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We present in detail the calculation of theO(as) virtual corrections to the matrix element forb→sg. In
addition to the one-loop virtual corrections of the electromagnetic and color dipole operatorsO7 andO8, we
include the important two-loop contribution of the four-Fermi operatorO2. By applying the Mellin-Barnes
representation to certain internal propagators, the result of the two-loop diagrams is obtained analytical
expansion inmc /mb . These results are then combined with existingO(as) bremsstrahlung corrections i
order to obtain the inclusive rate forB→Xsg. The new contributions drastically reduce the large renormal
tion scale dependence of the leading logarithmic result. Thus, a very precise standard model prediction
inclusive process will become possible once the corrections to the Wilson coefficients are also av
@S0556-2821~96!02017-6#
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I. INTRODUCTION

In the standard model~SM!, flavor-changing neutral cur-
rents only arise at the one-loop level. This is why the cor
sponding rareB meson decays are particularly sensitive
‘‘new physics.’’ However, even within the standard mod
framework, one can use them to constrain the Cabib
Kobayashi-Maskawa~CKM! matrix elements which involve
the top quark. For both these reasons, precise experime
and theoretical work on these decays is required.

In 1993,B→K* g was the first rareB decay mode mea-
sured by the CLEO Collaboration@1#. Recently, also the first
measurement of the inclusive photon energy spectrum
the branching ratio in the decayB→Xs1g was reported@2#.
In contrast with the exclusive channels, the inclusive mo
allows a less model-dependent comparison with theory,
cause no specific bound state model is needed for the fi
state. This opens the road to a rigorous comparison w
theory.

The data agrees with the SM-based theoretical co
putations presented in@3–5#, given that there are large un
certainties in both the experimental and the theoreti
results. In particular, the measured branching ra
B(B→Xsg)5(2.3260.67)31024 @2# overlaps with the
SM-based estimates in@3,4# and in @6,7#.

In view of the expected increase in the experimental p
cision, the calculations must be refined correspondingly
order to allow quantitative statements about new physics
standard model parameters. So far, only the leading logar
mic corrections have been worked out systematically. In t
paper we evaluate an important class of next order corr
tions, which we will describe in detail below.1

We start within the usual framework of an effectiv
theory with five quarks, obtained by integrating out th

*Present address: ITP, SUNY at Stony Brook, Stony Brook, N
11794-3840.
1Some of the diagrams were calculated by Soares@8#.
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heavier degrees of freedom which in the standard model
the top quark and theW boson. The effective Hamiltonian
includes a complete set of dimension-6 operators relevan
the processb→sg ~andb→sgg) @9#:

Heff~b→sg!52
4GF

A2
l t(

j51

8

Cj~m!Oj~m!, ~1.1!

with GF being the Fermi coupling constant andCj (m) being
the Wilson coefficients evaluated at the scalem, and
l t5VtbVts* with Vi j being the CKM matrix elements. Th
operatorsOj are

O15~ c̄LbgmbLa!~ s̄LagmcLb!,

O25~ c̄LagmbLa!~ s̄LbgmcLb!,

O35~ s̄LagmbLa!@~ ūLbgmuLb!1•••1~ b̄LbgmbLb!#,

O45~ s̄LagmbLb!@~ ūLbgmuLa!1•••1~ b̄LbgmbLa!#,

O55~ s̄LagmbLa!@~ ūRbgmuRb!1•••1~ b̄RbgmbRb!#,

O65~ s̄LagmbLb!@~ ūRbgmuRa!1•••1~ b̄RbgmbRa!#,

O75~e/16p2!s̄asmn@mb~m!R1ms~m!L#baFmn ,

O85~gs/16p
2!s̄asmn@mb~m!R1ms~m!L#~lab

A /2!bbGmn
A .
(1.2)

In the dipole-type operatorsO7 andO8, e andFmn (gs and
Gmn
A ) denote the electromagnetic~strong! coupling constant

and field strength tensor, respectively.L5(12g5)/2 and
R5(11g5)/2 stand for the left- and right-handed projectio
operators. It should be stressed in this context that the
plicit mass factors inO7 and O8 are the running quark
masses.

QCD corrections to the decay rate forb→sg bring in
large logarithms of the formas

n(mW)ln
m(mb /M), where

Y
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54 3351VIRTUAL O(as) CORRECTIONS TO THE INCLUSIVE . . .
M5mt ormW andm<n ~with n50,1,2,. . . ). One cansys-
tematically resum these large terms by renormalization gro
techniques. Usually, one matches the full standard mo
theory with the effective theory at the scalemW . At this
scale, the large logarithms generated by matrix element
the effective theory are the same ones as in the full theo
Consequently, the Wilson coefficients only contain sm
QCD corrections. Using the renormalization group equatio
the Wilson coefficients are then calculated at the sc
m'mb , the relevant scale for aB meson decay. At this scale
the large logarithms are contained in the Wilson coefficie
while the matrix elements of the operators are free of the

As noted, so far the decay rate forb→sg has been sys-
tematically calculated only to leading logarithmic accurac
i.e., m5n. To this precision it is consistent to perform th
‘‘matching’’ of the effective and full theory without taking
into account QCD corrections@10# and to calculate the
anomalous dimension matrix to orderas @11#. The corre-
sponding leading logarithmic Wilson coefficients are give
explicitly in @6,12#. Their numerical values in the naive di
mensional regularization~NDR! scheme are listed in Table
for different values of the renormalization scalem. The lead-
ing logarithmic contribution to the decay matrix element
then obtained by calculating the tree-level matrix element
the operatorC7O7 and the one-loop matrix elements of th
four-Fermi operatorsCiOi ( i51, . . . ,6). In the NDR
scheme the latter can be absorbed into a redefinition2 of
C7→C7

eff :

C7
eff[C71QdC513QdC6 . ~1.3!

In the ’t Hooft–Veltman scheme~HV! @13#, the contribution
of the four-Fermi operators vanishes. The Wilson coe
cientsC7 andC8 in the HV scheme are identical toC7

eff and

2For the analogousb→sg transition, the effects of the four-Ferm
operators can be absorbed by the shiftC8→C8

eff5C81C5.

TABLE I. Leading logarithmic Wilson coefficientsCi(m) at the
matching scalem5mW580.33 GeV and at three other scale
m510.0 GeV,m55.0 GeV, andm52.5 GeV. Foras(m) ~in the

MS̄ scheme! we used the one-loop expression with five flavors a
as(mZ)50.117. The entries correspond to the top quark ma

mt̄(mt,pole)5170 GeV~equivalent tomt,pole5180 GeV!.

Ci(m) m5mW m510.0 GeV m55.0 GeV m52.5 GeV

C1 0.0 20.149 20.218 20.305
C2 1.0 1.059 1.092 1.138
C3 0.0 0.006 0.010 0.014
C4 0.0 20.016 20.023 20.031
C5 0.0 0.005 0.007 0.009
C6 0.0 20.018 20.027 20.040
C7 20.192 20.285 20.324 20.371
C8 20.096 20.136 20.150 20.166
C7
eff 20.192 20.268 20.299 20.334

C8
eff 20.096 20.131 20.143 20.157
up
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C8
eff in the NDR scheme. Consequently, the complete lead

logarithmic result for the decay amplitudeb→sg is indeed
scheme independent.

Since the first order calculations have large scale unc
tainties, it is important to take into account the next-t
leading order corrections. They are most prominent in t
photon energy spectrum. While it is ad function ~which is
smeared out by the Fermi motion of theb quark inside the
B meson! in the leading order, bremsstrahlung correction
i.e., the processb→sgg, broaden the shape of the spectru
substantially. Therefore, these important corrections ha
been taken into account for the contributions of the operat
O7 andO2 some time ago@3# and recently also of the full
operator basis@4,14,15#. As expected, the contributions o
O7 andO2 are by far the most important ones, especially
the experimentally accessible part of the spectrum. Al
those ~next-to-leading! corrections, which are necessary t
cancel the infrared~and collinear! singularities of the brems-
strahlung diagrams, were included. These are the virt
gluon corrections to the contribution of the operatorO7 for
b→sg and the virtual photon corrections toO8 for b→sg.

A complete next-to-leading calculation implies tw
classes of improvements: First, the Wilson coefficients
next leading order at the scalem'mb are required. To this
end the matching with the full theory~at m5mW) must be
done at theO(as) level and the renormalization group equa
tion has to be solved using the anomalous dimension ma
calculated up to orderas

2 . Second, the virtualO(as) correc-
tions for the matrix element~at scalem'mb) must be evalu-
ated and combined with the bremsstrahlung corrections. T
higher order matching has been calculated in Ref.@16# and
work on the Wilson coefficients is in progress. In this pap
we will evaluate all the virtual corrections beyond those a
ready evaluated in connection with the bremsstrahlung p
cess. We expect them to reduce substantially the strong s
dependence of the leading order calculation.

Among the four-Fermi operators, onlyO2 contributes siz-
ably and we calculate only its virtual corrections to the m
trix element forb→sg. The matrix elementO1 vanishes
because of color, and the penguin-induced four-Fermi ope
tors O3 , . . . ,O6 can be neglected3 because their Wilson
coefficients4 are much smaller thanC2, as illustrated in
Table I. However, we do take into account the virtu
O(as) corrections tob→sg associated with the magnetic
operatorsO7 ~which has already been calculated in the li
erature! and O8 ~which is new!. Since the corrections to
O7 andO8 are one-loop diagrams, they are relatively easy
work out. In contrast, the corrections toO2 involve two-loop
diagrams, since this operator itself only contributes at t
one-loop level.

Since the virtual and bremsstrahlung corrections to t
matrix elements are only one~well-defined! part of the whole
next-to-leading program, we expect that this contributi
alone will depend on the renormalization scheme used. E
within the modified minimal subtraction scheme (MS̄) used
here, we expect that two different ‘‘prescriptions’’ how t
treatg5 will lead to different answers. Since previous calc

3This omission will be a source of a slight scheme and sc
dependence of the next-to-leading order result.
4It is consistent to calculate the corrections using the leading lo

rithmic Wilson coefficients.
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lations of the bremsstrahlung diagrams have been done in
NDR scheme and also the leading logarithmic Wilson co
ficients are available in this scheme, we also use it here.
future checks, however, we also consider in Appendix A t
corresponding calculation in the HV scheme.

The remainder of this paper is organized as follows.
Sec. II we give the two-loop corrections forb→sg based on
the operatorO2 together with the counterterm contribution
In Sec. III the virtual corrections forb→sg based onO7 are
reviewed including some of the bremsstrahlung correctio
Then, in Sec. IV we calculate the one-loop corrections
b→sg associated withO8. Section V contains the results fo
the branching ratio forb→sg(g) and especially the drastic
reduction of the renormalization scale dependence due to
new contributions. Appendix A contains the result of th
O2 two-loop calculation in the HV scheme and, finally, t
make the paper self-contained, we include in Appendix B
bremsstrahlung corrections to the operatorsO2, O7, and
O8.

II. VIRTUAL CORRECTIONS TO O2

IN THE NDR SCHEME

In this section we present the calculation of the mat
element of the operatorO2 for b→sg up to orderas in the
NDR scheme. The one-loop (as

0) matrix element vanishes
and we must consider several two-loop contributions. Sin
they involve ultraviolet singularities also, counterterm co
tributions are needed. These are easy to obtain because
operator renormalization constantsZi j are known with
enough accuracy from the orderas anomalous dimension
matrix @11#. Explicitly, we need the contributions of the op
eratorsC2dZ2 jOj to the matrix element forb→sg, where
dZ2 j denote the orderas contribution of the operator renor
malization constants. In the NDR scheme, the nonvanish
counterterms come from the one-loop matrix element
C2dZ25O5 andC2dZ26O6 as well as from the tree-level ma
trix element of the operatorC2dZ27O7. We also note that
there are no contributions tob→sg from counterterms pro-

FIG. 1. Diagrams 1~a!, 1~b!, and 1~c! associated with the opera
tor O2. The fermions (b, s, andc quark! are represented by solid
lines. The wavy~dashed! line represents the photon~gluon!.

FIG. 2. Diagrams 2~a!, 2~b!, and 2~c! associated with the opera
tor O2.
the
ef-
For
he

In

s.

ns.
to
r

the
e
o
the

rix

ce
n-
the

-

-
ing
of
-

portional to evanescent operators multiplying the Wilson c
efficientC2.

A. Regularized two-loop contribution of O2

The dimensionally regularized matrix elementM2 of the
operatorO2 for b→sg

M25^sguO2ub& ~2.1!

can be divided into four classes of nonvanishing two-lo
diagrams, as shown in Figs. 1–4. The sum of the diagram
each class~5figure! is gauge invariant. The contributions t
the matrix elementM2 of the individual classes~Figs.! 1–4
are denoted byM2(1),M2(2),M2(3), andM2(4), where,
e.g.,M2(1) is

M2~1![M2~1a!1M2~1b!1M2~1c!. ~2.2!

The main steps of the calculation are the following: W
first calculate the Fermion loops in the individual diagram
i.e., the ‘‘building blocks’’ shown in Figs. 5 and 6, combin
ing together the two diagrams in Fig. 6. As usual, we work
d5422e dimensions; the results are presented as integ
over Feynman parameters after integrating over the~shifted!
loop momentum. Then, we insert these building blocks in
the full two-loop diagrams. Using the Feynman parametriz
tion again, we calculate the integral over the second lo
momentum. As the remaining Feynman parameter integ
contain rather complicated denominators, we do not evalu
them directly. At this level we also do not expand in th
regulatore. The heart of our procedure which will be ex
plained more explicitly below, is to represent these denom
nators as complex Mellin-Barnes integrals@17#. After insert-
ing this representation and interchanging the order
integration, the Feynman parameter integrals are reduce
well-known Eulerb functions. Finally, the residue theorem
allows to write the result of the remaining complex integal
the sum over the residues taken at the pole positions of c
tain b and Gamma functions; this naturally leads to an e
pansion in the ratioz5(mc /mb)

2, which numerically is
aboutz50.1.

-

-

FIG. 3. Diagrams 3~a! and 3~b! associated with the operato
O2. We calculate directly their sum and denote it byM2(3), see
text.

FIG. 4. Diagrams 4~a! and 4~b! associated with the operato
O2. We calculate directly their sum and denote it byM2(4), see
text.
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We express the diagram in Fig. 5~denoted byI b) in a
way convenient for inserting into the two-loop diagrams. A

we will use MS̄subtraction later on, we introduce the reno
malization scale in the formm2exp(gE)/(4p), where

gE50.577 . . . is theEuler constant. Then, MS̄corresponds
to subtracting the poles ine. In the NDR scheme,I b is given
by5

I b52
gs
4p2G~e!m2eexp~gEe!~12e!exp~ ipe!~r br”

2r 2gb!L
l

2E0
1

@x~12x!#12eF r 22 mc
2

x~12x!
1 idG2e

,

~2.3!

wherer is the four-momentum of the~off-shell! gluon,mc is
the mass of the charm quark propagating in the loop and
term id is the ‘‘e prescription.’’ The free indexb will be
contracted with the gluon propagator when inserting t
building block into the two-loop diagrams in Figs. 1 and
Note thatI b is gauge invariant in the sense thatr bI b50.

Next, we give the sum of the two diagrams in Fig.
using the decomposition in@18#. We get~denoting this build-
ing block byJab)

Jab5
egsQu

16p2 FE~a,b,r !D i 51E~a,b,q!D i 6

2E~b,r ,q!
r a

~qr !
D i 232E~a,r ,q!

r b

~qr !
D i 25

2E~a,r ,q!
qb

~qr !
D i 26GL l

2
, ~2.4!

whereq is the four-momentum of the photon. The indexa in
Eq. ~2.4! is understood to be contracted with the polarizati
vector« of the photon, while the indexb is contracted with
the gluon propagator in the two-loop diagrams in Figs. 3 a
4. The matrixE in Eq. ~2.4! is defined as

E~a,b,r !5gagbr”2gar b1gb~r a!2r”gab . ~2.5!

In a four-dimensional context theseE quantities can be re-
duced to expressions involving the Levi-Civita` tensor, i.e.,
E(a,b,g)52 i«abgmgmg5 ~in the Bjorken-Drell conven-
tion!. The dimensionally regularized expressions for theD i
read

5The fermion-gluon and the fermion-photon couplings are defin
according to the covariant derivativeD5]1 igs(l

B/2)AB1ieQA.

FIG. 5. Building blockI b for the diagrams in Figs. 1 and 2 with
an off-shell gluon.
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D i 5524E
S
dxdy@4~qr !x2ye24~qr !xye22r 2x3e

13r 2x2e2r 2xe13xC2C#@~11e!G~e!

3exp~gEe!m2eC212e#, ~2.6!

D i 654E
S
dxdy@4~qr !xy2e24~qr !xye22r 2x2ye12r 2x2e

1r 2xye22r 2xe13yC2C#@~11e!G~e!

3exp~gEe!m2eC212e#, ~2.7!

D i 2352D i 2658~qr !E
S
dxdy@xye~11e!G~e!

3exp~gEe!m2eC212e#, ~2.8!

D i 25528~qr !E
S
dxdy@x~12x!e~11e!G~e!

3exp~gEe!m2eC212e#, ~2.9!

whereC andC212e are given by

C5mc
222xy~qr !2x~12x!r 22 id,

C212e52exp~ ipe!@x~12x!#212e

3F r 21 2y~qr !

12x
2

mc
2

x~12x!
1 idG212e

.

~2.10!

The range of integration in (x,y) is restricted to the simplex
S, i.e., 0<y<(12x) and 0<x<1.

Due to Ward identities, not all theD i are independent.
The identities given in Ref.@18# in the context of the full
theory simplify in our case as follows:

qaJab50, r bJab50. ~2.11!

They allow us to expressD i 5 andD i 6 in terms of the other
D i which have a more compact form. These relations read

D i 55D i 23,

D i 65
r 2

~qr !
D i 251D i 26. ~2.12!

Of course, Eq.~2.12! can be checked explicitly for all values
of e, using partial integration and certain symmetry proper
ties of the integrand.

We are now ready to evaluate the two-loop diagrams. A
both I b andJab are transverse with respect to the gluon, th
gauge of the gluon propagator is irrelevant. Also, due to th

ed

FIG. 6. Building blockJab for the diagrams in Figs. 3 and 4.
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absence of extra singularities in the limit of vanishin
strange quark mass, we setms50 from the very beginning
~the question of charm quark mass ‘‘singularities’’ will b
discussed later!.

As an example, we present the calculation of the two-lo
diagram in Fig. 1~c! in some detail. UsingI b in Eq. ~2.3!, the
matrix element reads

M @Fig. 1~c!#5
i

4p2eQdgs
2CFG~e!exp~2gEe!m4e

3~12e!exp~ ipe!

3~4p!2eE ddr

~2p!d
ū~p8!gb

p” 82r”

~p82r !2
«”

3
p”2r”

~p2r !2
~r br”2r 2gb!Lu~p!

1

r 2

3E
0

1

dx
@x~12x!#12e

$r 22mc
2/@x~12x!#1 id%e .

~2.13!

In Eq. ~2.13!, u(p8) andu(p) are the Dirac spinors for the
s and theb quarks, respectively, andCF54/3. In the next
step, the four propagator factors in the denominator
Feynman parametrized as

1

D1D2D3D4
e 5

G~31e!

G~e!

3E dudvdwdyye21d~12u2v2w2y!

@D1u1D2v1D3w1D4y#31e ,

~2.14!

where D15(p82r )2, D25(p2r )2, D35r 2, and
D45r 22mc

2/@x(12x)#. Then, the integral over the loop
momentumr is performed. Making use of thed function in
Eq. ~2.14!, the integral overw is easy. The remaining vari-
ablesu, v, and y are transformed into new variablesu8,
v8, and y8, all of them varying in the interval@0,1#. The
substitution reads

u→v8~12u8!, v→v8u8, y→~12v8!y8. ~2.15!

Taking into account the corresponding Jacobian and omitt
the primes(8) of the integration variables this leads to

M @Fig. 1~c!#5
1

64p4eQdgs
2CFG~2e!exp~2gEe!m4e

3exp~2ipe!~12e!E dxdudvdy

3@x~12x!#1-eye21~12v !evū~p8!

3FP1

Ĉ

Ĉ2e
1P2

1

Ĉ2e
1P3

1

Ĉ112eGu~p!,

~2.16!

whereP1, P2, andP3 are matrices in Dirac space dependin
on the Feynman parametersx, u, v, y in a polynomial way.
Ĉ is given by
g

e

op

are

ing

g

Ĉ5mb
2v~12v !u2

mc
2

x~12x!
~12v !y1 id. ~2.17!

In what follows, the ultraviolete regulator remains a fixed,
small positive number.

The central point of our procedure is to use now th
Mellin-Barnes representation of the ‘‘propagator’
1/(k22M2)l @19–22# which is given by

1

~k22M2!l 5
1

~k2!l

1

G~l!

1

2p i Eg
ds~2M2/k2!sG~2s!

3G~l1s!, ~2.18!

wherel.0 andg denotes the integration path which is par
allel to the imaginary axis~in the complexs plane! hitting
the real axis somewhere between2l and 0. In this formula,
the ‘‘momentum squared’’k2 is understood to have a small
positive imaginary part. In Refs.@19,21# exact solutions to
Feynman integrals containing massive propagators are
tained by representing their denominators according to t
formula ~2.18! with subsequent calculation of the corre
sponding massless integrals.

In our approach, we use formula~2.18! in order to sim-
plify the remaining Feynman parameter integrals in Eq
~2.16!. We represent the factors 1/Ĉ2e and 1/Ĉ112e in Eq.
~2.16! as Mellin-Barnes integrals using the identifications

k2↔mb
2v~12v !u; M2↔

mc
2

x~12x!
~12v !y. ~2.19!

By interchanging the order of integration, we first carry ou
the integrals over the Feynman parameters for any giv
fixed value ofs on the integration pathg. These integrals are
basically the same as for the massless casemc50 @in Eqs.
~2.16! and ~2.17!# up to a factor~in the integrand! of

F y

uvx~12x!G sexp~ ips!Smc
2

mb
2D s. ~2.20!

Note that the polynomialsP1, P2, andP3 have such a form
that the Feynman parameter integrals exist in the lim
mc→0. If the integration pathg is chosen close enough to
the imaginary axis, the factor in Eq.~2.20! does not change
the convergence properties of the integrals, i.e., the Feynm
parameter integrals exist for all values ofs lying on g. It is
easy to see that the only integrals involved are of the type

E
0

1

dwwp or E
0

1

dwwp~12w!q5b~p11,q11!

5
G~p11!G~q11!

G~p1q12!
.

~2.21!

For thes integration we use the residue theorem after closin
the integration path in the rights-half plane. One has to show
that the integral over the half circle vanishes if its radius go
to `. As we explicitly checked, this is indeed the case fo
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(mc
2/mb

2),1/4, which is certainly satisfied in our application
The poles which lie inside the integration contour are locat
at

s50,1,2,3,4, . . . ,

s512e, 22e, 32e, 42e, . . . ,

s5122e, 222e, 322e, 422e, . . . .
~2.22!

The other two-loop diagrams are evaluated similarly. Th
nontrivial Feynman integrals can always be reduced to tho
given in Eq. ~2.21! after some suitable substitutions. Th
only change is that there are poles in addition to those giv
in Eq. ~2.22! in those diagrams where the gluon hits th
b-quark line; they are located at

s51/222e, s53/222e, s55/222e,

s57/222e, . . . . ~2.23!

The sum over the residues naturally leads to an expansion
z5(mc

2/mb
2) through the factor (mc

2/mb
2)s in Eq. ~2.20!. This

expansion, however, is not a Taylor series because it a
involves logarithms ofz, which are generated by the expan
sion in e. A generic diagram which we denote byG has,
then, the form

G5c01(
n,m

cnmz
nlnmz, z5

mc
2

mb
2 , ~2.24!

where the coefficientsc0 andcnm are independent ofz. The
power n in Eq. ~2.24! is, in general, a natural multiple of
1/2 andm is a natural number including 0. In the explici
calculation, the lowestn turns out to ben51. This implies
the important fact that the limitmc→0 exists; thus, there
cannot be large logarithms~from a small up-quark mass! in
these diagrams.

From the structure of the poles one can see that the po
m of the logarithm is bounded by four, independent of th
value of n. To illustrate this, taken5100 as an example.
There are three poles located nearn5100, viz., at
s5100, s51002e, s510022e, respectively @see Eq.
~2.22!#. Taking the residue at one of them, yields a ter
proportional to 1/e2 coming from the remaining two poles. In
addition, there can be an explicit 1/e2 term from the integra-
tion of the two-loop momenta. Therefore, the most singul
term can be 1/e4. Multiplying this with zs in Eq. ~2.20! leads
to z100lnmz wherem can be four at most.

We have retained all terms up ton53. Comparing the
n53 numerical result with the one obtained by truncating
n52 leads to a difference of about 1% only.

We have made further checks of our procedure. For e
ample, we have calculated diagram 1~b! directly. Expanding
the result, we reproduce the expressions obtained by app
ing the Mellin-Barnes integral at the Feynman parame
level as described above. A similar exercise for the imag
.
ed

e
se
e
en
e

in

lso
-

t

wer
e

m

ar

at

x-

ly-
ter
i-

nary part of diagram 1~c! shows that the exact and the ex
panded result~up toz3 terms! in these examples agree at the
1% level. In addition, we checked that the imaginary part o
the sum of all diagrams coincides numerically with the re
sults of Soares@23,8# ~note, however, that in the physical
region only the diagrams in Figs. 1 and 3 contribute to th
imaginary part!. In Ref. @8#, Soares applied dispersion tech
niques to calculate the real part. However, using the imag
nary part in the physical region, only the real part of th
diagrams in Figs. 1 and 3 is obtained. We have checked t
our numbers for these two sets of diagrams indeed coinc
with the results of Soares. However, the contribution of th
diagrams in Figs. 2 and 4 is missing in@8# because the ad-
ditional unphysical cuts were not taken into account. We al
note that a separate consideration of the subtraction ter
would be required to obtain the correctm dependence.

We mention that the Dirac algebra has been done with t
algebraic programREDUCE6 @24#. The Feynman parameter
integrals and the determination of the residues have be
done with the symbolic programMAPLE @26#.

We now give the results for the diagrams shown in Fig
1–4. As already mentioned, the individual diagrams in ea
figure are not gauge invariant but only their sum is. Note th
the leading ultraviolet singularity in the individual two-loop
diagrams is, in general, of order 1/e2. In the gauge-invariant
sumsM2( i ), the 1/e2 cancel and we are left with 1/e poles
only. The results read@usingz5(mc /mb)

2 andL5 lnz#

M2~1!5H 1

36eSmb

m D 24e

1
1

216
@372~5401216L !z

1~216p225401216L2216L2!z2

2~144p211361240L2144L2!z3]

1
ip

18
@1218z1~18236L !z21~24L220!z3#J

3
as

p
CFQd^sguO7ub& tree, ~2.25!

M2~2!5H 2
5

36eSmb

m D 24e

1
1

216
@131~36p22108!z

2144p2z3/21~6482648L1108L2!z2

1~120p22314112L1288L2!z3#J
as

p
CFQd^sguO7ub& tree, ~2.26!

6Some checks have been done withTRACER @25#.
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M2~3!5H 2
1

8eSmb

m D 24e

1
1

48
$2451@72212p2

296z~3!1~96224p2!L112L218L3#z

1@60124p2296z~3!1~24224p2!L224L2

18L3#z22~68248L !z3%

1
ip

12
@231~2422p216L16L2!z

1~622p2212L16L2!z2112z3#J
3

as

p
CFQu^sguO7ub& tree, ~2.27!

M2~4!5H 2
1

4eSmb

m D 24e

2
1

24
$211@22412p2

124z~3!2~1226p2!L12L3#z

1@21224p2248z~3!112L26L212L3#z2

1~2616p2224L118L2!z3%J
3

as

p
CFQu^sguO7ub& tree. ~2.28!

In these expressions, the symbolz denotes the Riemannz
function, withz(3)'1.2021;Qu52/3 andQd521/3 are the
charge factors for up- and down-type quarks, respective
The matrix element̂ sguO7ub& tree is the O(as

0) tree-level
matrix element of the operatorO7; its explicit form is

^sguO7ub& tree5mb

e

8p2ū~p8!«”q”Ru~p!. ~2.29!

In formula ~2.29! mb should be identified with the running
massmb(m) in principle @see Eq.~1.2!#. However, as the
corrections toO2 are explicitly proportional toas , mb can
be identified with the pole mass as well@apart fromO(as

2)
corrections which we systematically neglect#.

B. Counterterms

The operators mix under renormalization and thus t
counterterm contributions must be taken into account. As
are interested in this section in contributions tob→sg which
are proportional toC2, we have to include, in addition to the
two-loop matrix elements ofC2O2, also the one-loop matrix
elements of the four-Fermi operatorsC2dZ2 jOj
( j51, . . . ,6) and thetree-level contribution of the magnetic
operatorC2dZ27O7. In the NDR scheme the only nonvanish
ing contributions to b→sg come from j55,6,7. ~For
j55,6 the contribution comes from the diagram in which th
internalb quark emits the photon.! The operator renormal-
ization constantsZi j are listed in the literature@11# in the
context of the leading order anomalous dimension matr
The entries needed in our calculation are
ly.

he
we

-

e

ix.

dZ2552
as

48pe
CF , dZ265

as

16pe
CF ,

dZ275
as

16peS 6Qu2
8

9
QdDCF . ~2.30!

Defining

M2 j5^sgudZ2 jOj ub&, ~2.31!

we find the following contributions to the matrix elements

M2552
as

48p
QdCF

1

e Smb

m D 22e

^sguO7ub& tree,

M265
3as

16p
QdCF

1

e Smb

m D 22e

^sguO7ub& tree,

M275
as

p S 3QuCF

8
2
QdCF

18 D1e ^sguO7ub& tree. ~2.32!

We note that there is no one-loop contribution to the matr
element forb→sg from the counterterm proportional to
C2(1/e)O12

ev where the evanescent operatorO12
ev ~see, e.g.,

the last Ref. in@11#! reads

O12
ev5

1

6
O2~gm→g [mgngr] !2O2 . ~2.33!

C. Renormalized contribution proportional to C2

Adding the two-loop diagrams from Sec. 2 A@Eqs.
~2.25!–~2.28!# and the counterterms from Sec. 2 B@Eq.
~2.32!#, we find the renormalized contributionM2:

M25M2~1!1M2~2!1M2~3!1M2~4!1M251M261M27.
~2.34!

Of course, the ultraviolet singularities cancel inM2. Insert-
ing CF54/3,Qu52/3, andQd521/3, we get the main re-
sult of this paper, which in the NDR scheme reads

M25^sguO7ub& tree
as

4pS l 2ln
mb

m
1r 2D , ~2.35!

with

l 25
416

81
, ~2.36!

Rer 25
2

243
$28331144p2z3/21@17282180p221296z~3!

1~12962324p2!L1108L2136L3#z

1@648172p21~4322216p2!L136L3#z2

1@254284p211092L2756L2#z3%, ~2.37!

Imr 25
16p

81
$251@4523p219L19L2#z

1@23p219L2#z21@28212L#z3%. ~2.38!
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Here, Rer 2 and Imr 2 denote the real and the imaginary pa
of r 2, respectively. The quantityz is defined as
z5(mc

2/mb
2) andL5 ln(z). In Fig. 7 we show the real and the

imaginary part ofr 2. For z>1/4 the imaginary part must
vanish exactly; indeed, we see from Fig. 7 that the imagina
part based on the expansion retaining terms up toz3 indeed
vanishes atz51/4 to high accuracy.

III. O„as… CORRECTIONS TO O7

The virtual corrections associated with the operatorO7 as
shown in Fig. 8~b! ~together with the self-energy diagram
and the counterterms! have been taken into account in th
work of Ali and Greub, see, e.g.@3,4,14#, wheremsÞ0 was
retained. Since we neglectms in this work, we are interested
only in the limitms→0. Because of the mass singularities
the virtual corrections~which will be canceled when also
taking into account bremsstrahlung corrections!, we only
keepms as a regulator.

Including the lowest order contribution, the result the
becomes@usingr5(ms /mb)

2# in the NDR scheme

^sguO7ub&virt5^sguO7ub& tree@11K̂g#, ~3.1!

K̂g5
as

6pS 4pm2

mb
2 D e IR

G~11e IR!

3H ln2r2
2

e IR
lnr2 lnr2

4

e IR
2814ln

mb

m J .
~3.2!

Note that Eq.~3.1! contains all the counterterm contribu
tions. The 1/e IR poles in this equation are, therefore, of in
frared origin as indicated by the notation. The last term in t
curly bracket in Eq.~3.2! represents am dependence of ul-

FIG. 7. Real and imginary part ofr 2 in the NDR scheme@from
Eqs.~2.37! and ~2.38!#.

FIG. 8. Virtual corrections toO7.
rt

ry

s
e

in

n

-
-
he

traviolet origin. The additionalm dependence, which is gen-
erated when expanding ine IR is canceled at the level of the
decay width together with the 1/e IR poles when adding the
bremsstrahlung correction due to the square of the diagra
associated with the operatorO7. As all intermediate formulas
are given in the literature, we only give the final result for th
as corrections~virtual1bremsstrahlung! to the decay width.
Denoting this contribution byG77 we get, in the limit
ms50,

G775G77
0 F11

as

3p S 163 2
4p2

3
14ln

mb

m D G , ~3.3!

where the lowest order contributionG77
0 reads

G77
0 5

mb
2~m!mb

3

32p4 uGFl tC7
effu2aem. ~3.4!

For later convenience, we can formally rewrite
^sguO7ub&virt in Eq. ~3.1! in such a way that its square repro
duces the result in Eq.~3.3!. This modified matrix element,
denoted bŷ sguO7ub& rad then reads

^sguO7ub& rad5^sguO7ub& treeF11
as

4p S l 7ln
mb

m
1r 7D G

~3.5!

with

l 75
8

3
, r 75

8

9
~42p2!. ~3.6!

IV. VIRTUAL CORRECTIONS TO O8

Finally, we consider the contributions tob→sg generated
by the operatorO8: i.e.,

M85^sguO8ub&. ~4.1!

The corresponding Feynman diagrams are shown in Fig.
The sum of the three diagrams in Fig. 9~a! yields

M8@Fig. 9~a!#5
QdCF

2

as

p F2
1

e
2212ln~mb /m!2 ipG

3^sguO7ub& tree, ~4.2!

while the diagrams in Fig. 9~b! give

M8@Fig. 9~b!#5
QdCF

12

as

p F2
6

e
22112p2112ln~mb /m!G

3^sguO7ub& tree. ~4.3!

FIG. 9. Contributions ofO8 to b→sg. The cross~x! denotes the
possible place where the photon is emitted. Figures 9~a! and 9~b!
are separately gauge invariant.
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Thus, the sum of all the six diagrams is

M8@Fig. 9#5
QdCF

12

as

p F2
12

e
23312p2124ln~mb /m!

26ipG^sguO7ub& tree. ~4.4!

There is also a contribution from a counterterm; it reads

M875dZ87̂ sguO7ub& tree. ~4.5!

The renormalization constant

dZ875
as

p
CFQd

1

e
~4.6!

has been calculated in the literature@11#. The sum of all
contributions leads to the renormalized resultM8:

M85^sguO7ub& tree
as

4pS l 8ln
mb

m
1r 8D , ~4.7!

with

l 852
32

9
, r 852

4

27
~23312p226ip!. ~4.8!

V. RESULTS AND CONCLUSIONS

We have calculated the virtual corrections tob→sg com-
ing from the operatorsO2, O7, andO8. The contributions
from the other four-Fermi operators in Eq.~1.2!, which are
given by the analogous diagrams as shown in Figs.~1!–~4!
were neglected, because they either vanish (O1) or have
Wilson coefficients which are about 50 times smaller th
that ofO2 while their matrix elements can be enhanced
most by color factors. However, we did include the nonva
ishing diagrams ofO5 andO6 where the gluon connects the
external quark lines and the photon is radiated from t
charm quark because these corrections are automatic
considered whenC7

eff @defined in Eq.~1.3!# is used instead of
C7. As discussed in Sec. III, some of the Bremsstrahlu
corrections to the operatorO7 have been transferred into the
matrix element forb→sg in order to present results which
are free from infrared and collinear singularities.

The sum of the various contributions derived in the pr
vious sections yields the amplitudeA(b→sg) for b→sg.
The result can be presented in a convenient way, followi
the treatment of Buraset al. @6#, where the general structure
of the next-to-leading order result is discussed in detail. W
write

A~b→sg!52
4GFl t

A2
D̂^sguO7~m!ub& tree, ~5.1!

with D̂

D̂5C7
eff~m!1

as~m!

4p (
i

SCi
~0!eff~m!l i ln

mb

m
1Ci

~0!effr i D ,
~5.2!
an
at
n-

he
ally

ng

e-

ng

e

and where the quantitiesl i and r i are given fori52,7,8 in
Secs. II, III, and IV, respectively. For the full next-to-leading
logarithmic result one would need the first term on the righ
hand side~RHS! of Eq. ~5.2!, C7

eff(m), at next-to-leading
logarithmic precision. In contrast, it is consistent to use th
leading logarithmic values for the other Wilson coefficient
in Eq. ~5.2!. As the next-to-leading coefficientC7

eff is not yet
known, we replace it by its leading logarithmic value
C7
(0)eff in the numerical investigations. The notation

^sguO7(m)ub& tree in Eq. ~5.1! indicates that the explicit fac-
tor mb in the operatorO7 is the running mass taken at the
scalem.

As the relevant scale for ab-quark decay is expected to be
m;mb , we expand the matrix elements of the operator
aroundm5mb up to orderO(as). Thus, we arrive at

A~b→sg!52
4GFl t

A2
D^sguO7~mb!ub& tree, ~5.3!

with D

D5C7
eff~m!1

as~mb!

4p (
i

SCi
~0!eff~m!g i7

~0!effln
mb

m

1Ci
~0!effr i D , ~5.4!

with the quantitiesg i7
(0)eff

g i7
~0!eff5l i18d i7 ~5.5!

being just the entries of the~effective! leading order anoma-
lous dimension matrix@6#. As also pointed out in this refer-
ence, the explicit logarithms of the formas(mb)ln(mb /m) in
Eq. ~5.4! should be canceled by them dependence of
C7
(0)eff(m). This is the crucial point why the scale depen

dence is reduced significantly as we will see later.7

FromA(b→sg) in Eq. ~5.3!, we obtain the decay width
Gvirt to be

Gvirt5
mb,pole
5 GF

2l t
2aem

32p4 FuDu2, ~5.6!

where we discard term ofO(as
2) in uDu2. The factorF in Eq.

~5.6! is

F5Smb~m5mb!

mb,pole
D 2512

8

3

as~mb!

p
. ~5.7!

To obtain the inclusive rate forB→Xsg consistently at the
next-to-leading order level, we have to take into account a
the bremsstrahlung contributions. They have been calcula
by Ali and Greub for the operatorsO2 andO7 some time ago
@3#, while the complete set has been worked out only re
cently @4,14,15#. Here, we neglect the small contribution of
the operatorsO3 – O6 as we did for the virtual corrections;

7As we neglect the virtual correction ofO3–O6, there is, of
course, a small left-overm dependence.



e

nt
to

g

er
0.

ed
ge

ge

er

ash-

s

fi-
e

54 3359VIRTUAL O(as) CORRECTIONS TO THE INCLUSIVE . . .
i.e., we only considerO2, O7, andO8. The corresponding
bremsstrahlung formulas are collected in Appendix B.

In order to arrive at the branching ratioB„b→sg(g)…, we
divide, as usual, the decay widthG(B→Xsg)
5Gvirt1Gbremsby the theoretical expression for the semilep
tonic decay widthGsl and multiply this ratio with the mea-
sured semileptonic branching ratioBsl5(10.460.4)% @27#,
i.e.,

B„b→sg~g!…5
G

Gsl
BRsl . ~5.8!

The semileptonic decay width is

Gsl5
GF
2mb,pole

5 uVcbu2

192p3 g~mc /mb!S 12
2as~mb!

3p
f ~mc /mb! D ,

~5.9!

where the phase space functiong(u) is defined as

g~u!5128u218u62u8224u4lnu, ~5.10!

and an approximate analytic form for the radiative correcti
function f (u) has been found in@28# to be

f ~u!5S p22
31

4 D ~12u!21
3

2
. ~5.11!

In Figs. 10–12 we compare the available leading-log r
sults and our new results for the inclusive branching ratio f
B→Xsg as a function of the top quark mass. A rather cruc
parameter is the ratiomc /mb ; it enters both,b→sg through
the virtual corrections ofO2 and the semileptonic decay
width through phase space. It can be written
mc /mb512(mb2mc)/mb . While the mass difference
mb2mc is determined quite precisely through the 1/mQ ex-
pansion@29# or from the semileptonicb→c spectrum~we
usemb2mc53.40 GeV@30#!, theb-quark mass is not pre-
cisely known. Using for the b-quark pole mass
mb,pole54.860.15 GeV one arrives atmc /mb50.2960.02.
In the plots the central values formb,pole andmc /mb have
been used. Moreover, we putVcb5Vts andVtb51 and also
use the central value for the measured semileptonic bran
ing ratioBsl510.4% in Eq.~5.8!. In all three plots the hori-

FIG. 10. Branching ratio forb→sg based on the leading loga-
rithmic formula in Eq.~5.12!. The upper~lower! solid curve is for
m5mb/2 (m52mb). The dotted curves show the CLEO bounds@2#.
-

on

e-
or
ial

as

ch-

zontal dotted curves show the CLEO 1s limits for the
branching ratioB(B→Xsg) @2#.

In Fig. 10 we show the leading logarithmic result for th
branching ratio ofb→sg, based on the formula

B~b→sg! leading5
6aem

pg~mc /mb!
uC7

~0!effu2Bsl . ~5.12!

Similarly, Fig. 11 exhibits the results also taking into accou
the bremsstrahlung corrections and the virtual corrections
O7 without including the virtual corrections ofO2 andO8.
We can reproduce this result by puttin
l 25r 25l 85r 850 in our formulas. As noticed in the lit-
erature@3,15#, them dependence in this case is even larg
than that in the leading logarithmic result shown in Fig. 1
Also, the experimentally allowed region is shown.

The theoretical results shown in Figs. 10 and 11 allow
for a reasonable prediction of the branching ratio with a lar
error which was essentially determined by them dependence.
As we see, they do agree well with experiment but with lar
uncertainties.

FIG. 11. Branching ratio forb→sg(g) neglecting the virtual
corrections ofO2 andO8 calculated in the present paper. The upp
~lower! solid curve is form5mb/2 (m52mb). The dotted curves
show the CLEO bounds@2#.

FIG. 12. Branching ratio forb→sg(g) based on the complete
formulas presented in this section. The band between the d
dotted curves is obtained by taking the explicitas factors in Eqs.
~5.4! and~5.9! at scalemb , while the band between the solid curve
corresponds to takingas at the~variable! scalem. In both cases the
upper ~lower! curve corresponds to evaluating the Wilson coef
cients at the scalem5mb/2 (2mb). For more details see text. Th
dotted curves show the 1s-CLEO bounds@2#.
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In Fig. 12, finally, we give the branching ratio based o
formula ~5.8! which includes all virtual corrections calcu
lated in the present paper. Because all the logarithms of
form as(mb)ln(mb /m) cancel as discussed above, them de-
pendence is significantly reduced in our improved calcu
tion ~Fig. 12!; the bands of scale uncertainty are rather na
row. To illustrate the remaining renormalization sca
dependence, we present two ‘‘scenarios’’ which differ b
higher order contributions. First, we take the explicitas fac-
tors in Eqs.~5.4! and ~5.9! at m5mb as indicated in these
formulas; varyingm between (mb/2) and (2mb) in formula
~5.4! leads to the dash-dotted curves in Fig. 12. Second,
evaluate the explicitas in Eqs. ~5.4! and ~5.9! at the~vari-
able! scalem. Varying again the scalem between (mb/2) and
(2mb) yields the solid lines in Fig. 12. In both scenarios th
upper~lower! curve corresponds tom5mb/2 (m52mb). We
mention that them band is larger in the second scenario an
it is, therefore, safer to use this band to obtain a feeling
the remaining scale uncertainties.

While this result shows that the theoretical accuracy c
be strongly improved by the next-to-leading calculations,
would be premature to extract a prediction for the branchi
ratio from Fig. 12~with obviously a small error! and claim,
for instance, a discrepancy with experiment. This only w
become possible~with high theoretical precision! if also
C7
eff is known to next-to-leading logarithmic precision. Thi

additional effect will, essentially, shift the narrow bands
Fig. 12, without broadening them substantially. The dras
reduction of the theoretical uncertainties shows that sign
cant experimental improvements are necessary to extract
important information available in these decays.
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APPENDIX A: O2 CONTRIBUTION
IN THE ’t HOOFT –VELTMAN SCHEME

In this appendix we present the results for the matrix e
ements of the processb→sg based on the operatorO2. In
addition to the two-loop diagrams shown in Figs. 1–4, w
also give all the counterterm contributions which multipl
the Wilson coefficientC2.

1. The ’t Hooft–Veltman scheme

In the ’t Hooft–Veltman scheme@13#, the d dimensions
are split into 4 andd24; the corresponding structures ar
distinguished by no superscript, by a tilde, and by a h
respectively. There are Lorentz indices ind, 4 and d24
dimensions and the corresponding metric tensorsgmn ,
g̃mn , and ĝmn . While all theg matrices are taken ind di-
mensions, their indices are split in 4 andd24 components,
according to the rules
n
-
the

la-
r-
le
y

we

e

d
for

an
it
ng

ill

s
in
tic
ifi-
the

-
nd
to
of
l
-
.S.
5.

l-

e
y

e
at,

gmn5g̃mn1ĝmn ,

g̃mng̃
mn54, ĝmnĝ

mn5d24,

g̃mnĝ
mn50. ~A1!

Theg matrices in four dimensions (g̃m) and (d24) dimen-
sions (ĝm) are defined byg̃mngn and ĝmngn , respectively.
Assuming the usual anticommutation relations of the
d-dimensional Dirac matrices in terms of thed-dimensional
metric tensorgmn , one gets the following rules forg̃m and
ĝm:

$g̃m,g̃n%52g̃mn, $ĝm,ĝn%52ĝmn, $g̃m,ĝn%50. ~A2!

The commutation relations withg5 are postulated to be

$g̃m,g5%50, @ ĝm,g5#50, ~A3!

which is equivalent to definingg5 by the product
i g̃0g̃1g̃2g̃3. This is the only way known to treatg5 without
running into algebraic inconsistencies@31#. Finally, we men-
tion that the chiral vertices ind dimensions can be defined in
different ways, all having the same formal limit when
d→4. For left- and right-handed currents we follow the
common practice and use

g̃mL5Rgm L and g̃mR5LgmR. ~A4!

There are several possibilities to define the operatorsO7 and
O8 in d dimensions~with identical four-dimensional limit!;
for example, the termsmn in Eq. ~1.2! can be defined to be

smn5
i

2
@gm,gn#, ~A5!

wheregm andgn are the ‘‘d-dimensional’’ matrices, or al-
ternatively,

smn5
i

2
@ g̃m,g̃n#. ~A6!

A difference in the definition will result in a difference of the
finite terms in the one-loop matrix elements of these opera
tors.

As the calculation of the one-loop matrix elements of
O7 andO8 is relatively easy, once an exact definition of the
operators has been specified, we give in this appendix on
the result for the two-loop contribution of the operatorO2.

2. One-loop building blocks

The principal steps of the calculation in the HV scheme o
theO2 contribution to the matrix element forb→sg are the
same as in the NDR scheme. Therefore, we again start wi
the one-loop building blocks. For the building blockI b in
Fig. 5, we get in the HV scheme
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I b52
gs
4p2G~e!m2eexp~gEe!exp~ ipe!E

0

1

dx@x~12x!#2e

3F r 22 mc
2

x~12x!
1 idG2eFx~12x!~r br

gg̃g2r 2g̃b!

1
mc

2
r g~ ĝbg̃g1g̃bĝg!GLl

2
, ~A7!

while the building blockJab in Fig. 6 reads

Jab5
egsQu

32p2~11e!
Rg̃mFE~a,b,r !D i 51E~a,b,q!D i 6

2E~b,r ,q!
r a

~qr !
D i 232E~a,r ,q!

r b

~qr !
D i 25

2E~a,r ,q!
qb

~qr !
D i 26G g̃mL

l

2
2mc

egsQu

8p2

1

~qr !
Rg̃m

3$r”q”gab2gbq” r a2gar”qb2gagbr”q”

1gagb~qr !%g̃mL
l

2
D̂. ~A8!

The quantitiesE andD i are given in Eqs.~2.5! and ~2.6!–
~2.9!, respectively. As theD i are the same as in the NDR
scheme, the Ward identities in Eq.~2.12! still hold. The ad-
ditional termD̂ in Eq. ~A8! reads

D̂5E
S
dxdy~qr !C212eeG~e!m2eegEe, ~A9!

whereC212e and the integration rangeS are defined in Eq.
~2.10!.

We note that the terms linear inmc in Eqs.~A7! and~A8!
are absent in schemes whereg5 has formally the same anti-
commuting properties as in the four-dimensional Dirac alg
bra. Especially, they are absent in the NDR scheme. Ho
ever, working consistently in the HV scheme, we have
retain these extra terms.

In order to make the comparison with the NDR calcul
tion easier, we discard in a first step these extramc terms and
denote again the corresponding results byM2( i ) where
i51,2,3,4 numbers the figure in which the correspondi
diagrams are shown. In subsections 3, 4, and 5 of Appen
A, the terms linear inmc are left out; they are denoted by
M2

c( i ) and collected in subsection 6 of Appendix A. Thos
counterterm contributions involving evanescent opera
which generate only terms linear inmc are also discussed
there.

3. Regularized two-loop contribution ofO2

We now give the results for the two-loop diagrams
Figs. 1–4 discarding the linear terms inmc in the one-loop
building blocks in Eqs.~A7! and ~A8!. The results read, us-
ing z5(mc /mb)

2 andL5 lnz,
e-
w-
to

a-

ng
dix

e
tor

in

M2~1!5H 1

36eSmb

m D 24e

1
1

216
@402~5401216L !z

1~216p225401216L2216L2!z2

2~144p211361240L2144L2!z3#

1
ip

18
@1218z1~18236L !z21~24L220!z3#J

3
as

p
CFQd^sguO7ub& tree, ~A10!

M2~2!5H 2
1

18eSmb

m D 24e

1
1

216
@2171~36p22108!z

2144p2z3/21~6482648L1108L2!z2

1~120p22314112L1288L2!z3#J
3

as

p
CFQd^sguO7ub& tree, ~A11!

M2~3!5H 2
1

8eSmb

m D 24e

1
1

48
$293/21@72212p2

296z~3!1~96224p2!L112L218L3#z

1@60124p2296z~3!1~24224p2!L

224L218L3#z22~68248L !z3%

1
ip

12
@231~2422p216L16L2!z

1~622p2212L16L2!z2112z3#J
3

as

p
CFQu^sguO7ub& tree, ~A12!

M2~4!5H 2
1

4eSmb

m D 24e

2
1

24
$93/41@22412p2

124z~3!2~1226p2!L12L3#z1@21224p2

248z~3!112L26L212L3#z2

1~2616p2224L118L2!z3%J
3

as

p
CFQu^sguO7ub& tree. ~A13!

A comparison with the corresponding NDR scheme expres
sions in Sec. 2 A shows that the imaginary parts are identic
for each setM2( i ). This property has to be satisfied because
these imaginary parts can be derived by cutting rule tech
niques where no regularization is necessary. As expected, t
only difference between the two schemes is in the
mc
2-independent terms of the real part.
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4. Counterterms

There are several counterterm contributions~multiplying
C2) which all have to be taken into account. As noted, in th
section we only give the counterterms whose effects do
lead to terms linear inmc . There is just one such counter
term coming fromdZ27O7. The operator renormalization
constantZ27 @11# reads

dZ275
as

peS 38Qu1
1

36
QdDCF . ~A14!

Defining

M275^sgudZ27O7ub&, ~A15!

the counterterm contribution is given by

M275
as

p S 3QuCF

8
1
QdCF

36 D1e ^sguO7ub& tree. ~A16!

5. Renormalized contribution proportional to C2

Adding the two-loop diagrams@Eqs. ~A10!–~A13!# and
the counterterm@Eq. ~A16!#, we arrive at the renormalized
contribution which we denote byM2

M25M2~1!1M2~2!1M2~3!1M2~4!1M27.
~A17!

InsertingCF54/3, Qu52/3, andQd521/3, we get in the
HV scheme

M25^sguO7ub& tree
as

4pS l 2ln
mb

m
1r 2D , ~A18!

with

l 25
416

81
, ~A19!

Rer 25
2

243
$28601144p2z3/21@17282180p221296z~3!

1~12962324p2!L1108L2136L3#z1@648172p2

1~4322216p2!L136L3#z21@254284p211092L

2756L2#z3%, ~A20!

Imr 25
16p

81
$251@4523p219L19L2#z1@23p2

19L2#z21@28212L#z3%. ~A21!

Again, Rer 2 and Imr 2 denote the real and the imaginary pa
of r 2, respectively. Comparing with the final renormalize
expressionM2 in the NDR scheme, given in Sec. 2 C, w
conclude again that the scheme dependence only affects
mc
2-independent term in the real part ofr 2.
is
not
-

rt
d
e
the

6. Terms linear in mc

Finally, we collect the linearmc terms of the two-loop
digrams which stems from in the building blocks in Eqs.
~A7! and ~A8!. We obtain

M2
c~1!52

1

24F2e11728ln
mb

m
14p i G

3
as

p
CFQd^sguO7L

newub& tree, ~A22!

M2
c~2!52

1

24F2e11128ln
mb

m Gas

p
CFQd^sguO7R

newub& tree,

~A23!

M2
c~3!1M2

c~4!52
1

4 F2e1328ln
mc

m G
3

as

p
CFQu^sguO7

newub& tree, ~A24!

where the newly induced magnetic type operatorO7
new in Eq.

~A24! reads

O7
new5mc~m!

e

16p2 s̄smnbF
mn. ~A25!

The operatorsO7L
neworO7R

new which only enter in intermediate
steps, contain an additional left- or right-handed projection
operator after thesmn term in Eq.~A25!.

In addition to these two-loop diagrams, there are two
counterterms proportional to evanescent operators whic
lead to terms linear inmc . The first ~denoted by
1/eO4 Fermi

ev ) comes from one-loop gluon corrections to the
four-Fermi operatorO2 and is given explicitly in Ref.@32#.
As we use this operator only as an insertion into the matri
element forb→sg, we adapt the general color structure
given in @32# for this special case. In our notation, this coun-
terterm takes the form

1

e
O4 Fermi
ev 52

as

8p

1

e
CF EHV , ~A26!

with

EHV5212e~G2 ^ G11G1 ^ G2!2@ g̃tg̃rĝmg5

^ g̃tg̃rĝmg512ĝm ^ ĝm22ĝmg5^ ĝmg5#

2@gmgrG2grgm
^ G22gmgrG2 ^ G2grgm

2G2grgm ^ gmgrG21G2 ^ gmgrG2grgm#,

~A27!

whereG65g̃m(16g5)/2. Its contribution to the amplitude
for b→sg is

M2
ev@ four Fermi#5S 1e 22ln

mc

m Das

p
CFQu^sguO7

newub& tree.

~A28!
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The second counterterm~denoted by 1/eOpenguin
ev ) corre-

sponds to the 1/e pole term inmc term in the one-loop build-
ing block I b in Eq. ~A7!. It can be written as

1

e
Openguin
ev 5

1

e

gs
16p2mcs̄RsmnL

lA

2
bGA

mn . ~A29!

Its contribution to the amplitudeb→sg is given by six
graphs whose Feynman diagrams are similar to those sho
in Fig. 9. The three diagrams, where the gluon is absorbed
the s quark, read

M2
ev~penguin a!5

1

36F6e119212ln
mb

m
16p i G

3
as

p
CFQd^sguO7L

newub& tree,

~A30!

while the diagrams where the gluon is absorbed by theb
quark is given by

M2
ev~penguin b!5

1

18F3e1526ln
mb

m G
3

as

p
CFQd^sguO7R

newub& tree.

~A31!

Adding the contributions of the two-loop diagrams in Eqs
~A22!–~A24! and the counterterm contributions in Eqs
~A28!, ~A30!, and ~A31!, we end up with a total linearmc
term of the form

M2
c@ two loop1 counterterm#

5
as

p
CFFQd

72 S 6e 213D1
Qu

4 S 2e 23D G^sguO7
newub& tree.

~A32!

Of course, this result can be made finite by introducing
corresponding counterterm proportional toO7

new given in Eq.
~A25! which minimally subtracts the 1/e pole in Eq.~A32!.

At this point one might ask why these additional operato
appearing in this subsection do not appear in the literatu
@11# where the singularity structure of these graphs hav
been worked out in order to extract theO(as) anomalous
dimension matrix. We also note that there are other ne
operators induced if one looks, e.g., at the analogous tw
loop corrections tob→sg associated to other four-Fermi op-
erators. For example, the corrections toO3 generate a new
magnetic-type operator, wheremc in Eq. ~A25! is replaced
by mb .

To absorb all the divergencies, one clearly has to enlar
the operator basis in this scheme. However, we believe tha
is correct to ignore these additional operators for the leadi
logarithmic result forb→sg. The reason is the following:
First, the new operators do not mix into the old ones given
Eq. ~1.2! at O(as); therefore, the old operators run in the
same way with or without including the new operators. Se
ond, in theO(as

0) matching ~at m5mW), the new coeffi-
wn
by

.
.

a

rs
re
e

w
o-

ge
t it
ng

in

c-

cients have to be zero, as one can easily see. Third, t
absence of a ln(m) term in Eq.~A32! indicates that the four-
Fermi operators do not induce any running of the new op
erators at the leading logarithmic level. The only way th
new magnetic operators could run is by multiplicative reno
malization. But as these operators have zero initial value
discussed above, this effect also is unimportant: To leadin
logarithmic precision the Wilson coefficients of the new op
erators are zero at each renormalization scale. Therefore,
new operators certainly do not change the leading logarit
mic physics. Equivalently, one can say that one can thro
away the terms proportional tomc in the building blocks in
Eqs.~A7! and ~A8! when working at leading order.

However, our result in Eq.~A32! shows that the matrix
element ofO2 leads to finite terms~which are of next-to-
leading order! linear in mc when calculated in the HV
scheme. It would be very interesting to see if these line
mc terms are canceled by the next-to-leading Wilson coeffi
cients of the new operators. Such a cancellation is expect
to occur, of course, because in any other scheme which
spects the four-dimensional chirality properties, these term
do not appear.

APPENDIX B: BREMSSTRAHLUNG CORRECTIONS

In order to make the paper self-contained, we give in th
appendix the formulas for the processb→sgg based on the
operatorsO2, O7, andO8 in the NDR scheme. As we have
given the analogous virtual corrections tob→sg in the limit
ms→0, we also present the bremsstrahlung corrections f
this case.

We denote the various contributions to the bremsstra
lung decay widthGb by G22

b , G77
b , G88

b , G27
b , G28

b , G78
b ; for

example,G22
b is based on the matrix element squared o

O2, while G27
b is an interference term between the matrix

element ofO2 andO7, etc.
Note that all the interference terms andG22

b are infrared
~and collinear! finite. The sum of these four finite contribu-
tions is given by

GF
brems5

GF
2 ul tu2aemas

768p5mb
E
PS
dEgdEg~t221t271t281t78!,

~B1!

t2252mb
2Qu

2C2
2~m!uku2@mb

222~qr !#, ~B2!

t275232mb
2QuC2~m!C7

eff~m!~qr !Re~k!, ~B3!

t285232mb
2QuQdC2~m!C8

eff~qr !Re~k!, ~B4!

t7852128mb
2QdC7

eff~m!C8
eff~m!~qr !

mb
412~pq!~pr !

~pq!~pr !
,

~B5!

where as in the previous sectionsp, p8, q, andr denote the
four-momenta of theb and thes quark, the photon, and the
gluon, respectively. The functionk is defined as

k5
4@2G~ t !1t#

t
, t5

2~qr !

mc
2 , ~B6!
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G~ t !5E
0

1dy

y
ln@12ty~12y!2 i e#. ~B7!

The phase space boundaries~denoted above by PS! are given
by

EgPF0,mb

2 G , EgPFmb

2
2Eg ,

mb

2 G . ~B8!

Note that the functionk in Eq. ~B6! is finite for mc→0.
Therefore, also the bremsstrahlung corrections have a fi
limit for mc→0.

G77
b is singular forEg→0 or rWipW 8. As it cancels the cor-

responding singularity of the virtual corrections toO7, we
have taken into account the contributionG77

b already in Sec.
nite

III, i.e., G77
b is contained in the finite quantity in Eq.~3.3!.

Finally, G88
b is singular forEg→0 or qW ipW 8. These singu-

larities can be removed by adding the virtual photon corr
tions to b→sg. This finite sumG88 can easily be obtained
from G77 in Eq. ~3.3!. It reads

G885
mb
5

96p5 uGFQdC8
effl tu2aemasS 163 2

4p2

3
14ln

mb

m D .
~B9!

To summarize, the total inclusive decay widthG for
B→Xs1g is then given byG5Gvirt1GF

brems1G88, where
Gvirt, GF

brems, andG88 are given in Eqs.~5.6!, ~B1!, and~B9!,
respectively.
s
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