eqs.~5.11! and~5.12! can

be directly obtained@notice thatz18Þz1 or z18Þz2 have to be
assumed in Eq.~5.11! in the case of a second derivative#.
APPENDIX D: DISCRETE FORM FOR THE PATH-INTEGRAL REPRESENTATION OF THE Qq̄ PROPAGATOR

Taking explicitly into account the discrete form of Eq.~5.19! and using Eq.~5.20! we have
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If we neglect in the exponent the terms(n5Rj11
Nj (n51

Rj Dmnpjn j
m pjn

j8
n

and (n151
R1 (n25R211

N2 E„(z1n11z1n121)/

2,(z2n21z2n221)/2,p1n1,p2n2, . . . …, corresponding in the continuous to the quantity@cf. Eq. ~2.11!#,
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and

E
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Equation~D1! can be written
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which, going back to the continuous, corresponds to Eq.~5.21! with the kernel given by Eq.~5.22!.
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-
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