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We present in detail the calculation of t¥ «) virtual corrections to the matrix element for—sy. In
addition to the one-loop virtual corrections of the electromagnetic and color dipole opeBatarsd Og, we
include the important two-loop contribution of the four-Fermi operd@gr By applying the Mellin-Barnes
representation to certain internal propagators, the result of the two-loop diagrams is obtained analytically as an
expansion inm./m,. These results are then combined with existDfwr) bremsstrahlung corrections in
order to obtain the inclusive rate f&— Xsy. The new contributions drastically reduce the large renormaliza-
tion scale dependence of the leading logarithmic result. Thus, a very precise standard model prediction for this
inclusive process will become possible once the corrections to the Wilson coefficients are also available.
[S0556-282(96)02017-9

PACS numbsgfs): 13.20.He, 11.10.Hi, 12.38.Bx

I. INTRODUCTION heavier degrees of freedom which in the standard model are
the top quark and th&/ boson. The effective Hamiltonian

In the standard mod&BM), flavor-changing neutral cur- includes a complete set of dimension-6 operators relevant for
rents only arise at the one-loop level. This is why the correthe proces®—sy (andb—syg) [9]:
sponding rareB meson decays are particularly sensitive to 4G 8
“new physics.” However, even within the standard model _ F
framework, one can use them to constrain the Cabibbo- Heﬁ(bHSV)——ﬁMJZl Ci(w)Oj(w), (1.
Kobayashi-Maskaw&CKM) matrix elements which involve
the top quark. For both these reasons, precise experimentaith G being the Fermi coupling constant a@(u«) being
and theoretical work on these decays is required. the Wilson coefficients evaluated at the scale and

In 1993,B—K* y was the first rard decay mode mea- \,=V,,V{; with V;; being the CKM matrix elements. The
sured by the CLEO Collaboratidi]. Recently, also the first operatorsO; are
measurement of the inclusive photon energy spectrum and

the branching ratio in the dec®/— X+ y was reported?2]. O1=(CLg¥"PLa)(SLa¥,uCiLp),
In contrast with the exclusive channels, the inclusive mode _ _
allows a less model-dependent comparison with theory, be- O2=(CLoV*PLa) (SLpYuCLp)

cause no specific bound state model is needed for the final _ _ _
state. This opens the road to a rigorous comparison with O3z=(SLa¥*BL)[(ULgyuULg) + -+ +(bLgy,bLg)],
theory. . . _

The data agrees with the SM-based theoretical com- Oa=(SL.¥*bLg) (U gy ULa) - +(DLgyubLa) ],
putations presented if8-5], given that there are large un- L L _
certainties in both the experimental and the theoretical Os=(S_,¥*DL)[(UrgYUrg) T - -+ (brgy,.bre) ],
results. In particular, the measured branching ratio

B(B—Xsy)=(2.32+0.67)x10" 4 [2] overlaps with the O6=(SLa¥"bLp)[(UrgYuUra) t - - - +(b_Rgv,LbRa)],
SM-based estimates [13,4] and in[6,7]. o
In view of the expected increase in the experimental pre-  O;=(e/167%)s,0**[mp(w)R+mg(u)L1b,F .

cision, the calculations must be refined correspondingly in L
order to allow quantitative statements about new physics 0rOg=(gs/16m2)s,a*"[my( )R+ ms(,u)L]()\ﬁB/Z)bﬁGﬁy.
standard model parameters. So far, only the leading logarith- (1.2)
mic corrections have been worked out systematically. In this
paper we evaluate an important class of next order corred the dipole-type operatoi®; andOg, e andF ,, (gs and
tions, which we will describe in detail belotv. Gﬁ,,) denote the electromagnetistrong coupling constant
We start within the usual framework of an effective and field strength tensor, respectively=(1—vys)/2 and
theory with five quarks, obtained by integrating out theR=(1+ ys)/2 stand for the left- and right-handed projection
operators. It should be stressed in this context that the ex-
plicit mass factors inO; and Og are the running quark
“Present address: ITP, SUNY at Stony Brook, Stony Brook, NYmasses.
11794-3840. QCD corrections to the decay rate fbr—sy bring in
'Some of the diagrams were calculated by Soé8és large logarithms of the formag(my)In™(m,/M), where
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TABLE I. Leading logarithmic Wilson coefficientS;(u) at the Cgff in the NDR scheme. Consequently, the complete leading
matching scalew=m,,=80.33 GeV and at three other scales, |oqarithmic result for the decay amplitude—sy is indeed
n=10.0 GeV,u=5.0 GeV, andu=2.5 GeV. Forag(u) (in the scheme independent.

MS schemgwe used the one-loop expression with five flavors and  Since the first order calculations have large scale uncer-
as(mz)=0.117. The entries correspond to the top quark massainties, it is important to take into account the next-to-
m,(M; pold = 170 GeV(equivalent tom, ;0= 180 GeV. leading order corrections. They are most prominent in the
photon energy spectrum. While it is&function (which is
Ci(u) wm=my w«=10.0GeV u=50GeV u=25GeV smeared out by the Fermi motion of thequark inside the

B meson in the leading order, bremsstrahlung corrections,

C1 0.0 —0.149 —0.218 —0.305 i.e., the procesb— syg, broaden the shape of the spectrum
Cy 1.0 1.059 1.092 1.138 substantially. Therefore, these important corrections have
Cs 0.0 0.006 0.010 0.014 been taken into account for the contributions of the operators
C,4 0.0 —0.016 —0.023 —0.031 0, and O, some time agg3] and recently also of the full

Cs 0.0 0.005 0.007 0.009 operator basi$4,14,19. As expected, the contributions of
Ce 0.0 —0.018 —0.027 —0.040 0O, andO, are by far the most important ones, especially in
c, ~0.192 ~0.285 ~0.324 ~0.371 the experimentally accessible part of the spectrum. Also,
Cq —0.096 ~0.136 —0.150 —0.166 those (next-to-leading corrections, which are necessary to
cef 0192 0268 —0.299 0334 cancel the infraredand collineay singularities of the brems-

strahlung diagrams, were included. These are the virtual
gluon corrections to the contribution of the operafy for
b— sy and the virtual photon corrections @g for b—sg.

A complete next-to-leading calculation implies two
M=m, or my andm=n (with n=0,1,2,...). One carsys-  classes of improvements: First, the Wilson coefficients to
tematically resum these large terms by renormalization groupext leading order at the scale~m, are required. To this
techniques. Usually, one matches the full standard modaind the matching with the full theorfat w=m,,) must be
theory with the effective theory at the scaigy. At this  done at theéD(«as) level and the renormalization group equa-
scale, the large logarithms generated by matrix elements ition has to be solved using the anomalous dimension matrix
the effective theory are the same ones as in the full theoncalculated up to orde®?. Second, the virtuaD(ag) correc-
Consequently, the Wilson coefficients only contain smalltions for the matrix elemeriat scalew=~m,) must be evalu-
QCD corrections. Using the renormalization group equationated and combined with the bremsstrahlung corrections. The
the Wilson coefficients are then calculated at the scaldigher order matching has been calculated in R&8] and
u~my, the relevant scale for B meson decay. At this scale work on the Wilson coefficients is in progress. In this paper
the large logarithms are contained in the Wilson coefficientgve will evaluate all the virtual corrections beyond those al-
while the matrix elements of the operators are free of themfeady evaluated in connection with the bremsstrahlung pro-

As noted, so far the decay rate for>sy has been sys- C€SS We expect them to reduce substantl_ally the strong scale
tematically calculated only to leading logarithmic accuracy,deéPendence of the leading order calculation. _

i.e., m=n. To this precision it is consistent to perform the __Among the four-Fermi operators, ony, contributes siz-
“matching” of the effective and full theory without taking ably and we calculate only its virtual corrections to the ma-
into account QCD correction§10] and to calculate the [X €lement forb—sy. The matrix elemenD, vanishes
anomalous dimension matrix to ordex [11]. The corre- because of color, and the penguin-induced four-Ferml opera

! ; o ! S Lo ~ _tors Og, ...,0¢ can be neglectédbecause their Wilson
spor']d'mg.leadmg Iogarlthmlc V\_/|Ison coeff|'0|ents are giveN . efficientd are much smaller thaiC,, as illustrated in
explicitly in [6,12]. Their numerical values in the naive di-

onal larizatioNDR) sch listed in Table | Table I. However, we do take into account the virtual
mensional regularizatioNDR) scheme are listed in Table | 5,y corrections tob— sy associated with the magnetic

for different values of the renormalization scaleThe lead-  neratorsO, (which has already been calculated in the lit-
ing logarithmic contribution to the decay matrix element iSgrature and Og (which is new. Since the corrections to
the operatoiC;0O; and the one-loop matrix elements of the work out. In contrast, the corrections @, involve two-loop

ceff -0.096  —0.131 -0.143 —0.157

four-Fermi operatorsC;O; (i=1,...,6). In the NDR diagrams, since this operator itself only contributes at the
scheme the latter can be absorbed into a redefifitain one-loop level.
C7—>C$ﬁ: Since the virtual and bremsstrahlung corrections to the

matrix elements are only orfevell-defined part of the whole
next-to-leading program, we expect that this contribution
CM'=C,+ QqCs+3Q4Cs. (1.3y  alone will depend on the renormalization scheme used. Even
within the modified minimal subtraction scheme (M$sed
here, we expect that two different “prescriptions” how to
In the 't Hooft—Veltman schem@HV) [13], the contribution  treatys will lead to different answers. Since previous calcu-
of the four-Fermi operators vanishes. The Wilson coeffi-
cientsC; andCg in the HV scheme are identical tb?ﬁ and

3This omission will be a source of a slight scheme and scale
dependence of the next-to-leading order result.
2For the analogoub— sg transition, the effects of the four-Fermi  “It is consistent to calculate the corrections using the leading loga-
operators can be absorbed by the sBift— C§”:C8+ Cs. rithmic Wilson coefficients.
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FIG. 3. Diagrams &) and 3b) associated with the operator

] ] ) O,. We calculate directly their sum and denote it l(3), see
FIG. 1. Diagrams (8), 1(b), and 1c) associated with the opera- gyt

tor O,. The fermions b, s, andc quark are represented by solid

lines. The wavy(dashegl line represents the photdgluon). portional to evanescent operators multiplying the Wilson co-

. . . efficientC,.
lations of the bremsstrahlung diagrams have been done in the

NDR scheme and also the leading logarithmic Wilson coef-
ficients are available in this scheme, we also use it here. For
future checks, however, we also consider in Appendix A the The dimensionally regularized matrix elemewit, of the

A. Regularized two-loop contribution of O,

corresponding calculation in the HV scheme. operatorO, for b—sy
The remainder of this paper is organized as follows. In
Sec. Il we give the two-loop corrections forsy based on M2=(s7|O,|b) 2.1

the operatoO, together with the counterterm contributions.

In Sec. lll the virtual corrections fdv—svy based orD; are  can be divided into four classes of nonvanishing two-loop
reviewed including some of the bremsstrahlung correctionsdiagrams, as shown in Figs. 1-4. The sum of the diagrams in
Then, in Sec. IV we calculate the one-loop corrections toeach clasg=figure) is gauge invariant. The contributions to
b— sy associated witlDg. Section V contains the results for the matrix elemenM, of the individual classefFigs) 1-4

the branching ratio fob—sy(g) and especially the drastic are denoted byM,(1),M,(2),M,(3), and M,(4), where,
reduction of the renormalization scale dependence due to theg.,M,(1) is

new contributions. Appendix A contains the result of the

O, two-loop calculation in the HV scheme and, finally, to M,(1)=M,(1a)+M,(1b)+My(1c). (2.2
make the paper self-contained, we include in Appendix B the
bremsstrahlung corrections to the operat@s O;, and The main steps of the calculation are the following: We
Og. first calculate the Fermion loops in the individual diagrams,
i.e., the “building blocks” shown in Figs. 5 and 6, combin-
II. VIRTUAL CORRECTIONS TO O, ing togethe( the tv_vo diagrams in Fig. 6. As usual, we yvork in
IN THE NDR SCHEME d=4-2¢ dimensions; the results are presented as integrals

over Feynman parameters after integrating over(shéfted
In this section we present the calculation of the matrixioop momentum. Then, we insert these building blocks into

element of the operatdd, for b—s+y up to orderag in the  the full two-loop diagrams. Using the Feynman parametriza-
NDR scheme. The one-loomE) matrix element vanishes tion again, we calculate the integral over the second loop
and we must consider several two-loop contributions. Sincenomentum. As the remaining Feynman parameter integrals
they involve ultraviolet singularities also, counterterm con-contain rather complicated denominators, we do not evaluate
tributions are needed. These are easy to obtain because them directly. At this level we also do not expand in the
operator renormalization constan#; are known with regulatore. The heart of our procedure which will be ex-
enough accuracy from the order, anomalous dimension plained more explicitly below, is to represent these denomi-
matrix [11]. Explicitly, we need the contributions of the op- nators as complex Mellin-Barnes integrfls]. After insert-
eratorsC,6Z,;O; to the matrix element fob—sy, where ing this representation and interchanging the order of
8Z,; denote the ordew contribution of the operator renor- integration, the Feynman parameter integrals are reduced to
malization constants. In the NDR scheme, the nonvanishingvell-known Eulerg functions. Finally, the residue theorem
counterterms come from the one-loop matrix element ofallows to write the result of the remaining complex integal as
C,6Z,:05 andC,8Z,40¢ as well as from the tree-level ma- the sum over the residues taken at the pole positions of cer-
trix element of the operato€,5Z,70,. We also note that tain 8 and Gamma functions; this naturally leads to an ex-
there are no contributions fo—sy from counterterms pro- pansion in the ratioz=(m./m,)?, which numerically is

aboutz=0.1.

(a) (b)

(a) (b) (c) . . .
FIG. 4. Diagrams &) and 4b) associated with the operator
FIG. 2. Diagrams @), 2(b), and Zc) associated with the opera- O,. We calculate directly their sum and denote it lys(4), see
tor O,. text.
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o NN

i g FIG. 6. Building blockJ,, for the diagrams in Figs. 3 and 4.
FIG. 5. Building blocki 4z for the diagrams in Figs. 1 and 2 with _ 5 5
an off-shell gluon. Aig=— fsdxdy[4(qr)x ye—4(qr)xye—2r?x3e
We express the _diagrgm _in Fig. (Benoted byl g) ina +3r2x2e—r2xe+3xC—C][(1+ €)' (¢)
way convenient for inserting into the two-loop diagrams. As A
we will use MSsubtraction later on, we introduce the renor- X exp(yge) uC 1 (2.6

malization scale in the formu2exp(ge)/(4m), where

ye=0.577 ... is theEuler constant. Then, MSorresponds Ai6=4f dxdy[4(qr)xy2e—4(qr)xye— 2r?x2ye+ 2r2x?e
to subtracting the poles ia In the NDR schemd,; is given S

by” +r2xye—2r2xe+3yC—CJ[(1+ €)[(e€)
2e~—1-¢€
4= = 72T ()P expl yee) (1 e)expli me) (1 f Xexpyge) T C T, @7
) L)\jl L L [ ) mZ 45 Ai23:—Ai26:8(qr)jsdxdy[xye(1+e)F(e)
—r | [X(A=x)]""¢re— +i ,
Yp)L5 O[ (1-x)] X(1—%) o i s
X ex e)ucC 7€, .
2.3 YEE) M
wherer is the four-momentum of theoff-shell) gluon, m, is Aiys= _g(qr)f dxdy[x(1—x)e(1+ )T (€)
the mass of the charm quark propagating in the loop and the S
termid is the “e prescription.” The free index3 will be X expl yee) u2C 1] 2.9

contracted with the gluon propagator when inserting the
building block into the two-loop diagrams in Figs. 1 and 2. whereC andC 1" are given by
Note thatl ; is gauge invariant in the sense thlﬁlB:O.

Next, we give the sum of the two diagrams in Fig. 6, C=m§—2xy(qr)—x(1—x)r2—i5,
using the decomposition i18]. We get(denoting this build-
ing block byJ,,z) Cle=—expime)[x(1-x)] "¢
2 —1-€
eg.Q _ _ , 2y(qr) me .
JaB:TWZ“ E(a,B,r)Ais+E(a,B,q)Aig X T “xaexn 10
r, s (2.10
—E(B,r,q) —=Aiy;—E(a,r,q) —=<Ai . L . . .
(B.r.Q) (qr)~ % (ar.q) (r)= % The range of integration inx(y) is restricted to the simplex
N S, i.e, 0=sy<(1—x) and Os=x=<1.
—E(a,r,q)&Aize L=, (2.4) Due to Ward identities, not all thai are independent.
(qr) 2 The identities given in Ref{18] in the context of the full

. . . theory simplify in our case as follows:
whereq is the four-momentum of the photon. The indexn

Eq. (2.4) is understood to be contracted with the polarization q°J,5=0, rBJaﬁzo_ (2.12
vectore of the photon, while the indeg is contracted with
the gluon propagator in the two-loop diagrams in Figs. 3 and'hey allow us to expresAis andAig in terms of the other

4. The matrixE in Eq. (2.4) is defined as Ai which have a more compact form. These relations read
E(a,B,1)=YaVp! = Yol pT ¥5(ra) =¥Qap- (2.5 Ais= Al g,

In a four-dimensional context the&e quantities can be re- ) r2 )

duced to expressions involving the Levi-Civitansor, i.e., A|6=(qr)A|25+A|26. (212

E(a,B,7)=—le,5,,7"vs (in the Bjorken-Drell conven-
tion). The dimensionally regularized expressions for ffie  Of course, Eq(2.12 can be checked explicitly for all values
read of €, using partial integration and certain symmetry proper-
ties of the integrand.
We are now ready to evaluate the two-loop diagrams. As
5The fermion-gluon and the fermion-photon couplings are definedoth| g andJ, s are transverse with respect to the gluon, the
according to the covariant derivatii@= 9+ ig<(\5/2)AB+ieQA gauge of the gluon propagator is irrelevant. Also, due to the
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absence of extra singularities in the limit of vanishing

strange quark mass, we set=0 from the very beginning

(the question of charm quark mass “singularities” will be

discussed later

As an example, we present the calculation of the two-loo

diagram in Fig. {c) in some detail. Using; in Eq.(2.3), the
matrix element reads

i
M[Fig. 1(c)]=7—€Qq0sCeI (€)exp(2yge)

X (1—e)expime)

A o
X(4r) fwu(p )yﬁ(p’T)zé

'é_f 2 1
Xm_—r)z(rﬁ/—f yﬁ)Lu(p)r_Z

1 [x(1—x)]*"¢
x fo dx{rz—mg/[x(l—x)]+i5}é'

(2.13

In Eq. (2.13), u(p’) andu(p) are the Dirac spinors for the
s and theb quarks, respectively, an@r=4/3. In the next

step, the four propagator factors in the denominator ar

Feynman parametrized as

1 _T(3+e)
D,D,D;D:  TI'(e)

j dudvdwdyy 18(1—u—v—-w-y)
[D1U+D2U+D3W+D4y]3+e '

(2.14

where D;=(p’'—r)?>, D;=(p-r)? Dz=r? and

CHRISTOPH GREUB, TOBIAS HURTH, AND DANIEL WYLER

2
mC

é=m§v(1—v)u— X(1=x)

(1-v)y+is. (2.17

dn what follows, the ultraviolek regulator remains a fixed,

small positive number.

The central point of our procedure is to use now the
Mellin-Barnes representation of the “propagator”
1/(k>—M?)* [19-27 which is given by

1 1 1 1
(K2=MD ~ (KO M(N) 27

fds(—Mz/kZ)Sr(—s)
Y

XT(N+s), (2.18
whereA>0 andy denotes the integration path which is par-
allel to the imaginary axigin the complexs plane hitting
the real axis somewhere between and 0. In this formula,
the “momentum squaredk? is understood to have a small
positive imaginary part. In Ref§19,21] exact solutions to
Feynman integrals containing massive propagators are ob-
tained by representing their denominators according to the
formula (2.18 with subsequent calculation of the corre-
sponding massless integrals.

In our approach, we use formu(@.18 in order to sim-

%Iify the remaining Feynman parameter integrals in Eq.

(2.16. We represent the factors@3< and 1C*2¢ in Eq.
(2.16 as Mellin-Barnes integrals using the identifications

2
C

2
M X(1—Xx)

kK2emiv(1—v)u; (1-v)y. (2.19

By interchanging the order of integration, we first carry out
the integrals over the Feynman parameters for any given
fixed value ofs on the integration patly. These integrals are

D4=r2—m§/[x(1—x)]. Then, the integral over the loop basically the same as for the massless ¢age O [in Egs.

momentunr is performed. Making use of thé function in
Eq. (2.19, the integral ovem is easy. The remaining vari-
ablesu, v, andy are transformed into new variables,
v’, andy’, all of them varying in the interval0,1]. The
substitution reads

u—v'(1-u’), v—v'u, y—(1-v')y'. (2.15

(2.16 and(2.17] up to a factor(in the integranyl of

S

m2 S
exp(i ws)<#) . (2.20

b

uvx(1l—x)

Note that the polynomial®,, P,, andP5 have such a form
that the Feynman parameter integrals exist in the limit

Taking into account the corresponding Jacobian and omittingn.— 0. If the integration pathy is chosen close enough to

the primes() of the integration variables this leads to

1
M[Fig. 1(c)]= 5,78 QudsCrl (26)expl 2 yge) ¢

XeX[(Ziﬂ'e)(l—E)j dxdudvdy

X[x(1=x)] ey H(1-v)vu(p’)

C 1 1
PlA_+P2A—+ P3W U(p),

X CZs CZe

(2.19

the imaginary axis, the factor in ER.20 does not change
the convergence properties of the integrals, i.e., the Feynman
parameter integrals exist for all valuesofying on . It is
easy to see that the only integrals involved are of the type

1 1
f dwwP or j dwwP(1-w)%=g8(p+1q9+1)
0 0

_I'(p+DI'(g+1)
~ T'(p+q+2)

(2.21)

For thes integration we use the residue theorem after closing

whereP,, P,, andP3 are matrices in Dirac space dependingthe integration path in the rigisthalf plane. One has to show

on the Feynman parametetsu, v, y in a polynomial way.
C is given by

that the integral over the half circle vanishes if its radius goes
to . As we explicitly checked, this is indeed the case for
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(m2/m2)<1/4, which is certainly satisfied in our application. nary part of diagram (t) shows that the exact and the ex-
The poles which lie inside the integration contour are locategpanded resulfup to Z° terms in these examples agree at the
at 1% level. In addition, we checked that the imaginary part of
the sum of all diagrams coincides numerically with the re-
$=0,12,34..., sults of Soare$23,8] (note, however, that in the physical
region only the diagrams in Figs. 1 and 3 contribute to the
imaginary parnt In Ref.[8], Soares applied dispersion tech-
s=1-€, 2-¢ 3-¢ 4-e€ ..., niques to calculate the real part. However, using the imagi-
nary part in the physical region, only the real part of the
diagrams in Figs. 1 and 3 is obtained. We have checked that
: our numbers for these two sets of diagrams indeed coincide
(222 \jith the results of Soares. However, the contribution of the
hediagrams in Figs. 2 and 4 is missing i8] because the ad-
ditional unphysical cuts were not taken into account. We also
note that a separate consideration of the subtraction terms
Hvould be required to obtain the corregtdependence.

We mention that the Dirac algebra has been done with the
algebraic progranRebpucE [24]. The Feynman parameter
integrals and the determination of the residues have been
done with the symbolic programaprLE [26].

s=1—2¢, 2—2¢, 3—2¢, 4—2e,...

The other two-loop diagrams are evaluated similarly. T
nontrivial Feynman integrals can always be reduced to thos
given in Eg.(2.21) after some suitable substitutions. The
only change is that there are poles in addition to those give
in Eq. (2.22 in those diagrams where the gluon hits the
b-quark line; they are located at

s=1/2—2¢, s=3/2—2¢, s=5/2—2¢, We now give the results for the diagrams shown in Figs.
1-4. As already mentioned, the individual diagrams in each
s=7/2—2e, ... . (2.23 figure are not gauge invariant but only their sum is. Note that

the leading ultraviolet singularity in the individual two-loop
The sum over the residues naturally leads to an expansion iliagrams is, in general, of ordere?/ In the gauge-invariant
z=(m?/m2) through the factorrg?/m3)s in Eq. (2.20. This  sumsM,(i), the 1k? cancel and we are left with &/poles
expansion, however, is not a Taylor series because it alsonly. The results reafusingz=(m./m;)? andL =Inz]
involves logarithms of, which are generated by the expan-
sion in €. A generic diagram which we denote Iy has,

then, the form 1 /my)\ % 1
M,(1)= —366(7) + 574l 37 (540+216L)2
m2
_ nj-m __¢€
G=cot 2 con?'iN2, 2=15, (224 +(216m2— 540+ 216 — 216.2) 2

where the coefficientsy andc,, are independent of. The
power n in Eqg. (2.29 is, in general, a natural multiple of
1/2 andm is a natural number including 0. In the explicit
calculation, the lowest turns out to ben=1. This implies
the important fact that the limiin.—0 exists; thus, there
cannot be large logarithm$rom a small up-quark magn
these diagrams.

From the structure of the poles one can see that the power %s
m of the logarithm is bounded by four, independent of the X CrQu(sY|O7lb)uee. 2.29
value of n. To illustrate this, taken=100 as an example.
There are three poles located near=100, viz., at

— (1442 + 136+ 240L — 144.2) %]

i
+ 1ol 1- 182+ (18-36L) 72+ (2L~ 20)°]

s=100, s=100—¢, s=100-2¢, respectively [see Eq. 5 (my| % 1
(2.22]. Taking the residue at one of them, yields a term M2(2)=r—§(— +m[13+(36772—108)z
proportional to 1¢?> coming from the remaining two poles. In €\ K

addition, there can be an explicite/term from the integra- 53 .
tion of the two-loop momenta. Therefore, the most singular — 1447727+ (648- 648 +108.7)z
term can be ¥*. Multiplying this with z® in Eq. (2.20 leads

to z}%n™z wherem can be four at most.

We have retained all terms up to=3. Comparing the
n=3 numerical result with the one obtained by truncating at
n=2 leads to a difference of about 1% only.

We have made further checks of our procedure. For ex- %s
ample, we have calculated diagrarb)jldirectly. Expanding T CrQu(s7/07b)ree. (2.29
the result, we reproduce the expressions obtained by apply-
ing the Mellin-Barnes integral at the Feynman parameter—
level as described above. A similar exercise for the imagi- 6Some checks have been done witincer [25].

+(1207%— 314+ 121 +288.2) %]
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M2(3)=[—i(% _4E+ i{—45+[72—12772 5Zps= — 2 Cp\ 6Zp= 2 C,
8el u 48 48me 167e
—96¢(3)+(96—247?)L+12L.2+8L3]z . 8
+[ 60+ 2472 — 96¢(3) + (24— 24m?)L — 242 5227:@( 6Qu~ §Qd) Ce- (2.30
+8L%)z2—(68—48L)z% Defining
M, =(s7]6Z,;,0;|b), (2.31)

i
+—=[—3+(24—27%+6L+6L?)z
12 , . I .
we find the following contributions to the matrix elements

+(6—2m°—12L+6L2)z%+1272%] as 1[mg\ 2
Mas=— 75~ QdCr_ m (¥/07|b) tree

o
XfCFQu<S7’|O7|b>tree- (2.27) 3ag 1(my) 2%
Mae=75—QuCr_ m (s707|b) rees
m,\ % 1
My(4)= __(_b) _—{21+[—24+2772 as[3Q,Cr Q4Cr\1
2 de\ u 24 27:;5(%_ 18 )E<57|O7|b>tree- (2.32

+24¢(3)— (12— 67%)L+2L%]z
) ) 412 We note that there is no one-loop contribution to the matrix

+[—12-47°-48((3) +12L —6L"+2L"]z element forb—sy from the counterterm proportional to

C,(1/€)O%y where the evanescent opera®f} (see, e.g.,

+(—6+672—24L+18.%)7% the last Ref. if11]) reads

1
5= 5 O2(7u= Y1u YY)~ Oz- (2.33

a
XfCFQu<SV|O7|b>tree- (2.28

In these expressions, the symhjpdenotes the Riemang C. Renormalized contribution proportional to C,

function, with{(3)~1.2021,Q,=2/3 andQ4= — 1/3 are the Adding the two-loop diagrams from Sec. 2 PEgs.
charge factors for up- and down-type quarks, respectively(2.25—(2.28] and the counterterms from Sec. 2[Eq.
The matrix elementsy|O;|b)yec is the O(a?) tree-level  (2.32)], we find the renormalized contributidvl ,:

matrix element of the operat@>-; its explicit form is
Mo=My(1)+My(2)+My(3) +My(4) + Most+ Mot My;.

(2.39

e ___
<S'Y|O7|b>tree: mbﬁu(pl)éqRu(p)- (2.29

Of course, the ultraviolet singularities cancelMy. Insert-
ing Cr=4/3, Q,=2/3, andQ4= —1/3, we get the main re-
In formula (2.29 m, should be identified with the running sult of this paper, which in the NDR scheme reads
massmg(u«) in principle [see Eq.(1.2)]. However, as the
corrections toO, are explicitly proportional taxs, my, can
be identified with the pole mass as whdipart fromO(ag)
corrections which we systematically neglect

M2=<S’Y|O7|b>tree:l_s( /zmﬂ"’rz)' (2.39
™ M

with

B. Counterterms 416

/Zzﬁ' (236

The operators mix under renormalization and thus the
counterterm contributions must be taken into account. As we
are interested in this section in contributionster sy which 2 232 )
are proportional ta&C,, we have to include, in addition to the RHZ_%{_%% 144727+ [ 1728~ 180m"— 129€/(3)
two-loop matrix elements dE,0,, also the one-loop matrix
elements of the four-Fermi operatorsC,5Z,;0;
(j=1,...,6) and thedree-level contribution of the magnetic
operatorC,45Z,705. In the NDR scheme the only nonvanish-

+(1296— 3247?)L+108.2+ 36L°%]z
+[648+ 727%+ (432— 2167%)L + 36L%]22

ing contributions tob—sy come from j=5,6,7. (For +[ — 54— 847?+ 1094 — 756.2]2%}, (2.37
j=5,6 the contribution comes from the diagram in which the

internalb quark emits the photonThe operator renormal- 167 ) )

ization constantsZ;; are listed in the literaturgl1] in the |mr2=ﬁ{—5+[45—377 +9L+9L7]z

context of the leading order anomalous dimension matrix.

The entries needed in our calculation are +[—37%+9L2%)22+[28—-12L]2%. (2.39
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FIG. 7. Real and imginary part of, in the NDR schemégfrom
Egs.(2.37) and(2.38)].

Here, Re, and InT, denote the real and the imaginary part
of r,, respectively. The quantityz is defined as
z=(m2/m2) andL=In(2). In Fig. 7 we show the real and the
imaginary part ofr,. For z=1/4 the imaginary part must

vanish exactly; indeed, we see from Fig. 7 that the imaginary

part based on the expansion retaining terms up’tmdeed
vanishes ar=1/4 to high accuracy.

Ill. O(as) CORRECTIONS TO Oy

The virtual corrections associated with the oper&eras
shown in Fig. 8b) (together with the self-energy diagrams
and the countertermsave been taken into account in the
work of Ali and Greub, see, e.§3,4,14, wherem,#0 was
retained. Since we neglest; in this work, we are interested
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OB

(a) (b)

FIG. 9. Contributions 0Dg to b— sy. The crosgx) denotes the
possible place where the photon is emitted. Figur@s &d 9b)
are separately gauge invariant.

Og

traviolet origin. The additional dependence, which is gen-
erated when expanding i) is canceled at the level of the
decay width together with the 44 poles when adding the
bremsstrahlung correction due to the square of the diagrams
associated with the operator,. As all intermediate formulas
are given in the literature, we only give the final result for the
a corrections(virtual+bremsstrahlungto the decay width.
Denoting this contribution byl's; we get, in the limit
mg=0,

where the lowest order contributid?, reads

as

16 4x?
37\ 3

3 3

m,

r77=r97[1+ 4|n7”, (3.3

2 3
Mp()m
0 b b ff
T 3o |GEMCY [P tem. (3.4
For later convenience, we can formally rewrite

(sy|O4|b)yit in Eq. (3.2) in such a way that its square repro-
duces the result in Eq3.3). This modified matrix element,

only in the limitms— 0. Because of the mass singularities in denoted by(sy|0|b),.q then reads

the virtual correctiongwhich will be canceled when also
taking into account bremsstrahlung correctipnse only
keepmg as a regulator.

Including the lowest order contribution, the result then

becomegusing p=(ms/m,)?] in the NDR scheme

<S'y|o7|b>vin:<s'ylo7|b>tree[1+Kg]i (3.0
~ ag 47T,LL2 ‘IR
nga(m—g> F(l+€|R)
2= Zinp—Inp—— — g+ 4In™®
np— —Inp—Inp——— n—:.
P €IR p P €IR M
(3.2

Note that Eq.(3.1) contains all the counterterm contribu-

My
/7|n—+l’7
M

(64
<sy|o7|b>rad=<sy|07|b>m{1+ o
35
with

8
/7= r7=§(4—772). (3.6)

3
IV. VIRTUAL CORRECTIONS TO Og4

Finally, we consider the contributions be— sy generated
by the operatoOg: i.e.,
Mg=(sy|Og|b). (4.9)

The corresponding Feynman diagrams are shown in Fig. 9.

tions. The 1é poles in this equation are, therefore, of in- The sum of the three diagrams in Figayields
frared origin as indicated by the notation. The last term in the

curly bracket in Eq(3.2) represents a. dependence of ul-

b ¢
7

g
() (b)

FIG. 8. Virtual corrections t®-.

4
S

b Eys
07

QdCr
2

X<57|O7|b>treev
while the diagrams in Fig.(®) give

_ Q4Ck ag 6 2
o |~ ¢~ 2l+2mt12in(my/u)

><<S'Y|O7|b>tree-

S|

“ L ain(mylu) -
e R +2In(my/p)—ia

Mg[Fig. X(a) ]=

(4.2

Mg[Fig. A(b)]

4.3
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Thus, the sum of all the six diagrams is

Crad 12
Mg[ Fig. 9]= Qi; f - ?—33+2772+24|n(mb/,u,)
—6im <SV|O7|b>tree- (4.9

There is also a contribution from a counterterm; it reads

Mg7= 6ZgASY|O7/b)1ree- (4.5

The renormalization constant
5Zg=—2C ! 4.6
o= CrQu_ (4.6)

has been calculated in the literaturgl]. The sum of all
contributions leads to the renormalized resvl:

as( My
M8:<S'y|o7|b>treeﬂ /8|n7+r8 , (4.7)
with
/a= 32 = 4 334+ 272 6i 4.8
/g _3, rg——2—7(— + 27— |’7T). ( )

V. RESULTS AND CONCLUSIONS

We have calculated the virtual correctionsite> sy com-
ing from the operator®,, O;, and Og. The contributions
from the other four-Fermi operators in E(..2), which are
given by the analogous diagrams as shown in Figjs=(4)
were neglected, because they either vani€h)(or have

Wilson coefficients which are about 50 times smaller thang
that of O, while their matrix elements can be enhanced a
most by color factors. However, we did include the nonvan-y
ishing diagrams 0Dg and Og where the gluon connects the
external quark lines and the photon is radiated from th
charm quark because these corrections are automatic
considered whe@<" [defined in Eq(1.3)] is used instead of
C,. As discussed in Sec. lll, some of the Bremsstrahlung
corrections to the operat@-, have been transferred into the
matrix element folb— sy in order to present results which

are free from infrared and collinear singularities.

The sum of the various contributions derived in the pre-

vious sections yields the amplitudg(b—sy) for b—sy.

The result can be presented in a convenient way, following F=
the treatment of Burast al. [6], where the general structure
of the next-to-leading order result is discussed in detail. Wi

write
4GEN, -
A(b—>$7)=——\/E D(sy|07(1)|b)yee,  (5.1)
with D
- as(u) mp
D=Ci(w+ — =2 | C¥ () /iin—2+ %M |,
(5.2)
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and where the quantities; andr, are given fori=2,7,8 in
Secs. I, lll, and IV, respectively. For the full next-to-leading
logarithmic result one would need the first term on the right-
hand side(RHS) of Eq. (5.2, C$ﬁ(,u), at next-to-leading
logarithmic precision. In contrast, it is consistent to use the
leading logarithmic values for the other Wilson coefficients
in Eq. (5.2). As the next-to-leading coefﬁcieltil?ff is not yet
known, we replace it by its leading logarithmic value
c¢" in the numerical investigations. The notation
(s¥]O7(w)|b)yee in Eq. (5.1) indicates that the explicit fac-
tor m, in the operatoiO; is the running mass taken at the
scaleu.

As the relevant scale forlaquark decay is expected to be
u~mgy, we expand the matrix elements of the operators
aroundu=m; up to orderO(«g). Thus, we arrive at

4Ge\,
A(b—sy)=— D(s¥/07(Mp)[D}yee, (5.3
V2
with D
as(Mp) My
D=C(w)+ — 2 (CE"’eff(mS?)eﬁln;
+ c§°>e“ri), (5.9
with the quantitiesy(9°"
NYM=/1+857 (5.9

being just the entries of th@ffective leading order anoma-
lous dimension matrix6]. As also pointed out in this refer-
ence, the explicit logarithms of the form(my)In(m,/w) in

g. (5.4 should be canceled by th@ dependence of
(0)eff

tC7 (u). This is the crucial point why the scale depen-

ence is reduced significantly as we will see Idter.
From A(b—sv) in Eq. (5.3, we obtain the decay width

e‘Fvirt to be
ly

5 2\ 2
mb,poIeGF)\t Oem

virt _
r 3274

F|D|?, (5.6)

where we discard term @(«?) in |D|2. The factorF in Eq.
(5.6) is

=l-z——. (5.7)

(mb(ﬂzmb))z_ _ 8 ag(my)
mb,pole

eI'o obtain the inclusive rate fdB— Xgy consistently at the

next-to-leading order level, we have to take into account all
the bremsstrahlung contributions. They have been calculated
by Ali and Greub for the operatof3, andO, some time ago

[3], while the complete set has been worked out only re-
cently [4,14,13. Here, we neglect the small contribution of
the operator©; — Og as we did for the virtual corrections;

"As we neglect the virtual correction db;—Og, there is, of
course, a small left-oves. dependence.
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FIG. 10. Branching ratio fob— sy based on the leading loga- FIG. 11. Branching ratio fob—svy(g) neglecting the virtual
rithmic formula in Eq.(5.12. The upperlower) solid curve is for  corrections 0fO, andOg calculated in the present paper. The upper
u=my/2 (u=2m,). The dotted curves show the CLEO boufigls (lowen solid curve is foru=my/2 (w=2my). The dotted curves

show the CLEO boundg2].

i.e., we only conside©,, O;, and Og. The corresponding

bremsstrahlung formulas are collected in Appendix B. zontal dotted curves show the CLEQu1limits for the
In order to arrive at the branching ra8&xb—sy(g)), we  branching ratiolB(B— Xsy) [2].
divide, as usual, the decay widthl'(B—Xsy) In Fig. 10 we show the leading logarithmic result for the

=TVt Tbremspy the theoretical expression for the semilep-branching ratio ob— sy, based on the formula
tonic decay widthl'g; and multiply this ratio with the mea-

sured semileptonic branching ratiy= (10.4+0.4)% [27], _ 6a
e, B(b—sy)*®M=— =L —[CP¢*By. (5.12
wg(me/mp)
B(b—sy(g))= - BRy. (5.9 Similarly, Fig. 11 exhibits the results also taking into account
sl the bremsstrahlung corrections and the virtual corrections to

O without including the virtual corrections @, and Osg.
We can reproduce this result by putting
/»=r1,=/g=rg=0 in our formulas. As noticed in the lit-

The semileptonic decay width is

GEMb,pord Verl” 2a (my) e :
Slzﬁrg(mc/mb) 1_§—Wf(mc/mb) 1 erature[3,15], the u dependence in this case is even larger

than that in the leading logarithmic result shown in Fig. 10.
(5.9  Also, the experimentally allowed region is shown.

The theoretical results shown in Figs. 10 and 11 allowed
for a reasonable prediction of the branching ratio with a large
error which was essentially determined by jhelependence.
As we see, they do agree well with experiment but with large

and an approximate analytic form for the radiative correctionuncertamtles'

function f(u) has been found ifi28] to be

where the phase space functig(u) is defined as

g(u)=1—8u?+8u®—ué-24u®inu, (5.10

rrrr [ rrrr g

|

3
(1—u)2+§. (5.11)

f(u)=<w2—3z1

w

In Figs. 10—12 we compare the available leading-log re-
sults and our new results for the inclusive branching ratio for
B— Xgvy as a function of the top quark mass. A rather crucial
parameter is the ratim./m, ; it enters bothp— sy through
the virtual corrections ofO, and the semileptonic decay
width through phase space. It can be written as
m./my=1—(my,—m¢)/m,. While the mass difference
mp,—m is determined quite precisely through theng/ ex-
pansion[29] or from the semileptonib—c spectrum(we
u_semb_mC:3'40 G(_-:'V[30]), the b-quark mass is not pre- formulas presented in this section. The band between the dash-
cisely known. Using for the b-quark pole mass oteq curves is obtained by taking the expliait factors in Egs.

Mp, poie=4.8+0.15 GeV one arrives ah./my=0.29+0.02.  (5.4) and(5.9) at scalem, , while the band between the solid curves
In the plots the central values fon, ;e and m./m, have  corresponds to taking, at the(variable scalew. In both cases the
been used. Moreover, we put,=Vs andV,,=1 and also  upper (lower curve corresponds to evaluating the Wilson coeffi-
use the central value for the measured semileptonic branclients at the scalg=m,/2 (2m,). For more details see text. The
ing ratio Bg3=10.4% in Eq.(5.8). In all three plots the hori- dotted curves show thectCLEO boundd2].

[AV]

BR(B ——> X, 7) * 104

poaa i én e aas

oo b Py o e ey

0
150 160 170 180 190
mtop [Gev]

FIG. 12. Branching ratio fob—sy(g) based on the complete
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In Fig. 12, finally, we give the branching ratio based on gW:§MV+@W,
formula (5.8) which includes all virtual corrections calcu-
lated in the present paper. Because all the logarithms of the
form ag4(my)In(m,/x) cancel as discussed above, theale-
pendence is significantly reduced in our improved calcula- o
tion (Fig. 12; the bands of scale uncertainty are rather nar- 9,.,9""=0. (A1)
row. To illustrate the remaining renormalization scale
dependence, we present two “scenarios” which differ byThe y matrices in four dimension$*) and d—4) dimen-
higher order contributions. First, we take the explieitfac-  sjons () are defined byg“*y, andg“*y,, respectively.
tors in Egs.(5.4) and (5.9 at u=m, as indicated in these Assuming the usual anticommutation relations of the
formulas; varyingu between (n,/2) and (2n) in formula  d-dimensional Dirac matrices in terms of thedimensional
(54) leads to the dash-dotted curves in Flg 12. Second, Wehetric tensorglw, one gets the fo||owing rules fo~«yl‘° and
evaluate the explicityg in Egs.(5.4) and (5.9 at the(vari- Y
able scalew. Varying again the scalg between (n,/2) and
(2 my) yields the solid lines in Fig. 12. In both scenarios the  ;=~u = _ s=ur SHOAV _ofuy  fmu A
upper(lower) curve corresponds ta=my/2 (u=2m,). We royi=2gt, {hyh=20 {5 y1=0. (A2)
mention that thew band is larger in the second scenario and ) ) )
it is, therefore, safer to use this band to obtain a feeling forl "€ cOmmutation relations witlys are postulated to be
the remaining scale uncertainties. _ R

While this result shows that the theoretical accuracy can {v*,vs}=0, [¥*,¥s]=0, (A3)
be strongly improved by the next-to-leading calculations, it
would be premature to extract a prediction for the branchingyhich is equivalent to definingys by the product
ratio from Fig. 12(with obviously a small errgrand claim, i70Y17273- This is the only way known to treats without
for instance, a discrepancy with experiment. This only will running into algebraic inconsistenciigl]. Finally, we men-
become possibléwith high theoretical precisionif also  tion that the chiral vertices id dimensions can be defined in

$ﬁ is known to next-to-leading logarithmic precision. This different ways, all having the same formal limit when
additional effect will, essentially, shift the narrow bands ind—4. For left- and right-handed currents we follow the
Fig. 12, without broadening them substantially. The drasticcommon practice and use
reduction of the theoretical uncertainties shows that signifi-
pant experimental _improvz_ament_s are necessary to extract the F#L=Ry* L and 7*R=Ly*R. (A4)
important information available in these decays.

AQJMAQJW:‘L g,uvg'uy:d_‘]'r

There are several possibilities to define the opera®grand

Og in d dimensions(with identical four-dimensional limjt
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APPENDIX A: O, CONTRIBUTION

i
wY— _[Tou Ty
IN THE *t HOOFT —VELTMAN SCHEME o=zl (AG)

In this appendix we present the results for the matrix el- ) o _ _ )
ements of the proceds— sy based on the operat@,. In A difference in the definition will result in a difference of the

addition to the two-loop diagrams shown in Figs. 1-4, wefinite terms in the one-loop matrix elements of these opera-

also give all the counterterm contributions which multiply tOrs- . _
the Wilson coefficienCs. As the calculation of the one-loop matrix elements of

O, andOg is relatively easy, once an exact definition of the
operators has been specified, we give in this appendix only

1. The 't Hooft—Velt h oS
€ thooft—veliman scheme the result for the two-loop contribution of the opera€y.

In the 't Hooft—Veltman schemgl3], the d dimensions
are split into 4 andd—4; the corresponding structures are

distinguished by no superscript, by a tilde, and by a hat, 2. One-loop building blocks

respectively. There are Lorentz indices dn 4 andd—4 The principal steps of the calculation in the HV scheme of
dimensions and the corresponding metric tensgys, the O, contribution to the matrix element fdr— sy are the
9,,, andg,,. While all the y matrices are taken id di-  same as in the NDR scheme. Therefore, we again start with

mensions, their indices are split in 4 add-4 components, the one-loop building blocks. For the building blotk in
according to the rules Fig. 5, we get in the HV scheme
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_ s 2¢ ; jl _ —€ 1 mb e
lp=— g2l (e)uexplyee)explime) 0dX[X(l x)] M2(1)=) 35 216[40 (540+216L)z
) m? —e , +(216:72—540+216L—216L2)22
X[ 12— ——=—+i8| | X(1=X)(r "y, 1%y
X(1=X) (L=X)rgr 3= 17%) ~ (144m2+ 136+ 240L — 144.2)2%]
Me ~ ~ ~ . T
+5 (Yt YeYy) L (A7) +E[l—182+(18—36L)22+(24L—20)z3]
while the building blockl,,z in Fig. 6 reads X%SC,:Qd<Sy|O7|b)tree, (A10)
_ engu ~ . . 1/m —4e
Iup= 5321+ o) R7u| E(@ B Ais+E(a,B,0)Alg M(2)= [ 18( b b o~ 17+(367°- 1097
—E(B,r, Air—E(a,r,q) ——Ai —1447°7%%+ (648— 648 +108.2)Z°
(B q)(qr) 237 (CE q) (qr) 25
egQ, 1 + (12072 — 314+ 12L +288.2) 7]

“E(@ra) gy )A'ze}V L5 Mg (qni s

X{'qgaﬁ_ ’Yﬁd]ra_ ’}’afqﬁ_ ’)/a’}/ﬁfq

~ N
+Ya7p(ANIYHLSA. (A8)

The quantitiesE and Ai are given in Eqs(2.5 and (2.6)—
(2.9, respectively. As the\i are the same as in the NDR
scheme, the Ward identities in E@.12 still hold. The ad-

ditional termA in Eq. (A8) reads

A= f dxdy(qr)C 1 ¢el'(e) uceee, (A9)
S

whereC~1"€ and the integration rang® are defined in Eq.
(2.10.

We note that the terms linear m; in Eqs.(A7) and(A8)
are absent in schemes wheyg has formally the same anti-
commuting properties as in the four-dimensional Dirac alge-
bra. Especially, they are absent in the NDR scheme. How-

ever, working consistently in the HV scheme, we have to M,(4)=

retain these extra terms.

In order to make the comparison with the NDR calcula-
tion easier, we discard in a first step these enttderms and
denote again the corresponding results My(i) where
i=1,2,3,4 numbers the figure in which the corresponding
diagrams are shown. In subsections 3, 4, and 5 of Appendix
A, the terms linear irm. are left out; they are denoted by
M5(i) and collected in subsection 6 of Appendix A. Those
counterterm contributions involving evanescent operator
which generate only terms linear m, are also discussed
there.

o
><?SCFQtl<S')’|O7|b)treev (A11)

1(my\ 7% 1 )
Mao(3)=|—gol —| +zgl—93/2+[72-127

8el 1
—967(3)+ (96— 24mw?)L+12.2+8L3%]z
+[ 60+ 2472 — 96¢(3) + (24— 247?) L
—241.2+8L3%)z%— (68— 48L)z%

aw
+ 1—2[—3+(24—2772+ 6L+6L?)z
+(6—2m2—12L+6L2)z2+127°]

a
X?SCFQU<S')’|O7|b>treev (A12)

L(my) "% 1 93/4+[ — 24+ 2 72
de\ 1 24 [ T

+24,(3)— (12— 67%)L+2L%]z+[ — 12— 472
—487(3)+12L—6L%+2L3%]7?

+(—6+672—24L+18L%)7%)

a
X?SCFQU<S7’|O7|b>tree- (A13)

A comparison with the corresponding NDR scheme expres-
sions in Sec. 2 A shows that the imaginary parts are identical
for each seM,(i). This property has to be satisfied because

We now give the results for the two-loop diagrams inthese imaginary parts can be derived by cutting rule tech-
Figs. 1-4 discarding the linear termsrim, in the one-loop  niques where no regularization is necessary. As expected, the
building blocks in Eqs(A7) and (A8). The results read, us- only difference between the two schemes is in the
ing z=(m,/my)? andL =Inz mg—independent terms of the real part.

3. Regularized two-loop contribution of O,
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4. Counterterms 6. Terms linear in m¢

There are several counterterm contributigmaltiplying Finally, we collect the lineam, terms of the two-loop
C,) which all have to be taken into account. As noted, in thisdigrams which stems from in the building blocks in Egs.
section we only give the counterterms whose effects do notA7) and (A8). We obtain
lead to terms linear im.. There is just one such counter-
term coming from §Z,;0,. The operator renormalization M°(1)=—i
constantZ,; [11] reads 2 24

2 m .
~+17-8In— +47i
€ M

ag(3 1 as
0Zy7= 7T_Z<§QU+ 3_6Qd> Crk. (A14) X?CFQd<S7’|Or7]ﬁW| b>tree: (A22)
Defining ¢ 112 My | s ne
M32(2)=— 24 ;—’_ 11_8'”7 ?CFQd<57|OYRW| b)trees
M7=(sv]8Z,70+|b), (A15) (A23)
the counterterm contribution is given by ME(3)+ MS(4) = — 1 z+3—8|nﬁ}
2 2= "4l e “

as( 3QuCr  QqCr
7= +

1
8 36 )E(S')’|O7|b>tree- (A16)

o
X ?S CFQU<S7’| Ogevv| b)treev (A24)

5. Renormalized contribution proportional to C, where the newly induced magnetic type oper&@8f” in Eq.

Adding the two-loop diagramgEgs. (A10)—(A13)] and  (A24) reads
the countertermfEg. (A16)], we arrive at the renormalized

contribution which we denote by, 01— my( ) € S0, bFAY (A25)
R 17 '

M2=M3(1)+My(2)+My(3)+My(4)+Myy.
(A17)  The operator©’ or 072" which only enter in intermediate
steps, contain an additional left- or right-handed projection

Inserting Ce=4/3, Q,=2/3, andQq=—1/3, we get in the  operator after ther,, term in Eq.(A25).
HV scheme In addition to these two-loop diagrams, there are two
counterterms proportional to evanescent operators which
lead to terms linear inm.. The first (denoted by
1/e03 rerm) COMes from one-loop gluon corrections to the
four-Fermi operatoiO, and is given explicitly in Ref[32].
with As we use this operator only as an insertion into the matrix
element forb—sy, we adapt the general color structure
given in[32] for this special case. In our notation, this coun-

. (A18)

Ag , my
My= (S'Y|O7|b>treeﬂ /2|n7 +r;

/2:48_116’ (A19) terterm takes the form
1 acl
2 ;OzelvFermlz - 8’:’6 Ce By (A26)
RerZ=ZT3{ — 860+ 144727%2+[1728- 18072 — 1296/(3)
with
+(1296- 3247?)L + 1082+ 36L%]z+ [ 648+ 7272
+(432- 216m?)L +36L.3]2%+ [ — 54— 84m?+ 1092 Bay=—12¢(I ol + T 0T ) =177, 7u7s
—756_2]23}, (A20) ®:)7r7;p3’ﬂ7’5+23’#® :}’#_ZA')’MVS@’ A')’#')’S]
—[yuy -yl =y, y,l @I _yPy*
167
Imrzzﬁ{—5+[45—3772+9L+9L2]z+[—3772 Ty, v, @Yy T _+T_@vy,y,l v ¥*],

(A27)
+9L2]2%+[28—12L17%}. (A21)
whereFiz'h(lt v5)/2. Its contribution to the amplitude

Again, Re, and Int, denote the real and the imaginary part for b—sy is
of r,, respectively. Comparing with the final renormalized L
expressionM, in the NDR scheme, given in Sec. 2 C, we Mc) as
coﬁclude agaziin that the scheme depgendence only affects ihM2 1 four Fermi = (E_ZIn?)?CFQ“@ﬂO;eW] b) ree-
mg-independent term in the real part 1of. (A28)
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The second counterternidenoted by Ogc,,,) corre-  cients have to be zero, as one can easily see. Third, the

sponds to the ¥ pole term inm, term in the one-loop build- absence of a Inf) term in Eq.(A32) indicates that the four-

ing block 15 in Eq. (A7). It can be written as Fermi operators do not induce any running of the new op-
erators at the leading logarithmic level. The only way the
new magnetic operators could run is by multiplicative renor-
malization. But as these operators have zero initial value as
discussed above, this effect also is unimportant: To leading
Its contribution to the amplitudé—sy is given by six logarithmic precision the Wilson coefficients of the new op-
graphs whose Feynman diagrams are similar to those shovérators are zero at each renormalization scale. Therefore, the
in Fig. 9. The three diagrams, where the gluon is absorbed byew operators certainly do not change the leading logarith-

A

1 1 g _ A
ev > SRo, L5 bGL" . (A29)

—_ = — ——m
e —penguin— o 152

the s quark, read mic physics. Equivalently, one can say that one can throw
176 m away the terms proportional 1o, in the building blocks in
MeY penauin a)= — | —+ 19— 12In—b+6 i Egs. (A7) and (A8) When_ working at leading order. _
2 (peng ) 36| € i m However, our result in EqA32) shows that the matrix
. element ofO, leads to finite termgwhich are of next-to-
X — CrQqa(5Y] 0" b) rees leading ordey linear in m; when calculated in the HV
™ scheme. It would be very interesting to see if these linear

(A30) M. terms are canceled by the next-to-leading Wilson coeffi-
cients of the new operators. Such a cancellation is expected
while the diagrams where the gluon is absorbed byhhe to occur, of course, because in any other scheme which re-
quark is given by spects the four-dimensional chirality properties, these terms
do not appear.

v . 1(3 my
M5"(penguin b)=1—8 ;+5—6In7

APPENDIX B: BREMSSTRAHLUNG CORRECTIONS
XEC onewp In order to make the paper self-contained, we give in this
p FQu(sY|O7R D) ree- appendix the formulas for the procdss-syg based on the
A31 operators0,, O;, andOg in the NDR scheme. As we have
(A31) given the analogous virtual correctionstie- sy in the limit

Adding the contributions of the two-loop diagrams in Eqs.mg—’O: we also present the bremsstrahlung corrections for
(A22)—(A24) and the counterterm contributions in Egs. this case.

(A28), (A30), and (A31), we end up with a total lineam, We denote the various contributions to the bremsstrah-
term of the form lung decay width[™® by I'S,, I'%;, T'gg, I';, I'3g, I'%g; for
example,I'), is based on the matrix element squared of
M3[two loop + counterterr O,, while I'}; is an interference term between the matrix
o Q46 Q, (2 element ofO, and 07., etc. .
= —SCF[—(——B 4+ =4 __3) (s7]0%*b) e Note that all the interference terms aﬁQ2 are infrared
™ 72\ € 4 \e (and collineay finite. The sum of these four finite contribu-

(A32) tions is given by

Of course, this result can be made finite by introducing a brems_G’Z:|)\t|2aema5

corresponding counterterm proportional@®" given in Eq. F o 768m, f Psd EgdE, (720t To7+ T2s 778),

(A25) which minimally subtracts the &/pole in Eq.(A32). (B1)
At this point one might ask why these additional operators

appearing in this subsection do not appear in the literature 2= 2M2Q2C2(w)| k|2 M2 —2(qr)], (B2)

[11] where the singularity structure of these graphs have

been worked out in order to extract tf@( «s) anomalous 727=—SZnﬁQuCz(,LL)C?ﬁ(,u)(qr)Re(K), (B3)

dimension matrix. We also note that there are other new
operators induced if one looks, e.g., at the analogous two-
loop corrections tdo— sy associated to other four-Fermi op-
erators. For example, the correctionsQg generate a new M+ 2(pa)(pr)
magnetic-type operator, whera, in Eq. (A25) is replaced Trg= — 128m2Q,CE"( ) CEM(w) (qr) b( )qu )p
by my,. pa)(pr

To absorb all the divergencies, one clearly has to enlarge (BS)
the operator basis in this scheme. However, we believe that it
is correct to ignore these additional operators for the leadin
logarithmic result forbo—sy. The reason is the following:
First, the new operators do not mix into the old ones given i
Eq. (1.2) at O(ag); therefore, the old operators run in the
same way with or without including the new operators. Sec- K= A2eH+ . t= 2(q2r) ’ (B6)
ond, in theO(ag) matching (at w=my,), the new coeffi- t me

Tos= —32M2QuQq4Co(1)CS(qr)Re(x),  (B4)

here as in the previous sectiopsp’, g, andr denote the
our-momenta of thé and thes quark, the photon, and the
(Pluon, respectively. The functior is defined as




3364

id
G(t)=fovyln[l—ty(l—y)—is]. (B7)

The phase space boundaridenoted above by B&re given
by

my My
—-E

Eye > —

) (88)

m
0,7}, Eqe

Note that the functiorx in Eqg. (B6) is finite for m.—0.
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i, i.e., F$7 is contained in the finite quantity in EG3.3).
Finally, '3 is singular forE,—0 or q|jp’. These singu-

larities can be removed by adding the virtual photon correc-

tions tob—sg. This finite sumI'gg can easily be obtained

fromI';7 in Eq. (3.3. It reads

5 2
my 16 4w my,
Pag= 55,5/ GFQUCE N Parenrs| 5 ——5—+4In-" .

3 3
(B9)

Therefore, also the bremsstrahlung corrections have a finite

limit for m,—0.

I'%, is singular forE,—0 orr||p’. As it cancels the cor-
responding singularity of the virtual corrections @,, we
have taken into account the contributibh, already in Sec.

To summarize, the total inclusive decay widih for
B— X+ y is then given byl'=TVt4emsy o where
Vit TR®MS andlgg are given in Eqs(5.6), (B1), and(B9),
respectively.

[1] CLEO Collaboration, R. Ammaet al,, Phys. Rev. Lett71,
674 (1993.
[2] CLEO Collaboration, M.S. Alanet al,, Phys. Rev. Lett74,
2885(1995.
[3] A. Aliand C. Greub, Z. Phys. @9, 431(1991); Phys. Lett. B
259 182(1991); 287, 191(1992; Z. Phys. C60, 433(1993.
[4] A. Ali and C. Greub, Phys. Lett. B61, 146 (1995.
[5] R.D. Dikeman, M. Shifman, and R.G. Uraltsev, Int. J. Mod.
Phys. Al1, 571(1996.
[6] A.J. Buras, M. Misiak, M. Mz, and S. Pokorski, Nucl. Phys.
B424, 374(1994).
[7] M. Ciuchini et al, Phys. Lett. B334, 137 (1994.
[8] J.M. Soares, Phys. Rev. 48, 283(1994.
[9] B. Grinstein, R. Springer, and M.B. Wise, Phys. Lett282,
138(1988; Nucl. Phys. B339, 269(1990.
[10] T. Inami and C.S. Lim, Prog. Theor. Phy&5, 297 (1981).
[11] M. Ciuchini et al, Phys. Lett. B316, 127(1993; Nucl. Phys.
B415 403 (1994; G. Cellaet al, Phys. Lett. B325 227
(1994); M. Misiak, Nucl. PhysB393 23(1993; B439, 461(E)
(1995.
[12] A. Ali, G. Giudice, and T. Mannel, Z. Phys. €7, 417 (1995.
[13] G. 't Hooft and M. Veltman, Nucl. PhysB44, 189 (1972.
[14] A. Ali and C. Greub(in preparation
[15] N. Pott, Phys. Rev. 34, 938(1996.
[16] K. Adel and Y.-P. Yao, Phys. Rev. B9, 4945(1994).
[17] Pocketbook of Mathematical Functignsedited by M.
Abramowitz and Irene StegunVerlag Harri Deutsch,
Frankfurt/Main, 1984

[18] H. Simma and D. Wyler, Nucl. Phy8344, 283(1990.

[19] E.E. Boos and A.l. Davydychev, Theor. Math. Phg8, 1052
(1992.

[20] N.I. Usyukina, Theor. Math. Phy9, 385 (1989; 22, 211
(1975.

[21] V.A. Smirnov, Renormalization and Asymptotic Expansions
(Birkhauser, Basel, 1991

[22] Higher Transcendental Functionsedited by A. Erdelyi
(McGraw-Hill, New York, 1953.

[23] J.M. Soares, Nucl. Phy8367, 575(1991.

[24] A.C. Hearn,ReDUCE User's Manual (Rand, Santa Monica,
California, 1987.

[25] M. Jamin and M.E. Lautenbacher, Comput. Phys. Commun.
74, 265(1993; 74, 11 (1993; 74, 39 (1993; 74, 55 (1993.

[26] A. Heck, Introduction tomAPLE (Springer-Verlag, New York,
1993.

[27] CLEO Collaboration, L. Gibbons, in Proceedings of the XXX
Rencontres de Moriond, Les Aréanpublishegl

[28] G. Corbo, Nucl. PhysB212, 99(1983; N. Cabibbo, G. Corbo,
and L. Maiani,ibid. B155, 93 (1979.

[29] I. Bigi et al, Phys. Rev. Lett71, 496 (1993.

[30] M. Shifman, N.G. Uraltsev, and A. Vainshtein, Phys. Rev. D
51, 2217 (1995; M.B. Voloshin, Report No. TPI-MINN-94/
38-T, hep-ph/941129€@unpublishedl

[31] P. Breitenlohner and D. Maison, Commun. Math. Pi5%.11
(1977; 52, 39 (1977); 52, 55 (1977.

[32] A.J. Buras and P.H. Weisz, Nucl. Phy&333 66 (1990.



