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Real oscillations of virtual neutrinos

W. Grimus and P. Stockinger
Institut für Theoretische Physik, Universita¨t Wien, Boltzmanngasse 5, A-1090 Vienna, Austria

~Received 26 March 1996!

We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account
only the neutrino production and detection processes, which are localized in space around the coord

xWP andxWD , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investig
appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fi
or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough exam
of the integral over the spatial components of the inner neutrino momentum and show that in the asymp

limit L5uxWD2xWPu→` the virtual neutrinos become ‘‘real’’ and under certain conditions the usual picture
neutrino oscillations emerges without ambiguities.@S0556-2821~96!02517-9#

PACS number~s!: 13.15.1g, 14.60.Pq
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I. INTRODUCTION

In particle physics, oscillation phenomena have so
only been observed in theK0K̄0 andB0B̄0 systems. Analo-
gous oscillations are expected to take place between ne
nos of different lepton flavors@1# if neutrinos are massive
particles and if individual lepton numbers are not conserve
This nonconservation manifests itself in a neutrino mass m
trix which is nondiagonal in the weak basis, i.e., the ba
where the mass matrix of the charged leptons is diagonal
the charged current interactions of the standard model~SM!
are of the form

LCC52
g

A2 S (
l 5e,m,t

n̄ l Lg
ml LWm

11H.c.D . ~1!

Though neutrino masses and mixings rank among phys
beyond the SM it is nevertheless reasonable to assume
neutrino production and detection are within the province
the SM interactions. In this sense the left-handed neutr
fields in Eq.~1! are linear combinations of mass eigenfield
i.e.,

n l L~x!5U l jn jL~x!, ~2!

with a unitary 333 matrix U and neutrino fieldsn j with
massmj .

The standard approach to neutrino oscillations~see, e.g.,
Ref. @2#! is important for its simplicity and its physical in-
sight but is not sufficient for a complete understanding.~See,
e.g., Ref.@3# for a list of its conceptual problems.! It is well
known that it works only in the extreme relativistic limit
Wave-packet treatments@4# are not totally satisfactory either
without knowing the size and form of the wave packet
However, it is clear that, if the particles involved in the neu
trino production process are assumed to have definite fo
momenta, the neutrino is forced to have a definite fou
momentum too and hence is in one of the mass eigensta
Therefore, in order to observe neutrino oscillations one ne
a sufficient spread of momentum~or energy! of the particles
in the production and detection mechanism. It has be
stressed in the literature@3,5# that the correct way to avoid all
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difficulties and ambiguities associated with neutrino oscill
tions is to concentrate on those things which can really
manipulated or observed such as the particles responsible
neutrino production and the target responsible for neutri
detection. This amounts to including the production and d
tection mechanisms localized at the coordinatesxWP andxWD ,
respectively, in the calculation such that the neutrinos prop
gating fromxWP to xWD are virtual particles@6# or intermediate
states~see Ref.@5# for a field-theoretical treatment and Ref
@3# for a quantum-mechanical treatment along these lines!.

In this paper we choose the field-theoretical approach a
apply it to antineutrino production as it occurs in a react
and assume that the antineutrinos are detected by ela
electron scattering.~This is, e.g., the situation in the MUNU
experiment@7#.! The antineutrino flux is produced by theb
decay of the fission products in the reactor. We simplify th
mechanism by taking only theb decay of the neutron and
assuming that both neutron and proton are bound to nucle
rest. This merely serves to keep our notation as simple
possible and has no impact on the essence of our discuss
The main points in our treatment of neutrino oscillations a
the following.

The neutron and the proton are bound to nuclei in statio
ary states localized at the coordinatesxWP whereas the target
electron is bound in an atom at the pointxWD . Neutrino pro-
duction and detection are macroscopically separated by
distanceL[uLW u with LW [xWD2xWP .

All particles in the final state are described by plan
waves. This is justified for the electron in the detector and
the more for the other electron from theb decay and the
antineutrino which are both not observed. In the event rate
has to be summed~integrated! over a complete set of states
for these unobserved particles and plane waves obviou
serve this purpose.~This is one of the points which distin-
guishes our work from Ref.@5#.!

The internal~anti!neutrino is represented by its Feynma
propagator. The integration over this internal lin
with momentum q is coupled to the macroscopic
distance between neutrino production and detection by

*d3qexp~2 iqW •LW !~q22mj
21 i e!21

•••
3414 © 1996 The American Physical Society
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54 3415REAL OSCILLATIONS OF VIRTUAL NEUTRINOS
for a neutrino with massmj . We use a mathematical theo
rem which is proved in the Appendix to obtain the leadin
term of the amplitude in the limitL→`. We will see that in
this asymptotic limit the antineutrino is ‘‘forced’’ to be on its
mass shell and the momentumqW is aligned with2LW .

II. THE OSCILLATION AMPLITUDE

We consider the weak process

n→p1e21 n̄
↘

n̄1eD
2→ n̄1eD

2 ~3!

occurring through the intermediate propagation of an a
tineutrino, wheren ~neutron! andeD

2 ~electron! are the initial
particles. As already mentioned we assume that the neut
-
g

n-

ron,

the proton, and the target electron are in stationary stat
Since neutrino production and detection are localized atxWP
andxWD , respectively, the spinors of the initial particles an
the proton can be written in position space as

cp~x!5cp~xW2xWP!exp~2 iEpt !,

cn~x!5cn~xW2xWP!exp~2 iEnt !,

ceD~x!5ceD~xW2xWD!exp~2 iEeDt !, ~4!

respectively. The functionscp,n,eD(yW ) are peaked atyW50.
The final particles will be described by plane waves.

The weak interaction Lagrangians relevant for productio
and detection are
ctron
rt in the
LP~x!52
GF

A2
cosqC(

j
Ue jē~x!gl~12g5!n j~x! p̄~x!gl~12g̃g5!n~x!1H.c.,

LD~x!52
GF

A2(j ,k $ē~x!gmPLe~x!@2Uej* Uek1d jk~gV1gA!#1ē~x!gmPRe~x!d jk~gV2gA!%n̄ j~x!gm~12g5!nk~x!, ~5!

respectively, whereGF is the Fermi coupling constant,qC the Cabibbo angle,gV52sin2uW21/2,gA521/2,uW the Weinberg
angle,g̃'1.26, andPR,L5(16g5)/2. All fields occurring in Eq.~5! are mass eigenfields. The amplitude for the process~3!
with an antineutrino of massmk in the final state is given by

Ak5^p,n̄k~pW n8!,e2~pW e8!,eD
2~pW eD8 !uTF E d4x1E d4x2LP~x1!LD~x2!G un,eD2&. ~6!

With the neutrino propagators of the mass eigenstate neutrinos

^0uT@n j~x1!n̄ j~x2!#u0&5 i E d4q

~2p!4
q”1mj

q22mj
21 i e

e2 iq•~x12x2!, ~7!

we obtain the amplitude

Ak5
GF
2cosqC

2
i(

j
E d4x1E d4x2E d4q

~2p!4
e2 iq•~x12x2!exp@2 i ~En2Ep!t12 iEeDt2#exp@ ipe8•x11 i ~pn81peD8 !•x2#

3Jl~xW12xWP!ūe~pW e8!gl~12g5!UejS q”1mj

q22mj
21 i e Dgm~12g5!vk~pW n8!ūe~pW eD8 !gm$PL@2Uej* Uek1d jk~gV1gA!#

1PRd jk~gV2gA!%ceD~xW22xWD!, ~8!

where

Jl~xW12xWP![c̄p~xW12xWP!gl~12g̃g5!cn~xW12xWP!. ~9!

Note that the amplitude~8! is not antisymmetric with respect to the exchange of the final electrons because the ele
generated in theb decay never reaches the detector or, in other words, it is absorbed in the reactor and thus takes pa
formation of final states orthogonal to single electron states.

The integration overt1 and t2 in Eq. ~8! can easily be carried out leading to the delta functionsd(q01E2) and
d(q01E1). Furthermore, we use the relation

E
2`

`

dx e2 ikxf ~x1b!5eikbf̃ ~k!, ~10!
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where f̃ is the Fourier transform off , in the integrations overxW1 andxW2. Thus we obtain

Ak5 i
G2cosqC

2~2p!2
e2 ipW 1•x

W
P2 ipW 2•x

W
D(

j
E d4qd~q01E1!d~q01E2!e

2 iqW •LW J̃l~pW 12qW !ūe~pW 1!g
l~12g5!UejS q”1mj

q22mj
21 i e D

3gm~12g5!vk~pW n8!ūe~pW eD8 !gm$PL@2Uej* Uek1d jk~gV1gA!#1PRd jk~gV2gA!%c̃eD~pW 21qW !, ~11!
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where we have defined

E1[En2Ep2Ee8 , pW 1[pW e8 ,
~12!

E2[En81EeD8 2EeD , pW 2[pW eD8 1pW n8 .

Now only the integration overq remains. Since our initial
and final states are all energy eigenstates, the integration o
q0 leads to the usual delta functiond(E12E2), expressing
that the initial energy is equal to the final energy of the tot
process~3!. The analogousd functions corresponding to mo-
mentum are smeared out by the initial momentum distrib
tions and therefore we have a nontriviald3q integration in
the amplitude. We can, however, take advantage of the f
that this integration actually amounts to calculating a Four
transform and evaluating it at the coordinateLW , the macro-
scopic distance between neutrino production and detect
@see Eqs.~4!#. Hence we can apply the theorem proved in th
Appendix@see Eqs.~A1! and~A2!# which enables us to cal-
culate the leading term of the amplitude for largeL.

Let us for a moment dwell upon the mathematical requir
ments of this theorem in the context of the physical proble
ver

al

u-

act
ier

ion
e

e-
m

under discussion. The wave functions~4! represent bound
states. It is therefore reasonable to assume that they fal
exponentially and consequently the Fourier transformsJ̃l

and c̃eD are infinitely many times differentiable. This mee
the requirement of differentiability in the theorem. It remai
to discuss the behavior ofJ̃l and c̃eD for uqW u→`. If bound
states in coordinate space are also infinitely many times
ferentiable in addition to their exponential falloff, then the
Fourier transforms have the same properties. Howev
bound state wave functions are in general not everywh
infinitely many times differentiable incoordinate space. A
typical example is given by the ground state wave functi
of the hydrogen atom which is not differentiable at the o
gin. Its Fourier transform nevertheless decreases with
fourth power ofuqW u which meets the conditions for the de
crease of the function in the theorem. Therefore the phys
under consideration seems to comply naturally with t
mathematical requirements.

Noting that the constantA of the theorem corresponds t
q0
22mj

2 , Eq. ~A2! tells us that the asymptotic limitL→` of
Eq. ~11! is given by
Ak
`52 i

GF
2cosqC

4

1

L
d~E12E2!e

2 ipW 1•x
W
P2 ipW 2•x

W
D(

j
eiq jLJ̃l~pW 11qj lW !ūe~pW 1!g

l~12g5!Uej~q0g
01qj lW•gW 1mj !

3gm~12g5!vk~pW n8!ūe~pW eD8 !gm$PL@2Uej* Uek1d jk~gV1gA!#1PRd jk~gV2gA!%c̃eD~pW 22qj lW !, ~13!

with

lW[
LW

uLW u
, q052E152E2 , and qj[Aq022mj

2.

This equation can be interpreted in such a way thatAk
` is a sum over terms which contain a real antineutrino of massmj . The

reason is that the four-vectorpj defined by

pj
0[En[2q05E25EeD8 1En82EeD>0 and pW j[qj lW ~14!
-
s

ion
can be identified as the four-momentum of this antineutrin
The spatial part ofpj correctly points fromxWP to xWD . Fur-
thermore, with a suitable normalization of the four-spino
v the identity

q0g
01qj lW•gW 1mj52p” j1mj52(

6s
v j~pW j ,s!v̄ j~pW j ,s!

~15!
o.

rs

shows that apart from the factors 1/L and exp(iqjL) the am-
plitudeAk

` is just the sum over the products of the produc
tion and detection amplitude of antineutrinos with mas
mj .

III. OSCILLATING AMPLITUDE AND CROSS SECTION

We expect that under certain conditions the cross sect
for the reaction~3! (n1eD

2→e21eD
21 n̄) exhibits an oscil-
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54 3417REAL OSCILLATIONS OF VIRTUAL NEUTRINOS
latory dependence on the distanceL. Considering first the
asymptotic amplitudeAk

` and assuming thatEn@mj; j we
can make the following remarks and observations to th
effect. ~Most of them have already been discussed in t
context of the quantum-mechanical approach of Ref.@3#.!

In order to obtainAj
` we have performed the asymptoti

limit L→`. Looking at the theorem proved in the Appendi
it is evident that ‘‘L large’’ means ĒnL/\c
' ĒnL/2310213 MeV m@1 whereĒn is an average anti-
neutrino energy andL is measured in meters. For ever
thinkable neutrino experiment this is very well fulfilled an
corrections toAk

` are suppressed by (ĒnL/\c)
21/2.

The factor 1/L in the asymptotic amplitude corresponds t
the geometrical decrease of the neutrino flux by 1/L2 in the
cross section.

Looking at Eq.~13! we conclude that neutrino oscillations
with massesmj ,mk can only take place if

uqj2qku&sJ and uqj2qku&sD ,

where sJ and sD are the widths of the functionsJ̃
and c̃eD , respectively. In coordinate space this simp
means that the widths ofJ and ceD must both be smaller
than the oscillation lengthl osc54pEn /umj

22mk
2u'(2.48 m)

3En( MeV)/Dm
2 (eV2).

To evaluate this condition for reactor neutrinos we no
that\c/sJ*10215 m and\c/sD*10210 m. From the latter
estimate one gets the conditionDm2&(100 keV)2 @3#.

The coherence length is infinite in our calculation sinc
all initial and final states are stationary.

Our calculation was based on the assumption that neu
nos are of Dirac nature. In the case of Majorana neutrinos
diagonal vector currents inLD , Eq. ~5!, are identically zero.
As a consequence, inAk , Eq. ~8!, the second 12g5 has to
be replaced by22g5 for j5k. This introduces the well-
known difference of ordermj /En between the amplitudes of
Majorana and Dirac neutrinos@2#.

Finally we come to the cross section or event rate in ord
to make contact with the usual oscillation picture.
uqj2qku!min(sJ ,sD) is fulfilled, ; j ,k, in addition to the
assumption that all neutrinos are ultrarelativistic, then we c
take the limitmj→0; j in all terms ofAk

` except the expo-
nential factors exp(iqjL). Then calculating the cross sectio
one would arrive at the same result as can be obtained by
following heuristic consideration. The probability to find
neutrino n̄ l at a distanceL from the source is given by
Pl 5u( jUe jU l j* eiq jLu2. Thus the number of events in elasti
n̄e2 scattering at a certain neutrino energyEn is propor-
tional to ( l Pl s( n̄ l e

2;En) where the s( n̄ l e
2;En)

(l 5e,m,t) are the elastic scattering cross sections as giv
by the SM. Note thatEn can be reconstructed via

En5meSA11
2me

T
cosa21D 21

, ~16!

whereT5EeD8 2me anda is the angle betweenLW andpW eD8
the momentum of the recoil electron. Thus the event rate
given by
is
he

c
x

y
d

o

ly

te

e

tri-
the

er
If

an

n
the
a

c

en

is

dN

dEn
5N0H U(

j
uUeju

2
eiq jLU2@s~ n̄ee

2;En!2s~n̄me
2;En!#

1s~n̄me
2;En!J , ~17!

with a normalization constantN0.
In conclusion we want to stress once more the centra

importance of the theorem demonstrated in the Appendix.
is not only relevant in the context discussed here but it show
in general under which circumstances the total amplitude fo
particle production and its subsequent scattering factorize
into a product~or sum of products! of the production ampli-
tude and scattering amplitude. In the case of neutrino osci
lations it leads to a transparent and simple field-theoretica
treatment without ambiguities or conceptional problems@3#:
All neutrino states or fields are mass eigenstates or eige
fields and the neutrino ‘‘wave packet’’ is totally determined
by the production mechanism. The method described he
also provides the correct answer in cases where the standa
approach to neutrino oscillations fails. We want to mention
however, that some more work has to be done to extend o
method because it is not straightforwardly transferable to th
case of accelerator neutrinos and it has the deficiency of a
unrealistic infinite coherence length for neutrino oscillations

APPENDIX

Theorem. Let F:R3→R3 be a 3 times continuously dif-
ferentiable function such thatF itself and all its first and
second derivatives decrease at least like 1/qW 2 for uqW u→`, A a
real number, and

J~LW ![E d3qF~qW !e2 iqW •LW
1

A2qW 21 i e
. ~A1!

Then in the asymptotic limitL5uLW u→` one obtains, for
A.0,

J~LW !52
2p2

L
F~2AALW /L !eiAAL1O~L23/2!, ~A2!

whereas forA,0 the integral decreases likeL22.
Remark. In order to make the proof of this theorem trans-

parent we will first introduce three lemmas and then divide
the proof into several steps.

Lemma 1. Let f be a 3 times continuously differentiable
function and

I ~r ![E
0

p

du sinue2 ir cosu f ~u!. ~A3!

Then in the asymptotic limitr→` one obtains

I ~r !52
e2 ir f ~0!2eir f ~p!

ir
1O~r23/2!. ~A4!

Proof. We first perform a partial integration resulting in

I ~r !52
e2 ir f ~0!2eir f ~p!

ir
2

1

ir
I 1~r !, ~A5!
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with

I 1~r !5E
0

p

d u e2 ir cosu f 8~ u!. ~A6!

It is convenient to splitI 1(r ) into two parts

I 1~r !5E
0

p/2

du e2 ir cosu f 8~u !1E
0

p/2

du eir cosu f 8~p2u !.

~A7!

In the following we only discuss the first integral in this
equation since the second one is treated analogously. De
ing g(u )5@ f 8(u )2 f 8(0)#/ sinu we obtain

E
0

p/2

du e2 ir cosu f 8~u !5E
0

p/2

du e2 ir cosu f 8~0!

1E
0

p/2

du sinu e2 ir cosu g~u !. ~A8!

It is easy to show thatg is twice continuously differentiable
in the interval@0,p/2# as a consequence of the 3 times con
tinuous differentiability off . Therefore one can apply a par-
tial integration to the second integral on the right-hand sid
of Eq. ~A8! in the same way as to Eq.~A3! and thus this
integral decreases like 1/r in the asymptotic limit@see Eq.
~A5!#. Together with the 1/r in front of I 1(r ) in Eq. ~A5!
there is an overall decrease of 1/r 2. Therefore it remains to
consider the asymptotic behavior of

E
0

p/2

du e2 ir cosu 5
1

2 S E
0

1

dz
e2 irz

A12z2

2E
p/r

11p/r

dz
e2 irz

A12~z2p/r !2
D . ~A9!

The right-hand side of this equation allows one to deduce t
upper bound

U E
0

p/2

du e2 ir cosu U< 1

2 F E
0

p/r

dz
1

A12z2

1E
1

11p/r

dz
1

A12~z2p/r !2

1E
p/r

1

dzS 1

A12z2
2

1

A12~z2p/r !2
D G

5arcsinA2p

r
2

p2

r 2
. ~A10!

Thus the integral of Eq.~A9! is bounded by a function with
asymptotic behaviorO(1/Ar ) and lemma 1 follows.h

Lemma 2. Let f be a 3 times continuously differentiable
function andw be a real number withuwu,1. Then the
integral
fin-

-

e

he

I w~r ![E
0

p

du sinu e2 ir cosu sin~wr cosu ! f ~u !

~A11!

has the asymptotic behavior

I w~r !5
e2 ir

r
f ~0!

w coswr1 i sinwr

12w2

2
eir

r
f ~p!

w coswr2 i sinwr

12w2 1O~r23/2!

~A12!

in the limit r→`.
Proof. The proof of this lemma follows from lemma 1 by

using sina5(eia2e2ia)/2i for a5wr cosu . h

Lemma 3. Let c:R3→R3 be a twice continuously differ-
entiable function such that the function itself and its first an
second derivatives are absolutely integrable. Then the in
gral

I ~qW ![E d3qc~qW !e2 iqW •LW ~A13!

decreases likeL22 for L→`.
Proof.According to the assumption,Dc is absolutely in-

tegrable and with a twofold partial integration we obtain

E d3q~Dc!~qW !e2 iqW •LW 52LW 2E d3qc~qW !e2 iqW •LW , ~A14!

which proves lemma 3.h
Proof of the theorem. The main point in the proof is to

meticulously take care to perform the limite→0 before in-
vestigating the asymptotic limitL→`.

Step 1. For A,0 we apply lemma 3 and thus obtain the
second part of the theorem. In the followingA will always be
positive.

Step 2. Next we splitJ(LW ) into the integrals

J1~LW !52
ip

2
AAE

S2
dVF~AAnW !e2 iAAnW •LW ~A15!

originating in thed function of the limite→0 and

J2~LW !52E d3qF~qW !e2 iqW •LW
q22A

~q22A!21e2
, ~A16!

which represents the principal value of this limit.S2 denotes
the two-dimensional unit sphere,q[uqW u andnW [qW /q.

Step 3. We choose two numbersd and h such that
0,d,h,AA and a symmetricC` function h such that
0<h(v)<1 for all vPR, h(v)51 for uvu<d andh(v)50
for uvu>h. ThenJ25(k51

3 J2k with

J21~LW ![2E d3qe2 iqW •LW @F~qW !2F~AAnW !h~q2AA!#

3
q22A

~q22A!21e2
, ~A17!



f

he
5.

54 3419REAL OSCILLATIONS OF VIRTUAL NEUTRINOS
J22~LW ![2E
S2
dVE

0

`

dqe2 iqW •LW F~AAnW !h~q2AA!

3S q2~q22A!

~q22A!21e2
2

2A3/2~q2AA!

4A~q2AA!21e2
D , ~A18!

J23~LW ![2E
S2
dVE

0

`

dqe2 iqW •LW F~AAnW !

3h~q2AA!
2A3/2~q2AA!

4A~q2AA!21e2
. ~A19!

In these three integrals the limite→0 can be performed. In
J21 one obtains an integrand which is twice continuous
differentiable and thereforeJ21 decreases likeL22 for
L→` according to lemma 3. The function within the paren
theses ofJ22 gives (q1AA/2)/(q1AA) in the limit e→0
and with the properties ofh the same asymptotic behavior a
that of J21 results. Finally, with the transformation
v5q2AA the integralJ23 can be cast into the form

J23~LW !5
i

2
AAE

S2
dVF~AAnW !e2 iAAnW •LW

3E
2h

h
dvh~v !

sin~vnW •LW !

v
. ~A20!

Step 4. To perform the integration overS2 we take

LW 5LS 00
1
D [LeW z and nW ~u ,f!5S sinu cosf

sinu sinf

cosu
D .
~A21!

Then the application of lemma 1 withr5AAL shows that
ly

-

s

J1~LW !5
p2

L
@e2 iAALF~AAeW z!2eiAALF~2AAeW z!#

1O~L23/2!. ~A22!

Step 5. By virtue of lemma 2 and takingw5v/AA, the as-
ymptotic behavior ofJ23 is given by

J23~LW !5
ip

L E
2h

h
dv

h~v !

vS 12
v2

A D Fe2 iAALF~AAeW z!

3S v

AA
cos~vL !1 i sin~vL !D 2eiAALF~2AAeW z!

3S v

AA
cos~vL !2 i sin~vL !D G1O~L23/2!.

~A23!

The terms with cos(vL) decrease faster than any power o
1/L by a corollary of lemma 3 whereas thed-function prop-
erty of sin(vL)/pv leads to

J23~LW !52
p2

L
@e2 iAALF~AAeW z!1eiAALF~2AAeW z!#

1O~L23/2!. ~A24!

The correction to thed function is proportional to

E
2`

`

dvS h~v !

12
v2

A

21D sin~vL !

v
~A25!

and therefore decreases faster than any power of 1/L as can
easily be seen by repeated partial integration. Finally, t
theorem is obtained by summing the results of steps 4 and
h
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