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Perturbative study for domain-wall fermions in 411 dimensions

S. Aoki and H. Hirose
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki-305, Japan

~Received 29 March 1996!

We investigate a U~1! chiral gauge model in 411 dimensions formulated on the lattice via the domain-wa
method. We calculate an effective action for smooth background gauge fields at a fermion one-loop
From this calculation we discuss properties of the resulting four-dimensional theory, such as gauge inva
of two-point functions, gauge anomalies, and an anomaly in the fermion number cur
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PACS number~s!: 11.15.Ha, 11.30.Rd
ive
the
in

e
r-
o
ne
e

l-

e
te
e
is

e-

in
-
ate

he

e
n

n-
s,
e
es.
ent

of
f-

on
I. INTRODUCTION

The standard model is very successful to explain ma
aspects of electroweak interactions. However these succe
come mainly from perturbative analysis, and physics at t
breaking scale, for example, the mass of the Higgs parti
and the baryon number violation etc., cannot be predicted.
order to predict them, we need to study the standard mo
nonperturbatively, especially using the technique of lattice
gauge theories.

A main problem for studying the standard model on th
lattice is the difficulty to define lattice chiral gauge theorie
due to the fermion doubling phenomenon@1,2#, which can be
easily seen in the fermion propagator on the lattice:

SF~p!5
(mgmsin~pm!

(msin
2~pm!

. ~1!

This propagator has poles atpm5(p,0,0,0), etc., as well as
at pm5(0,0,0,0). Therefore a naively discretized lattic
fermion field yields 2d fermion modes, half of one chirality
and half of the other, so that the theory is no longer chir
and therefore cannot be used to construct the standard m
on the lattice. Several lattice approaches have been propo
to define chiral gauge theories, but so far none of them ha
been proven to work successfully.

Recently Kaplan has proposed a new approach@3# to this
problem. He suggested that it may be possible to simulate
behavior of massless chiral fermions in 2k dimensions by a
lattice theory of massive fermions in 2k11 dimensions if
the fermion mass has a shape of a domain wall in t
(2k11)th dimension. He showed for the weak gauge co
pling limit that the massless chiral states arise as zero mo
bound to the 2k-dimensional domain wall while all doublers
can be given large gauge invariant masses. If the chiral fer
ion content that appears on the domain wall is anomalous
2k-dimensional gauge current flows off the wall into the ex
tra dimension so that the theory cannot be 2k-dimensional.
Therefore he argued that this approach possibly simulates
2k-dimensional chiral fermions only for anomaly-free case

His idea, called a domain-wall fermion method, wa
tested for smooth external gauge fields. It has been sho
both numerically@4# and analytically@5# that in the case of
the chiral Schwinger model the anomaly in the gauge curre
is cancelled on the wall among three fermions of charge 3,
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and 5. The Chern-Simons current was also evaluated in@6,5#:
It is shown that the (2k11)th component of the current is
nonzero in the positive mass region and zero in the negat
mass region, so that the derivative of the current cancels
2k-dimensional gauge anomaly on the wall, as was argued
@3,7#.1

Results above provide positive indications that th
domain-wall fermion method may work as a lattice regula
ization for chiral gauge theories. There exists, however, tw
remaining problems to be considered in this approach. O
of the problems is the fate of the chiral zero mode on th
domain wall: Since the original (2k11)-dimensional model
is vectorlike, there always exists an antichiral mode, loca
ized on an antidomain wall formed by periodicity of the
extra dimension. If the chiral mode and the antichiral mod
are paired into a Dirac mode, this approach fails to simula
chiral gauge theories. Without dynamical gauge fields, th
overlap between the chiral mode and the antichiral mode
suppressed asO(e2L) whereL is the size of the extra di-
mension. If gauge fields become dynamical, the overlap d
pends on the gauge coupling. It was found@11,12# that the
chiral mode disappears and the model becomes vectorlike
the strong gauge coupling limit of the extra dimension. Re
cently this problem has been investigated at the intermedi
coupling region via the numerical simulation for a~211!-
dimensional U~1! model, but no definite conclusion on the
existence of the chiral zero mode can be obtained in t
symmetric phase@13#.

The other problem is related to a structure of an effectiv
action for smooth background gauge fields at the fermio
one-loop level: The perturbative evaluation for the~211!-
dimensional model found@5# that, if gauge fields depend on
coordinates of the extra dimension, the effective action co
tains the longitudinal component as well as parity-odd term
and that this longitudinal component, which breaks gaug
invariance, remains nonzero even for anomaly-free cas
The gauge noninvariant parity-even term seems abs
@14,15# in two modifications of Kaplan’s original domain-
wall fermion, waveguide model@16,17#, and overlap formula
@18,19#, whose gauge fields do not depend on coordinates
the extra dimension. These two modifications, however, su

1Recently the anomaly is also calculated in the continuum versi
of the domain-wall fermion@8–10#.
3471 © 1996 The American Physical Society



,

ce

3472 54S. AOKI AND H. HIROSE
fer from the first problem: the chiral zero mode on the d
main wall seems to disappear in the presence of the dyna
cal gauge fields@16,17,20#.

In this paper, following the previous calculation in 211
dimensions@5#, we have carried out a detailed perturbativ
calculation of the original domain-wall fermion formulation
in 411 dimensions for smooth background gauge fields,
order to investigate the structure of the effective action
higher dimensions. In Sec. II, we briefly summarize the la
tice perturbation theory for the domain-wall method with th
periodic boundary condition@5#. In Sec. III, we evaluate the
two-point function and anomaly in 411 dimensions at a
fermion one-loop order. We find that the effective action fo
the ~411!-dimensional theory has the similar structure t
that for the~211!-dimensional theory: there appear not onl
parity-odd terms such as the gauge anomaly and the Che
Simons term but also parity-even terms such as the m
term and the Lorentz noncovariant term. Therefore the gau
noninvariant terms remain nonzero for anomaly-free cas
also in four dimensions. In Sec. IV, we comment on a
anomaly of the fermion number current in 411 dimensions.
Finally we give our conclusions in Sec. V.

II. FORMULATION

In this section, we briefly summarize a formulation of th
domain-wall method and a setup of lattice perturbation the
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ries. In particular, we explicitly give a fermion propagator
vertex functions, and the Ward-Takahashi identity.

A. Lattice action

We consider a vector gauge theory inD52k11 dimen-
sions with a domain-wall mass term. For later convenien
we use the notation of Ref.@18#, where the fermionic action
is written in terms of a 2k-dimensional theory with infinitely
many flavors. Our action is denoted as

S5SG1SF . ~2!

The action for gauge fieldSG is given by

SG5b (
n,m.n

(
s
Re$Tr@Umn~n,s!#%

1bD(
n,m

(
s
Re$Tr@UmD~n,s!#%, ~3!

where m, n run from 1 to 2k, n is a point on a
2k-dimensional lattice ands a coordinate in the extra dimen-
sion,b is the inverse gauge coupling for plaquettesUmn and
bD that for plaquettesUmD . The fermionic part of the action
SF is given by
SF5
1

2(n,m (
s

c̄s~n!gm@Us,m~n!cs~n1m!2Us,m
† ~n2m!cs~n2m!#1(

n
(
s,t

c̄s~n!@M0PR1M0
†PL#stc t~n!

1
1

2(n,m (
s

c̄s~n!@Us,m~n!cs~n1m!1Us,m
† ~n2m!cs~n2m!22cs~n!#, ~4!
all
where s, t are considered as flavor indices
PR/L5(16g2k11)/2,

~M0!st5Us,D~n!ds11,t2a~s!dst

~M0
†!st5Us21,D

† ~n!ds21,t2a~s!dst , ~5!

andUs,m(n), Us,D(n) are link variables for gauge fields. We
consider the above model with a periodic boundary in t
extra dimension, so thats, t run from2L to L21, and we
take

a~s!512m0@sgn~s1 1
2 !sgn~L2s2 1

2 !#

5H 12m0 , 2 1
2,s,L2 1

2 ,

11m0 , 2L2 1
2,s,2 1

2 ,
~6!

for 2L<s,L. It is easy to see@18# thatSF above is iden-
tical to the domain-wall fermion action inD52k11 dimen-
sions@3# with the Wilson parameterr51. In fact the second
term in Eq.~4! can be rewritten as
,

he

1

2
c̄sgD@Us,Dcs112Us21,Dcs21#1

1

2
c̄s@Us,Dcs11

1Us21,Dcs2122cs#1M ~s!c̄scs ~7!

with M (s)5m0@sgn(s11/2)sgn(L2s21/2)#. It is easy to
see that one chiral zero mode appears on the domain w
arounds50 if and only if 0,m0,2.

B. Fermion propagator and Feynman rules

The fermion propagator in 2k-dimensional momentum
space and in realDth space has been obtained in@18,5# for
largeL:

SF~p!st52H F S i(m gmp̄m1M DGL~p!G
st

PL

1F S i(m gmp̄m1M†DGR~p!G
st

PRJ , ~8!

where
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GL~p!st5

{
~s,t>0!

Be2a1us2tu1~AL2B!e2a1~s1t !1~AR2B!e2a1~2L2s2t !,

~s>0, t<0!

ALe
2a1s1a2t1ARe

2a1~L2s!2a2~L1t !,

~s<0, t>0!

ALe
a2s2a1t1ARe

2a2~L1s!2a1~L2t !,

~s,t<0!

Ce2a2us2tu1~AL2C!ea2~s1t !1~AR2C!e2a2~2L1s1t !,

~9!

GR~p!st5

{
~s,t>21!

Be2a1us2tu1~AR2B!e2a1~s1t12!1~AL2B!e2a1~2L2s2t22!,

~s>21, t<21!

ARe
2a1~s11!1a2~t11!1ALe

2a1~L2s21!2a2~L1t11!,

~s<21, t>21!

ARe
a2~s11!2a1~ t11!1ALe

2a2~L1s11!2a1~L2t21!,

~s,t<21!

Ce2a2us2tu1~AR2C!ea2~s1t12!1~AL2C!e2a2~2L1s1t12!,

~10!
r

:
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a6512
¹~p!

2
7m0 ~11!

a65arccoshF12 S a61
11 p̄2

a6
D G>0, ~12!

AL5
1

a1e
a12a2e

2a2
, ~13!

AR5
1

a2e
a22a1e

2a1
, ~14!

B5
1

2a1sinha1
, ~15!

C5
1

2a2sinha2
. ~16!

From the form ofAL , AR , B, andC, it is easy to see that
singularities occur only inAL at p50:

AL→
m0~42m0

2!

4p2a2
, p→0. ~17!

Therefore theGL part of the propagator describes one mas
less right-handed fermion arounds,t50, which corresponds
to the zero mode on the domain wall. It is also noted that t
GR part describes one massless left-handed fermion aro
usu,utu5L, which corresponds to the antizero mode, due
the periodic boundary condition in the extra dimension.
s-

he
und
to

Now we write down the lattice Feynman rules relevant fo
a fermion one-loop calculation, which will be performed in
the next section. We first choose the axial gauge fixing2

Us,D51. Although the full gauge symmetries inD dimen-
sions are lost, the theory is still invariant unde
s-independent gauge transformations@21#. Therefore the
gauge currentJm(x)5(sj m(x,s) is conserved. We consider
the limit of small 2k-dimensional gauge coupling, and take

Us,m~n!5exp@ iagAm~s,n1m/2!#, ~18!

where a is the lattice spacing, andg}1/Ab is the gauge
coupling constant whose mass dimension is 22D/2 ~mass
dimension of the gauge fieldsAm is D/221). We consider
Feynman rules in momentum space for the physical 2k di-
mensions but in real space for the extra dimension. There
three relevant points for later calculations.

~1! The fermion propagatorSF(p)st has been given in Eq.
~8! with Eqs.~9! and ~10!.

~2! The fermion vertex coupled to a single gauge field
given by

ag]m@SF
21~k!#st5 icos~akm!gmds,t1sin~akm!ds,t ,

~19!

2To choose the axial gauge fixing in the periodic boundary co
dition, gauge field configurations should satisfy a constraint that t
Polyakov loop in the extra dimension is equal to unity. To achiev
this constraint, we should put ad function of the constraint, so that
the other gauge couplinggs}1/Abs is not necessarily small and can
be made arbitrary large, or we should also take the weak coupl
limit of gs .
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wherek5(q1p)/2 and the fermion vertex with two gauge
fields is

2a2
g2

2
]m
2 FSF21S q1p

2 D G
ss

. ~20!

From the periodicity of Eq.~19!, the fermion vertex with
2n11 gauge fields is proportional to]m$SF

21@(q1p)/2#%st
and the fermion vertex with 2n gauge fields is proportional
to ]m

2 $SF
21@(q1p)/2#%st .

~3! The fermion propagator satisfies the Ward-Takaha
identity on the lattice. The identity is given by

(
m51

2k

2sin~pm/2!]m@SF
21~q1p/2!#s,t

5@SF
21~q1p!#s,t2@SF

21~q!#s,t . ~21!

III. U „1… CHIRAL GAUGE THEORY IN 4 11 DIMENSIONS

In this section we investigate a U~1! chiral gauge theory
in 411 dimensions. In four dimensions, it is shown with th
shi

e

power counting that then-point functions which has diver-
gent diagrams are two-, three-, and four-point functions.
the following two subsections we calculate in detail the tw
point function of the gauge fieldPmn(p) and the parity-odd
part of the three-point function~the gauge anomaly!.

A. Calculation of two-point function

First of all, the effective action with two external gaug
fields is denoted by

Seff
~2![2

g2

2 (
p,s,t

Am~s,p!An~ t,2p!Pmn~p!st5

2
g2

2 (
p,s,t

Am~s,p!An~ t,2p!@Pa
~2!1Pb

~2!#st
mn ,

~22!

where
tion with
t term

zero in

o noted
he
@Pa
~2!#st

mn5E
2p/a

p/a d4q

~2p!4
trH F ]mSF

21S q1
p

2D •SF~q1p!G
st

F ]nSF
21S q1

p

2D •SF~q!G
ts

J a2, ~23!

@Pb
~2!#st

mn52dstdmnE
2p/a

p/a d4q

~2p!4
tr@]m

2SF
21~q!•SF~q!#ssa

2. ~24!

This integral has the similar form as in the~211!-dimensional case, but has the divergence of ordera22. To separate the
would-be divergent part from the finite part we rewrite this integral as@22#

Pmn~p!5S Pmn~p!2Pmn~0!2
prps

2
]r,s
2 Pmn~0! D1S Pmn~0!1

prps

2
]r,s
2 Pmn~0! D . ~25!

The first derivative term disappears due to the symmetry of the integral. Note that we adopt the dimensional regulariza
412e dimensions to avoid infrared singularities for zero external momentum. With this infrared regularization the firs
has already been finite, so that it can be evaluated as the value of the naive continuum limit (a→0):

Pmn~p!2Pmn~0!2
prps

2
]r,s
2 Pmn~0!5S Pmn

cont~p!2Pmn
cont~0!2

prps

2
]r,s
2 Pmn

cont~0! D5Pmn
cont~p!, ~26!

where cont stands for continuum. In the last equality, we use the fact that the integral with zero external momenta is
the continuum dimensional regularization. The second term in Eq.~25! is denoted

Pmn
lattice~0!1

prps

2
]r,s
2 Pmn

lattice~0!

and must be integrated on the lattice in 412e dimensions. In other words, the first term in Eq.~25! is the contribution of the
continuum theory and the second term is that of the lattice theory, and therefore the latter is named as ‘‘lattice.’’ It is als
that we useg5 which anticommutes with allgm in 412e dimensions for the calculation of the two-point function. Since t
final result is independent of the infrared regulator, so that it does not depend on the choice ofg5.

1. Evaluation for the continuum part

The continuum part leads to the usual transversal form, multiplied by the functionFL/R(s,t) which characterizes the
domain-wall fermion:



e term

54 3475PERTURBATIVE STUDY FOR DOMAIN-WALL FERMIONS . . .
FL~s,t !5
m0~42m0

2!

4
35

~12m0!
s1t for s,t>0 ,

~12m0!
s~11m0!

t for s>0 andt,0 ,

~11m0!
s1t for s,t<0 ,

~27!

FR~s,t !5
m0~42m0

2!

4
35

~12m0!
2L2s2t22 for s,t>0 ,

~12m0!
L2s21~11m0!

2L2t21 for s>0 andt,0,

~11m0!
22L2s2t22 for s,t<0 .

~28!

The result is

Pmn,st
cont ~p!52g2(

x
Fx
2~s,t !E

2`

` dnq

~2p!n
trH igmPx

2 i ~q”1p” !

~q1p!2
ignPx

2 iq”

q2 J 5
2g2

~4p!2(x
Fx
2F1e 1

5

3
2gE1 lnS 4pm̄2

p2 D G23Tmn ,

~29!

where e5(n24)/2 and m̄ is the renormalized point andTmn5Tmn(p) is the transverse function ofp:
Tmn(p)5p2dmn2pmpn , andx5L or R.

2. Evaluation for the lattice part

The lattice partPmn
lattice(p) can be divided into two quantities, a mass term of the gauge field and a second derivativ

of thePmn , which contains the transverse part.
We consider the mass termPmn,st

lattice(0)5PM(s,t)dmn , which has the form

PM~s,t !52g2E
2p

p dnq

~2p!n
tr$@]mSF

21~q!•SF~q!#st@]mSF
21~q!•SF~q!# ts%a

221g2dstE
2p

p dnq

~2p!n
tr@]m

2SF
21~q!•SF~q!#ssa

22.

~30!
ity

l

y

ro

a-
m,
Here no sum overm is taken. By the rescalingq→qa and
the fact that the integral is infrared finite in four dimension
we obtain

PM~s,t !5g2a22E
2p

p d4q

~2p!4
tr$]m@Lm~q!#s,t% ~31!

2g2a22E
2p

p d4q

~2p!4
tr$@Lm~q!!Lm~q!#

2@Lm~q!•Lm~q!#%s,t , ~32!

where

@Lm~q!#s,t[@]mSF
21~q!•SF~q!#st , ~33!

and

@A!B#s,t5As,tBt,s , @A•B#s,t5ds,t(
u

As,uBu,s .

~34!

Since the first term is equal to zero because of Stokes’ th
rem, the mass term of the gauge field finally becomes

PM~s,t !52g2a22E
2p

p d4q

~2p!4
tr$@Lm~q!!Lm~q!#

2@Lm~q!•Lm~q!#%s,t .
s,

eo-

It is easy to check that this mass term satisfies the ident

(
t52L

L

PM~s,t !5 (
s52L

L

PM~s,t !50, ~35!

which comes from the fact that the theory with the axia
gauge fixing is still invariant unders independent gauge
transformations. Thus, for thes independent background
gauge fieldAm(s,p)5Am(p), no mass term is generated by
the fermion one-loop integral.

Since it is difficult to calculate the mass term analyticall
for generals andt, we evaluate it numerically. In Fig. 1, the
behavior of the mass termPM(s,t) with t50 fixed is plotted
as a function ofs atm050.5 andL55. ThePM(s,0) has the
largest~negative! values ats50, the place where a chiral
zero mode lives. This means that a loop of the chiral ze
mode mainly contributes toPM(s,t). Furthermore we have
checked thatPM(s,s) is small atsÞ0 or ÞL, where only
massive modes exist. The behavior ofPM(s,0) is similar to
the shape of the mass term in 211 dimensions@5#, which is
given in Fig. 2 whereD(s,0) is plotted as a function ofs at
m050.5 andL55. HereD(s,t)5(xFx(s,t)

222K(s,t) and
K(s,t) is given in @5#.

Next let us consider the calculation of the second deriv
tive term. Since the transversality is hidden behind this ter
we can parametrize (prps/2)]r,s

2 Pmn
lattice(0) as follows:
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prps

2
]r,s
2 Pmn

lattice~0!5P~a!Tmn~p!

1P~b!dmnp
21P~c!dmnpn

2 . ~36!

The second and the last term in the above equation break
transversality. Especially, the last term breaks the Lore

FIG. 1. The coefficient of the two-point functionPM(s,t) as a
function of s with t50 fixed atm050.5 andL55.
the
nz

invariance as in the case of Wilson-Yukawa formulation fo
lattice chiral gauge theories@23#. Although the details of
calculation given in Appendix B is important, we give only
the results ofP (a,b,c) below, wherea andb are not equal
and no sum over them is taken:

FIG. 2. The coefficient of the even termD(s,t) in 211 dimen-
sions as a function ofs with t50 fixed atm050.5 andL55.
P~a!52P~b!1
g2

2 E2p

p dnq

~2p!n
tr„$@La~q!•Lb~q!#!@Lb~q!•La~q!#%2$@La

cont~q!•Lb
cont~q!#!@Lb

cont~q!•La
cont~q!#%…s,t

2
g2

~4p!2 (
x5L,R

Fx
2~s,t !S 132

2

A3p
1
230.463 49

3p2 D 1
g2

~4p!2 (
x5L,R

Fx
2~s,t !

2

3S 1e1 ln~a2m̄2!D . ~37!

whereLm
cont(q) is a value ofLm(q) in the naive continuum limit. Suppressing the extra dimension indicess,t, P (b) becomes

P~b!5
2g2

4 E
2p

p dnq

~2p!n
tr$La~q!•La~q!•@Lb~q!!121!Lb~q!#•Lb~q!%1

g2

4 E2p

p dnq

~2p!n
tr$La~q!•@La~q!!121!La~q!#

3@Lb~q!•La~q!1La~q!•Lb~q!#%1
2g2

4 E
2p

p dnq

~2p!n
tr$La~q!•Lb~q!@La~q!!121!La~q!#•Lb~q!%, ~38!

andP (c) becomes
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P~c!52P~b!2
g2

8 E2p

p dnq

~2p!n
tr$La~q!•La~q!•@La~q!!121!La~q!#•La~q!%1

1

3
tr„$@]aLa~q!•La~q!#!La~q!

22@La~q!•]aLa~q!#!La~q!1La~q!!@]aLa~q!•La~q!#%…1@H.c.#. ~39!
e

t
s
In
he
s

Here H.c. stands for Hermitian conjugate. It can be see
easily thatP (b) which appears inP (a,c) satisfies the equation

(
t

Ps,t
~b!50. ~40!

A similar formula can be found forP (c) after a simple cal-
culation:

(
t

Ps,t
~c!5

2g2

8 E
2p

p dnq

~2p!n
tr]a$La~q!3%50, ~41!

since the integral of n dimensions without singularities i
zero from Stokes’ theorem.

The transverse termP (a) satisfies the equation

(
s,t

P~a!523
g2

~4p!2
2

3S 1e 1 ln~a2m̄2!11.147D . ~42!

It is noted thatP (a) has 1/e term. This is an infrared singu-
larity, which is canceled in the total expression o
Pmn,st(p). This point is discussed also in Appendix B.

3. Total contribution ofPµn„p…

As Pmn
cont(p) andPmn

lattice(p) are obtained in the previous
paragraph, the total contribution ofPmn(p) (s,t are sup-
pressed! is now given by

Pmn~p!5@Pmn
cont~p!#1@PM1P~a!Tmn~p!

1P~b!dmnp
21P~c!dmnpn

2#

5PM1P~p!Tmn~p!1P~b!dmnp
21P~c!dmnpn

2 ,

~43!

whereP(p) is the total contribution for the transverse term
which has no 1/e term ~see Appendix B!. Since it is difficult
to calculate Eq.~43! analytically, we numerically evaluate
each term in Eq.~36!: a finite part ofP (a) (A term!, P (b)

(B term!, andP (c) (C term!, and plot results in Figs. 3–5.
These figures are written as a functions of2L<s<L
(L55) for t50 fixed.

From the above result, we draw the following propertie
for the structure of the gauge field two-point function at
fermion one-loop level, as a conclusion of this subsection

~1! If the gauge field has no dependence of the extra d
mension@i.e.,Am(s,n)→Am(n)#, the propagatorPmn(p) be-
comes transverse, thus gauge invariant, as expected. This
be easily seen from a fact that only the transverse term in E
~43! is left after summation overs,t @using Eqs.~35!, ~40!,
~41!, and~42!#:
n

s

f

,

s
a
.
i-

can
q.

(
s,t

Pmn,st~p!5
2g2

~4p!2
23

2

3
Tmn~p!H 25

3
1gE

1F lnS p2a24p D11.147G J . ~44!

~2! PM , P(p), P (b), andP (c) have a peak arounds50
for fixed t50. This shows that there is no gauge invarianc
when the gauge field depends on the extra dimensions,t.
This fact will be discussed later.

B. Anomaly in 411 dimensions

The next order of the effective action is a three-poin
function. An important quantity which we should evaluate i
a divergence of the gauge current, i.e., gauge anomaly.
this subsection we shall concentrate on a calculation of t
gauge anomaly. An effective action for three gauge field
induced by a fermion loop integral is written as

FIG. 3. The coefficient of the two-point functionPst
(a) as a func-

tion of s with t50 fixed atm050.5 andL55. Here divergent
contributions are removed fromPst

(a) .
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Seff
~3!5g3(

stu
E

2p/a

p/a dnq

~2p!n
dnp

~2p!n
dnk

~2p!n
~2p!nd~n!~q1p

1k!Gmnr~q,p,k;s,t,u!3Am~s,q!An~ t,p!Ar~u,k!,

~45!

whereGmnr(q,t,k;s,t,u) is the three-point function of the
gauge field.

The anomaly is defined as a variation ofSeff
(3) under

the infinitesimal gauge transformationdAr(k,u)5
( i /g)qmu(k,u):

dSeff
~3!53g2(

stu
E

2p/a

p/a dnq

~2p!n
dnp

~2p!n
dnk

~2p!n
~2p!nd~n!~q1p

1k!ikrGmnr~q,p,k;s,t,u!3Am~q,s!An~p,t !u~k,u!,

~46!

and a relation betweendSeff
(3) and the current divergence i

given by

FIG. 4. The coefficient of the two-point functionPst
(b) as a func-

tion of s with t50 fixed atm050.5 andL55.
s

dSeff
~3!5(

u
E

2p/a

p/a dnk

~2p!n
dAr~k,u!

dSeff
~3!

dAr~k,u!

5(
u
E

2p/a

p/a dnk

~2p!nH 2
i

g
u~k,u!krJr~k,u!J .

More explicitly,

krJr~k,u!52g3(
st

E
2p/a

p/a dnq

~2p!n
dnp

~2p!n
~2p!nd~n!~q1p

1k!krGmnr~q,p,k;s,t,u!3Am~q,s!An~p,t !.

~47!

SinceGmnr has the logarithmic divergence, we evaluate it a
follows:

FIG. 5. The coefficient of the two-point functionPst
(c) as a func-

tion of s with t50 fixed atm050.5 andL55.
part of
krGmnr~q,p,k;s,t,u!5kr@Gmnr~q,p,k;s,t,u!2Gmnr~0,0,0;s,t,u!2qs]sGmnr~0,0,0;s,t,u!2ps]sGmnr~0,0,0;s,t,u!#

1kr@Gmnr~0,0,0;s,t,u!1qs]sGmnr~0,0,0;s,t,u!1ps]sGmnr~0,0,0;s,t,u!#.

We can then evaluate the first term using the continuum form as in the previous subsection. Only the parity-odd
Gmnr is necessary to get the anomaly, and it becomes
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krGmnr~q,p,k;s,t,u!odd5kr@Gmnr~q,p,k;s,t,u!#cont1kr@qs]sGmnr~0,0,0;s,t,u!1ps]sGmnr~0,0,0;s,t,u!# lattice. ~48!

Here we use a fact that the anomaly has an antisymmetric structure for Lorentz indices,m,n,r,s.
We now perform the calculation of these terms, continuum and lattice ones, in the next two paragraphs, and the

given in Appendix C.

1. Evaluation for the continuum part

Although one can use the dimensional regularization as in the previous subsection to calculate the continuum pa
anomaly, we introduce a different regularization here—*2`

` is replaced by*2L
L in n54 (L5p/a). Accordingly, using

Fx
35Fx(s,t)Fx(t,u)Fx(u,s), we can write

kr@Gmnr~q,p,k;s,t,u!#cont5
1

3
g3(

x
Fx
3E

2L

L d4l

~2p!4
trH igmPx

2 i l”

l 2
ignPx

2 i ~ l”1p” !

~ l1p!2
ik”Px

2 i ~ l”2q” !

~ l2q!2 J 1@~ l→ l2p!1~ l→ l2q!#

5
1

3
g3(

x
Fx
3E

2L

L d4l

~2p!4
dx

2
4i emnrsS l r~ l1p!s

l 2~ l1p!2
2
l r~ l2q!s

l 2~ l2q!2D1@~ l→ l2p!1~ l→ l2q!#,

wheredL51 anddR521. Here we use the Ward-Takahashi identity as usual in the last step. It is noted that we canno
this integral zero using the shiftl→ l1q, etc., since the integral with respect tol has boundaries,2L or L.

Using the integration formula

E
0

1

dxE
2L2xp

L2xp d4l

~2p!4
]

] l a

1

l 21h2~x!
5

1

16p2 , ~L→`!, ~49!

whereh2(x) is a positive function ofx, we finally obtain

@krGmnr~q,p,k;s,t,u!#cont5
ig3

24p2(
x

dxFx
3emnrsqrps . ~50!

2. Evaluation for the lattice part

The lattice part of the anomaly is written as

kr@qs]sGmnr1ps]sGmnr# lattice~0,0,0;s,t,u!5emnrsqrpsAq,p~s,t,u!, ~51!

whereAq,p(s,t,u)5Aq(s,t,u)2Ap(s,t,u) and

Aq~s,t,u!5
1

4!
emnrs

]

]qs
Gmnr~0,0,0;s,t,u!.

An explicit form of Aq,p(s,t,u) is given as

Aq,p~s,t,u!5
1

4!
g3emnrs

1

3E2p

p d4l

~2p!4
3tr$@Lm~ l !•Ls~ l !#!Ln~ l !!Lr~ l !%2]str$Lm~ l !!Ln~ l !!Lr~ l !%, ~52!
where the extra dimension indicess,t,u are implicit in the
above equation and@Lm#st( l )5@]mSF

21( l )•SF( l )#st is used
again.

As seen in the calculation of the two-point function, the
are two useful formulas:

(
u

Aq,p~s,t,u!52
ig3

24p2(
x

dxFx
2~s,t !emnrsqrps ~53!

and

(
st

Aq,p~s,t,u!5
ig3

12p2(
x

dxFx~u,u!emnrsqrps . ~54!

The detailed proof is given also in Appendix C.
re

3. Results

A total contribution of the parity-odd term, the gauge
anomaly, becomes

krGmnr~q,p,k;s,t,u!odd5emnrsqrpsF ig3

24p2(
x

dxFx
3~s,t,u!

1Aq,p~s,t,u!G . ~55!

We summarize important properties of the anomaly as
follows.
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~1! Note that a summation overu makes this anomaly
zero due to Eq.~53!. This comes from the fact that the mode
with the axial gauge fixing is invariant unders independent
gauge transformations.

~2! Because of Eq.~54!, a summation overs,t makes this
anomaly equal to

(
st

krGmnr~q,p,k;s,t,u!uanomaly

5
ig3

8p2emnrsqrps(
x

dxFx~u,u!. ~56!

Physically this is the gauge anomaly atu for s independent
background gauge fieldAm(s,n)5Am(n). It is noted that the
coefficient of Eq.~56!, 1/8p2, is equal to the coefficient of
the covariant anomaly in four dimensions, not the one of t
consistent anomaly in four dimensions. This does not cont
dict with the fact that the above anomaly is derived from th
variation of the effective action, since the effective action
defined in 41 1 dimensions, not in four dimensions.

~3! Without summations it is difficult to calculate the
anomaly analytically. Instead we evaluate it numerically, a
results are given in Figs. 6–8. We plo
@( ig3/24p2)(xdxFx

3(s,t,u)1Aq,p(s,t,u)# as a function of
u at m050.5 andL510, for fixed s5t50 in Fig. 6, for
s50 and t52 in Fig. 7, and fors50 and t58 in Fig. 8.
These figures tell us the following. If two gauge field
Am(s) andAn(t) are on the same four-dimensional subspa

FIG. 6. The coefficient of the anomalyC(s,t,u) in 411 dimen-
sions as a function ofu for s,t50 fixed atm050.5 andL510.
l

he
ra-
e
is

nd
t

s
ce

(s5t50), the anomaly has large contribution around
u5s5t. If t differs a little from s (s50 and t52), the
anomaly has nonzero contribution aroundu5s or u5t but
peak heights become less. Ift is far away froms (s50 and
t58), the anomaly almost vanishes at allu. For comparison
we calculate the anomaly in 211 dimensions, which is given
by @5#

Tanomaly~s,x!5(
t
C~s,t !

ig2

4p
emndmAn~ t,x!, ~57!

where

C~s,t !5(
x

dxFx~s,t !222GCS~s,t !. ~58!

In Fig. 9C(s,t) is plotted as a function ofs with t50 fixed
atm050.5 andL55. Behaviors of the gauge anomalies are
similar both in 411 dimensions and in 211 dimensions: they
have large contribution arounds50 or u50.

Finally it should be mentioned that a parity-even part o
the variation of the three-point function under the gauge
transformation vanishes locally fors independent back-
ground gauge fields.

FIG. 7. The coefficient of the anomalyC(s,t,u) in 411 dimen-
sions as a function ofu for s50 and t52 fixed atm050.5 and
L510.
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C. The four-point function

A calculation of a four-point function is simpler than th
previous ones since there is no derivative term. Using
same logic as before we obtain

Gmnrs
~4! ~q,p,k,r ;s,t,u,v !5@Gmnrs

~4! ~q,p,k,r ;s,t,u,v !#cont

1@Gmnrs
~4! ~0,0,0,0;s,t,u,v !# lattice.

Results are very similar to the two- or three-point fun
tions; after the summation overv the gauge variation of the
four-point function is zero and after the summation ov
s,t,u it reproduces the continuum value. It shows that t
gauge invariance is correct only in the case that the gau
field has no dependence on the extra dimension.

IV. PHYSICAL IMPLICATION

We consider the~411!-dimensional theory so far. Prop
erties of the effective action in 411 dimensions are more or
less similar to those in 211 dimensions except that the two
point function of the gauge fields contains a mass term an
Lorentz noncovariant term as well as a transverse term an
longitudinal term, and that the gauge anomaly is proportion
to the charge cubed. As in the two-dimensional case@5# the
fermion number violation can be incorporated as follow
First let us consider a fermion number current, whose exp

FIG. 8. The coefficient of the anomalyC(s,t,u) in 411 dimen-
sions as a function ofu for s50 and t58 fixed atm050.5 and
L510.
e
the

c-

er
he
ge

-

-
d a
d a
al

s.
ec-

tation value for background gauge fields is defined by

^Jm
g ~s,x!&5

dSeff
~3,odd!

gdAm~s,x!
, ~59!

where the indexg in the current explicitly shows the charge
of the fermion, and the gauge current is equal togJm

g (s,x). A
divergence of the fermion number current, the fermion num
ber anomaly, is proportional tog2 while the gauge anomaly
is proportional tog3. Therefore even for anomaly-free mode
such as the standard model, where a sum of charge cu
vanishes, the fermion number violation, which is propo
tional to a sum of charge squared, can remain nonzero in
domain-wall fermion formulation. This is the most importan
consequence of our results: The domain-wall fermion form
lation may allow us to simulate the nonperturbative dynam
ics of the baryon number violation of the standard ele
troweak theory. Although our results are obtained for a U~1!
gauge theory, it is not so difficult to obtain similar results fo
non-Abelian gauge models.

The gauge noninvariant terms remain nonzero in 4~11!
dimensions even for anomaly-free cases as in 2~11! dimen-
sions. In the next section we will briefly mention a way t
avoid these terms. Thes-independent gauge fields again lea
to the vector-like theory as in the two-dimensional case@5#.

FIG. 9. The coefficient of the anomalyC(s,t) in 211 dimen-
sions as a function ofs for t50 fixed atm050.5 andL55.
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V. CONCLUSION

In this paper we have investigated the domain-wall chir
fermion formulation in 411 dimensions with a lattice pertur-
bation theory. We have calculated in detail the two-poi
function and the gauge anomaly in four-dimensional U~1!
chiral gauge theory formulated in 411 dimensions.

The most important conclusion drawn from our perturb
tive analysis is that the anomaly of the fermion number cu
rent can be reproduced in the domain-wall fermion formul
tion. The baryon number violation of the standard mod
may be possible due to the existence of this anomaly. Ho
ever the fermion number disappearing from the wall shou
reappear on the antiwall since the total fermion number
exactly conserved in five dimensions, and thus energy c
servation and/or unitarity in the four-dimensional theory o
the wall may also be violated, unless the lepton number d
appearing from the antiwall reappears on the wall at the sa
time without changing the total energy on the wall. For th
success of the domain-wall fermion formulation, this cruci
point should be investigated in the future.

Furthermore, as stressed in the previous section,
domain-wall fermion formulation cannot maintain the tran
versality, and hence gauge invariance, even for anomaly-f
cases.

A solution to the gauge invariance has been proposed
Narayanan and Neuberger: They take the size of the ex
dimension strictly infinite, instead of periodic box, and mak
gauge fields independent of the extra dimension.~They also
take the ‘‘temporal gauge’’ from the beginning.! Since no
antidomain wall caused previously by the periodicity of th
extra dimension exists, the theory is expected to remain c
ral even for such gauge fields. Indeed, using our result of
effective action in 211 dimensions it has been shown tha
the Narayanan-Neuberger formulation, called ‘‘overlap fo
mula,’’ gives gauge invariant effective theory for smoot
background gauge fields in the continuum limit except f
the gauge anomaly in 211 dimensions@14#. The U~1! chiral
gauge theory via their formulation in 411 dimensions is now
under investigation since our calculation in this paper can
easily extended to it. As mentioned in the Introduction, how
ever, it is pointed out recently that the overlap formula ca
not reproduce the desired chiral zero mode in the presenc
the rough gauge dynamics~gauge degree of freedom! which
appears due to the violation of the gauge invariance at infi
ties. This problem is known to exist also for the waveguid
model.

Except the problem of the gauge invariance above,
domain-wall fermion formulation in 411 dimensions works
well for smooth background gauge fields. A remaining que
tion of the domain-wall fermion formulation is whether th
chiral zero mode can survive in the presence of the dyna
cal gauge fields. A numerical investigation has been p
formed in 211 dimensions but has failed to give a definit
conclusion on an existence of the zero mode in the symm
ric phase @13#. Further numerical study for a~411!-
dimensional model is needed.
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APPENDIX A

In this appendix, we calculate the functionGL/R(p) . The
fundamental equations are

p̄2GL~p!s,t1@M†MGL~p!#s,t5ds,t ,

p̄2GR~p!s,t1@MM†GR~p!#s,t5ds,t , ~A1!

where(m51
2k sin2(pm) is written asp̄

2. We examine the upper
equation in detail. Explicit form of this equation is

@ p̄21A~s!#Gs,t~p!2B~s11!G~p!s11,t2B~s!G~p!s21,t

5ds,t , ~A2!

where

A~s!511B~s!2, ~A3!

B~s!5a~s!2
r

2
F~p!512m~s!2

r

2(m @cos~pm!21#.

~A4!

Sincem(s) in B(s) changes the value ats50, L, Eq. ~A2!
should be separated into two cases, one for 0<s<L21 and
the other for2L21<s<21. For convenience,G(p)1 is
defined asG(p) in the range of 0<s<L21 andG(p)2 in
2L21<s<21.

We first focus our attention onG1(p). In the range
0<s<L21, using B(s)5B(s11)512m02(r /2)F(p)
5a1 , Eq. ~A2! is rewritten as

~ p̄2111a1
2 !Gs,t

1 ~p!2a1@G~p!s11,t
1 1G~p!s21,t

1 #5ds,t .
~A5!

The solution of this equation is expressed as a sum
homogeneous general solutions and an inhomogeneous
cial one. Homogeneous general solutions with two unknow
functionsg1

(1)(t) andg1
(2)(t) are

g1
~1!~ t !e2a1~p!s1g1

~2!~ t !ea1~p!s, ~A6!

where cosh@a1(p)#5
1
2@a11(11p̄2)/a1#.

Next the inhomogeneous solution is calculated with th
Fourier transformation as (l n52np/L)
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1

2La1
(
n50

L21
eil nus2tu

cosh@a1~p!#2cos~ l n!
5

21

2a1Lsinh@a1~p!# (n50

L21 S Zus2tu11

Z2ea1~p! 2
Zus2tu11

Z2e2a1~p!D
5

cosh@a1~p!~ us2tu2L/2!#

2a1Lsinh@a1~p!#sinh@a1~p!L#
, ~A7!

where the following formula is used in the last step:

1

L(
n50

L21
Zs11

Z2z
5

zs

12zL
~Z5eil n!. ~A8!

Therefore, the solutionG(p)s,t
1 is given as

G~p!s,t
1 5g1

~1!~ t !e2a1~p!s1g1
~2!~ t !ea1~p!s1

cosh@a1~p!~ us2tu2L !#

2a1Lsinh@a1~p!#sinh@a1~p!L#
. ~A9!

In the same way, the solutionG(p)s,t
2 is obtained as

G~p!s,t
2 5g2

~1!~ t !ea2~p!s1g2
~2!~ t !e2a2~p!s1

cosh@a2~p!~ us2tu2L !#

2a2Lsinh@a2~p!#sinh@a2~p!L#
, ~A10!

wherea2511m02(r /2)F(p), cosh@a2(p)#5
1
2@a21(11p̄2)/a2#.

The unknown functionsg6
(1)(t) and g6

(2)(t) are determined by the four boundary conditions, which are obtained
considering Eq.~A2! at s50 andL:

G~p!s521,t
1 5G~p!s521,t

2 , a1G~p!s50,t
1 5a2G~p!s50,t

2 ,

G~p!s5L21,t
1 5G~p!s52L21,t

2 , a1G~p!s5L,t
1 5a2G~p!s52L,t

2 . ~A11!

Explicitly,
Q•gW ~ t !5bW ~ t !, ~A12!

Q5S ea1 e2a1 2e2a2 2e2a2

a1 a1 2a2 2a2

a1e
2a1L a1e

a1L 2a2e
2a2L 2a2e

a2L

e2a1~L21! ea1~L21! 2e2a2~L11! 2ea2~L11!
D , gW ~ t !5S g1

~1!~ t !

g1
~2!~ t !

g2
~1!~ t !

g2
~2!~ t !

D ,
bW ~ t !5S X2cosh@a2~ u11tu2L !#2X1cosh@a1~ u11tu2L !#

a2X2cosh@a2~ utu2L !#2a1X1cosh@a1~ utu2L !#

a2X2cosh@a2~ u2L2tu2L !#2a1X1cosh@a1~ uL2tu2L !#

X2cosh@a2~ u2L212tu2L !#2X1cosh@a1~ uL212tu2L !#
D ,

whereX6
2152a6sinh(a6)sinh(a6L). Although solution to these equations is very complicated in general, it becomes sim

in the limit of L→`. For t.0,

Q→S ea1 e2a1 2e2a2 2e2a2

a1 a1 2a2 2a2

0 a1e
a1L 0 2a2e

a2L

0 ea1~L21! 0 2ea2~L11!
D ,

bW ~ t !→S X2cosh@a2~ u11tu2L !#2X1cosh@a1~ u11tu2L !#

a2X2cosh@a2~ utu2L !#2a1X1cosh@a1~ utu2L !#

0

0
D .
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Sinceg6
(2)→0 in the limit of L→`, g6

(1) is easily obtained
from this matrix. It is noted that att.L, g6

(1)→0 in the limit
of L→`. This shows thatGL(p) has contributions from two
chiral zero modes which live ats50 or L.

APPENDIX B

In this appendix, we show in detail the calculation of th
two-point functionPmn(p) in 411 dimensions.

Let us setm5a andn5b (aÞb) in the parametrization
of Eq. ~36!. The extra dimension indicess,t are suppressed
below. For this choice ofm andn Eq. ~36! becomes

prps

2
]r,s
2 Pab

lattice~0!5P~a!~2papb!.

It means that

P~a!52]a,b
2 Pab

lattice~0!. ~B1!
e

~No sum overa andb.! When we setm5n5a, Eq. ~36!
becomes

prps

2
]r,s
2 Paa

lattice~0!5~P~a!1P~b!!~p22pa
2 !

1~P~b!1P~c!!pa
2 . ~B2!

Therefore relations betweenP (b),(c) andPmn(p) are given
by

P~b!5
1

2
]b
2Paa1]a,b

2 Pab
lattice~0!, ~B3!

P~c!5
1

2
]a
2Paa

lattice~0!2P~b!. ~B4!

The most simple term in Eq.~36! isP (b), which explicitly
given by
P~b!5
2g2

8 E
2p

p dnq

~2p!n
tr$@]b

2La~q!!La~q!#22@]bLa~q!!]bLa~q!#1@La~q!!]b
2La~q!#12@]bLaa~q!!Lb~q!#

22@Laa~q!!Lbb~q!#22@]bLa~q!!]aLb~q!#12@La~q!!]a
2Lbb~q!#%, ~B5!

where @Lm#st(q)5@]mSF
21(q)•SF(q)#st and @Lmm#st(q)5@]mSF

21(q)•]mSF(q)#st . We obtain Eq.~38! by substituting the
following relation into the last equation:

Lmm~q!5]m
2SF

21~q!•SF~q!1Lm~q!•Lm~q!. ~B6!

Here we use the fact that the followingn-dimensional integral is zero by the Stokes’ theorem:

E
2p

p dnq

~2p!n
tr]b

2@La~q!!La~q!#50. ~B7!

P (c) is also obtained in the same way. Note that bothP (b) andP (c) have no infrared singularity.
Next we consider the most interesting termP (a). For convenience Eq.~B1! is rewritten with Eq.~B3! as

P~a!52P~b!1
1

2
]b
2Paa~0!. ~B8!

By this identity we can concentrate on the last term for the calculation ofP (a). The last term becomes

2g2

8 E
2p

p dnq

~2p!n
tr$@]b

2La~q!!La~q!#22@]bLa~q!!]bLa~q!#1@La~q!!]b
2La~q!#%

5
2g2

8 E
2p

p dnq

~2p!n
tr]b$@]bLa~q!!La~q!#2@La~q!!]bLa~q!#%243tr$@]bLa~q!!]bLa~q!#%. ~B9!

To derive the last equation we use formula~B6! again. By Stokes’ theorem inn dimensions, this integral simply becomes

P~a!1P~b!5
g2

2 E2p

p dnq

~2p!n
tr$@]bLa~q!!]bLa~q!#%. ~B10!

Since this integral has a logarithmic infrared singularity we evaluate it as

P~a!1P~b!5@P~a!2P~a!ucont#1P~a!ucont1P~b!, ~B11!
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whereP (a)ucont means the integrand inP (a) is replaced by the continuum one:

P~a!ucont5
2g2

8
~24!

1

2(x
Fx
2~s,t !E

2p

p dnq

~2p!n
trH iga

2 iq”

q2
igb

2 iq”

q2
iga

2 iq”

q2
igb

2 iq”

q2 J
5

2g2~24•4!

8•2 (
x

Fx
2~s,t !E

2p

p dnq

~2p!nH 8qa
2qb

2

~q2!4
2

1

~q2!2J ,
andP (b)ucont50. Using a property of the Gauss’s error function, we obtain

P~a!ucont52g2(
x

Fx
2~s,t !H 2

3~2p!4
E
0

`

dyy12n/2~^1&y!
n1

1

~4p!2S 132
2

pA3D J , ~B12!

where^1&y is defined by*2pAy
pAy dx1e2x2. The first term in the last step has a 1/e divergence. Therefore we evaluate this integr

as follows:

E
0

`

dyy12n/2~,1.y!
n5E

0

1

dyy21~,1.y!
41E

1

`

dyy21$~,1.y!
42Ap4%1Ap4E

1

`

dyy12n/25
2p2

e
10.463 49.

Here we setn54 for the term without infrared divergence.
Finally we reach the result Eq.~37!. By considering that the factoranm̄n must be multiplied in front of the

n-dimensional integral, it can be easily understood that ln(a2m̄2) appears in Eq.~37! @22#. This is one of the most important
points among what the final result tells us: Thee21 of the lattice contribution cancels that of the continuum one andm̄
dependence also disappears, so that only the ultraviolet divergence lnp2a2 remains in the final result. We can also see a simil
kind of the cancellation of infrared divergences in Ref.@22#.

APPENDIX C

We investigate the anomaly in this appendix. Let us start with the following definition of the three-point function:

Gmnr~q,p,k;s,t,u!5
1

3E2p

p d4l

~2p!4
tr$@]mS

21~ l2q/2!S~ l !#st!@]nS
21~ l1p/2!S~ l1p!# tu!@]rS

21~ l1~p2q!/2!S~ l2q!#us%

1~ l→ l2p!1~ l→ l2q!.

Substituting the above into Eq.~51!, we obtain Eq.~52!, which is given once more below:

Aq.p~s,t,u!5
1

4!
g3emnrs

1

3E2p

p d4l

~2p!4
3tr$@Lm~ l !•Ls~ l !#st!Ln~ l ! tu!Lr~ l !us%2]str$Lm~ l !st!Ln~ l ! tu!Lr~ l !us%. ~C1!

The dependence on the extra dimensions,t,u of this anomaly is calculated numerically. On the other hand, we can calcu
it analytically in special cases, sum overs,t and sum overu. For considering these cases, let us prove two identities, Eqs.~53!
and ~54!. First we show that

5 (
st

(
u 6 Aq.p~s,t,u!5

1

4!
g3emnrsE

2p

p d4l

~2p!4
1

3H 24]str$@Lm~ l !•Ln~ l !•Lr~ l !#uu%

12]str$@Lm~ l !•Ln~ l !#st!Lr~ l ! ts%
J , ~C2!

using the following line of identities to the first term of Eq.~C1! (s,t,u are suppressed!:

5 (
s,t

(
u 6 3tr„$@Lm~ l !•Ls~ l !#!Ln~ l !!Lr~ l !%…5H 3tr$@Lr~ l !•Lm~ l !•Ls~ l !•Ln~ l !#%

3tr$@Lm~ l !•Ls~ l !#!@Ln~ l !•Lr~ l !#%

5H 23tr$@]rS
21~ l !•]mS~ l !•]sS

21~ l !•]nS~ l !#%

13tr$@]mS
21~ l !•]nS~ l !#!@]sS

21~ l !•]rS~ l !#%



he

3486 54S. AOKI AND H. HIROSE
Since integrands on the right-hand side of Eq.~C2! become total derivatives, the integrals can be performed with t
Stokes’ theorem. Using the equation

@Lm~ l !#st5 igm3
2 i l”

l 2 (
x

Fx~s,t !Px ~ l.0!

and introducing the infrared cutoffe, the total derivative is evaluated as

1

4!
g3emnrsE

2p

p d4l

~2p!4
]str$Lm~ l !!Ln~ l !!Lr~ l !%5

1

4!
g3emnrsE

2p

p d3 lW

~2p!4
23H i4!emanr(

x

dx

2
Fx
3(al a
~ l 2!2J U

ls5e

ls5p/2

5g3(
x

dxFx
3 2 i

16p2 .

In the last equality we used the following formula:

E
2p

p d3 lW

~2p!4
l a

~ l 2!2U
ls5e

ls5p/2

52E
2p/e

p/e d3 lW

~2p!4
E
0

1

dxxe2x~11 lW2!52
1

16p2 ~e.0!. ~C3!

Equations~85! and ~86! lead to identities Eqs.~53! and ~54!.
We shall turn to the proof ofemnrs]sGmnr(0,0,0;s,t,u)ucont50 in Eq. ~48!, which is nontrivial in our regularization, using

the same technique above. The calculation is almost the same as that for Eq.~C1! except that the integral*2p
p →*2L

L and
Lm( l ) is that of the continuum:

1

4!
emnrs]sGmnr~0,0,0;s,t,u!ucont5

1

4!
g3emnrs

1

3(x
dxFx

3E
2L

L d4l

~2p!4
3tr$Lm~ l !•Ls~ l !•Ln~ l !•Lr~ l !%2]str$Lm~ l !•Ln~ l !•Lr~ l !%

5
1

4!
g3emnrs

1

3(x
dxFx

3E
2L

L d4l

~2p!4
~24!tr$Lm~ l !•Ls~ l !•Ln~ l !•Lr~ l !%.

Therefore we should calculate the following integral instead of Eq.~C3!

E
2L

L d3 lW

~2p!4
l a

~ l 2!2U
ls5e

ls5L

52E
2L

L d3 lW

~2p!4
E
0

1

dxxe2x~11 lW2!2S 2E
2L/e

L/e d3 lW

~2p!4
E
0

1

dxxe2x~11 lW2!D
52

1

16p2 2S 2
1

16p2D 50.

This means that the derivative term in the continuum,emnrs]sGmnr(0,0,0;s,t,u)ucont, is zero in this regularization.
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