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Real oscillations of virtual neutrinos
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We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that
only the neutrino production and detection processes, which are localized in space around the coordinates
ip and >2D, respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated
appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields
or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination
of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic
limit L=|xp—Xp|— the virtual neutrinos become “real” and under certain conditions the usual picture of
neutrino oscillations emerges without ambiguitig30556-282(196)02517-9

PACS numbes): 13.15:+g, 14.60.Pq

[. INTRODUCTION difficulties and ambiguities associated with neutrino oscilla-
tions is to concentrate on those things which can really be
In particle physics, oscillation phenomena have so farmanipulated or observed such as the particles responsible for
only been observed in th§°K° and B°B® systems. Analo- Neutrino production and the target responsible for neutrino
gous oscillations are expected to take place between neutfetection. This amounts to including the production f‘”d de-
nos of different lepton flavor§l] if neutrinos are massive tection mechanisms localized at the coordinatesindxp ,
particles and if individual lepton numbers are not conservedtespectively, in the calculation such that the neutrinos propa-
This nonconservation manifests itself in a neutrino mass Magating from)_()P to )_()D are virtual particle$6] or intermediate
trix which is nondiagonal in the weak basis, i.e., the basistates(see Ref[5] for a field-theoretical treatment and Ref.
where the mass matrix of the charged leptons is diagonal an@] for a quantum-mechanical treatment along these Jines
the charged current interactions of the standard m¢siel) In this paper we choose the field-theoretical approach and
are of the form apply it to antineutrino production as it occurs in a reactor
and assume that the antineutrinos are detected by elastic
9 — P electron scattering:This is, e.g., the situation in the MUNU
Lee=- 2 /:;W vyt LW, HHC . @ experimen{7].) The antineutrino flux is produced by thg
decay of the fission products in the reactor. We simplify this
Though neutrino masses and mixings rank among physicsiechanism by taking only thg decay of the neutron and
beyond the SM it is nevertheless reasonable to assume thassuming that both neutron and proton are bound to nuclei at
neutrino production and detection are within the province ofrest. This merely serves to keep our notation as simple as
the SM interactions. In this sense the left-handed neutrinpossible and has no impact on the essence of our discussion.
fields in Eqg.(1) are linear combinations of mass eigenfields, The main points in our treatment of neutrino oscillations are

ie., the following.
The neutron and the proton are bound to nuclei in station-
va ()= v (X), 2) ary states localized at the coordinatgswhereas the target
with a unitary 3<3 matrix U and neutrino fields;; with ~ €lectron is bound in an atom at the poi. Neutrino pro-
massm; . duction and edetectlgn are rpacroscopmally separated by a
The standard approach to neutrino oscillatiosese, e.g., distanceL=|L| with L=xp—Xp.
Ref. [2]) is important for its simplicity and its physical in- All particles in the final state are described by plane

sight but is not sufficient for a complete understandi®pe, waves. This is justified for the electron in the detector and all
e.g., Ref[3] for a list of its conceptual problemdt is well  the more for the other electron from thg decay and the
known that it works only in the extreme relativistic limit. antineutrino which are both not observed. In the event rate it
Wave-packet treatmenfd] are not totally satisfactory either has to be summe@ntegratedl over a complete set of states
without knowing the size and form of the wave packets.for these unobserved particles and plane waves obviously
However, it is clear that, if the particles involved in the neu-serve this purposgThis is one of the points which distin-
trino production process are assumed to have definite fouguishes our work from Ref5].)

momenta, the neutrino is forced to have a definite four- The internal(antijneutrino is represented by its Feynman
momentum too and hence is in one of the mass eigenstatgsopagator. The integration over this internal line
Therefore, in order to observe neutrino oscillations one needsith momentum q is coupled to the macroscopic
a sufficient spread of momentu¢ar energy of the particles  distance between neutrino production and detection by

in the production and detection mechanism. It has been L

stressed in the literatuf8,5] that the correct way to avoid all Jd3gexp(—iq-L)(q?—m+ie) "t

0556-2821/96/5¢%6)/34146)/$10.00 54 3414 © 1996 The American Physical Society



54 REAL OSCILLATIONS OF VIRTUAL NEUTRINOS 3415
for a neutrino with massn;. We use a mathematical theo- the proton, and the target electron are in stationary states.
rem which is proved in the Appendix to obtain the leadingsince neutrino production and detection are localizesipat

tﬁrm of the ampl!ltu_dehm the limit — . Y¥e W|I(;”seebthat N andxp, respectively, the spinors of the initial particles and
this asymptotic limit the antineutrino is “forced” to be onits ne roton can be written in position space as

mass shell and the momentugis aligned with— L.

Pp(X) = (X —Xp)eXH —E 1),
Il. THE OSCILLATION AMPLITUDE

We consider the weak process Pn(X) = Phn(X—Xp)eXp( —iEt),

n—p+e +v - - .

P en(X)= rep(X— Xp)exp( — iEcot), @)
v+ep—vtep 3 _ . - -
YTE T PT R ® respectively. The functiong, , .p(y) are peaked ay=0.
occurring through the intermediate propagation of an anThe final particles will be described by plane waves.
tineutrino, wheren (neutror) andey (electron are the initial The weak interaction Lagrangians relevant for production
particles. As already mentioned we assume that the neutroand detection are

Ge

Lp(x) =~ ﬁcoa&c; Uei () 7 (1= 75) 1()P() 7 (1= Tys)n(x) + H.c.,

G

Lp(x)=— \é% {e_(X)YMPLe(X)[ZU:erk"‘ Sik(gy+9ga) T+ e(x) ¥*Pre(X) Sik(Gy—9a)} ¥j(X) ¥, (1= ys) n(x),  (5)

respectively, wher&g is the Fermi coupling constant,. the Cabibbo angley, = 2sirfé,—1/2,ga= — 1/2, 6, the Weinberg
angle,g~1.26, andPg = (1= y5)/2. All fields occurring in Eq(5) are mass eigenfields. The amplitude for the pro¢8ss
with an antineutrino of mass, in the final state is given by

Ae=(p,v(p.).e (pl).ep(pip)|T

fd“xlf d*,Lp(X1) Lo(X2) |In,ep). (6)
With the neutrino propagators of the mass eigenstate neutrinos

(Z]-f—mj
—m]-2+ie

_ d* .
<O|T[VJ(X1)VJ(X2)]|O>:|f(27:;4 5 e_lq'<xl_x2), (7)

we obtain the amplitude

Ggcosic d'q . : . :
AkZ—F 2 I; f d4xlf d4X2f (27T)4eilq.(xlixz)exq_|(En_Ep)tl_IEeDtZ]qulpé'Xl+I(p;+ pG,}D)'XZJ

v N et q+m' TINT 2 *
XJ)\(XI_XP)ue(pe)'y)\(l_75)Uej<qu_2_:_i6 ')’M(l_75)Uk(pv)ue(peD)'yu{PL[ZUerek+ Oik(gv+9a)]
j
+ PrOj(Qy— 9a)} en(Xa—Xp), (8
where
I\ (K= Xp) = (X1 = Xp) YA (L= Tys) Yhn(Xa— Xp). )

Note that the amplitudé€8) is not antisymmetric with respect to the exchange of the final electrons because the electron
generated in thg decay never reaches the detector or, in other words, it is absorbed in the reactor and thus takes part in the
formation of final states orthogonal to single electron states.

The integration overt; and t, in Eq. (8) can easily be carried out leading to the delta functidiigo+E,) and
8(go+E). Furthermore, we use the relation

f dx e K (x+b) =e'kbf (k), (10)
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wheref is the Fourier transform of, in the integrations ovefl andiz. Thus we obtain

80 iyt [ e ST (B BT B 4+m,
Ak—lme j d*qd(do+Eq) (ot Ez)e "0\ (p1— Q) ue(P1) ¥ (1 — y5)Ug; querle
X (1= 75)v(P;)Ue(Pep) Y{PLI2U§ Ut Sik(Gy+ga) 1+ Prj(9y—ga)}en(P2+0), (1D
|
where we have defined under discussion. The wave functiof®) represent bound
states. It is therefore reasonable to assume that they fall off
Ei=E,—E,—Eg, P1=P¢., exponentially and consequently the Fourier transfodps
and ¢.p are infinitely many times differentiable. This meets
(12) d infinitel imes differentiable. Thi
E,=E,+E.p—Eep, pz—peDJr p,, the requirement ofdlfferentlabnlty in the theorem. It remains

Now only the integration oveq remains. Since our initial to discuss the behavior d& and ¢ for |q|—>oo If bound
and final states are all energy eigenstates, the integration ovetates in coordinate space are also infinitely many times dif-
q° leads to the usual delta functiaf(E;—E,), expressing ferentiable in addition to their exponential falloff, then their
that the initial energy is equal to the final energy of the totalFourier transforms have the same properties. However,
procesg3). The analogous functions corresponding to mo- bound state wave functions are in general not everywhere
mentum are smeared out by the initial momentum distribuinfinitely many times differentiable ioordinate spaceA
tions and therefore we have a nontrividilg integration in  typical example is given by the ground state wave function
the amplitude. We can, however, take advantage of the fa@f the hydrogen atom which is not differentiable at the ori-
that this integration actually amounts to calculating a Fouriegin. Its Fourier transform nevertheless decreases with the
transform and evaluating it at the coordinatethe macro-  fourth power of|q| which meets the conditions for the de-
scopic distance between neutrino production and detectiofrease of the function in the theorem. Therefore the physics
[see Eqgs(4)]. Hence we can apply the theorem proved in theunder consideration seems to comply naturally with the
Appendix[see Egs(Al1) and(A2)] which enables us to cal- mathematical requirements.
culate the leading term of the amplitude for laige Noting that the constari of the theorem corresponds to

Let us for a moment dwell upon the mathematical requweq0 mjz, Eq. (A2) tells us that the asymptotic limit— o of
ments of this theorem in the context of the physical problenEg. (11) is given by

o .GFCOS&C]' —| Xp—ipy-X iqiL Y N
‘Ak: I 4 5(E1 EZ) pl P p2 Dz e'di JA(p1+QJI)ue(p1)7 (1- 75)Ue](QO')’ +QJ| 'y+mj)
X y,(1= ¥5)0k( P Ue( Pap) Y{PLI2U% U eict 8ik(Gy+ ) 1+ Proj(Gy— 9} den(Pa— a1, (13)
with
o C
IEE, go=—E;=-E,, and qu\/m.

This equation can be interpreted in such a way #jats a sum over terms which contain a real antineutrino of mgssThe
reason is that the four-vectgr defined by

pP=E,=—q°=E,=E[p+E,~Eep=0 and p;=q;l (14)

can be identified as the four-momentum of this antineutrinoshows that apart from the factorsd 14nd expig;L) the am-
The spatial part of; correctly points fromxp to Xp . Fur-  plitude A is just the sum over the products of the produc-
thermore, with a suitable normalization of the four-spinorstion and detection amplitude of antineutrinos with mass
v the identity m; .

Ill. OSCILLATING AMPLITUDE AND CROSS SECTION

O - - _ _ -> —_—
+ | +MmM=—pP,+m=— . S S . .. .
Qoy"+Qq;t-y+m, bi J Zs v;(P;,8)v;(p;S) We expect that under certain conditions the cross section

(150 for the reaction3) (n+ey—e~ +ep + v) exhibits an oscil-
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latory dependence on the distanice Considering first the  dN
asymptotic amplitude4, and assuming the,>m;Vj we =N [
can make the following remarks and observations to this
effect. (Most of them have already been discussed in the _
context of the quantum-mechanical approach of R&f) +of( vﬂe‘;E,,)], (17)

In order to obtainA]?" we have performed the asymptotic
limit L—cc. Looking at the theorem proved in the Appendix with a normalization constam,.
it is evident that ‘L large” means E_VL/ﬁC In conclusion we want to stress once more the central
~E_V|_/2><10—13 MeV m>1 whereE_V is an average anti- ?mportance of the theorem demon_strated in the Appgndix. It
neutrino energy and. is measured in meters. For every IS not only relevant in the context discussed here but it shows

thinkable neutrino experiment this is very well fulfilled and in 9éneral under which circumstances the total amplitude for
corrections taA? are suppressed b)E_(VL/hc)*l’z particle production and its subsequent scattering factorizes
X :

The factor 1L in the asymptotic amplitude corresponds to Into a product(or'sum of producl)sof the production "’?mp" .
. . o tude and scattering amplitude. In the case of neutrino oscil-
the geometrical decrease of the neutrino flux by<lih the . . g ' i
cross section lations it leads to a transparent and simple field-theoretical

Looking at Eq.(13) we conclude that neutrino oscillations treatment without amblgmtles or concept_|onal proble[m]s_
with massesn: m. can only take place if AII neutrino states or fields are mass eigenstates or eigen-
Ik y P fields and the neutrino “wave packet” is totally determined

by the production mechanism. The method described here
lgj—ad=o; and |g;—qd=op, also provides the correct answer in cases where the standard

approach to neutrino oscillations fails. We want to mention,

where o, and op are the widths of the functiong  however, that some more work has to be done to extend our
and —‘/;eDa respectively. In coordinate space this simply method because it is not straightforwardly transferable to the

means that the widths of and ¢, must both be smaller case of accelerator neutrinos and it has the deficiency of an
than the oscillation length,.= 47-rEV/|mJ-2—mﬁ|~(2.48 m) unrealistic infinite coherence length for neutrino oscillations.

XE,(MeV)/Am? (eV?).

2[ o(vee ;E,)—o(v,e7;E,)]

2 .
2_ |Uej| elqu
J

14

To evaluate this condition for reactor neutrinos we note APPENDIX
thatfic/o;=10"° m andfic/op=101° m. From the latter Theorem Let ®:R3—R3 be a 3 times continuously dif-
estimate one gets the conditiarm?< (100 keVY [3]. ferentiable function such thab itself and all its first and

.T*?‘? cohere_nce length is |nf|n!te in our calculation SINC€second derivatives decrease at least likg 16r |q|—, A a
all initial and final states are stationary.

. . real number, and
Our calculation was based on the assumption that neutri-

nos are of Dirac nature. In the case of Majorana neutrinos the . .-
diagonal vector currents iy, Eq.(5), are identically zero. J(L)Ef d3qd(q)e ot
As a consequence, A, EqQ.(8), the second % y5 has to

be replaced by—-2+vys for j=k. This introduces the well- . o - .
known difference of ordem; /E,, between the amplitudes of Xhen in the asymptotic limiL.=|L|—c one obtains, for

—. Al
A—Q’+ie (AL

Majorana and Dirac neutrindg]. =0,

Finally we come to the cross section or event rate in order 22
to make contact with the usual oscillation picture. If JL)=——&(—JAL/L)é'AL+O(L"3?3), (A2)
|qj—qk|<min(ch,ch) is fulfilled, Vj,k, in addition to the L

assumption that all neutrinos are ultrarelativistic, then we can . PN
- L o whereas forA<0 the integral decreases like <.

take.the “mltmj_’.ovj in all terms Of/.lk except the expo- Remark In order to make the proof of this theorem trans-

nential factors_ expg;L). Then calculating the Cross section ., rent we will first introduce three lemmas and then divide

one would arrive at the same result as can be obtained by t Re proof into several steps

following heuristic consideration. The probability to find a Lemma 1Let f be a 3 tirﬁes continuously differentiable

neutrino v, at a distanceL from the source is given by function and

P,= |Eer]-Ujj €4it|2. Thus the number of events in elastic

‘ve~ scattering at a certain neutrino enerBy is propor- ™ A

tional to X,P,o(v,e;E,) where the o(v,e ;E,) W)EJ desinge™"" ©¥f( ). (A3)

(/=e,u, ) are the elastic scattering cross sections as given 0

by the SM. Note thaE, can be reconstructed via Then in the asymptotic limit—c one obtains
-1 e "f(0)—€e"f(m

rTneCOSQ_1> ’ (16) I(r)=— ( )ir ( )+0(r*3’2). (A4)

2
1+

E,=mg

Proof. We first perform a partial integration resulting in
whereT=E.,—m, and « is the angle betweeh andp., . .
the momentum of the recoil electron. Thus the event rate is I(r)=— e "f(0)—e"f(m)
given by ir

1
—ohn, (A9)
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IW(r)Ef de singe"" ¥ sin(wr cosh ) f(6)
0

11(r) = fowd fe " o (). (A6) (ALD)

has the asymptotic behavior
It is convenient to split,(r) into two parts

I _e*”]c 0 W COSWT +i sinwr
2 , a2 wlh)= r (0) 1-w?
Il(r):f dae—lrcoﬁfr(e)_,r_f deeerOS?.r/(ﬂ__a)‘ -
0 0 e”]c W COSWT —i sSinwr O(-32
(A7) e (m) w2 +0O(r 7%
In the following we only discuss the first integral in this (A12)
equation since the second one is treated analogously. Defin- o
ing g(8)=[f'(8)—f'(0)]/ sind we obtain in the limit r —co.

Proof. The proof of this lemma follows from lemma 1 by
nl2 l2 using sim=(e“—e'*)/2i for a=wr cosy. O
f dge " COS9f’(0):j dge " ¥ {(0) Lemma 3 Let #:R®*— R be a twice continuously differ-
0 0 entiable function such that the function itself and its first and
2 second derivatives are absolutely integrable. Then the inte-
+f0 do sinde " °Yg(g). (A8)  gral

It is easy to show thag is twice continuously differentiable |(Q)Ef d*qy(q)e 't (A13)
in the interval[ 0,77/2] as a consequence of the 3 times con-
tinuous differentiability off. Therefore one can apply a par- decreases liké =2 for L—o.
tial integration to the second integral on the right-hand side Proof. According to the assumptior ¢ is absolutely in-
of Eq. (A8) in the same way as to EGA3) and thus this tegrable and with a twofold partial integration we obtain
integral decreases like rlin the asymptotic limitfsee Eq.
(AB)]. Together with the 1/in front of 1,(r) in Eq. (A5) . it - . it
there is an overall decrease of 4/ Therefore it remains to J d*q(Ay)(g)e !9 t= —LZJ d*qy(g)e ", (A14)
consider the asymptotic behavior of

which proves lemma 3

w2 , 1 ez Proof of the theoremThe main point in the proof is to
fo doge " C°39=§ . dzﬁ meticulously take care to perform the limit~0 before in-

vestigating the asymptotic limlt— oo,
Lt it o irz Step 1 For A<0 we apply lemma 3 and thus obtain the
_J dz—) ) (A9)  second part of the theorem. In the followiAgwill always be
i V1—(z—lr)? positive. )
Step 2 Next we splitJ(L) into the integrals
The right-hand side of this equation allows one to deduce the

. [ Y
upper bound Jy(0)=— ;\/KJ Zqu)(\/Kn)e—lv‘An.L (A15)
S

2 . 1 wlr 1
U doe " oY | < > dz T originating in theé function of the limite—0 and
0 0 -z
N .- g% -A
T I T ——— 3o0)=- [ dar@e o e
1 V1—(z—lr)?

) 1 1 which represents the principal valu% of thii Iirrjilz. denotes
+j dz( _ ) the two-dimensional unit spherg=|q| andn=g/q.
ae \\1—-22 1—(z—/r)? Step 3 We choose two numbers and z such that
0<8<p<A and a symmetricC” function h such that
— arcs 2_77_12_ (a10)  0=h(v)=<1forallvcR, h(v)=1 for |v|<& andh(v)=0
ror for |[v|= 7. ThenJ,==3_,J,, with

Thus the integral of EQLA9) is bounded by a function with . 3 g -

asymptotic behavio®(1/yr) and lemma 1 followsL] Ipn(L)=~ f d*qe” [ @(q) ~ D (VANh(q—VA)]
Lemma 2 Let f be a 3 times continuously differentiable )

function andw be a real number witjw|<1. Then the qQ°—A

integral Xm! (AL7)
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2
3(D)=T-[e7 FLa(VAE,) — € FLd(~ AE,)]

+0(L™3%?), (A22)
Step 5 By virtue of lemma 2 and taking'=v/\/A, the as-

ymptotic behavior ofl,; is given by

9292 A) 2A%q—\A)
((QZ—A)2+62_4A(q_\/ﬂ)2+62 ! (A18)
Jpg D)=~ f 2dQdeqe_id‘L“b(\/Kﬁ)

S 0
2A%(q— A
h(g—vVA) . Al
xh(q (}4A(q—\/z)2+62 (A19)

In these three integrals the limit—0 can be performed. In
J,1 one obtains an integrand which is twice continuously
differentiable and thereforel,; decreases likeL "2 for
L— o according to lemma 3. The function within the paren-
theses ofl,, gives (+ VA/2)/(q+ VA) in the limit e—0
and with the properties df the same asymptotic behavior as
that of J,; results. Finally, with the transformation
v=q— A the integrald,; can be cast into the form

o) = %x/ﬂfszdgcp(\/ﬂﬁ)e—wﬁﬁ.[
XJ" doh(e) Smen-b). 20
-7 U

Step 4 To perform the integration ove3* we take

0 sind cosp
L=L| O|=Le, and n(#,p)=| sind sing
1 coy)
(A21)

Then the application of lemma 1 with= \JAL shows that

IdD)=1 f ' dv—rh(vl e Ao (/Ae)
. U( 7
A
X j—xcos(vL)ﬂLisir‘n(vL))—ei‘mflJ(—\/KéZ)
x| L cogvl)—isinwL) | | +O(L"%?).
VA (A23)

The terms with cos{) decrease faster than any power of
1/L by a corollary of lemma 3 whereas tléefunction prop-
erty of singL)/mv leads to

2
IAD) == e Ab(JRE) + € A~ (Ag, ]

+0(L™%?, (A24)
The correction to theS function is proportional to

o0 h i
f dv (v)z—l sin(oL) (A25)
— U U
=X

and therefore decreases faster than any powerlofi$/can
easily be seen by repeated partial integration. Finally, the
theorem is obtained by summing the results of steps 4 and 5.
O

[1] B. Pontecorvo, Sov. Phys. JET®, 984 (1968.

[2] S. M. Bilenky and S. T. Petcov, Rev. Mod. Phy&9, 671
(1987; B. Kayser, F. Gibrat-Debu, and F. Perri¢he Physics
of Massive Neutrino$World Scientific, Singapore, 1989R.
N. Mohapatra and P. B. Padljassive Neutrinos in Physics and
Astrophysic§World Scientific, Singapore, 1991C. W. Kim
and A. PevsnerlNeutrinos in Physics and Astrophysi@sar-
wood Academic, Chur, Switzerland, 1993

[3] J. Rich, Phys. Rev. @8, 4318(1993.

[4] Boris Kayser, Phys. Rev. R4, 110(19813).

[5] C. Giunti, C. W. Kim, J. A. Lee, and U. W. Lee, Phys. Rev. D
48, 4310(1993.

[6] J. Rich, D. Lloyd Owen, and M. Spiro, Phys. Ref®1, 267

(198%); Boris Kayser, inNeutrino '9Q Proceedings of the 14th
International Conference on Neutrino Physics and Astrophys-
ics, Geneva, Switzerland, 1990, edited by J. Panam and K.
Winter [Nucl. Phys. B(Proc. Supp). 19, 177 (1991]; C.
Giunti, C. W. Kim, and U. W. Lee, Phys. Rev. B85, 2414
(1992.

[7] MUNU Collaboration, C. Broggini, irPerspectives in Neutri-
nos, Atomic Physics and GravitatiorProceedings of the
Xlllith Moriond Workshop, Villar sur Ollon, Switzerland,
1993, edited by J. TraThanh Va, T. Damour, E. Hinds, and
J. Wilkerson (Editions Frontieres, Giftg-Yvette, France,
1993.



