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Fixing the renormalization scheme in NNLO perturbative QCD using conformal limit arguments

J. Rathsman*

Department of Radiation Sciences, Uppsala University, Box 535, S-751 21 Uppsala, Sweden
~Received 10 April 1996!

We discuss how the renormalization scheme ambiguities in QCD can be fixed, when two observables are
related, by requiring the coefficients in the perturbative expansion relating the two observables to have their
conformal limit values, i.e., to be independent of theb function of the renormalized coupling. We show how
the next-to-leading order BLM automatic scale-fixing method can be extended to next-to-next-to-leading order
to fix both the renormalization scale andb2 in a unique way. As an example we apply the method to the
relation between Bjorken’s sum rule andRe1e2 and compare with experimental data as well as other scheme-
fixing methods.@S0556-2821~96!02817-2#

PACS number~s!: 11.10.Gh, 12.38.Bx, 13.60.Hb
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I. INTRODUCTION

In perturbative QCD, observables are given by expansi
in the strong couplingas :

R5S as

p D NFR01R1

as

p
1R2S as

p D 21••• G , ~1!

where the coefficientsRi can be calculated from the appro
priate Feynman diagrams. The individual terms in the ser
depend on the renormalization scheme one is using but
sum of the entire series is independent of the scheme acc
ing to the renormalization group equation. However, wh
the series is truncated the result becomes renormaliza
scheme dependent. This dependence is formally of hig
order than the terms calculated in the series but numeric
the difference between different schemes can be large. Th
differences give a theoretical uncertainty which in princip
makes it impossible to make any absolute predictions si
any result can be obtained by a finite renormalization.
going to higher order in perturbation theory the renormaliz
tion scheme dependence becomes smaller but in principle
problem remains. One can argue that it is only bad sche
choices that give ‘‘crazy’’ results and that as long as o
uses a ‘‘sensible’’ scheme the result will also be ‘‘sensible
The question then arises, what is a sensible scheme?

The question of how to choose an appropriate renorm
ization scheme in QCD has been discussed many tim
Three well-known methods for choosing the renormalizati
scheme are the ‘‘effective charge scheme’’ by Grunberg@1#,
the ‘‘principle of minimum sensitivity’’ by Stevenson@2#,
and ‘‘automatic scale fixing’’ by Brodsky, Lepage, an
Mackenzie~BLM ! @3#. All these methods are based on som
more or less intuitive principle or set of arguments for how
perturbative series should behave.

Of special interest here is the BLM method which fixe
the scale in next-to-leading order~NLO! using conformal
limit arguments. In a conformally invariant theory the co
pling a5a(m)/p is scale invariant: i.e.,
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da

dlnm
5b~a!52b0a

22b1a
32b2a

42 . . .50. ~2!

It is therefore natural to define the conformal limit of pertur-
bative QCD as the limitb i→0 @3,4#. This means that the
coefficientsRi in the perturbative series have their conforma
limit values if they do not contain any explicit dependence
on the b function. For example, in NLO the perturbative
coefficients should have no explicitb0 dependence. In the
BLM method this is achieved by absorbing all
b0-dependent NLO terms (b05

11
2 2 1

3Nf whereNf5 number
of active quark flavors! into the running ofas by a suitable
redefinition of the renormalization scale. It should be note
that the renormalization scale obtained by the BLM metho
can also be interpreted as the mean value of the virtualities
the gluon propagators@3,5,4,6,7#.

A useful concept when discussing renormalization
scheme uncertainties is the effective charge@1# of an observ-
able which contains all QCD corrections. For example, th
effective chargeâR of Re1e2 is defined by

Re1e2~QR!5
s~e1e2→ hadrons!

s~e1e2→m1m2!

53(
i51

Nf

ei
2@11 3

4CFâR~QR!#. ~3!

Each effective charge has its ownb function @1# connected
to it:

dâR
dlnQR

5b̂R~ âR!52b0âR
22b1âR

32b̂2,RâR
42•••, ~4!

whereb0 and b1 are renormalization scheme independen
andb̂ i ,R , i>2 are renormalization scheme invariants. Thus
for each physical observableA there is a specificb̂2,A con-
nected to it which is an inherent property of the effective
charge. The perturbative series for an effective charge d
pends on the renormalization scheme even in the confo
mally invariant theory, but when two effective charges ar
related, one gets a relation that is independent of the inte
mediate scheme that was used.

In this paper we present a new generalization of the BLM
method to next-to-next-to-leading order~NNLO! using the
3420 © 1996 The American Physical Society
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54 3421FIXING THE RENORMALIZATION SCHEME IN NNLO . . .
conformal limit arguments as a starting point which fixe
both the renormalization scale andb2 when two physical
observables are related. The value forb2 that is obtained is
an intermediate value between theb̂2’s of the two effective
charges.~A generalization to the factorization scheme prob
lem will be considered in a separate paper@8#.! This is a
variation of an approach by Grunberg and Kataev@9#, but
whereas they claimed that the prescription for making t
coefficientsNf independent is ambiguous, we will show tha
once the initial renormalization scheme is fixed by relatin
two physical observables, the conformal limit argumen
fixes the scheme in a unique way. We also compare with
single-scale@10# and multiscale extensions@4,9,11# of the
BLM method to NNLO which fixes the renormalization
scale when two effective chargesA and B are related,
âA5âB(11r 1,A/BâB1•••), using b̂2,B . As an example the
conformal-limit scheme-fixing method is applied to the rela
tion between Bjorken’s sum rule in polarized deep-inelas
scattering andRe1e2 . The result is compared with a recently
reported experimental determination of Bjorken’s sum ru
and the general renormalization scheme dependence.

II. CONFORMAL-LIMIT SCHEME-FIXING METHOD

Consider an observable in NNLO depending on one e
ergy scaleQ such asRe1e2(QR) defined by Eq.~3!. The
effective chargeâR contains all QCD corrections:

âR~QR!5a~m,b2 , . . . !@11r 1~QR ,m!a~m,b2 , . . . !

1r 2~QR ,m,b2!a
2~m,b2 , . . . !#, ~5!

where the coefficientsr i can be calculated using perturbativ
QCD. The renormalization scheme dependence can be
rametrized through the renormalization scalem and the co-
efficients in theb function,b i for i>2 @2#. Strictly speaking
it is the ratiom/L of the renormalization scale and the QCD
scale parameterL that is the relevant parameter but in th
following we will often make the implicit assumption tha
L is held fixed whenm is varied. This can be done by choos
ing a measurement of an effective charge to defineL as will
be shown later.

The first two terms in the renormalization group equatio
for the couplinga5as(m)/p,

da

dlnm
5b~a!52b0a

22b1a
32b2a

42•••, ~6!

are renormalization scheme independent,

b05
11
6 NC2 1

3Nf , ~7!

b15
17
12NC

22 5
12NCNf2

1
4CFNf , ~8!

whereas the higher order terms depend on the renormal
tion scheme.

Applying self-consistency for the perturbative expansio
of the effective charge with respect to the renormalizatio
scheme parameters,

dâR
dlnm

,
dâR
db2

5O~a4!,
s
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gives @2# the renormalization scheme invariants

r̂ 15r 12b0ln
m

L
, ~9!

b̂2,R5b22b1r 12b0r 1
21b0r 2 , ~10!

where b̂2,R is the coefficient in the renormalization group
equation for the effective charge given by Eq.~4!. In passing
we also note that the expression for the renormalization
scheme invariantr̂ 1 shows explicitly that it ism/L that is the
relevant parameter for parametrizing the renormalization
scheme dependence.

From the self-consistency requirements we also get the
explicit m andb j dependence of the coefficientsr i :

r 15r 1*1b0Fd*1 ln
m

QG , ~11!

r 25r 2*2
b22b2,MS

b0
b1Fd*1 ln

m

QG1b0Fe*12r 1ln
m

QG
1b0

2F f *2 ln2
m

QG , ~12!

where we have assumed that the coefficients have been ca
culated in the modified minimal subtraction (MS) scheme
with m5Q to fix the integration constants.~The asterisk is
used to indicate terms that are independent ofb0 andb1.!
We also assume thatr 1 and r 2 only contain b0- and
b1-dependent terms from loop insertions which is why the
b0 term in r 1 and theb1 term in r 2 are the same; i.e., they
are both given byd* . This way we also fix the redundancy in
how to divider 2 into b0- andb1-dependent parts.

We are now in the position to apply the conformal limit
arguments to the effective chargeâR to fix the renormaliza-
tion scheme parametersm andb2. First the renormalization
scale is fixed by requiringr 1 to beb0 independent. From Eq.
~11! we see that this can be obtained by choosing the renor
malization scale as

m*5mBLM5Qexp~2d* !. ~13!

We also note that the renormalization scale obtained in this
way is the same as in the original BLM method.

Nextb2 is fixed by requiringr 2 to beb0 andb1 indepen-
dent, i.e., r 25r 2* . Using the renormalization scheme invari-
ant b̂2,R we get the following expression forr 2:

r 25~r 1* !21
b1

b0
r 1*1

b̂2,R2b2

b0
. ~14!

From this we see that by choosing a renormalization schem
whereb2 is given by

b2*5b̂2,R1b1r 1*1b0~r 1* !22b0r 2* , ~15!

we getr 25r 2* . Note that this value ofb2 in general is dif-
ferent both from the effective charge valueb̂2,R and from
b2,MS which was used in the calculation. However, if
r i*50, thenb2*5b̂2,R , and if r i*5r i , thenb2*5b2,MS .
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This fixes the renormalization scheme in NNLO up to th
question of initial scheme, which is resolved when tw
physical observables are related as shown below. This d
not introduce any new uncertainties since only relations
tween observables can be predicted in a renormalized the
and for each pair of observables we get a unique relati
The situation here is not different from what happens in t
BLM method and its earlier extensions where it is also ne
essary to fix the initial renormalization scheme to get
unique result. In@9# it was argued that ‘‘in QCD, setting
r i5r i* is always possible, but leaves us with an ambiguo
prescription.’’ However, as we have shown above, there
no ambiguities once the initial renormalization scheme h
been fixed and this can be done using a physical observ
as shown below.

The perturbative series for the effective chargeâR in
NNLO thus becomes

âR5a* @11r 1* a*1r 2* ~a* !2# ~16!

where ther i* ’s contain no explicitb j terms. In this way we
obtain the required feature that all signs of scale breaki
i.e.,bÞ0, are confined into the running of the coupling an
the coefficients in the perturbative series have their conf
mal limit values. Finallya* can be obtained by solving the
renormalization group equation~6! with b25b2* .

Before ending this section we note that the method
fixing b2 can be generalized to arbitrary order,n>2. For
this we need the renormalization scheme invariantsb̂n,R in
the renormalization group equation for the effective char
Eq. ~4!. The general form forb̂n,R is given in@1# and can be
rewritten as

r n5(
j50

n

cj ,nr 1
n1

1

n21

b̂n,R2bn

b0
, ~17!

wherecj ,n only depends on$b̂ i ,R ,b i% with i<n21. In pre-
vious steps of applying the conformal limit arguments, t
renormalization scale has been fixed so thatr 15r 1* and the
b i ’s (2< i<n21) have been fixed tob i5b i* So by requir-
ing r n5r n* to contain no explicitb i terms for i<n21 the
value ofbn is fixed to be

bn*5b̂n,R2~n21!b0r n*1~n21!b0(
j50

n

cj ,n* ~r 1* !n, ~18!

which is a generalization of Eq.~15! to arbitraryn>2.

III. COMPARISON WITH OTHER SCALE-FIXING
METHODS

In previous multiscale extensions of the BLM metho
~denoted MBLM in the following! @4,9,11# one has different
scales for eachas term: i.e.,

â~Q!5a~m1!1r 1~m1!a
2~m2!1r 2~m1 ,m2!a

3~m3!, ~19!

wherem1 is parametrized asm15m0exp@ua(m)# and m as
well as m3 is arbitrary ~they will be fixed in higher order
approximations but here we simply set them to be the sa
asm2).
e
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The MBLM scale-fixing method is constructed to hav
b2 unchanged and insteadu andm2 are introduced which
gives three„m15m0exp@ua(m)#, m2, andb2… unphysical

1 pa-
rameters instead of the minimal two (m andb2). Requiring
that the effective charge does not depend on these par
eters, to the present order of perturbation theory, gives
explicit m, b j , andu dependence of the coefficientsr i :

r 15r 1*1b0Fd*1 ln
m0

Q G , ~20!

r 25r 2*2
b22b2,MS

b0
1b1Fd*1 ln

m0

Q G1b0u

1b0Fe*12r 1ln
m2

Q G1b0
2F f *2 ln2

m0

Q G , ~21!

where again the integration constants are fixed by assum
that the calculation was made in theMS scheme with
m5Q. Comparing with Eqs.~11! and~12! we see the effects
of having different renormalization scales and also how t
u dependence enters. In the MBLM scale fixing a
Nf-dependent terms should be absorbed so thatr 15r 1* and
r 25r 2* just as in the conformal limit scheme. Keeping i
mind thatb2 should be unchanged we see that this can
achieved by choosing

b25b2,MS ,

m05Qexp~2d* !,

u5b0@2 f *1~d* !2#,

m25Qexp@2e* /~2r 1* !#,

so that m15Qexp$2d*2b0@f*2(d* )2#a(m2)%. From Eqs.
~20! and ~21! it is also easy to see that one only needs
single renormalization scale ifu is chosen appropriately. In
this single-scale extension@10# of the BLM scale-fixing
method ~denoted SBLM in the following! one chooses
m25m15m0exp@ua(m)# where m05Qexp(2d* ) and
u5b0@2 f *1(d* )2#2e*12r 1* d* .

IV. FIXING THE INITIAL SCHEME
WITH A PHYSICAL OBSERVABLE

Up to now we have assumed that the initial renormaliz
tion scheme~and therebyL) is fixed. Now we will show
how this can be accomplished using a physical observable
that a unique prediction of another physical observable c
be made. As an example we will relateR defined in Eq.~3!,
to K, Bjorken’s sum rule for polarized deep-inelastic electr
production@12#.

The effective charge forR is in NNLO given by~in the
MS scheme!,

1When two physical observables are related the MBLM~and
SBLM! method uses the effective chargeb̂2 of one of the observ-
ables which in principle is a measurable quantity.
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âR5aMS~11r 1aMS1r 2aMS
2

!, ~22!

wherer 1 andr 2 can be obtained from@13,14#. For Bjorken’s
sum rule, one can also define an effective chargeâK ~using
the same normalization as in@15#!:

K5E
0

1

dx@g1
ep~x,Q2!2g1

en~x,Q2!#

5
1

6U gAgV US 12
3

4
CFâK~Q! D . ~23!

In NNLO, âK is given by

âK5aMS~11k1aMS1k2aMS
2

!, ~24!

wherek1 andk2 have been calculated in@16#.
Recognizing that theMS scheme is only an intermediar

scheme suited for calculations we can find a unique relat
between the two observablesâR and âK . Inverting Eq.~22!
for aMS and inserting into Eq.~24! gives

âK~QK!5âR~QR!@11c1âR~QR!1c2âR
2~QR!# ~25!

where nowQR is the renormalization scale. The coefficien
ci , which are independent of the intermediate scheme,
given by

c152
3

4
CF2b0S 7422z32 ln

QR

QK
D , ~26!

c25
9

16
CF
22l 2

b22b̂2,R

b0
2b1S 7422z32 ln

QR

QK
D

1b0CFS 523144
1
14

3
z3210z5D2b0NCS 13362

1

3
z3D

1b02c1ln
QR

QK
2b0

2F2
17

6
1S 353 28z3D z3

2
p2

12
1 ln2

QR

QK
G , ~27!

wherel is the light-by-light term:2

l 5
dabcdabc~( i51

Nf ei !
2

NCCF( i51
Nf ei

2 S 111442
1

6
z3D . ~28!

Hereby all dependence on theMS scheme has disappeare
Effectively what we have done is to go from theMS scheme
to theR scheme, the effective charge scheme forR which is
y
ion

ts
are

d.

the renormalization scheme whereâR(QR) has no perturba-
tive corrections, i.e.,b25b̂2,R and ln(m/LR)52r̂1 /b0 as seen
from Eqs.~9! and ~10!.

Applying the conformal limit criteria so that the coeffi-
cients c1 and c2 take their conformal limit values,c1*
52 3

4CF521 andc2*5 9
16CF

22l 512l , we get the confor-
mal limit renormalization scheme parametersQR* andb2*

QR*5QKexp~
7
422z3!, ~29!

b2*5b̂2,K1c1*b11~c1* !2b02c2*b0

5b̂2,K2b11l b0 , ~30!

where b2* is obtained from the invariant
b̂2,K5b2*2c1*b12(c1* )

2b01c2*b0. Equation~29! has been
called a commensurate scale relation@4# since it gives the
relation between the renormalization scales when two phy
cal observables are related. In the same sense one can
Eq. ~30! a commensurateb2 relation since it givesb2 when
two observables are related. The resulting value forb2* is an
intermediate value between the two effective charge valu
b̂2,K and b̂2,R . For a general relation between two effective
charges,âA5âB(11r 1,A/BâB1r 2,A/BâB

2), b2* depends on the
conformal limit values of the coefficientsr i ,A/B* . If
r i ,A/B* 50, then b2*5b̂2,A , and if r i ,A/B* 5r i ,A/B , then
b2*5b̂2,B . In other words the conformal limit scheme value
b2* ‘‘interpolates’’ between the two effective charge value
b̂2,A and b̂2,B , depending on the conformal limit values of
the coefficients.

Finally we have the conformal limit result in NNLO,

âK~QK!5aR* @12aR*1~12l !~aR* !2#, ~31!

which relates one effective charge (âK) to another one
(aR* ) which has been modified in a unique way. This relatio
resembles the nonperturbative Crewther relation@17#,
3S5KR8, which is derived using conformal and chiral in-
variance. It relates Adler’s anomalous constant (S),
Bjorken’s sum rule for polarized deep-inelastic electropro
duction (K), and the isovector part ofR (R8). According to
the no-renormalization theorem for the axial anomaly@18#
one might think@19# that the perturbative corrections toK
andR cancel. This is not the case, but instead one finds@19#
that the combined corrections are proportional to theb func-
tion, (11âR)(12âK)21}b(a), if the light-by-light term is
neglected. The generalized Crewther relation has been st
ied in more detail in@10#.

The modified effective chargeaR* (QR* ,b2* ) can be ob-
tained from the third order standard solution to Eq.~6!:
aR* ~QR* ,b2* !5
1

b0ln~QR* /LR!
2

b1lnln~QR* /LR!

b0
3ln2~QR* /LR!

1
b1
2ln2ln~QR* /LR!2b1

2lnln~QR* /LR!1b2*b02b1
2

b0
5ln3~QR* /LR!

, ~32!

2Numerically the light-by-light term is small:l 520.0376 forNf55, l 520.1653 forNf54, andl 50 for Nf53. The light-by-light
term is not affected by the conformal limit arguments since it is not proportional tob0.
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FIG. 1. Renormalization scheme dependence ofâK(QK550 GeV) in ~a!, ~b! and Bjorken’s sum ruleK(QK53.16 GeV) in~c!, ~d!,
shown as surface plots~a!, ~c! and contour plots~b!, ~d!. Note thatL has been kept fixed so that all the renormalization scheme depend
is given by the renormalization scaleQR andb2. Some well-known scheme and scale choices are marked in~b! and ~d! for reference and
the corresponding numerical values are given in Tables I and II, respectively. The dashed lines indicate the limit of the perturbative
ub2u<b1 /aR.b1b0ln(QR /LR), as explained in the text. In addition to the scheme dependence there is also an experimental uncertai
the value ofLR .
-
ler

nce
which is valid for ln(QR* /LR)@1. The value ofLR should be
determined by experiment fromâR(QR) with b25b̂2,R and
QR5As using the same solution foras . ~The definition of
L depends on which solution that is used but sticking to o
definition or solution presents no problem.! In other words
the effective chargeâR(QR) gives an experimentally measur
ableLR and a well-defined starting renormalization schem
which is then modified into the conformal limit schem
where the scheme parameters are given byQR* andb2* .
ne

-
e
e

V. DISCUSSION

Figures 1~a! and 1~b! illustrate the renormalization
scheme dependence ofâK(QK550 GeV) as given by Eq.
~26! using the standard solution, Eq.~32!, for aR with
LR
(5)5502 MeV. We see that for not too small renormaliza

tion scales theb2 dependence dominates whereas for smal
scales both the scale dependence andb2 dependence are
quite strong. Since the renormalization scheme depende
is parametrized by the renormalization scaleQR and b2
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54 3425FIXING THE RENORMALIZATION SCHEME IN NNLO . . .
whenLR is kept fixed, the whole space of schemes should
principle be obtained by varyingQR andb2. However, this
does not take into account the region of validity for Eq.~32!.
For too small renormalization scalesQR or too largeb2 this
solution is no longer valid.

To be self-consistent, one should also take into accou
that Eq.~6! has to make sense perturbatively. In other word
if ub2uaR>b1, then we are no longer in the perturbative
regime where the contributions from consecutive terms a
smaller than the preceding ones and therefore the pertur
tive expansion breaks down. The linesb2
56b1 /aR.6b1b0ln(QR/LR) which indicate where this
happens are shown in Fig. 1~b!. These lines also indicate
where the solution given by Eq.~32! is no longer valid and
the numerical results should therefore not be trusted in th
region. The conformal-limit scheme-fixing~CLSF! method
and the SBLM scale-fixing method are indicated in Fig. 1~b!
together with some other well-known schemes like theMS
scheme, the ‘‘principle of minimum sensitivity’’~PMS!, and
the effective charge~ECH! schemes forR andK.

Conceptually the PMS and ECH schemes are differe
from the conformal limit schemes in that they prescribe
unique scheme for each observable instead of givin
schemes for relations between observables. It should also
noted that the PMS and ECH schemes sometimes give ren
malization scales which are difficult to interpret physically
For instance, in jet production, both ine1e2 @20# and deep-
inelastic scattering~DIS! @21#, the resulting renormalization
scales grow when the typical jet mass (ycutW

2) is decreased,
which is counter intuitive. In addition the PMS prescription
depends on the intermediate scheme. For example, apply
the PMS prescription to two observables given in theMS
scheme separately and then relating them gives a differe
result compared to if the observables are first related so th
the dependence on theMS scheme is removed and then the
PMS prescription is applied.

For reference, the numerical values ofb2, QR , âK , and
Bjorken’s sum ruleK in the different schemes are given in
Table I ~together with the MBLM method which has two
renormalization scales!. Comparing the conformal-limit
scheme-fixing with the SBLM and MBLM scale-fixing
methods in Table I we see that even though the coefficien
ci are the same, the scales,b2 and the resulting effective
chargeâK are different. This shows the importance of no

TABLE I. Numerical values ofb2, QR , âK , and Bjorken’s sum
rule K in different schemes forQK550 GeV andLR

(5)5502 MeV
(L is kept fixed so that the scheme dependence is given byb2 and
QR). Note that there are two scales for the MBLM method given a
QR,1(QR,2).

Scheme b2 QR @GeV# âK K

CLSF -15.98 26.00 0.5404 0.1982
SBLM -57.86 22.18 0.5271 0.1985
MBLM -57.86 22.17~25.02! 0.5290 0.1985
R -57.86 50.00 0.5291 0.1985
K -11.00 33.74 0.5421 0.1982

MS 5.65 72.22 0.5444 0.1981

PMS -3.98 15.88 0.5403 0.1982
in
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only taking the commensurate scale relation into accoun
in the SBLM and MBLM methods but also the commens
rateb2 relation as in the CLSF method.

From Fig. 1~b! we also see that the CLSF point is clos
to the saddle point~PMS! than the SBLM point, which
means that the scheme dependence is smaller in the C
point. One might also worry that the SBLM and MBLM
scale-fixing methods are too close to the lin
b256b1b0ln(QR/LR) where the perturbative expansion fo
the effective chargeâR breaks down. Note that both in Fig.
and in Table I~and Table II! the renormalization scales ar
related toLR . This means that, for example, in theMS
scheme where one normally would usem5QK as the renor-
malization scale for L5LMS, the scale becomes
QKexp(r1,MS /b0) for L5LR @compare with Eq.~9!#.

As a concrete example of the conformal-limit-scheme fi
ing method we will use the global analysis ofRe1e2 data in
the range 2.64,QR,52 GeV by Marshall@22# to calculate
the Bjorken sum ruleK atQK53.165A10 GeV, which can
be compared with the SMC measuremen
K5G1

p2G1
n50.19960.038 @15#. The result of the analysis

in @22# is a global fit taking both electroweak and QCD co
rections into account,Re1e25RBorn

g,Z (11âR) , and numerical
values forRQ511âR are given for some distinct energies
In the following we have used the valu
RQ51.046360.0044 forQR559.2 GeV. The reasons fo
picking this particular energy are that we want to have
large scaleQR where the standard solution, Eq.~32!, is a
good approximation~especially sinceb̂2,R is so large! and at
the same time we do not want to extrapolate the experim
tal result too much outside the measured range.

Following the prescription given above for determinin
LR
(5) we get

LR
~5!55022225

1326 MeV,

from âR50.046360.0044 using Eq.~32! with b̂2,R5257.9
andQR559.2 GeV. To be able to compare with the Sp
Muon Collaboration ~SMC! measurement we also nee
LR
(4) . This is obtained by matchingaR* numerically at the

flavor threshold,QR5mb55 GeV, for Nf54 and 5 with
b25b2* , which gives,

LR
~4!55642224

1282 MeV.

s

TABLE II. Numerical values ofb2, QR , âK , and Bjorken’s
sum rule K in different schemes forQK53.16 GeV and
LR
(4)5564 MeV (L is kept fixed so that the scheme dependence

given byb2 andQR). Note that there are two scales for the MBLM
method given asQR,1(QR,2).

Scheme b2 QR @GeV# âK K

CLSF -1.56 1.64 0.159 0.176
SBLM -55.46 1.53 0.0229 0.205
MBLM -55.46 1.49~1.58! 0.0126 0.207
R -55.46 3.16 0.100 0.189
K 5.54 2.09 0.160 0.176

MS 12.70 4.56 0.147 0.179

PMS 2.62 1.69 0.160 0.176
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The conformal limit renormalization scheme parameters a
then obtained from Eqs.~29! and ~30!, QR*51.64 GeV and
b2*521.56, and together with the conformal limit coeffi
cients c1*521, c2*51.165, and LR

(4) this gives
âK50.15920.048

10.139. Finally the conformal limit result for
Bjorken’s sum rule given by Eq.~24! becomes

K50.17610.010
20.029,

whereugA /gVu51.257360.0028@23# has been used and the
error comes from the uncertainty inRQ . This is in good
agreement with the experimental valueK50.19960.038
measured by SMC. To be able to make a more challeng
test of the conformal limit scheme arguments one wou
need much more precise measurements of bothRe1e2 and
K.

For illustration we also show the renormalization schem
dependence of Bjorken’s sum rule in Figs. 1~c! and 1~d! and
the numerical values ofb2 andQR for the specific schemes
indicated in Fig. 1~d! are given in Table II together with the
resulting values forâK and Bjorken’s sum ruleK. Compar-
ing with Figs. 1~a! and 1~b! we see that the scheme depen
dence is much stronger which is also expected since we
at a much smallerQK . We also see that the perturbativ
regime indicated by the dashed line in Fig. 1~d! is narrower
than in Fig. 1~b! and in fact both the SBLM and MBLM
methods as well as theR scheme are outside the perturbativ
regime. Therefore the numerical results given for the
schemes should not be trusted. However, one must kee
mind that the SBLM and MBLM scale-fixing methods advo
cate the use of a physical measurement ofâR at this scale
and in this way the problem with the validity of the solutio
used foras never enters. Even so, Figs. 1~c! and 1~d! illus-
trate clearly that there is a strong renormalization sche
dependence for Bjorken’s sum rule at this scale which sho
be taken into account when comparing the experimental
sult with theoretical expectations.
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VI. SUMMARY AND CONCLUSIONS

In summary we have shown that it is possible to genera
ize the conformal limit arguments of the BLM method to
NNLO to fix the renormalization scheme, i.e., both the reno
malization scale andb2, when two observables are related
In this way all signs of scale breaking, i.e.,bÞ0, are con-
fined into the running of the coupling and the coefficients i
the perturbative series have their conformal limit values. W
have also shown~contrary to@9#! that this prescription for
making the coefficients have their conformal limit values i
unique. Comparing with earlier extensions of the BLM
method to NNLO they only fix the scale usingb2 from the
effective charge. This means that the conformal-lim
scheme-fixing method gives both a so-called commensura
scale relation as well as a commensurateb2 relation which,
in a unique way, specifies howb2 should be modified when
two physical observables are related to each other.

Applying the conformal-limit scheme-fixing method to
the relation between Bjorken’s sum ruleK andRe1e2 gives
a simple relation between the two. Using the effective charg
valueâR50.046360.0044 forQR559.2 GeV from a global
analysis ofRe1e2 data givesK50.17610.010

20.029 for QK
2510

GeV2 where the error comes from the experimental unce
tainty in âR . Assessing a theoretical error is much mor
complicated. The theoretical uncertainty is illustrated by th
renormalization scheme dependence which is shown to
quite large even though it can be reduced by requiring th
scheme to belong to the perturbative regime. Still, the pro
lem of quantifying the theoretical error remains to be solved
However, comparing with the experimentally measure
K50.19960.038 the agreement is good and theoretical u
certainties are still smaller than the experimental ones.

ACKNOWLEDGMENTS

I would like to thank Stan Brodsky and Gunnar Ingelma
for useful discussions on the subject of this paper. I als
want to thank Hung Jung Lu for helpful remarks on the
MBLM scale-fixing method.
B

@1# G. Grunberg, Phys. Lett.95B, 70 ~1980!; Phys. Rev. D29,

2315 ~1984!.
@2# P. M. Stevenson, Phys. Rev. D23, 2916~1981!.
@3# S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. R

D 28, 228 ~1983!.
@4# S. J. Brodsky and H. J. Lu, Phys. Rev. D51, 3652~1995!.
@5# G. P. Lepage and P. B. Mackenzie, Phys. Rev. D48, 2250

~1993!.
@6# M. Neubert, Phys. Rev. D51, 5924~1995!.
@7# P. Ball, M. Beneke, and V. M. Braun, Nucl. Phys.B452, 563

~1995!.
@8# J. Rathsman, TSL/ISV report~in preparation!.
@9# G. Grunberg and A. L. Kataev, Phys. Lett. B279, 352 ~1992!.

@10# S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, and H. J.
Phys. Lett. B372, 133 ~1996!.

@11# L. R. Surguladze and M. A. Samuel, Phys. Lett. B309, 157
~1993!.

@12# J. D. Bjorken, Phys. Rev.148, 1467 ~1966!; Phys. Rev. D1,
ev.

Lu,

1376 ~1970!.
@13# S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett.

259, 144 ~1991!.
@14# L. R. Surguladze and M. A. Samuel, Phys. Rev. Lett.66, 560

~1991!; 66, 2416~E! ~1991!.
@15# SMC Collaboration, D. Adamset al., Phys. Lett. B357, 248

~1995!.
@16# S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B259, 345

~1991!.
@17# R. J. Crewther, Phys. Rev. Lett.28, 1421~1972!.
@18# S. L. Adler and W. A. Bardeen, Phys. Rev.182, 1517~1969!.
@19# D. J. Broadhurst and A. L. Kataev, Phys. Lett. B315, 179

~1993!.
@20# G. Kramer and B. Lampe, Z. Phys. A339, 189 ~1991!.
@21# G. Ingelman and J. Rathsman, Z. Phys. C63, 589 ~1994!.
@22# R. Marshall, Z. Phys. C43, 595 ~1989!.
@23# Particle Data Group, L. Montanetet al., Phys. Rev. D50, 1173

~1994!.


