PHYSICAL REVIEW D VOLUME 54, NUMBER 5 1 SEPTEMBER 1996

Fixing the renormalization scheme in NNLO perturbative QCD using conformal limit arguments
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We discuss how the renormalization scheme ambiguities in QCD can be fixed, when two observables are
related, by requiring the coefficients in the perturbative expansion relating the two observables to have their
conformal limit values, i.e., to be independent of fdunction of the renormalized coupling. We show how
the next-to-leading order BLM automatic scale-fixing method can be extended to next-to-next-to-leading order
to fix both the renormalization scale af$} in a unique way. As an example we apply the method to the
relation between Bjorken’s sum rule aRd+.- and compare with experimental data as well as other scheme-
fixing methods[S0556-282(96)02817-3
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In perturbative QCD, observables are given by expansions
in the strong couplingys: It is therefore natural to define the conformal limit of pertur-
, (1) limit values if they do not contain any explicit dependence
on the B8 function. For example, in NLO the perturbative
coefficients should have no expligi, dependence. In the
priate Feynman diagrams. The individual terms in the seriegf active quark flavorsinto the running ofag by a suitable
depend on the renormalization scheme one is using but thedefinition of the renormalization scale. It should be noted
sum of the entire series is independent of the scheme accorghat the renormalization scale obtained by the BLM method
scheme dependent. This dependence is formally of higher A" useful concept when discussing renormalization
order than the terms calculated in the series but numericall§cheme uncertainties is the effective chdrtjeof an observ-
the difference between different schemes can be large. Theggle which contains all QCD corrections. For example, the

bative QCD as the limi{3;—0 [3,4]. This means that the

QN coefficientsR; in the perturbative series have their conformal

R:(i)
a
BLM method this is achieved by absorbing all

where the coefficient®; can be calculated from the appro- g,-dependent NLO terms3,= 4— IN; whereN;= number
ing to the renormalization group equation. However, whercan also be interpreted as the mean value of the virtualities in
the series is truncated the result becomes renormalizatiofe gluon propagator8,5,4,6,7.
differences give a theoretical uncertainty which in principleeffective chargeéig of Ry+- is defined by
makes it impossible to make any absolute predictions since

any result can be obtained by a finite renormalization. By o(e"e”— hadrons

going to higher order in perturbation theory the renormaliza- Rere-(Qr)= olete =utu)

tion scheme dependence becomes smaller but in principle the

problem remains. One can argue that it is only bad scheme Ne ) 4

choices that give “crazy” results and that as long as one :321 e[1+3Crar(Qr)]. ()]

uses a “sensible” scheme the result will also be “sensible.” -

The question then arises, what is a sensible scheme?  Each effective charge has its oyhfunction[1] connected
The question of how to choose an appropriate renormalyg it:

ization scheme in QCD has been discussed many times. .

Three well-known methods for choosing the renormalization dag -~ . ., 3 o ag 4

scheme are the “effective charge scheme” by Gruntjéig dInQR_BR(aR)_ Podr= P18~ Bopdr— -+ (4)

the “principle of minimum sensitivity” by Stevensof?],
and “automatic scale fixing” by Brodsky, Lepage, and where 3, and 8, are renormalization scheme independent
Mackenzie(BLM) [3]. All these methods are based on someandg; r, i=2 are renormalization scheme invariants. Thus,
more or less intuitive principle or set of arguments for how afor each physical observable there is a specifig, 5 con-
perturbative series should behave. nected to it which is an inherent property of the effective
Of special interest here is the BLM method which fixescharge. The perturbative series for an effective charge de-
the scale in next-to-leading ordéNLO) using conformal pends on the renormalization scheme even in the confor-
limit arguments. In a conformally invariant theory the cou- mally invariant theory, but when two effective charges are
pling a= a(w)/ 7 is scale invariant: i.e., related, one gets a relation that is independent of the inter-
mediate scheme that was used.
In this paper we present a new generalization of the BLM
“Electronic address: rathsman@tsl.uu.se method to next-to-next-to-leading ordédNLO) using the
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conformal limit arguments as a starting point which fixesgives[2] the renormalization scheme invariants
both the renormalization scale argb when two physical
observables are related. The value Byrthat is obtained is Fo—r.— L

; . - . ry=rq ﬂo'nA, (9)
an intermediate value between tBg’'s of the two effective
charges(A generalization to the factorization scheme prob- - )
lem will be considered in a separate pap8l.) This is a B2r=PB2—B1r1— Lol 11 Lol 2, (10
variation of an approach by Grunberg and Kat&8y, but A o o
whereas they claimed that the prescription for making thevhere B, is the coefficient in the renormalization group
coefficientsN; independent is ambiguous, we will show that €quation for the effective charge given by E4). In passing
once the initial renormalization scheme is fixed by relatinge also note that the expression for the renormalization
two physical observables, the conformal limit argumentsscheme invariant; shows explicitly that it isu/A that is the
fixes the scheme in a unique way. We also compare with thEelevant parameter for parametrizing the renormalization
single-scale[10] and multiscale extensiori#,9,11] of the ~ Scheme dependence.
BLM method to NNLO which fixes the renormalization ~ From the self-consistency requirements we also get the
scale when two effective charges and B are related, €xplicit u and 8; dependence of the coefficients

ap=ag(l+riapagt---), usingBop. As an example the

conformal-limit scheme-fixing method is applied to the rela- ri=r¥+ B, d* Tk , (11)
tion between Bjorken’s sum rule in polarized deep-inelastic Q
scattering an®R. . . The result is compared with a recently
reported experimental determination of Bjorken's sum rule ok B2~ B2yis L N lad
and the general renormalization scheme dependence. f2=T2 Bo B/ d +InQ o € +2r1an
72
. CONFORMAL-LIMIT SCHEME-FIXING METHOD +,33 f* _|nz6 , (12)

Consider an observable in NNLO depending on one en-
ergy scaleQ such asRe+.-(Qg) defined by Eq.3). The  where we have assumed that the coefficients have been cal-

effective chargeir contains all QCD corrections: culated in the modified minimal subtractioM§) scheme

N _ with u=Q to fix the integration constantéThe asterisk is
ar(Qr)=alu, B2, .. )[1+11(Qr.p)a(1. B2, - ) used to indicate terms that are independenpBgfand 3;.)
+15(Qg, i, B2)3%( 1, Bo, - . )], (55 We also assume that; and r, only contain So- and

B1-dependent terms from loop insertions which is why the
where the coefficients; can be calculated using perturbative 8o term inry and theg; term inr, are the same; i.e., they
QCD. The renormalization scheme dependence can be pare both given byl*. This way we also fix the redundancy in
rametrized through the renormalization scaleand the co- how to divider, into By- and 8;-dependent parts.
efficients in theB function, g; for i=2 [2]. Strictly speaking We are now in the position to apply the conformal limit
it is the ratiow/A of the renormalization scale and the QCD arguments to the effective chargg to fix the renormaliza-
scale parameteA that is the relevant parameter but in the tion scheme parametegs and 3,. First the renormalization
following we will often make the implicit assumption that scale is fixed by requiring; to be 8, independent. From Eq.

A is held fixed whenu is varied. This can be done by choos- (11) we see that this can be obtained by choosing the renor-

ing a measurement of an effective charge to definas will ~ malization scale as
be shown later. . _ o
The first two terms in the renormalization group equation T = peim = Qexp(—d”). (13
for the couplinga=a(u)/, We also note that the renormalization scale obtained in this
da ) 5 . way is the same as in the original BLM method.
mzﬁ(a)z —Boa”—pia’—pa’—---, (6) Next 3, is fixed by requiring , to be 8, and 8, indepen-
dent, i.e.,r;= r3 . Using the renormalization scheme invari-
are renormalization scheme independent, ant 8, we get the following expression foy:
1N 1 B
Bo=5Nc—35N;s, (7) r2=(r’{)2+&r*+ﬁ2’R /32. (14

Bo * Bo

From this we see that by choosing a renormalization scheme

whereas the higher order terms depend on the renormalizashere 8, is given by
tion scheme. ~

Applying self-consistency for the perturbative expansion B3 =Bar+ Bt +Bo(ri)>—Bors (15
of the effective charge with respect to the renormalization
scheme parameters, we getr,=r3 . Note that this value o, in general is dif-

. . ferent both from the effective charge val@r and from
dag %=O(a4) Boyms Which was used in the calculation. However, if

ding’ dB; ’ r¥=0, thenBs =B,r, and ifr* =r;, then 83 = Bows-

B1=1NE— 5NcNi— 5CeNy, (8)
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This fixes the renormalization scheme in NNLO up to the The MBLM scale-fixing method is constructed to have
question of initial scheme, which is resolved when twopB, unchanged and instea#l and i, are introduced which
physical observables are related as shown below. This doegves thred(u;= uoexd 6a(w)], u,, andB,) unphysicat pa-
not introduce any new uncertainties since only relations berameters instead of the minimal twg (and 8,). Requiring
tween observables can be predicted in a renormalized theotyiat the effective charge does not depend on these param-
and for each pair of observables we get a unique relatioreters, to the present order of perturbation theory, gives the
The situation here is not different from what happens in theexplicit «, 8;, and 6 dependence of the coefficients.

BLM method and its earlier extensions where it is also nec-

essary to fix the initial renormalization scheme to get a . o Mo

unique result. In[9] it was argued that “in QCD, setting ry=ri+pBod +|”6 : (20)
ri=ry is always possible, but leaves us with an ambiguous

prescription.” However, as we have shown above, there are Bo— Boiis “o

no ambiguities once the initial renormalization scheme has r,=r5— B—O'Jrﬁl d*+|n6 + Bof

been fixed and this can be done using a physical observable

as shown below. ws ) o
The perturbative series for the effective charge in +Bo e*+2rlln6 + B85 f*—|n26 . (2D
NNLO thus becomes
ag=a*[1+r¥a*+ri(a*)?] (16)  Where again the integration constants are fixed by assuming

that the calculation was made in thdS scheme with
where ther¥’s contain no explicitg; terms. In this way we #=Q. Comparing with Eqs(11) and(12) we see the effects
obtain the required feature that all signs of scale breakingdf having different renormalization scales and also how the
i.e., B#0, are confined into the running of the coupling and® dependence enters. In the MBLM scale fixing all
the coefficients in the perturbative series have their conforNi-dependent terms should be absorbed soithatr and
mal limit values. Finallya* can be obtained by solving the r,=r3 just as in the conformal limit scheme. Keeping in
renormalization group equatia®) with 8,= 35 . mind that 8, should be unchanged we see that this can be

Before ending this section we note that the method forachieved by choosing

fixing B, can be generalized to arbitrary order=2. For

this we need the renormalization scheme invarigs in B2= Bayis:
the renormalization group equation for the effective charge, .
Eq. (4). The general form foB,, r is given in[1] and can be Moo= Qexp(—d*),

rewritten as 2
n ) 6=Bo[ —1*+(d*)],
_ n Bn,R_IBn
rn—;o Cinl it =T T gy (17) po=Qexd —e*/(2r¥)],

wherec; , only depends of; .8} with i<n—1. In pre- SO _that u;=Qexp{—d*— B f*—(d*)*Ja(u,)}. From Egs.
vious steps of applying the conformal limit arguments, the(20) and (21) it is also easy to see that one only needs a
renormalization scale has been fixed so thatr* and the Single renormalization scale  is chosen appropriately. In
B’s (2<i<n—1) have been fixed @, = 8* So by requir- this single-scale extensm_ﬁlO] of the BLM scale-fixing
ing r,=r* to contain no explicit3, terms fori<n—1 the method (denoted SBLM in the following one* chooses
value of 8,, is fixed to be p2=p1=poexdoa(u)] where po=Qexp(-d*) and

0= Bol — f* +(d*)?]—e* +2r7d*.

n
* _ 7 o * _ * *\N
Bn=Bnr=(N=1)Born +(n 1)'80]20 Cin(rp)% (18 IV. FIXING THE INITIAL SCHEME
WITH A PHYSICAL OBSERVABLE

which is a generalization of Eq15) to arbitraryn=2. Up to now we have assumed that the initial renormaliza-

tion scheme(and therebyA) is fixed. Now we will show
IIl. COMPARISON WITH OTHER SCALE-FIXING how this can be accomplished using a physical observable so
METHODS that a unique prediction of another physical observable can
In previous multiscale extensions of the BLM method P& made. As an example we will reledefined in Eq(3),

(denoted MBLM in the following[4,9,11 one has different toK, ijrken’s sum rule for polarized deep-inelastic electro-
scales for eaclag term: i.e., production[12]. o , _
The effective charge foR is in NNLO given by(in the

A(Q)=aluy) +r1(p1)a2( o) + a1, p)a%(uz), (19  MS schemg

where u, is parametrized ag.;= uogexdda(u)] and u as

well as us is arbitrary (they will be fixed in higher order  When two physical observables are related the MBI#hd
approximations but here we simply set them to be the sam8BLM) method uses the effective charge of one of the observ-
asu,). ables which in principle is a measurable quantity.



ar=ays(1+rays+ rzazM—S), (22)

wherer; andr, can be obtained frorfil3,14]. For Bjorken’s

sum rule, one can also define an effective chargedusing
the same normalization as jh5]):

1
K= fo dx[gip(vaz) - gin(X!Qz)]

_Hoal) 3¢ 23
6lg, 177 rax(Q) |. (23

In NNLO, a is given by
A =as(1+kiays+ koare), (24)

wherek; andk, have been calculated [16].
Recognizing that th&1S scheme is only an intermediary
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the renormalization scheme wheag(Qg) has no perturba-
tive corrections, i.e ;= B,r and Inw/Ag)=—r1/B, as seen
from Egs.(9) and(10).

Applying the conformal limit criteria so that the coeffi-
cients ¢; and c, take their conformal limit valuesg}

=—32C=—1 andc} =5C2—/=1-/, we get the confor-
mal limit renormalization scheme paramet&¥ and 85
QR =Qkexp(5—2{3), (29
B3 = Box+C¢i B+ (cT)*Bo—C3 Bo
=Bak—B1+7 Bo. (30
where g; is obtained from the invariant
Bax= B3 —C} B1—(CF)?Bo+C; Bo. Equation(29) has been

called a commensurate scale relati@ since it gives the
relation between the renormalization scales when two physi-

scheme suited for calculations we can find a unique relatioga| observables are related. In the same sense one can call

between the two observablag anday .
for ays and inserting into Eq(24) gives

ak(Qk) = ar(Qr)[ 1+ C18r(QR) + €,83(QR)]

Inverting Eq.(22)

(25

Eg. (30) a commensuratg, relation since it givess, when

two observables are related. The resulting valuggpris an
intermediate value between the two effective charge values
ﬂZK and ,82R For a general relation between two effective

where nowQg is the renormalization scale. The coefficients chargesaa=ag(1+ 114885+ 24885), B3 depends on the
¢, which are independent of the intermediate scheme, areonformal limit values of the coefficients{,g. If

given by
3 7 Q
Clz_ZCF_Bo(Z_2§3_|nQ_:>a (26)
9 5 BZ_:éZ,R_ 7 Qr
02—1—6C -/ T ﬁl(z 253 InQ—K>
c (523 0 ) 13 1
FBoCr g F 36 10%s clze 3%
Q 3
+,30201|nQR_,30[__ (3 §3>
w? Qr
L =R
12+I ol (27
where/ is the light-by-light tern?
dabcdabc(ENf e})2 11 1
= NCCrz &2 (174_553 (28

Hereby all dependence on théS scheme has disappeared.

Effectively what we have done is to go from tMS scheme
to theR scheme, the effective charge schemeRawhich is

1 BiInIn(QA/A )

rfjA,Bfo, then B5=pB,4, and if rfyg=rias, then
B5=PB2p - In other words the conformal limit scheme value

’2‘ “interpolates™ between the two effective charge values
,BZA and 3,5, depending on the conformal limit values of
the coefficients.

Finally we have the conformal limit result in NNLO,
ax(Qr)=ag[1-ag+(1-/)(ag)?l, (31

which relates one effective charge,) to another one
(ak) which has been modified in a unique way. This relation
resembles the nonperturbative Crewther relatifiti7],
3S=KR’, which is derived using conformal and chiral in-
variance. It relates Adler's anomalous constar), (
Bjorken’s sum rule for polarized deep-inelastic electropro-
duction (K), and the isovector part d® (R’). According to
the no-renormalization theorem for the axial anomid]
one might think[19] that the perturbative corrections ko
andR cancel. This is not the case, but instead one fji@s$
that the combined corrections are proportional toghfeinc-
tion, (1+ag)(1—ax) —1xB(a), if the light-by-light term is
neglected. The generalized Crewther relation has been stud-
ied in more detail if10].

The modified effective charge(Qg.85) can be ob-
tained from the third order standard solution to E&):

B3IN2In(QE/Ar) — BNIN(QE/AR) + B% Bo— B2

3R(QR A2 = 5 in(QRIAR  AINAQEIAR)

2
BIN(QEIA ) @

°Numerically the light-by-light term is smalk’= —0.0376 forN;=5, /= —0.1653 forN;=4, and/=0 for Ny=3. The light-by-light
term is not affected by the conformal limit arguments since it is not proportiong}to
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FIG. 1. Renormalization scheme dependenc&,dfQx=50 GeV) in(a), (b) and Bjorken’s sum rul& (Qy=3.16 GeV) in(c), (d),
shown as surface plofg), (c) and contour plotgb), (d). Note thatA has been kept fixed so that all the renormalization scheme dependence
is given by the renormalization scal@; and 8,. Some well-known scheme and scale choices are markég) end (d) for reference and
the corresponding numerical values are given in Tables | and Il, respectively. The dashed lines indicate the limit of the perturbative regime,
| B2l < B1/ag=B18oIN(Qr/AR), as explained in the text. In addition to the scheme dependence there is also an experimental uncertainty from
the value ofAg.

which is valid for InQk/Ag)>1. The value ofA should be V. DISCUSSION

determined by experiment fro@z(Qg) with B>,= B,r and Figures 1a) and 1ib) illustrate the renormalization
QR=\/§ using the same solution fats. (The definition of  scheme dependence af(Qx=50 GeV) as given by Eq.

A depends on which solution that is used but sticking to on&€26) using the standard solution, E@32), for ag with
definition or solution presents no problgnin other words A (®)=502 MeV. We see that for not too small renormaliza-
the effective chargar(Qr) gives an experimentally measur- tion scales the8, dependence dominates whereas for smaller
able Ag and a well-defined starting renormalization schemescales both the scale dependence #@ddependence are
which is then modified into the conformal limit scheme quite strong. Since the renormalization scheme dependence
where the scheme parameters are giverQiyand g5 . is parametrized by the renormalization sc&) and S,
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TABLE I. Numerical values of3,, Qg, ax , and Bjorken’s sum TABLE IIl. Numerical values of3,, Qg, ax, and Bjorken's
rule K in different schemes foRx=50 GeV andA(RS’:SOZ MeV  sum rule K in different schemes forQx=3.16 GeV and

(A is kept fixed so that the scheme dependence is givef,and A(R4)=564 MeV (A is kept fixed so that the scheme dependence is
Qr)- Note that there are two scales for the MBLM method given asgiven by 3, andQg). Note that there are two scales for the MBLM

Qr1(Qr2)- method given aQg 1(Qr2).

Scheme B Qr [GeV] ayg K Scheme By Qr [GeV] ay K
CLSF -15.98 26.00 0.5404 0.1982 CLSF -1.56 1.64 0.159 0.176
SBLM -57.86 22.18 0.5271 0.1985 SBLM -55.46 1.53 0.0229 0.205
MBLM -57.86 22.1725.09 0.5290 0.1985 MBLM -55.46 1.491.58 0.0126 0.207
R -57.86 50.00 0.5291 0.1985 R -55.46 3.16 0.100 0.189
K -11.00 33.74 0.5421 0.1982 K 5.54 2.09 0.160 0.176
MS 5.65 72.22 0.5444 0.1981 MS 12.70 456 0.147 0.179
PMS -3.98 15.88 0.5403 0.1982 PMS 2.62 1.69 0.160 0.176

when A is kept fixed, the whole space of schemes should ir_pnly taking the commensurate scale relation into account as
principle be obtained by varyin@g and 8,. However, this N the SBLM and MBLM methods but also the commensu-
does not take into account the region of validity for Ezp).  "at€ B2 relation as in the CLSF method.

For too small renormalization scal€ or too largeg, this From Fig. 1b) we also see that the CLSF point is closer
solution is no longer valid. to the saddle poin{PMS) than the SBLM point, which

To be self-consistent, one should also take into accour’€@ns that the scheme dependence is smaller in the CLSF

that Eq.(6) has to make sense perturbatively. In other wordsPCint: One might also worry that the SBLM and MBLM
if |B,]ar=p,, then we are no longer in the perturbative SC@le-fixing ~methods are too close to the line
regime where the contributions from consecutive terms aré2= = B1B80In(Qr/Ag) where the perturbative expansion for
smaller than the preceding ones and therefore the perturbi€ effective chargag breaks down. Note that both in Fig. 1
tive expansion breaks down. The linesg, and in Table I(and Table I} the renormalization scales are
=+ 3, /lag=* 81 8,IN(Qr/Ag) Which indicate where this related toAg. This means that, for example, in thdS
happens are shown in Fig(k). These lines also indicate Scheme where one normally would yge= Qx as the renor-
where the solution given by E@32) is no longer valid and Mmalization scale for A=Ays, the scale becomes
the numerical results should therefore not be trusted in tha®xeXP(1us/Bo) for A=Ag [compare with Eq(9)].
region. The conformal-limit scheme-fixingCLSF) method As a concrete example of the conformal-limit-scheme fix-
and the SBLM scale-fixing method are indicated in Fign)1 ing method we will use the global analysisRf. .- data in
together with some other well-known schemes like g  the range 2.64Qr<52 GeV by Marshal[22] to calculate
scheme, the “principle of minimum sensitivity(PMS), and  the Bjorken sum rul at Qy =3.16= /10 GeV, which can
the effective chargéECH) schemes foR andK. be compared with the SMC  measurement,
Conceptually the PMS and ECH schemes are differenK=1"{—1'1=0.199+-0.038[15]. The result of the analysis
from the conformal limit schemes in that they prescribe ain [22] is a global fit taking both electroweak and QCD cor-
unique scheme for each observable instead of givingections into accounRe; . =RE>,(1+4ag) , and numerical
schemes for relations between observables. It should also belues forRy= 1+ ag are given for some distinct energies.
noted that the PMS and ECH schemes sometimes give rendn  the  following we have used the value
malization scales which are difficult to interpret physically. Ro=1.0463-0.0044 for Qz=59.2 GeV. The reasons for
For instance, in jet production, both @ e~ [20] and deep- picking this particular energy are that we want to have a
inelastic scatteringDIS) [21], the resulting renormalization large scaleQg where the standard solution, E(2), is a
scales grow when the typical jet masg (W?) is decreased, good approximatioriespecially sincg8,R is so large and at
which is counter intuitive. In addition the PMS prescription the same time we do not want to extrapolate the experimen-
depends on the intermediate scheme. For example, applyingl result too much outside the measured range.
the PMS prescription to two observables given in M8 Following the prescription given above for determining
scheme separately and then relating them gives a differemt(RS) we get
result compared to if the observables are first related so that
the dependence on thdS scheme is removed and then the
PMS prescription is applied. A .
For reference, the numerical values ®f, Qr, ax, and  from ag=0.0463* 0.0044 using Eq(32) with 8,g=—57.9
Bjorken’s sum ruleK in the different schemes are given in and Qg=59.2 GeV. To be able to compare with the Spin
Table | (together with the MBLM method which has two Muon Collaboration (SMC) measurement we also need
renormalization scales Comparing the conformal-limit Ag‘). This is obtained by matchings numerically at the
scheme-fixing with the SBLM and MBLM scale-fixing flavor threshold,Qg=m,=5 GeV, for N;=4 and 5 with
methods in Table | we see that even though the coefficientg,= g5 , which gives,
c; are the same, the scale8, and the resulting effective @) 082
chargeay are different. This shows the importance of not AR’=564"%% MeV.

— 326
AR'=502"32 MeV,
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The conformal limit renormalization scheme parameters are VI. SUMMARY AND CONCLUSIONS
H *
then obtained from Eq429) and(30), Qg=1.64 GeV and In summary we have shown that it is possible to general-

@3: _1-26, and tog*ether with the con{grmal.limit poeﬁi— ize the conformal limit arguments of the BLM method to
cients c;=—1, ¢;=1.165 and Ay’ this gives NNLO to fix the renormalization scheme, i.e., both the renor-
ax=0.159"323%  Finally the conformal limit result for malization scale ang,, when two observables are related.

Bjorken’s sum rule given by Eq24) becomes In this way all signs of scale breaking, i.87# 0, are con-
fined into the running of the coupling and the coefficients in
K=0.176,5 070, the perturbative series have their conformal limit values. We

have also showricontrary to[9]) that this prescription for
making the coefficients have their conformal limit values is
where|ga/gy| =1.2573+0.0028[23] has been used and the unique. Comparing with earlier extensions of the BLM
error comes from the uncertainty Rqo. This is in good method to NNLO they only fix the scale usifg from the
agreement with the experimental valle=0.199+0.038 effective charge. This means that the conformal-limit
measured by SMC. To be able to make a more challengin§cheme-fixing method gives both a so-called commensurate
test of the conformal limit scheme arguments one would>cale relation as well as a commensurgjerelation which,
need much more precise measurements of Bath,  and N @ unique way, specifies ho®, should be modified when
K. two physical observables are related to each other.
For illustration we also show the renormalization scheme Applying the conformal-imit scheme-fixing method to

- , P the relation between Bjorken’s sum rifeandR. . gives
dependem_:e of Bjorken's sum rule in F|g$c)1an_d 1d) and a simple relation between the two. Using the effective charge
the numerical values g8, and Qg for the specific schemes

indicated in Fig. 1d) are given in Table Il together with the vaIuea_Rz 0'046&0'0044.f0rQR:59'2 Gc)%\zlgfrom azglobal
resulting values foax and Bjorken’s sum rul&k. Compar- analysis OfRe,.- data givesk=0.176,q g1, fc_)r Qic=10

ing with Figs. 1a) and 1b) we see that the scheme Olepen_GeV2 where the error comes from the experimental uncer-
dence is much stronger which is also expected since we afgnty N ag. Assessing a theoreﬂcal error 1S much more
at a much smalleQ, . We also see that the perturbative Compllcaf[ed._ The theoretical uncertainty is |IIu_strated by the
regime indicated by the dashed line in Fidgd)lis narrower rer]ormallzatlon scheme _dependence which is ShOV_V_“ fo be
than in Fig. 1b) and in fact both the SBLM and MBLM quite large even though it can be reduced by requiring the

methods as well as tHe scheme are outside the perturbative scheme to b_elqng to the pertprbative regimg. Still, the prob-
regime. Therefore the numerical results given for thes em of quantifying t'he thepreUcaI error remains 1o be solved.
schemes should not be trusted. However, one must keep owever, comparing with the _expenmentally me_asured
mind that the SBLM and MBLM scale-fixing methods advo- =0:199t0'038 .the agreement is good a}nd theoretical un-
cate the use of a physical measuremenfgfat this scale certainties are still smaller than the experimental ones.

and in this way the problem with the validity of the solution
used forag never enters. Even so, Figdcland Xd) illus-
trate clearly that there is a strong renormalization scheme | would like to thank Stan Brodsky and Gunnar Ingelman
dependence for Bjorken’s sum rule at this scale which shoulfor useful discussions on the subject of this paper. | also
be taken into account when comparing the experimental rewant to thank Hung Jung Lu for helpful remarks on the
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