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Perturbative study for domain-wall fermions in 441 dimensions
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We investigate a (1) chiral gauge model in#1 dimensions formulated on the lattice via the domain-wall
method. We calculate an effective action for smooth background gauge fields at a fermion one-loop level.
From this calculation we discuss properties of the resulting four-dimensional theory, such as gauge invariance
of two-point functions, gauge anomalies, and an anomaly in the fermion number current.
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I. INTRODUCTION and 5. The Chern-Simons current was also evaluatf@), i
It is shown that the (R+ 1)th component of the current is

The standard model is very successful to explain manyonzero in the positive mass region and zero in the negative
aspects of electroweak interactions. However these success@ass region, so that the derivative of the current cancels the
come mainly from perturbative analysis, and physics at thek-dimensional gauge anomaly on the wall, as was argued in
breaking scale, for example, the mass of the Higgs particlg3,7].t
and the baryon number violation etc., cannot be predicted. In Results above provide positive indications that the
order to predict them, we need to study the standard modelomain-wall fermion method may work as a lattice regular-
nonperturbatively especially using the technique of lattice ization for chiral gauge theories. There exists, however, two
gauge theories. remaining problems to be considered in this approach. One

A main problem for studying the standard model on theof the problems is the fate of the chiral zero mode on the
lattice is the difficulty to define lattice chiral gauge theoriesdomain wall: Since the original &+ 1)-dimensional model
due to the fermion doubling phenomendn2], which can be is vectorlike, there always exists an antichiral mode, local-

easily seen in the fermion propagator on the lattice: ized on an antidomain wall formed by periodicity of the
) extra dimension. If the chiral mode and the antichiral mode
Se(p)= 2, YuSINP,) 1 e paired into a Dirac mode, this approach fails to simulate
g EMsinz(pM) ' chiral gauge theories. Without dynamical gauge fields, the

overlap between the chiral mode and the antichiral mode is
This propagator has poles pf,=(7,0,0,0), etc., as well as suppressed a®(e~") wherelL is the size of the extra di-
at p,=(0,0,0,0). Therefore a naively discretized lattice mension. If gauge fields become dynamical, the overlap de-
ferm|on field yields 2 fermion modes, half of one chirality pends on the gauge coupling. It was foUrd,17 that the
and half of the other, so that the theory is no longer chirakhiral mode disappears and the model becomes vectorlike in
and therefore cannot be used to construct the standard modék strong gauge coupling limit of the extra dimension. Re-
on the lattice. Several lattice approaches have been proposedntly this problem has been investigated at the intermediate
to define chiral gauge theories, but so far none of them haveoupling region via the numerical simulation for(2+1)-
been proven to work successfully. dimensional W1) model, but no definite conclusion on the
Recently Kaplan has proposed a new apprd&gho this  existence of the chiral zero mode can be obtained in the
problem. He suggested that it may be possible to simulate theymmetric phasgl13].
behavior of massless chiral fermions ik @imensions by a The other problem is related to a structure of an effective
lattice theory of massive fermions ink2- 1 dimensions if action for smooth background gauge fields at the fermion
the fermion mass has a shape of a domain wall in thene-loop level: The perturbative evaluation for tfie-1)-
(2k+1)th dimension. He showed for the weak gauge cou-dimensional model founfb] that, if gauge fields depend on
pling limit that the massless chiral states arise as zero mode®ordinates of the extra dimension, the effective action con-
bound to the R-dimensional domain wall while all doublers tains the longitudinal component as well as parity-odd terms,
can be given large gauge invariant masses. If the chiral fermand that this longitudinal component, which breaks gauge
ion content that appears on the domain wall is anomalous thiavariance, remains nonzero even for anomaly-free cases.
2k-dimensional gauge current flows off the wall into the ex-The gauge noninvariant parity-even term seems absent
tra dimension so that the theory cannot dedimensional. [14,15 in two modifications of Kaplan's original domain-
Therefore he argued that this approach possibly simulates theall fermion, waveguide mod¢lL6,17), and overlap formula
2k-dimensional chiral fermions only for anomaly-free cases[18,19, whose gauge fields do not depend on coordinates of
His idea, called a domain-wall fermion method, wasthe extra dimension. These two modifications, however, suf-
tested for smooth external gauge fields. It has been shown
both numerically{4] and analytically{5] that in the case of
the chiral Schwinger model the anomaly in the gauge current'Recently the anomaly is also calculated in the continuum version
is cancelled on the wall among three fermions of charge 3, 4¢f the domain-wall fermiori8—10].
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fer from the first problem: the chiral zero mode on the do-ries. In particular, we explicitly give a fermion propagator,
main wall seems to disappear in the presence of the dynamiertex functions, and the Ward-Takahashi identity.
cal gauge field$16,17,20Q.

In this paper, following the previous calculation in-2
dimensiong 5], we have carried out a detailed perturbative
calculation of the original domain-wall fermion formulation ~ We consider a vector gauge theoryDn=2k+1 dimen-
in 4+1 dimensions for smooth background gauge fields, irsions with a domain-wall mass term. For later convenience
order to investigate the structure of the effective action inwe use the notation of Ref18], where the fermionic action
higher dimensions. In Sec. Il, we briefly summarize the latds written in terms of a R-dimensional theory with infinitely
tice perturbation theory for the domain-wall method with themany flavors. Our action is denoted as
periodic boundary conditiofb]. In Sec. IIl, we evaluate the
two-point function and anomaly in#41 dimensions at a S=Seg+ Sk )
fermion one-loop order. We find that the effective action for
the (4+1)-dimensional theory has the similar structure toThe action for gauge fiel&g is given by
that for the(2+1)-dimensional theory: there appear not only
parity-odd terms such as the gauge anomaly and the Chern-

Simons term but also parity-even terms such as the mass SG:BnE; 2;4 RETIU,,(n,s)]}

term and the Lorentz noncovariant term. Therefore the gauge e

noninvariant terms remain nonzero for anomaly-free cases

also in four dimensions. In Sec. IV, we comment on an +’8Dn2 2;4 Re{Tr{ U ,p(n,s)1}, ©)
anomaly of the fermion number current ir-4 dimensions. i

Finally we give our conclusions in Sec. V.

A. Lattice action

where u, v run from 1 to X, n is a point on a
2k-dimensional lattice and a coordinate in the extra dimen-
sion, B is the inverse gauge coupling for plaquettés, and
In this section, we briefly summarize a formulation of the Sy that for plaquettes) ,, . The fermionic part of the action
domain-wall method and a setup of lattice perturbation theoSg is given by

Il. FORMULATION

=

=32 2 oMy Us(i(n+w) = UL, (= w)dn=w)]+ 2 3 do(mIMoPrtMiPJsu(n)

+ %E 2 (M Us (M) )+ UL (0= o) gn= ) =205 ], @
|
where s, t are considered as flavor indices, 1— 1—
PriL=(1% y2k+1)/2, E'ﬂs?’D[Us,Dl//sﬂ_ Us—1pt¥s—1]+ El//s[Us,Dlﬁsﬂ
(Mo)st=Usp(N) s 14— a(S) Ist +Us1pths- 1 2]+ M(S) st (7
(Mg)st:U;l‘D(anilyt_a(S) St (5) with M(s)=mg[sgn(s+ 1/2)sgnL—s—1/2)]. It is easy to

see that one chiral zero mode appears on the domain wall

=0 if ly if 0O<mgy<2.
andUg ,(n), Ug p(n) are link variables for gauge fields. We arounds=0 if and only if 0<mo

consider the above model with a periodic boundary in the

extra dimension, so tha, t run from —L to L—1, and we B. Fermion propagator and Feynman rules

take The fermion propagator in Kdimensional momentum
space and in redDth space has been obtained[8,5] for
a(s)=1—mg[sgns+3)sgnL—s—3)] largeL:
1-mg, —i<s<L-1%, . —
- 0 2 z (6) SF(p)st:_H(lz YuPutM GL(P)} PL

1+my, —L-l<s<—1%, g st
for —L<s<L. It is easy to se¢18] that S above is iden- +[12 7P +MT GR(D)} PR], (8
tical to the domain-wall fermion action iD =2k+ 1 dimen- . st

sions[3] with the Wilson parametar=1. In fact the second
term in Eq.(4) can be rewritten as where
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[(s,t=0)

Be—a+\s—t|+(AL_B)e—a+(s+t)+(AR_ B)e—aJr(ZL—s—t),
(s=0, t<0)

ALefaJrSJra,t_'_ARe*a+(Lfs)7a,(L+t)’

G = 9
(Ps={ 2o 1=0) ©
ALea_Sfa_,_t_’_ARefa_(L+S)fa+(Lft),
(s,t<0)
k Ce—a,\s—t|+(AL_C)ea,(s+t)+(AR_C)e—a,(ZL-%—S-H),
[(s,t=—1)

Befa_,_\sfﬂ_'_(AR_ B)efa+(s+t+2)+(AL_B)efa_,_(ZL*S*t*Z),
(s=—1, t=-1)
ARe—a+(S+l)+a,(t+l)+ALe—a+(L—S—1)—a,(L+t+l)
Cr(P)st={(s<—1, t=—-1) (10
ARea,(s+1)—a+(t+1)+ALe—a,(L+s+1)—a+(L—t—l)’
(s,t=-1)
Ce*a,\sfﬂ_i_(AR_C)ea,(SHJrZ)_i_(AL_C)efa,(2L+S+t+2)'

with Now we write down the lattice Feynman rules relevant for
a fermion one-loop calculation, which will be performed in
. V(p) _ the next section. We first choose the axial gauge figing:
a-=1- 2 +Mo (12) U p=1. Although the full gauge symmetries [ dimen-
sions are lost, the theory is still invariant under
1 1+p? s-independent gauge transformatiofdl]. Therefore the
a+=arccos){v— a.+ }20, (12 gauge currend  (xX)=2j ,(X,s) is conserved. We consider
2 a.- L H =~ SLHAT :
- the limit of small Z-dimensional gauge coupling, and take
1 .
AL:—a+e“+ mpap 13 Us . (n)=exdiagA,(s,n+ul2)], (18)
1 where a is the lattice spacing, and=1/\/3 is the gauge
ARzm, (14 coupling constant whose mass dimension is/2 (mass

dimension of the gauge fields, is D/2—1). We consider
Feynman rules in momentum space for the physidad2

= ; (15  mensions but in real space for the extra dimension. There are
2a, sinha, three relevant points for later calculations.
(1) The fermion propagatd®:-(p)s; has been given in Eq.

. 1 16 (8) with Egs.(9) and(10).

~ 2a_sinha_ (16) (2) The fermion vertex coupled to a single gauge field is

given by
From the form ofA_ , Ag, B, andC, it is easy to see that
singularities occur only i atp=0: ag&M[Sgl(k)]st=icos(akﬂ)yﬂés,ﬁrsin(akﬂ) Sets
) 19
Mo(4—mp)
L7 " ap%aZ p—0. (17

2To choose the axial gauge fixing in the periodic boundary con-
Therefore theG, part of the propagator describes one massdition, gauge field configurations should satisfy a constraint that the
less right-handed fermion arousgt=0, which corresponds Polyakov loop in the extra dimension is equal to unity. To achieve
to the zero mode on the domain wall. It is also noted that thehis constraint, we should put&function of the constraint, so that
Gg part describes one massless left-handed fermion arourttle other gauge couplingyx 1/\/B; is not necessarily small and can
|s|,|t|=L, which corresponds to the antizero mode, due tcbe made arbitrary large, or we should also take the weak coupling
the periodic boundary condition in the extra dimension. limit of gs.
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wherek=(g+p)/2 and the fermion vertex with two gauge power counting that th@-point functions which has diver-
fields is gent diagrams are two-, three-, and four-point functions. In
the following two subsections we calculate in detail the two-

azg SF q+_p) . (20) point function of the gauge fieltl ,,(p) and the parity-odd
2 )] part of the three-point functiofthe gauge anomaly
From the periodicity of Eq(19), the fermion vertex with
2n+1 gauge fields is proportional t@M{SEI[(qu P)/2]}st A. Calculation of two-point function
and the fermion vertex with 12 gauge fields is proportional
to ai{s;l[(qu p)/2]}st- First of all, the effective action with two external gauge

(3) The fermion propagator satisfies the Ward-Takahashiields is denoted by
identity on the lattice. The identity is given by

2k 9°
SH=—52 AsPAt—pII*(p)s=
21 23|r(pM/2)(9M[SE1(q+ plz)]s‘t eff 2 %’[ /.L( p) V( p) (p)SI
=
_ _ 9° @), y(27m
=[S:(a+P)Joe = [Se ()]s (2D 2, AuSPIAL - I+ TP,
lll. U (1) CHIRAL GAUGE THEORY IN 4 +1 DIMENSIONS (22
In this section we investigate a(l chiral gauge theory
in 4+1 dimensions. In four dimensions, it is shown with the where
|
Qv [™ d*q -1 p -1 p 2
(715 = | (27 1,57 at 5] -Se(a+p) | | 4.S7| at 5 |-Se(a)| @ (23
m st ts
M= bt | 0 S 0)- S 24

This integral has the similar form as in tk2+1)-dimensional case, but has the divergence of oadér. To separate the
would-be divergent part from the finite part we rewrite this integral223

pppa' pppO'

I1,,,(0)+ 5 ,w<0)) (25

,,(p)={1I,,(p)—1I,,(0)— 92 ,11,,(0) | +

The first derivative term disappears due to the symmetry of the integral. Note that we adopt the dimensional regularization with
4+ 2¢ dimensions to avoid infrared singularities for zero external momentum. With this infrared regularization the first term
has already been finite, so that it can be evaluated as the value of the naive continuura-iri}: (

ppp(r ppp(r

M0(P) = T0,,(0) = =577, ,11,,,(0)= (me(p) IT,7(0) — ,UHZ°V”Y0))=HZ°V“‘(D), (26)

where cont stands for continuum. In the last equality, we use the fact that the integral with zero external momenta is zero in
the continuum dimensional regularization. The second term inZ4y.is denoted

ppp(r

Iattlce( O) 4 P I Iattlce( 0)

pa' mv

and must be integrated on the lattice it 2e dimensions. In other words, the first term in EB5) is the contribution of the
continuum theory and the second term is that of the lattice theory, and therefore the latter is named as “lattice.” It is also noted
that we useys which anticommutes with aly,, in 4+2e dimensions for the calculation of the two-point function. Since the

final result is independent of the infrared regulator, so that it does not depend on the chgice of

1. Evaluation for the continuum part

The continuum part leads to the usual transversal form, multiplied by the funEtigsfs,t) which characterizes the
domain-wall fermion:
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(1-mg)s*t  fors,t=0,

FL(s,t)=mO(4T_mé)>< (1—mg)%(1+my)t fors=0 andt<O, (27)
(1+mg)s*tt  fors,t<0,
(1-mg)?-~5""2  fors,t=0,

FR(s,t)zmomT_mg)x (1-me)t 57X (1+my) "t fors=0 andt<0, (28)

(1+mg) 2-757"2  forst<0.
The result is

1

+5 +1 2
e 3 Y n

3T

(29

477;2)
p2

con = dq [ —ig+p). _ —id] g’
H,uv,tst(p):_gzg Fi(svt)fwwtr[l’y#lax (q+p)2 I’)/VPX q2 ]: (477)2% Fi

where e=(n—4)/2 and u is the renormalized point andT,,=T,,(p) is the transverse function ofp:
T,.,(p)=p?8,,—p,p,, andx=L or R.

2. Evaluation for the lattice part

The lattice parﬂfﬁice(p) can be divided into two quantities, a mass term of the gauge field and a second derivative term
of thell,,, which contains the transverse part.
We consider the mass terfiloy 5(0)=TTj(s,t) 8

v, nv

which has the form

7 g 7 dn
My(s,t)= —ngﬂﬁtr{[ﬁﬁ?(q)-SF(q)]st[f?MSEl(q) -Se(q) ] %+ gzéstjfﬁﬁtr[éisﬁl(q) -Se(g)]s@ 2.

(30)
|
Here no sum ovej is taken. By the rescaling—qga and It is easy to check that this mass term satisfies the identity
the fact that the integral is infrared finite in four dimensions,
we obtain
L L
L7 d' > My(s= 2 Hy(s,H)=0, (35)
Iy(s,t)=g%a ZLWWW{%[LM(Q)]S,& (3D t=-L s=-L
_w2a-2|" d’q L ol which comes from the fact that the theory with the axial
ga _(2m)* {lLu(@*Lu(a)] gauge fixing is still invariant undes independent gauge
transformations. Thus, for the independent background
—[Lu(@)-Lu(@)]}se (32 gauge fieldA ,(s,p)=A,(p), no mass term is generated by

the fermion one-loop integral.

where Since it is difficult to calculate the mass term analytically
_ ~1 . for generals andt, we evaluate it numerically. In Fig. 1, the
(L ()]s =000 (@) Se(@ st (33 behavior of the mass teri, (s,t) with t=0 fixed is plotted
and as a function o6 atmy=0.5 andL=5. Thell,(s,0) has the

largest(negative values ats=0, the place where a chiral
zero mode lives. This means that a loop of the chiral zero
[A*Bls=AsBrs, [A-Blsi=35:> AsuBus. mode mainly contributes tbl,(s,t). Furthermore we have
! (34) checked thally(s,s) is small ats#0 or #L, where only
massive modes exist. The behaviorldf,;(s,0) is similar to
Since the first term is equal to zero because of Stokes’ thedhe shape of the mass term ir-2 dimensiong5], which is
rem, the mass term of the gauge field finally becomes  9given in Fig. 2 whereD(s,0) is plotted as a function of at
my=0.5 andL="5. HereD(s,t)=3 F (s,t)?— 2K(s,t) and
= dq K(s,t) is given in[5].
fﬁ ~(2m)* trLu(@)*L ()] Next let us consider the calculation of the second deriva-
tive term. Since the transversality is hidden behind this term,
—[L (@) L (a@)T}ss- we can parametrizepgp(,/2)¢9§'0_1'l'j§'ce(0) as follows:

HM(Srt): _gza_2
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Mass term D(s,t)
Source att=0, am0=0.5 Source att=0 , am0 = 0.5
0.04 2.00
0.02 1.00
[ ]
®
®
®
L ]
0.00 A4 . 0.00 ?
L ]
-0.02 -1.00
[ ]

-0.04 -2.00

50 -40 -30 20 -1.0 00 10 20 30 40 50 50 -40 -30 -20 -1.0 00 10 20 30 40 5.0

S S
FIG. 1. The coefficient of the two-point functidiiy(s,t) as a FIG. 2. The coefficient of the even terBx(s,t) in 2+1 dimen-
function of s with t=0 fixed atm,=0.5 andL =5. sions as a function of with t=0 fixed atm,=0.5 andL =5.
PoPs > atii
=52 I 0)=11@T ) . . . . )
2 oy ( wP invariance as in the case of Wilson-Yukawa formulation for

lattice chiral gauge theorie23]. Although the details of
calculation given in Appendix B is important, we give only

_ _ the results ofl 1) below, wherea and B8 are not equal
The second and the last term in the above equation break tt?i “« P q

. : $hd no sum over them is taken:
transversality. Especially, the last term breaks the Lorenz

+1I®s,,p2+1195,,p2. (36)

2 rn dn
H<a>=—H“’>+% f (qu)ntr({wq)-Lﬁ<q>]*[Lﬁ(q>-La<q>]}—{[Lz°“‘<q>-Lz°”‘<q>]*[L;°”‘<q>-L‘;°”t(q>]}>s,t

2

1 2 2><O.46349) g2

-9 N , 2
(477)2)(:2L,R Fx(s’t)<3 B 3P +(47T)2x:2 F(s.t)g

1
—+In(a?u?)
L,R €

. (37)

whereLfL"”Kq) is a value ofL ,(q) in the naive continuum limit. Suppressing the extra dimension indied1® becomes

—a2rn dn 2 ~n dan
1= [ L@ L@ T @21 1oLy Lyt + 5 | o trlLa(@) (L @21 1oLy (a)]

a2 rx= dan
XL Lo @+ Ll L@ T} 1 | L) L@ L@ 1oL ()] L@} 39

andI1(® becomes
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®=—-m®- g_zjw 0 L (@) L@ [La(@) %1~ 1L (@) ] L)} + L uL (@) La( )AL ()

—2[La(@) dal (@)L (@) +Lo(a)*[dal o(a) - Lo(@) TP +[H.C]. (39)
|
Here H.c. stands for Hermitian conjugate. It can be seen -g? 2 -5
easily thatl1®® which appears il (®© satisfies the equation ; I, sdP) =W2X§Tﬂy(p)( = T
b p2a2
2 1gY=o0. (40) +In +1.14ﬂ. (44)

A similar formula can be found foFI(®) after a simple cal- .
culation: (2) Iy, , II(p), I®, andII(© have a peak arouns=0

for fixed t=0. This shows that there is no gauge invariance
when the gauge field depends on the extra dimensjbn

N2 - dn
Et: Hg?t):ngi ﬁtma{La(q)a’}:O, (41)  This fact will be discussed later.

since the integral of n dimensions without singularities is B. Anomaly in 4+1 dimensions
zero from Stokes’ theor(e;gn. o . The next order of the effective action is a three-point
The transverse terfl'® satisfies the equation function. An important quantity which we should evaluate is

a divergence of the gauge current, i.e., gauge anomaly. In
this subsection we shall concentrate on a calculation of the
gauge anomaly. An effective action for three gauge fields
induced by a fermion loop integral is written as

2

g- 2/1

(a) = I 22
; I 2><(47T)2 3| 2 TIn@u?)+1.147). (42
It is noted thafl1®® has 1£ term. This is an infrared singu-
larity, which is canceled in the total expression of A
IT,, s«(p). This point is discussed also in Appendix B. term

Source att=0, am0 = 0.5

3. Total contribution ofI1,,,(p) 0.04

As TI5(p) and IT2°Y(p) are obtained in the previous
paragraph, the total contribution d&f,,(p) (s,t are sup-
pressedlis now given by

I1,,(p) =[N p) 1+ [y + 11T, (p) 0.02

+1I®s, p2+1196,,p2]
=Ty +T1(P) T, (p) + 1 5,,p?+ 115,02,
(“3) 0.00 *

wherell(p) is the total contribution for the transverse term,
which has no 1 term(see Appendix B Since it is difficult
to calculate Eq(43) analytically, we numerically evaluate
each term in Eq(36): a finite part ofI®® (A term), IT(®
(B term), andII(© (C term), and plot results in Figs. 3-5.  .g.02
These figures are written as a functions efL<s<L
(L=5) fort=0 fixed.

From the above result, we draw the following properties
for the structure of the gauge field two-point function at a
fermion one-loop level, as a conclusion of this subsection.

(1) If the gauge field has no dependence of the extra di- -0.04 = = == = =5 25 40 50
mensioni.e.,A,(s,n)—A,,(n)], the propagatofl ,,(p) be- s
comes transverse, thus gauge invariant, as expected. This can
be easily seen from a fact that only the transverse term in EQ. FIG. 3. The coefficient of the two-point functidi{?) as a func-
(43 is left after summation oves,t [using Egs.(35), (40), tion of s with t=0 fixed atm,=0.5 andL=5. Here divergent
(42), and(42)]: contributions are removed frofi (2 .




3478 S. AOKI AND H. HIROSE 54

B term C term
Source at t=0 , am0 = 0.5 Source att=0,am0=0.5
0.04 0.04
0.02 0.02
L ®
L
[
L ]
0.00 ° . 0.00 *
® L ]
-0.02 -0.02
-0.04 -0.04
50 -40 -30 20 -1.0 00 10 20 3.0 40 50 -5.0 -40 -30 20 -1.0 00 10 20 30 40 50
) S
FIG. 4. The coefficient of the two-point functidh{?) as a func- FIG. 5. The coefficient of the two-point functidi{9 as a func-
tion of s with t=0 fixed atmy=0.5 andL=5. tion of s with t=0 fixed atmy=0.5 andL=5.

mla d"q d"p d"k

=g° (2m)" M (g+ . (3)
Sit=9°2 | ey 2my 2 20T ssy-3 [ LI
u —773(2 ) 5Ap(k!u)
+K)T 00,0,k 8,t,u) XA, (s,9)A,(t,p)A,(U,k), i _
wla |
45 _
(45) ; f_w/a(Z )( g ki WkI,(ku) .
whereT',,,(q,t,k;s,t,u) is the three-point function of the
gauge field.
The anomaly is defined as a variation 8f) under More explicitly,
the infinitesimal gauge transformationdA,,(k,u)=
et I ku=—g°S, [T AP ngng
mla  d" dn d"k u=-g To 0 (o N (&T grp
553 =32 a P (2m)"s™(q+p P st J—ma(2m)" (2m)

stu —w/a(277)n (277)n (2m )n
+K)ik,I,,,,(d,p,K;s,t,u) X A,(9,S)A,(p,t) O(K,u),
(46)

KK, 4p(d,p,K;s,t,u) X AL(G,9)A,(P1).
(47)

and a relation betweeﬁsgf) and the current divergence is Sincel’,,, has the logarithmic divergence, we evaluate it as
given by follows:

Kol p(d,psk;s,t,u) =K, [T, (0, p,k;8,t,u) =T ,,,(0,0,058,t,u) =q,d,1",,,,(0,0,08,t,u) = p,d,T°
+Kk,[T,,(0,0,08,t,u)+0q,9,I",,,,(0,0,08,t,u)+p,d,I",,,(0,0,05s,t,u)].

0,0,05,t,u)]

,U.Vp(

We can then evaluate the first term using the continuum form as in the previous subsection. Only the parity-odd part of
I',., is necessary to get the anomaly, and it becomes
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K, (0,0, K; 8,8, u) %=k [T, (0, p, ki S, t,u) 1™+ K [0, ,,,(0,0,05,t,u) + p,d,T ,,,(0,0,05,t,u) ] (48)

Here we use a fact that the anomaly has an antisymmetric structure for Lorentz indiegs,o.
We now perform the calculation of these terms, continuum and lattice ones, in the next two paragraphs, and the detail is
given in Appendix C.

1. Evaluation for the continuum part

Although one can use the dimensional regularization as in the previous subsection to calculate the continuum part of the
anomaly, we introduce a different regularization hefés- is replaced by/*, in n=4 (A=/a). Accordingly, using
F2=F (s.t)F ,(t,u)F (u,s), we can write

d* { e e T = 1—g)]

1 A
. cont_ —~3
kp[r,wp(qyp,k,&t,u)] _39 ; F f (2 )4tr If)’,u X |2 IyV X (|+p)2 Ikp){ (l_q)Z

d4 5X_ 1°(1+p)” 1°(1—-q)”

_ n3
9 2F f A(2m* 2 EWP“( 2+ p)? A=)
whered, =1 andég= — 1. Here we use the Ward-Takahashi identity as usual in the last step. It is noted that we cannot make

this integral zero using the shift-1+q, etc., since the integral with respectlttnas boundaries; A or A.
Using the integration formula

f fopd“I& 1 1 N 49
s p2m) A, PEREx) 162t AT 49

whereh?(x) is a positive function ok, we finally obtain

H(I=l=p)+(=I-a)],

ig®
[kprﬂvp(q! pvk;svt!u)]cont: EE% 5XF)3(€P«VPqup0" (50)

2. Evaluation for the lattice part

The lattice part of the anomaly is written as

kp[qa'aa'r/.wp_‘_ paaa'r/.tvp]lattice(oloio;sat-u) = Guvpoqppo'Aq,p(svti U), (51)
whereA, o(s,t,u) =Aq(s,t,u) —Ay(s,t,u) and

I',,,(0,0,08,t,u).

1
Aq(st,u)= Tl '“’P"aq

An explicit form of A, ,(s,t,u) is given as

1 = dY
Aq,p(S,t,U)=5936WW§J_W(ZT)43U{[LM(I)~LU(I)]*LV(I)*LP(I)}—agtr{L#(I)*Lv(l)*Lp(l)}, (52
|
where the extra dimension indiceg,u are implicit in the 3. Results
. _1 .
above equation anflL , ]s(1) =[9,S¢ "(1)- Se(1) It is used A total contribution of the parity-odd term, the gauge
again. anomaly, becomes

As seen in the calculation of the two-point function, there
are two useful formulas:

odd_
% Aq’p(s,t'u): Sl 22 (St /J,Vp(rqpp(r (53) ,qu(q P, K; S,t,U) _Ep.vaQppa[ 24t 22 St U)

and +Aq,p(s,t,u)} (55

in3
g
% Aq,p(s,t,u)ng 5XFX(U,U)6,U,VP(qup(T' (54)

We summarize important properties of the anomaly as
The detailed proof is given also in Appendix C. follows.
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Anomaly Anomaly
Source at s=0,t=0, am0=0.5 Source at s=0,t=2, am0=0.5
0.05 0.05
®
Py ®
®
[ L4
[ ]
L
®
-0.05 -0.05
®
-0.15 -0.15
-10.0 -8.0 -6.0 -40 -20 00 20 40 60 80 100 -10.0 -80 -6.0 -40 -20 00 20 40 6.0 80 100
u u
FIG. 6. The coefficient of the anomafy(s,t,u) in 4+1 dimen- FIG. 7. The coefficient of the anomafy(s,t,u) in 4+1 dimen-
sions as a function afi for s,t=0 fixed atmy=0.5 andL =10. sions as a function ofi for s=0 andt=2 fixed atmy=0.5 and
L=10.

(1) Note that a summation ovar makes this anomaly
zero due to Eq(53). This comes from the fact that the model (s=t=0), the anomaly has large contribution around
with the axial gauge fixing is invariant underindependent |, _¢—¢ |’f t differs a little froms (s=0 andt=2), the

gauge transformations. _ . anomaly has nonzero contribution aroung s or u=t but
(2) Because of Eq(54), a summation oves,t makes this  jeak heights become lessitlfs far away froms (s=0 and
anomaly equal to t=28), the anomaly almost vanishes atwallFor comparison
we calculate the anomaly iH2l dimensions, which is given
2 Kol (9P, [anomaly by [5]
ig3 IQZ
zﬁfﬂppgqppa; 5XFX(U,U). (56) Tanomal)(SvX):Z C(S,t)EEMVcSMAV(t,X), (57)

Physically this is the gauge anomalywafor s independent
background gauge field, (s,n)=A,(n). It is noted that the where
coefficient of Eq.(56), 1/872, is equal to the coefficient of

the covariant anomaly in four dimensions, not the one of the
consistent anomaly in four dimensions. This does not contra-

dict with the fact that the above anomaly is derived from the
variation of the effective action, since the effective action is
defined in 4+ 1 dimensions, not in four dimensions.

(3) Without summations it is difficult to calculate the In Fig. 9 C(s,t) is plotted as a function o with t=0 fixed
anomaly analytically. Instead we evaluate it numerically, ancat my=0.5 andL =5. Behaviors of the gauge anomalies are
results are given in Figs. 6-8. We plot similar both in 41 dimensions and in21 dimensions: they
[(ig3/24w2)2X6XF)3((s,t,u)+Aq,p(s,t,u)] as a function of have large contribution arours=0 oru=0.

u at my=0.5 andL=10, for fixeds=t=0 in Fig. 6, for Finally it should be mentioned that a parity-even part of
s=0 andt=2 in Fig. 7, and fors=0 andt=8 in Fig. 8. the variation of the three-point function under the gauge
These figures tell us the following. If two gauge fields transformation vanishes locally fos independent back-
A,(s) andA,(t) are on the same four-dimensional subspaceground gauge fields.

C(st)=2, 8,F (s,1)2=2cqs ). (58)
X
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Anomaly C(st)
Source at s=0,t=8, am0=0.5 Source att=0,am0=0.5
2.00
1.00
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L ]
®
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[ ]
®
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u ]
FIG. 8. The coefficient of the anomaty(s,t,u) in 4+1 dimen- FIG. 9. The coefficient of the anomaly(s,t) in 2+1 dimen-

sions as a function ofi for s=0 andt=8 fixed atm,=0.5 and ~ SIons as a function o for t=0 fixed atm,=0.5 andL =5.
L=10.

) _ tation value for background gauge fields is defined by
C. The four-point function
A calculation of a four-point function is simpler than the
previous ones since there is no derivative term. Using the 3odq
same logic as before we obtain <J (s,X))=

g§A (s X)’ (59)

F(4) (q1p,k,r;5,t,ulv):[r(4)

nvpo Mp(,(q,p,k,r;s,t,u,v)]com
(0,0,0,08,t,u,0)]"ttce where the indexg in the current explicitly shows the charge
of the fermion, and the gauge current is equagﬂ%(s X). A

Results are very similar to the two- or three-point func-divergence of the fermion number current, the fermion num-
tions; after the summation overthe gauge variation of the ber anomaly, is proportlonal tg”> while the gauge anomaly
four-point function is zero and after the summation overis proportional tag®. Therefore even for anomaly-free model
s,t,u it reproduces the continuum value. It shows that thesuch as the standard model, where a sum of charge cubed
gauge invariance is correct only in the case that the gaugéanishes, the fermion number violation, which is propor-

+[TW

nvpo

field has no dependence on the extra dimension. tional to a sum of charge squared, can remain nonzero in the
domain-wall fermion formulation. This is the most important
IV. PHYSICAL IMPLICATION consequence of our results: The domain-wall fermion formu-

lation may allow us to simulate the nonperturbative dynam-

We consider thé€4+1)-dimensional theory so far. Prop- ics of the baryon number violation of the standard elec-
erties of the effective action in#41 dimensions are more or troweak theory. Although our results are obtained for(&)U
less similar to those in21 dimensions except that the two- gauge theory, it is not so difficult to obtain similar results for
point function of the gauge fields contains a mass term and aon-Abelian gauge models.
Lorentz noncovariant term as well as a transverse term and a The gauge noninvariant terms remain nonzero (it Y
longitudinal term, and that the gauge anomaly is proportionatlimensions even for anomaly-free cases as(if1} dimen-
to the charge cubed. As in the two-dimensional d&ge¢he  sions. In the next section we will briefly mention a way to
fermion number violation can be incorporated as follows.avoid these terms. Theindependent gauge fields again lead
First let us consider a fermion number current, whose expedo the vector-like theory as in the two-dimensional cise
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V. CONCLUSION have been carried out at Center for Computational Physics,

In this paper we have investigated the domain-wall chiraﬁ]glvgfgztgj; lejg UZ?' ;LZ'S I://lvi?]ril;t\r/;//asofs uEﬁﬁ::t:t? OIRNpoasrt by

fermion formulation in 4-1 dimensions with a lattice pertur-

bation theory. We have calculated in detail the t\No-pointO4NP0701’ 06740199
function and the gauge anomaly in four-dimensiona&l)u
chiral gauge theory formulated irt4l dimensions. APPENDIX A

The most important conclusion drawn from our perturba- . . )
tive analysis is that the anomaly of the fermion number cur- N this appendix, we calculate the functi@h r(p) - The
rent can be reproduced in the domain-wall fermion formulafundamental equations are
tion. The baryon number violation of the standard model
may be possible due to the existence of this anomaly. How- — +
ever the fermion number disappearing from the wall should PGL(P)st T[MMG(p)]s= b5t
reappear on the antiwall since the total fermion number is
exactly conserved in five dimensions, and thus energy con-
servation and/or unitarity in the four-dimensional theory on PZGR(P)si+[MMTGR(P)]si= s (A1)
the wall may also be violated, unless the lepton number dis-
appearing from the antiwall reappears on the wall at the samg,
time without changing the total energy on the wall. For the
success of the domain-wall fermion formulation, this crucial
point should be investigated in the future.

Furthermore, as stressed in the previous section, the —
domain-wall fermion formulation cannor'z maintain the trans- [P+ AS)]Cs(P) ~B(s+1)G(P)sr 14~ B(S)G(P)s-1y
versality, and hence gauge invariance, even for anomaly-free = st (A2)
cases.

A solution to the gauge invariance has been proposed b%here
Narayanan and Neuberger: They take the size of the extra
dimension strictly infinite, instead of periodic box, and make
gauge fields independent of the extra dimensidey also
take the “temporal gauge” from the beginningsince no
antidomain wall caused previously by the periodicity of the
extra dimension exists, the theory is expected to remain chi-
ral even for such gauge fields. Indeed, using our result of the r r
effective action in92r€1;l dimensions it has bgen shown that B(S)=a(s)=5F(p)=1-m(s)— E% [cogp,)—1].
the Narayanan-Neuberger formulation, called “overlap for- (A4)
mula,” gives gauge invariant effective theory for smooth
background gauge fields in the continuum limit except for
the gauge anomaly in21 dimensiong14]. The U1) chiral
gauge theory via their formulation int4l dimensions is now the other for—L—1=<s<—1. For convenienceG(p)" is
under investigation since our calculation in this paper can b%efined asG(p) in the range.of &s<L-1 andG(p)~ in
easily extended to it. As mentioned in the Introduction, how-__ L f<s<-1
ever, it is pointed out recently that the overlap formula can- We first fOCl-JS our attention o6 *(p). In the range
not reproduce the desired chiral zero mode in the presence 8f<s<L—1 uSing B(S)=B(s+1)=1— - 12)E
the rough gauge dynamic¢gauge degree of freedgrwhich =~ > ,_using B(s)=B(s+1) mo—(r/2)F(p)
appears due to the violation of the gauge invariance at infini- a., Eq.(A2) is rewritten as
ties. This problem is known to exist also for the waveguide

ereS2 ;sir(p,) is written asp 2. We examine the upper

equation in detail. Explicit form of this equation is

A(s)=1+B(s)?, (A3)

Sincem(s) in B(s) changes the value a0, L, Eq. (A2)
should be separated into two cases, one fas&L—1 and

model. — 2\t + +
Except the problem of the gauge invariance above, the (P“t1+8%)Gg(P)~a+[G(P)si 11+ G(P)s-1]= 55,1
domain-wall fermion formulation in 41 dimensions works (A5)

well for smooth background gauge fields. A remaining ques-

tion of the domain-wall fermion formulation is whether the  The solution of this equation is expressed as a sum of
chiral zero mode can survive in the presence of the dynamihomogeneous general solutions and an inhomogeneous spe-
cal gauge fields. A numerical investigation has been pereial one. Homogeneous general solutions with two unknown
formed in 2+1 dimensions but has failed to give a definite functionsg‘*(t) andg®(t) are

conclusion on an existence of the zero mode in the symmet-

ric phase [13]. Further numerical study for &4+1)-

dimensional model is needed. g P(t)e e+ PS4 g@(r)ea+(Ps, (AB)

ACKNOWLEDGMENTS where cose, (p)]=3a, +(1+p?/a,].

We would like to thank Professor A. Ukawa for helpful ~ Next the inhomogeneous solution is calculated with the
suggestions. Numerical integrations for the present worlEourier transformation ad {=2n/L)
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L-1 il |s— L-1 — _
1 eI|n|S t| -1 Z‘S tj+1 Z‘S tl+1

2La, =5 coslia, (p)]—cosl,) 2a,Lsinfa,(p)lics |Z—ex®  Z—g a+®

costia, (p)(|s—t|-L/2)]

= . - , A7
2a. Lsinf{ . (p)Jsinf - (P)L] (A7
where the following formula is used in the last step:
lL_l ZS+1 B é«S S | A8
En=0 Z_g_l_gl_ ( =e ) ( )
Therefore, the solutioﬁa(p);ft is given as
_ coshia. (p)(|s—t|-L)]
+ =gl ay(p)sy (2 a,(p)s
G(p)s,t g+ (t)e +g+ (t)e + 2a+LSinl'[a+(p)]Sinf‘[a+(p)L] . (Ag)
In the same way, the solutid@(p)s, is obtained as
cosha_ s—t|—L
G(p)s =g (e P+ gZ (e (Pt ha (Pls L) (A10)

2a_Lsinfa_(p)]sinfa_(p)L]’

wherea_=1+my—(r/2)F(p), coshia_(p)]=3a_+(1+p?la_].
The unknown functiong®)(t) and g'?(t) are determined by the four boundary conditions, which are obtained by
considering Eq(A2) ats=0 andL:

G(p);r:fl,t:G(p)ngl,t' a+G(p);:0,t:a—G(p)§:0,ta

G(p);—:L—l,t: G(P)s=—L-1¢> a+G(p);:|_,t: a_G(p)s——Lt- (A11)
Explicitly,
®-g(t)=b(t), (A12)
e+ e o+ —e - —e - g'P(t)
a. a. —a_ —a_ i g2(t)
0= a+e—a'+L a+ea+L _aie—a,L _aiea,L , g(t): g(_]_)(t) ,
e a+(Ll=1) gai(l=1) _gma_(L+1) _ga_(L+D) g(,z)(t)

X_cosha_(|1+t|—L)]—X,cosha, (|1+t|—L)]
a_X_cosha_(|t|-L)]—a; X, cosha,(|t|—L)]
b()=| a X costia_(|-L—t|-L)]—a,X,costia,(|L—t|-L)] |
X_cosfa_(|-L—1—t|—L)]—-X,cosha,(|L—1—t|—L)]

whereX;1=Zaisinh(ai)sinh(atL). Although solution to these equations is very complicated in general, it becomes simpler
in the limit of L—o. Fort=0,

e+ e o+ —e - —ema-
a, a. —a_ —a_
O—| 0 a,e™t 0 —a_e*t [
0 eaJr(L*l) 0 _ea,(L+1)

X_cosha_(|1+t|—L)]— X, cosha, (|]1+t|—L)]

A a_X_cosha_(|t|—-L)]—a, X, cosha,(|t|—L)]
b(t)— 0
0
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Sinceg?—0 in the limit of L—, g1 is easily obtained (No sum overa and 8.) When we sefu=v=a, Eq. (36)
from this matrix. It is noted that at=L, g'¥’—0 in the limit ~ becomes

of L— . This shows tha6, (p) has contributions from two

chiral zero modes which live @=0 orL. pPp"L;Z [1'3ee 0) = (IT@ + 1) (p2— p?)

2 p, ot aa

APPENDIX B (0 + TT@)p2 (B2)

In this appendix, we show in detail the calculation of the _ b )
two-point functionIl, (p) in 4+1 dimensions Therefore relations betwedid®-() andII,,,(p) are given
mv :
Let us setu=a andv= 8 (a# B) in the parametrization by
of Eqg. (36). The extra dimension indicest are suppressed 1
below. For this choice of. and v Eq. (36) becomes H<b>:§(génw+ 5, gIIEE%0), (B3)

PoPs
2

(?2 Hlattice 0 :H(a) _ .
potlap ( ) ( papﬁ) H(C):%ﬁinfglce(o)_r[(b) (B4)
It means that

> latice The most simple term in E36) is T1(®, which explicitly
ne®=— aa,ﬂnaﬁ (0). (B1) given by

02 rn dn
0= |7 LB @)L )]~ 2195 o)+ L@ * Lo D]+ 2L D *L (@)

—2[L o @) *L gg(a) 1= 2[ 9L o(A) * oL g(A) ]+ 2[L (@) * F5L go(aA) 1}, (B5)

where[L#]st(q)=[aM851(q)~S,:(q)]st and [LW]st(Q)Z[%SEl(Q)'%SF(OI)]st- We obtain Eq.(38) by substituting the
following relation into the last equation:

Lu(@) =58 1) - Se(a) + L, (a) - L (). (B6)

Here we use the fact that the followimgdimensional integral is zero by the Stokes’ theorem:

JW 992 @)eL(@)]=0 (B7)
777(27T)n BL=a q o q .

1 is also obtained in the same way. Note that b andII(®) have no infrared singularity.
Next we consider the most interesting teff%®). For convenience EqB1) is rewritten with Eq.(B3) as

1
M@= —T1®+ Z9511,,,(0). (B8)
By this identity we can concentrate on the last term for the calculatidi®f The last term becomes

__ngwﬂtr{[ﬂ (@*L (@)1~ 2 IpL o D) * 5L o) ]+ [ L o)+ AL o(A) T}
8 ) (2mn Wpmal@rEald pLal@*dpla(@]H[La(Q)* Tl a(q

_92 . dnq
=5 f_ —(zw)ntrﬁﬁ{[ﬂsLa(Q)*La(Q)]—[La(CI)*ﬁBLa(q)]}—4><tr{[aﬁLa(q)*aB|_a(q)]}_ (B9)
To derive the last equation we use form(B6) again. By Stokes’ theorem in dimensions, this integral simply becomes
@, i 9 7 _d"d
a — —
I +11 2 f_W(Zw)ntr{[&gLa(q)*a,gLa(q)]}. (B10)

Since this integral has a logarithmic infrared singularity we evaluate it as

@4+ 1b = [H(a)_ H(a)|cont] +H(a)|cont+ me, (B11)
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whereII®|®" means the integrand iH(® is replaced by the continuum one:

—iq  —id_ —iq —MJ
7 1Yg 7 1 Ya 7 1Yg 7

2 n
-g 1 = d'q |
(a)jcont— __ < - 2 +
]eon=—g(~4) 52 FX<s,t>fw(2W)ntr[wa

(A ™ d“q[Sqiqé_ 1 }
" sz 2 O @ @

8
andII®|°"=0, Using a property of the Gauss’s error function, we obtain

2 % 1 (1 2
T1(2)|cont— _922)(: Fi(s,t){ WJO dyy1*“/2(<1>y)”+ W(g_ —) } , (B12)

™3

where(1), is defined byf’_"f&dxle*xz. The first term in the last step has & tivergence. Therefore we evaluate this integral
as follows:

fdyy1*”’2(<1>y)”=f dyy’1(<1>y)4+f dyy’l{(<1>y)4—vw4}+w4f dyy1*”’2=TW+0-46349-
0 0 1 1

Here we sen=4 for the term without infrared divergence.

Finally we reach the result Eq(37). By considering that the factoa"u" must be multiplied in front of the
n-dimensional integral, it can be easily understood tha?mf) appears in Eq(37) [22]. This is one of the most important
points among what the final result tells us: The! of the lattice contribution cancels that of the continuum one and
dependence also disappears, so that only the ultraviolet divergesteé lamains in the final result. We can also see a similar
kind of the cancellation of infrared divergences in Reg].

APPENDIX C

We investigate the anomaly in this appendix. Let us start with the following definition of the three-point function:

1= d¥
F,wp(q,p,k;s,t,U)=§L Wtr{[ﬁﬂs’l(l—q/2)S(l)]st*[ﬁVS’1(l+p/2)8(|+p)]tu*[0p5’1(l+(p—q)/2)S(I—q)]us}

+(I—=l=p)+(—=1-q).

Substituting the above into E¢G1), we obtain Eq(52), which is given once more below:

1 1= d¥
Aq.p(svt!u)zagseuvp0§f7 (27)43tr{[|-,u(|)'LU(I)]St*Lv(I)tU*Lp(l)US}_a(rtr{L/A(I)St*Lv(I)tU*Lp(l)US}' (Cl)

The dependence on the extra dimensdnu of this anomaly is calculated numerically. On the other hand, we can calculate
it analytically in special cases, sum owet and sum oveu. For considering these cases, let us prove two identities, (E§s.
and(54). First we show that

>

st 1 = d4 1[—4&(,tr{[L,L(I)~Ly(l)~Lp(|)]uu}

_ =43 =
2 Aq_p(s,t,U)—4!9 €uvpo _(2m%3 +20,tr{[L,(1) - Ly(D s L, (Dig ] (C2

using the following line of identities to the first term of E&1) (s,t,u are suppressed

>

s,t

3t{[L,()-Lu()-Ly(1)-L(DH]}
SALL (1) - LoD L+ =1 3t L, (1) - L (D I*[L (1) - L)}

-3t{[d,S *(1)-9,5(1)- 9,5 *(1)-3,5() ]}
:[ +3t{[a,S (1) 9,8(1) %[ 3,5 (1) - 3,S()]}
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Since integrands on the right-hand side of EQ2) become total derivatives, the integrals can be performed with the
Stokes’ theorem. Using the equation

[Lu) =i, (7S Fy(sOP, (1=0)

and introducing the infrared cuto#, the total derivative is evaluated as

1, = d 1, S 8y _3Zal,| [l
479 e,uvpa"[iﬁwﬁa'tr{l—p,(l)*Lv(l)*Lp(I)}:mg E,uvpo’JfﬂWZX |4'€/.Lavp§)(: 7Fx(|2)2 o
—i
— 3 3
9 % 5XFX16772'
In the last equality we used the following formula:
A o wle ol 1 ~X(1+12) L
| |7 ) oo = g (=0 €3

I =

Equations(85) and (86) lead to identities Eqg53) and (54).

We shall turn to the proof oéMVpUagFWp(O,O,Os,t,u)|°°”E0 in Eg.(48), which is nontrivial in our regularization, using
the same technique above. The calculation is almost the same as that {@1Egxcept that the integral” . — [, and
L, (1) is that of the continuum:

LT (0,0,0 tu)|C°f“=i 3¢ EE s F?’fA d—4|3tr{L (1) Ly(1)-L(1)-L(H = tr{L ,(1)-L,(1)-L,(1)}
4\ “rvpolot prplEath S 4|g ,u.vp(r3X X' x 7A(27T)4 o o v p o o v p

1 d

1 5 (N d*
:Hgseﬂvprrgg 5XFXJ7A(ZTY1(_4)tr{LM(|)L"'(l)LV(l)LP(l)}

Therefore we should calculate the following integral instead of (E®)

l,=A

o A d [t . Ae 3 1 .
— - dxxe—x(l-H )_(_f J dxxe—x(1+| )
. j—A(27)4J0 —ne(2m)t o

IIT=

Ad o,
J—A(27)4(|2)2

1 1 o
1672 1672

This means that the derivative term in the continumm,p,,a(,l“ﬂvp(0,0,0s,t,u)|°°m, is zero in this regularization.
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