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Helicity decomposition for inclusive J/c production
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We present a general method for calculating inclusive cross sections for the production of heavy quark
states with definite polarization within the NRQCD factorization approach. Cross sections for polarized
duction can involve additional matrix elements that do not contribute to cross sections for unpolarized
duction. They can also include interference terms between parton processes that produceQQ̄ pairs with
different total angular momentum. The interference terms cancel upon summing over polarizations
method can be generalized toN dimensions and is, therefore, compatible with the use of dimensional re
larization to calculate radiative corrections. We illustrate the method by applying it to the production ofJ/c via
the parton processesqq̄→cc̄ andgg→cc̄. @S0556-2821~96!05717-7#

PACS number~s!: 13.85.Ni, 13.88.1e, 14.40.Gx
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I. INTRODUCTION

Calculations of inclusive production rates of heav
quarkonium have recently been placed on a firm theoret
foundation by the development of a factorization approa
based on nonrelativistic quantum chromodynam
~NRQCD! @1#. In this formalism, the cross section is ex
pressed as a sum of products of short-distance coefficie
and NRQCD matrix elements. The short-distance coe
cients can be calculated as perturbation series in the coup
constantas at the scale of the heavy quark mass. The mat
elements scale in a definite way with the typical relati
velocity v of the heavy quark in the quarkonium state. Th
the production cross sections can be calculated system
cally to any desired order inas and v

2 in terms of well-
defined NRQCD matrix elements. There have been ma
recent applications of this formalism to quarkonium produ
tion in various high-energy processes@2#.

Most calculations of quarkonium production have be
carried out using a covariant projection formalism develop
for calculations in the color-singlet model@3#. In the ampli-
tude for producing acc̄ pair with total momentumP and
relative momentumq, the spinor factoruv̄ is replaced by an
appropriate Dirac matrix that projects out a state with t
desired angular momentum quantum numbers. The resul
prescription is relatively simple forS-wave states. The Dirac
matrix is proportional tog5(P” 22mc) for a

1S0 state and
e” (P” 22mc) for a

3S1 state, and the relative momentumq is
set to zero. ForP waves, the Dirac matrix is more compli
cated, and the amplitude must be differentiated with resp
to the relative momentum. The resulting expression for
amplitude can be very complicated.

The covariant projection method also has a number
other drawbacks. For each angular momentum state, a s
rate calculation of the cross section is required, beginning
the level of the amplitude forcc̄ production. Another draw-
back is that it is difficult to generalize the projection metho
to allow the calculation of relativistic corrections to the cro
section. There is also a potential difficulty in calculating r
54821/96/54~5!/3216~12!/$10.00
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diative corrections using this method. The Dirac matric
that are used to project onto the appropriate angular mom
tum states are specific to three space dimensions. Howe
the most convenient method for regularizing the ultravio
and infrared divergences that arise in higher-order calc
tions is dimensional regularization. It is not easy to gene
ize the projection matrices toN dimensions, since the repre
sentations of the rotational symmetry group are different
each integer value ofN.

In this paper, we develop a method for calculati
quarkonium production rates that fully exploits the NRQC
factorization framework. The short-distance coefficients
calculated in a form that holds for every quarkonium sta
The corresponding NRQCD matrix elements are then sim
fied using rotational symmetry and the approximate hea
quark spin symmetry of NRQCD. It is only at this stage th
the angular momentum quantum numbers of the quarkon
state come into play. Relativistic corrections are easily c
culated in this framework. Our method for calculating t
short-distance coefficients is readily generalized toN spacial
dimensions, so that dimensional regularization can be use
cut off infrared and ultraviolet divergences. After removin
the divergences, one can specialize toN53 and use rota-
tional symmetry and spin symmetry to simplify the NRQC
matrix elements. This approach allows the consistent us
dimensional regularization to calculate inclusive hea
quarkonium production and decays.

Our method has important implications for the producti
of quarkonium states with definite polarization. We demo
strate that cross sections for polarized production invo
new matrix elements that do not appear in cross sections
unpolarized production. Thus, measurements of cross
tions for unpolarized production are not necessarily suffici
to predict production rates for polarized quarkonium stat
We also show that cross sections for polarized produc
can involve interference between parton processes that
ducecc̄ pairs with different total angular momentumJ. The
interference terms vanish upon summing over polarizatio
Thus the cross sections for producingcc̄ states with definite
3216 © 1996 The American Physical Society



mp-

Eq.

or

or
n
s
r
he
s-
o
is

ion
n

ing

ass
s

cts
ub-
ons
d
to
en
in-
the
fac-

-

am-

n

be
m-
s

54 3217HELICITY DECOMPOSITION FOR INCLUSIVEJ/c . . .
total angular momentum are not sufficient to determine
the short-distance coefficients in cross sections for polariz
production.

The NRQCD factorization approach is summarized
Sec. II. In Sec. III, we present a general matching procedu
for calculating the short-distance coefficients in the factoriz
tion formula. We illustrate the method by applying it to th
parton processesqq̄→cc̄ andgg→cc̄. The resulting expres-
sions for the cross sections hold for every quarkonium sta
In Sec. IV, we show how the NRQCD matrix elements ca
be simplified by using rotational symmetry and the approx
mate heavy-quark spin symmetry of NRQCD. For simplicity
we focus on the matrix elements forJ/c production. In Sec.
V, we calculate the cross section and the spin alignment
the c from the parton processesqq̄→cc̄ andgg→cc̄. We
point out that several previous calculations of quarkoniu
production need to be reconsidered in light of our results.

II. NRQCD FACTORIZATION FORMALISM

We consider the inclusive production of a quarkoniu
stateH with momentumP and helicityl via a parton pro-
cess of the form 12→H(P,l)1X. The differential cross
section, summed over additional final statesX, can be written

(
X

ds„12→H~P,l!1X…

5
1

4E1E2v12

d3P

~2p!32EP

3(
X

~2p!4d4~k11k22P2kX!uT12→H~P,l!1Xu2, ~2.1!

whereEP5AMH
2 1P2 and the sum overX includes integra-

tion over the Lorentz-invariant phase space for the addition
particles.

The NRQCD factorization formalism can be used to fa
tor the cross section~2.1! into short-distance coefficients and
long-distance matrix elements@1#:

(
X

ds~12→H~P,l!1X!

5
1

4E1E2v12

d3P

~2p!32EP
(
mn

Cmn~P,k1 ,k2!

3^Omn
H~l!&. ~2.2!

The coefficientsCmn are functions of the kinematic variables
P, k1, and k2. They take into account the effects of sho
distances of order 1/mc or smaller, and therefore can be ca
culated as perturbation series in the QCD coupling const
as(mc). The matrix elementŝOmn

H(l)& are expectation values
in the NRQCD vacuum of local four-fermion operators tha
have the structure

Omn
H~l!5x†K8m

†cPH~l!c
†Knx, ~2.3!

wherec and x are the field operators for the heavy quar
and antiquark in NRQCD, andKn andK8m
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color matrix (1 orTa), a spin matrix (1 ors i), and a poly-
nomial in the gauge covariant derivativeD. The projection
operatorPH(l) can be written

PH~l!5(
S

uH~P50,l!1S&^H~P50,l!1Su. ~2.4!

The sum is over soft hadron statesS whose total energy is
less than the ultraviolet cutoffL of NRQCD. Thus this op-
erator projects onto the subspace of states that in the asy
totic future include the quarkonium stateH(l) at rest plus
soft hadrons. The normalization of the meson states in
~2.4! must coincide with those in theT-matrix element in Eq.
~2.1!. The standard relativistic normalization is

^H~P8,l8!uH~P,l!&52EP~2p!3d3~P2P8!dll8.
~2.5!

With this normalization of states, the projection operat
PH(l) has energy dimension22.

If the colliding particles are leptons, the cross section f
quarkonium production is given directly by the factorizatio
formula ~2.2!. If the colliding particles are hadrons, the cros
section ~2.2! must be folded with parton distributions fo
partons 1 and 2 in the colliding hadrons. In this case, t
derivation of the factorization formula requires that the tran
verse momentumpT of the quarkonium be large compared t
LQCD, the scale of nonperturbative effects in QCD. Th
restriction to largepT follows from the diagrammatic analy-
sis that underlies the factorization formula@1#. This analysis
shows that the dominant contributions to the cross sect
can be factored into~a! hard-scattering amplitudes for parto
processes of the form 12→cc̄134 . . . , ~b! jet-like subdia-
grams for the incoming partons 1 and 2 and the outgo
partons 3, 4, etc.,~c! a subdiagram involving acc̄ pair with
relative momentum that is small compared to the quark m
mc , and ~d! a soft part. The soft part involves soft gluon
that couple to the jetlike subdiagrams and to thecc̄ subdia-
gram, but not to the hard-scattering subdiagram. The effe
of soft partons that are exchanged between the various s
diagrams cancel upon summing over all possible connecti
of the soft partons. This cancellation is effective provide
that thecc̄ pair has large transverse momentum relative
the incoming hadrons. All the effects of soft partons can th
be factored into parton distributions associated with the
coming hadrons, fragmentation functions associated with
outgoing partons produced by the hard scattering, and a
tor associated with thecc̄ pair that depends on their relative
momentumq. In this step in the derivation of the factoriza
tion formula, the short-distance scalespT andmc are sepa-
rated from the long-distance scaleLQCD. The effects of the
short-distance scales appear only in the hard-scattering
plitudes, and all effects of the scaleLQCD are factored into
parton distributions, fragmentation functions, andcc̄ factors.

The remaining step in the derivation of the factorizatio
formula involves separating the scalemc in the hard-
scattering amplitude from the scalemcv of the relative mo-
mentum in the charmonium state. This separation can
accomplished by Taylor expanding the hard-scattering a
plitude in powers ofq. A naive Taylor expansion generate
ultraviolet divergences in thecc̄ factor. The effective field
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3218 54ERIC BRAATEN AND YU-QI CHEN
theory framework provided by NRQCD makes this Tayl
expansion meaningful. The long-distance factors genera
by the Taylor expansion can be identified with matrix el
ments of local operators in NRQCD. The renormalizati
framework of NRQCD allows the ultraviolet divergences
these matrix elements to be systematically removed. The
sulting expression for the cross section has the form of
NRQCD factorization formula~2.2!. The effects of the scale
mc appear only in the short-distance coefficientsCnm . All
effects involving momentum scales of ordermcv or smaller
have been factored into the NRQCD matrix elemen
^Omn

H(l)&.
The breakdown of the factorization formula at smallpT

when the colliding particles are hadrons can be attributed
‘‘higher-twist’’ processes. In the factorization formula~2.2!,
the c and c̄ that form charmonium are assumed to be pr
duced by a hard-scattering collision involving a single part
from each of the colliding hadrons. Higher-twist process
can involve more than one parton from a single hadron.
example of a higher-twist process for charmonium produ
tion is one in which thec and c̄ that bind to form charmo-
nium are produced by a quantum fluctuation of the hadr
into a state containing acc̄ pair @4#. The transition of the
cc̄ to a charmonium state can then be induced by the co
sion with the other hadron. The short-distance part of t
process is the fluctuation of the hadron into a state contain
thecc̄ pair. The cross section for the scattering of thecc̄ pair
from the other hadron involves long-distance effects th
cannot be expressed in terms of matrix elements of lo
NRQCD operators.

III. SHORT-DISTANCE COEFFICIENTS

The short-distance coefficientsCmn in Eq. ~2.2! can be
determined by matching perturbative calculations in fu
QCD with the corresponding perturbative calculations
NRQCD. In most previous calculations, the coefficients we
determined by matching cross sections for producingcc̄
pairs with definite total angular momentum. However,cc̄
states with different angular momentum quantum numb
can have a nonzero overlap with the same final st
uH1S&. The resulting interference terms cannot always
obtained by matching cross sections. Below we presen
matching prescription that is sufficiently general to provid
these interference terms.

A. General matching prescription

Let cc̄(q,j,h) represent a state that consists of ac and
a c̄ that have total momentumP, three-momenta6q in the
cc̄ rest frame, and spin and color states specified by
spinors j and h. These spinors are two-component Pa
spinors with a color index. Using the abbreviated notati
cc̄[cc̄(q,j,h) and cc̄8[cc̄(q8,j8,h8), the matching con-
dition is

(
X

~2p!4d4~k11k22P2kX!T12→c c̄81X
* T12→c c̄1X

5(
mn

Cmn~P,k1 ,k2!^x
†K8m

†cPc c̄8,cc̄c
†Knx&. ~3.1!
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The operatorPc c̄8,cc̄ in the matrix element in Eq.~3.1! is
defined by

Pc c̄8,cc̄5(
S

uc~q8,j8!c̄~2q8,h8!1S&

3^c~q,j!c̄~2q,h!1Su. ~3.2!

The sum is over soft parton states whose total energy is le
than the ultraviolet cutoffL of NRQCD. The normalization
of the cc̄ states in Eq.~3.2! must coincide with those in the
T-matrix elements in Eq.~2.1!. The standard relativistic nor-
malization is

^c~q18 ,j8!c̄~q28 ,h8!uc~q1,j!c̄~q2,h!&

54Eq1
Eq2

~2p!6d3~q12q18!d3~q22q28!j†j8h8†h,

~3.3!

where the spinors are normalized so thatj†j5h†h51, and
similarly for j8 andh8. In expressions likej†j8, both the
spin and color indices are contracted. Note that with the no
malization~3.3!, the operatorPcc8,cc in Eq. ~3.2! has dimen-
sion24. The difference in the dimensions of the operato
PH andPcc8,cc matches the difference in the dimensions o
theT-matrix elements in Eqs.~2.1! and ~3.1!.

To carry out the matching procedure, the left side of E
~3.1! is calculated using perturbation theory in full QCD, an
then expanded as a Taylor series inq and q8. The matrix
elements on the right side of Eq.~3.1! are calculated using
perturbation theory in NRQCD, and then expanded as Tay
series inq and q8. The short-distance coefficientsCmn are
obtained by matching the terms in these Taylor expansio
order by order inas .

B. Matching for qq̄˜cc̄

We first illustrate the matching procedure by applying
to the processqq̄→cc̄. The T-matrix element in Feynman
gauge is

T12→c c̄5g2
1

P2 v̄~k2!gmT
au~k1!ū~p!gmTav~ p̄!. ~3.4!

Dirac and color indices are implicit in the spinors. The four
momenta of the outgoingc and c̄ can be expressed as

p5 1
2P1Lq and p̄5 1

2P2Lq, where P is the total four-
momentum of thecc̄ pair, q is the relative three-momentum
of thec in the center-of-momentum~c.m.! frame of the pair,
andLi

m is a Lorentz boost matrix. The boost matrixLi
m trans-

forms a purely spacelike four-vector, such as (0,q), from the
c.m. frame where the components ofP are (2Eq ,0) to the
frame in which its components arePm. The matrix is given
explicitly in Appendix A. The expressions for the Dirac
spinorsu(p) andv( p̄) in terms of Pauli spinorsj andh are
also given in Appendix A. Identities in Appendix A can be
used to expandū(p)gmTav( p̄) as a Taylor series inq. To
linear order inq, theT-matrix element~3.4! is

T12→c c̄5
g2

2mc
v̄~k2!gmT

au~k1!Li
mj†s iTah. ~3.5!
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The components of the boost matrix to linear order inq are

Li
05

1

2mc
Pi , ~3.6a!

Li
j5d j i2 P̂j P̂i1

EP

2mc
P̂j P̂i , ~3.6b!

whereEP5A4mc
21P2.

In order to carry out the matching procedure, we fir
calculate the left side of Eq.~3.1!. In this case, there is no
sum overX. Multiplying Eq. ~3.5! by the complex conjugate
of T12→c c̄8 and averaging over initial spins and colors, w
obtain

~2p!4d4~k11k22P!( T12→c c̄8
* T12→c c̄

5~2p!4d4~k11k22P!
4p2as

2

9

3@d j i2n̂ j n̂i #h8†s jTaj8j†s iTah. ~3.7!

We have simplified the expression by using the identit
~A.5! and~A.6a! in Appendix A. We have also used the fac
that (k12k2)mLi

m52AP2n̂i , wheren̂ is a unit vector, which
follows from Eq.~A.6b!. In a frame in whichP, k1, andk2
are collinear, they are also collinear withn̂.

We next consider the right side of the matching equati
~3.1!. We must construct an operator of the form~2.3! whose
vacuum matrix element, when calculated to leading order
as , reproduces the spinor factor in Eq.~3.7! upon expanding
to linear order inq andq8. One can see by inspection that th
appropriate operator isx†s jTacPc c̄8,cc̄c

†s iTax. At leading
order in as , only the cc̄ states in the projection operato
Pcc8,cc contribute:

^x†s jTacPc c̄8,cc̄c
†s iTax&5^0ux†s jTacucc̄~q8,j8,h8!&

3^cc̄~q,j,h!uc†s iTaxu0&.

~3.8!

The vacuum-to-cc̄matrix element reduces at leading order
as to

^cc̄~q,j,h!uc†s iTaxu0&52Eqj
†s iTah, ~3.9!

where the factor of 2Eq arises from the relativistic normal-
ization of states. Expanding to linear order inq andq8, the
matrix element~3.8! reduces to

^x†s jTacPc c̄8,cc̄c
†s iTax&54mc

2h8†s jTaj8j†s iTah.
~3.10!

Comparing Eqs.~3.7! and ~3.10!, we can read off the short-
distance coefficient for the matrix element:

Cji5~2p!4d4~k11k22P!
p2as

2

9mc
2 @d j i2n̂ j n̂i #. ~3.11!
st
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Having determined the short-distance coefficient, we ca
insert it into Eq.~2.2! to obtain an expression for the differ-
ential cross section for producing a mesonH with helicity
l via the parton processqq̄→cc̄:

ds„qq̄→H~P,l!…5
1

4E1E2v12

d3P

~2p!32EP
~2p!4d4

3~k11k22P!
p2as

2

9mc
2 @d j i2n̂ j n̂i #

3^x†s jTacPH~l!c
†s iTax&. ~3.12!

Using the delta function to integrate over the phase space
P, we find that the cross section is

s„qq̄→H~l!…5d~s24mc
2!

p3as
2

36mc
4@d j i2 ẑj ẑi #

3^x†s jTacPH~l!c
†s iTax&, ~3.13!

where s5(k11k2)
2 and we have assumed that the three

momentum of the colliding partons is along thez axis. Note
that the expression~3.13! is dimensionally correct. Each of
the quark fields has dimension32 and the projection operator
has dimension22, so the dimension of the matrix element is
4. The expression~3.13! gives a contribution to the cross
section for every quarkonium stateH.

C. Matching for gg˜cc̄

We next illustrate the matching procedure by applying i
to the processgg→cc̄. TheT-matrix element can be decom-
posed into three independent color structures:

Tgg→c c̄52g2em
a ~k1!en

b~k2!S 16 dabSmn1
1

2
dabcDmnc

1
i

2
f abcFmncD . ~3.14!

The Dirac factor for thedab term is

Smn5ū~p!Fgm~p”2k” 11mc!g
n

2p•k1
1

gn~p”2k” 21mc!g
m

2p•k2
Gv~ p̄!.

~3.15!

The termDmnc in Eq. ~3.14! differs from Eq.~3.15! only by
inserting the color matrixTc between the spinors. The Dirac
factor for thef abc term in Feynman gauge is

Fmnc5ū~p!Fgm~p”2k” 11mc!g
n

2p•k1
2

gn~p”2k” 21mc!g
m

2p•k2

22
~P1k2!

mgn2~P1k1!
ngm1gmn~k” 12k” 2!

P2 G
3Tcv~ p̄!. ~3.16!

Using the identities in Appendix A, we expand Eqs.~3.15!
and ~3.16! to linear order inq:
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Smn5
i

2mc
2 emnlr~k12k2!lPrj†h1F 1mc

3 ~k1•L !n~~k12k2!
mL j

n1~k12k2!
nL j

m!2
1

mc
3 ~k1•L ! j~P

mLn
n2PnLn

m!

2
2

mc
3g

mn~k1•L !n~k1•L ! j1
2

mc
~Ln

mL j
n1Ln

nL j
m!Gqnj†s jh, ~3.17!

Fmnc52
1

m
~k1

mL j
n2k2

nL j
m!j†s jTah2

i

2mc
4e

mnlr~k12k2!lPr~k1•L !nq
nj†Tch. ~3.18!

The first term inFmnc vanishes when contracted with the polarization vectorsem
a (k1) anden

b(k2) in Eq. ~3.14!. Multiplying Eq.
~3.14! by the complex conjugate ofTgg→c c̄8 and averaging over the spins and colors of the initial gluons, we obtain

( Tgg→c c̄8
* Tgg→c c̄5

p2as
2

9 H h8†j8j†h1
15

8
h8†Taj8j†Tah1

1

mc
2@~dmn2n̂mn̂n!~d i j2n̂i n̂ j !1~dmj2n̂mn̂j !~dni2n̂nn̂i !

1dmidn j2~dmi2n̂mn̂i !~dn j2n̂nn̂j !#q8mqnS h8†s ij8j†s jh1
15

8
h8†s iTaj8j†s jTah D

1
27

8mc
2 n̂

mn̂nq8mqnh8†Taj8j†TahJ . ~3.19!

At leading order inas and to linear order inq andq8, the spinor factors on the right side of Eq.~3.19! can be identified with
the following matrix elements:

^x†cPc c̄8,cc̄c
†x&54mc

2h8†j8j†h, ~3.20a!

^x†TacPc c̄8,cc̄c
†Tax&54mc

2h8†Taj8j†Tah, ~3.20b!

K x†S 2
i

2
DJmDTacPc c̄8,cc̄c†S 2

i

2
DJ nDTax L 54mc

2q8mqnh8†Taj8j†Tah, ~3.20c!

K x†S 2
i

2
DJmDs iTacPc c̄8,cc̄c

†S 2
i

2
DJ nDs jTax L 54mc

2q8mqnh8†s iTaj8j†s jTah, ~3.20d!

wherec†DIx5c†Dx2(Dc)†x.
Matching terms on the left side and right side of Eq.~3.1!, we determine the short-distance coefficientCmn for each of the

matrix elements. Inserting these coefficients into Eq.~2.2!, we obtain the differential cross section for production ofH(l) from
the parton processgg→cc̄. The final result, after integrating over phase space, is

s„gg→H~l!…5d~s24mc
2!

p3as
2

144mc
4H ^x†cPH~l!c

†x&1
15

8
^x†TacPH~l!c

†Tax&1
1

mc
2@~dmn2 ẑmẑn!~d i j2 ẑi ẑj !

1~dmj2 ẑmẑj !~dni2 ẑnẑi !1dmidn j2~dmi2 ẑmẑi !~dn j2 ẑnẑj !#

3S K x†S 2
i

2
DJmDs icPH~l!c

†S 2
i

2
DJ nDs jxL 1

15

8 K x†S 2
i

2
DJmDs iTacPH~l!c

†S 2
i

2
DJ nDs jTaxL D

1
27

8mc
2 ẑ

mẑnK x†S 2
i

2
DJmDTacPH~l!c

†S 2
i

2
DJ nDTaxL J . ~3.21!
d
-
e

fy
ns
The expression~3.21! for the cross section applies equall
well to any quarkonium stateH. The relative importance of
the various terms for a given stateH depends on the magni-
tude of the matrix elements.

IV. REDUCING THE MATRIX ELEMENTS

The cross sections~3.13! and~3.21! hold for any quarko-
nium stateH, with the dependence onH appearing only in
y the matrix elements. The matrix elements can be simplifie
by using rotational symmetry and the approximate heavy
quark spin symmetry of NRQCD. Their magnitudes can b
estimated using velocity-scaling rules for NRQCD matrix
elements. In this section, we apply these methods to simpli
the matrix elements that appear in inclusive cross sectio
for the production ofJ/c. The extension to other quarko-
nium states will be presented elsewhere@5#.
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A. Rotational symmetry

Under rotations, each of the matrix elements in Eq
~3.13! and~3.21! transforms as a component of a tensor. T
indices of the tensor include vector indices, such asi , j , m,
andn, and the helicityl in the projection operatorPH(l) .
The helicityl appears both in the ket and in the bra in th
expression for the projection operator given in Eq.~2.4!. If
the meson has total angular momentumJ, thenPH(l) trans-
forms like the (l,2l) component of the direct product rep
resentationJ^J. Thus the entire operator transforms as
element of the representationJ^J^1^1^ •••, where there
is a 1 for each vector index of the operator. The vacuu
matrix element of the operator can be expressed in term
N independent matrix elements, whereN is the number of
times the trivial representation0 appears in the decompos
tion of the direct productJ^J^1^1^ ••• into irreducible
representations.

In the case of theJ/c, the independent matrix element
can be determined by elementary tensor analysis. Thec has
total angular momentumJ51, and the helicity labell is just
a vector index in a spherical basis. The spherical basis
the Cartesian basis are related by a unitary transforma
with matrix

Ul i5S 21/A2 2 i /A2 0

0 0 1

1/A2 2 i /A2 0
D

l i

. ~4.1!

The helicity labelsl in the ket and in the bra in Eq.~2.4! are
related to the corresponding Cartesian indicesi and j by the
transformation matricesUl i and Ujl

† , respectively. Since
there are no momentum vectors that the matrix element
depend on, it must be expressible in terms of the invari
tensorsdmn and e lmn. The number of independent matri
elements is the number of invariant tensors that can
formed out of the available indices.

We first consider operators with no vector indices, such
^x†cPc(l)c

†x&. The only indices that are available arel
andl from the projection operatorPc(l) . The only invariant
tensor isdll51. Therefore, we have

^x†cPc~l!c
†x&5

1

3
^x†cPcc†x&, ~4.2!

wherePc5(lPc(l) . Standard production matrix elemen
O1

c(2S11LJ) andO8
c(2S11LJ) were defined in Ref.@1# using

a projection operator analogous to Eq.~2.4!, but constructed
out of states with the standard nonrelativistic normalizatio
As discussed in Appendix B, the two projection operato
differ at leading order simply by a normalization factor o
4mc . Thus, we can write

^x†cPc~l!c
†x&5

4

3
mc^O1

c~1S0!&, ~4.3a!

^x†TacPc~l!c
†Tax&5

4

3
mc^O8

c~1S0!&, ~4.3b!
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where the matrix elements on the right sides are defined
Appendix B.

We next consider matrix elements with two vector indi
ces, such aŝx†s icPc(l)c

†s jx&. Rotational symmetry im-
plies that such a matrix element can be expressed in terms
three independent tensors:d i j , Ul iU jl

† , andUl jUil
† . Thus

there are three independent matrix elements. If we sum ov
the helicitiesl, the only possible tensor isd i j , so there is
only one possible matrix element. Thus, up to corrections
relative orderv2, we have

(
l

^x†s icPc~l!c
†s jx&5

4

3
d i jmc^O1

c~3S1!&, ~4.4a!

(
l

^x†s iTacPc~l!c
†s jTax&5

4

3
d i jmc^O8

c~3S1!&,

~4.4b!

(
l

K x†S 2
i

2
DJ i DcPc~l!c

†S 2
i

2
DJ j Dx L

5
4

3
d i jmc^O1

c~1P1!&, ~4.4c!

(
l

K x†S 2
i

2
DJ i DTacPc~l!c

†S 2
i

2
DJ j DTax L

5
4

3
d i jmc^O8

c~1P1!&, ~4.4d!

where the matrix elements on the right sides are defined
Appendix B. In the cross section~3.21!, we also require the

matrix element^x†
„2( i /2)DJ j

…TacPc(l)c
†
„2( i /2)DJ j

…Tax&
contracted withẑi ẑj . This can be expressed in terms o
^O8

c(1P1)& and one additional matrix element

ẑi ẑj K x†S 2
i

2
DJ i DTacPc~l!c

†S 2
i

2
DJ j DTax L

5
2~12dl0!

3
mc^O8

c~1P1!&1
3dl021

2

3 K x†S 2
i

2
DJ 3DTacPc~0!c

†S 2
i

2
DJ 3DTax L .

~4.5!

Upon summing over helicities, we recover Eq.~4.4d!.
Matrix elements with four vector indices, such a

^x†s i
„2( i /2)DJm

…cPH(l)c†s j
„2( i /2)DJ n

…x&, can be re-
duced by rotational symmetry to 15 independent matrix el
ments. Upon summing over helicities, the number of ind
pendent matrix elements is reduced to three.

B. Vacuum-saturation approximation

The vacuum matrix element^x†s icPc(l)c
†s jx& can be

simplified by using thevacuum-saturation approximation. In
this approximation, only the NRQCD vacuum is retained i
the sum over soft states in the projection operator~2.4!. The
matrix element then reduces to
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^x†s icPc~l!c
†s jx&'^0ux†s icuc~P50,l!&

3^c~P50,l!uc†s jxu0&. ~4.6!

As pointed out in Ref.@1#, the vacuum-saturation approxi-
mation is a controlled approximation in the case of hea
quarkonium, with a relative error of orderv4. The reason for
this is that the matrix element involves a transition from
color-singletcc̄ state to states of the formuc(l)1S&, where
S is a soft state. Since thec is a color singlet, the stateS
must also be a color singlet. Suppose it is not the NRQC
vacuum. Since a single chromoelectric dipole transition w
produce a color-octet state, at least two chromoelectric
pole transitions are required to produce the stateS. The am-
plitude is suppressed by a power ofv for each such transi-
tion. There is another power ofv2 from the complex
conjugate amplitude, and this gives an overall suppress
factor of v4.

After using the vacuum-saturation approximation, the m
trix element ~4.6! can be further simplified by using rota-
tional symmetry. The vacuum-to-c matrix element must
have the form

^c~P50,l!uc†s jxu0&5Ujl
† A2McA 3

2p
R̄c . ~4.7!

The factor ofA2Mc comes from the relativistic normaliza-
tion of the charmonium state. The factorA3/2p has been
inserted so thatR̄c can be interpreted as the nonrelativisti
radial wavefunction evaluated at the origin. Inserting E
~4.7! into Eq. ~4.6!, it reduces to

^x†s icPc~l!c
†s jx&5Ul iU jl

† 3

p
McuR̄cu21O~v4mcuR̄cu2!.

~4.8!

C. Heavy-quark spin symmetry

The most powerful tool at our disposal for simplifying th
production matrix elements of heavy quarkonium is the a
proximate heavy-quark spin symmetry of NRQCD. The sp
symmetry transformations of the heavy-quark and antiqua
fields are

c~x,t !→Vc~x,t !, ~4.9a!

x~x,t !→Wx~x,t !, ~4.9b!

whereV andW are SU~2! matrices. Under a rotation, the
transformation of the fields is

c~x,t !→Vc~O•x,t !, ~4.10a!

x~x,t !→Vx~O•x,t !, ~4.10b!

whereO is the O~3! matrix whose elements are

Oi j5
1

2
tr~V†s iVs j !. ~4.11!

While rotational symmetry is an exact symmetry o
NRQCD, spin symmetry is only an approximate symmetr
NRQCD is equivalent to full QCD in the sense that the c
vy
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efficients of the terms in the NRQCD Lagrangian can
tuned so that the effective theory reproduces the quarkon
spectrum and low-energy quarkonium matrix elements
any desired order inv. Minimal NRQCD reproduces the
spectrum and matrix elements to a relative accuracy of o
v2. This theory has exact heavy-quark spin symmetry. W
the v2-improved NRQCD Lagrangian, the accuracy is im
proved tov4. However thev2-improved Lagrangian include
a termc†B•sc2x†B•sx that breaks the spin symmetry
Thus spin symmetry gives relations between matrix eleme
that are accurate up to corrections of relative orderv2.

The consequences of spin symmetry are particula
simple for spin-triplet matrix elements of thec, such as
^x†s icPc(l)c

†s jx&. Since thec is anS-wave state, its he-
licity l is a spin index. Spin symmetry implies that the h
licity label l in the ket of the projection operatorPc(l) must
be matched with the vector indexi , while thel in the bra
must be matched with the indexj . Thus the matrix elemen
must be proportional toUl iU jl

† The proportionality constan
is obtained by summing overl and contracting withd i j . We
find that, up to corrections of relative orderv2,

^x†s icPc~l!c
†s jx&5

4

3
Ul iU jl

† mc^O1
c~3S1!&,

~4.12a!

^x†s iTacPc~l!c
†s jTax&5

4

3
Ul iU jl

† mc^O8
c~3S1!&.

~4.12b!

The relative error ofv2 in Eq. ~4.12a! is larger than the
relative error ofv4 obtained by using the vacuum saturatio
approximation~4.8!. One can easily show that the error
Eq. ~4.12a! can be improved tov4 by replacing 4mc by
2Mc .

The matrix element

K x†s i S 2
i

2
DJmDcPc~l!c

†s j S 2
i

2
DJ nDx L

can also be reduced to a single matrix element by using
symmetry. This symmetry implies that the tensor structure
the indicesl, i , and j must be the same as in Eq.~4.12b!.
Rotational symmetry then implies that the matrix eleme
must also be proportional todmn. Thus, up to corrections o
relative orderv2, we have

K x†s i S 2
i

2
DJmDcPc~l!c

†s j S 2
i

2
DJ nDx L

54Ul iU jl
† dmnmc^O1

c~3P0!&, ~4.13a!

K x†s i S 2
i

2
DJmDTacPc~l!c

†s j S 2
i

2
DJ nDTax L

54Ul iU jl
† dmnmc^O8

c~3P0!&. ~4.13b!

Spin symmetry can also be applied to spin-singlet ma
elements of thec, such as
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K x†S 2
i

2
DJ i DcPc~l!c

†S 2
i

2
DJ j Dx L .

A spin-singlet operator likec†
„2( i /2)DJ j

…x creates acc̄ pair
in a spin-singlet state. At leading order inv2, the transition to
a final state of the formuc1S& must involve the term
c†B•sc2x†B•sx from the v2-improved NRQCD La-
grangian. The resulting constraints on the matrix element c
be deduced using angular momentum theory. These c
straints are simply those that are already provided by ro
tional invariance. Spin symmetry does give new relatio
between the production matrix elements of thec and those
of thehc , but they are not of great practical significance.

D. Velocity-scaling rules

The relative importance of the NRQCD matrix elemen
that appear in cross sections forc production are determined
by how they scale with the relative velocityv of the charm
quark in the meson@1#. When applied to the matrix elements
^On(

2S11LJ)&, the scaling rules are fairly simple. The opera
tor On(

2S11LJ) creates and annihilates a pointlikecc̄ pair in
the color staten and in the angular momentum stat
2S11LJ . The scaling of the matrix element is determined b
the orbital angular momentum quantum numberL and by the
number of chromoelectric and chromomagnetic dipole tra
sitions that are required for thecc̄ pair to reach the state
cc̄(n,2S11LJ) from the dominant Fock state of the meson.
the minimum number of these transitions isE andM , re-
spectively, the matrix element̂On(

2S11LJ)& scales as
v312L12E14M.

The dominant Fock state of thec consists of acc̄ pair in
a color-singlet 3S1 state. Thus the matrix elemen
^O1(

3S1)& scales asv
3. Thecc̄ pair can reach the color-octe

states cc̄(8,3PJ), cc̄(8,3S1), and cc̄(8,1S0)) through a
single chromoelectric, a double chromoelectric, and a sin
chromomagnetic dipole transition, respectively. Thus t
matrix elementŝ O8(

3PJ)&, ^O8(
3S1)&, and ^O8(

1S0)& all
scale asv7. All the other matrix elementŝOn(

2S11LJ)&
scale asv11 or smaller. Those that scale likev11 include
^O1(

1P1)&, ^O8(
1P1)&, ^O1(

1S0)&, and^O1(
3PJ)&. The ma-
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K x†S 2
i

2
DJ 3DTacPc~0!c

†S 2
i

2
DJ 3DTax L

also scales asv11 like ^O8(
1P1)&.

V. CROSS SECTIONS FOR POLARIZED c

In this section, we combine the results of Sec. III and IV
to obtain the cross sections for production ofc with definite
helicity via the order-as

2 parton processesqq̄→cc̄ and
gg→cc̄. These cross sections can be folded with parton dis
tributions to obtain cross sections forc production in
hadron-hadron scattering. The resulting cross sections shou
not be taken too seriously, since these parton processes p
duce ac with zero transverse momentum. The factorization
formula ~2.2! is therefore not strictly applicable, since its
derivation requires the transverse momentum of thec to be
large compared toLQCD. We choose to ignore this difficulty,
since our primary purpose is to illustrate the calculation o
cross sections for polarized production.

The cross section forc production via the parton process
qq̄→cc̄ is obtained by inserting the matrix element~4.12b!
into Eq. ~3.13!:

s„qq̄→c~l!…5d~s24mc
2!

p3as
2

27mc
3~12dl0!^O8

c~3S1!&.

~5.1!

We have used the fact that the matrixU in Eq. ~4.1! satisfies
( iUl iUil

† 51 and( jU jl
† ẑj5dl0. The cross section~5.1! im-

plies thatc ’s produced by this process are transversely po
larized, which could be anticipated from the fact that the
gluon interaction with the light quark conserves helicity.
Summing over helicities, we obtain

s~qq̄→c!5d~s24mc
2!
2p3as

2

27mc
3 ^O8

c~3S1!&. ~5.2!

The cross section for producing ac with helicity l via
the parton processgg→cc̄ is obtained by inserting the ma-
trix elements~4.3!, ~4.5!, and~4.13! into Eq. ~3.21!:
s~gg→c~l!!5d~s24mc
2!

p3as
2

108mc
3H ^O1

c~1S0!&1
15

8
^O8

c~1S0!&1
3~322dl0!

mc
2 ^O1

c~3P0!&1
45~322dl0!

8mc
2 ^O8

c~3P0!&

1
27~12dl0!

16mc
2 ^O8

c~1P1!&1
81~123dl0!

64mc
3 K x†S 2

i

2
DJ 3DTacPc~0!c

†S 2
i

2
DJ 3DTaxL J . ~5.3!

Summing over helicities, this reduces to

s~gg→c!5d~s24mc
2!

p3as
2

36mc
3H ^O1

c~1S0!&1
15

8
^O8

c~1S0!&1
7

mc
2 ^O1

c~3P0!&1
105

8mc
2^O8

c~3P0!&1
9

8mc
2 ^O8

c~1P1!&J .
~5.4!
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Note that the contribution from the matrix elemen

^x†
„2( i /2)DJ 3

…TacPc(0)c
†
„2( i /2)DJ 3

…Tax& drops out of
the cross section for unpolarized production. If we reta
only those matrix elements that are of leading order inv2,
the cross section~5.3! reduces to

s„gg→c~l!…'d~s24mc
2!
5p3as

2

288mc
3H ^O8

c~1S0!&

1
3~322dl0!

mc
2 ^O8

c~3P0!&J . ~5.5!

The ^O8
c(1S0)& term givesc ’s that are unpolarized, while

the ^O8
c(3P0)& term givesc ’s with helicity 21, 0, and11

in the proportions3:1:3.
The production ofJ/c from the color-octet parton pro-

cessesqq̄→cc̄ andgg→cc̄ has been studied previously by
several groups@6–8#. In particular, the spin alignment of the
c from these processes has been calculated by Tang
Väntinnen@6# and by Cho and Leibovich@7#. We proceed to
compare our results with this previous work.

Tang and Va¨ntinnen @6# have used the covariant projec
tion method to calculate the cross sections for polarizedc
and c8 in fixed-target hadron-hadron collisions from th
order-as

2 parton processes. Our result~5.1! for the cross sec-
tion from qq̄→cc̄ is in agreement with theirs. Our resul
~5.5! for the cross section fromgg→cc̄ agrees with theirs
only after summing over helicities. We disagree on the h
licity dependence of thêO8

c(1S0)& term. Their result for this
term is proportional to 12dl0, which implies that thec is
produced with transverse polarization. This is clearly inco
rect, because a pointlikecc̄ pair in a 1S0 state is rotationally
invariant in its rest frame. Thec ’s that are produced by the
binding of thecc̄ pair must therefore be unpolarized, as i
our result~5.5!.

Cho and Leibovich@7# have used the covariant projection
method to calculate the cross sections forc andc8 in pp̄
collisions, including not only the order-as

2 parton processes
but also the order-as

3 processes of the formi j→cc̄1k. Our
results~5.1! and ~5.5! for the cross sections from order-as

2

parton processes agree with theirs. Cho and Leibovich de
mined the short-distance coefficients by matching cross s
tions for producing color-octetcc̄ pairs with vanishing rela-
tive momentum and in specific angular momentum stat
This method gives the correct cross sections for unpolariz
production, but it fails in general for polarized production. I
particular, as we show below, it fails to give the corre
short-distance coefficients for spin-tripletP-wave matrix el-
ements. In the matrix element~4.13b!, the indicesi andm
can be decomposed into contributions from total angular m
mentumJ50,1,2 by using the identity

d i i 8dmm85Uia
† Umb

† S (
Jh

^1a;1buJh&^Jhu1a8;1b8& D
3Ua8 i 8Ub8m8, ~5.6!

where a sum overa, b, a8, andb8 is implied. A similar
identity can be used to decompose the indicesj andn into
contributions from total angular momentumJ850,1,2. The
t
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matrix element~4.13b! is thereby expressed as a linear com
bination of matrix elements of the form
^J†(J,h)Pc(l)J(J8,h8)&, where the operatorJ(J,h) creates
a pointlike cc̄ pair with total angular momentum quantum
numbersJ andh. The projection operatorPc(l) projects onto
states that contain ac with helicity l plus soft hadrons. If
the soft hadrons have total angular momentumJS , then the
angular momentum structure of the matrix element is

(
lS

^Jhu1l;JSlS&^1l;JSlSuJ8h8&. ~5.7!

Rotational symmetry requires thath5h8 and that bothJ and
J8 lie in the irreducible decomposition of1^JS. It does not
require thatJ5J8, so there can be interference terms invol
ing matrix elements withJÞJ8. If we sum Eq.~5.7! over the
helicitiesl, the orthogonality relations for Clebsch-Gorda
coefficients imply thatJ5J8. Thus the interference terms
cancel upon summing over helicities. The method used
Cho and Leibovich therefore gives the correct cross secti
for unpolarized production. In the specific case ofgg→cc̄,
Cho and Leibovich found that the only amplitudes for th
production of spin-tripletP-wavecc̄ pairs that are nonzero
aregg→cc̄(8,3P0) andgg→cc̄(8,3P2 ,uhu52). Since there
is at most one nonzero amplitude for any given value ofh,
there cannot be any interference terms. Thus their met
gives the correct cross sections for polarized production fr
the order-as

2 parton processes. However, for the order-as
3

parton processesi j→cc̄1k, there are nonvanishing ampli
tudes with different values ofJ and the same helicityh, so
the interference terms are nonzero. These interference te
must be taken into account in calculating the term prop
tional to ^O8

c(3P0)& in the inclusive cross section for polar
izedc. The only calculation thus far in which these interfe
ence terms have been correctly included is a calculation
the gluon fragmentation function for the production of a lo
gitudinally polarizedc by Beneke and Rothstein@9#.

Fleming and Maksymyk@8# recently presented a metho
for calculating cross sections for the production of unpola
ized heavy quarkonium. To determine the short-distance
efficients of the NRQCD matrix elements, they match
cross sections for producingcc̄ pairs with specific color and
angular momentum quantum numbers. The cross sect
were expressed as integrals over the relative thr
momentumq of thecc̄ pair, and they used the nonrelativisti
expansions of the Dirac spinors given in Appendix A to e
pand the integrands as Taylor series inq. In general, their
method would fail if applied to cross sections for polarize
production, because it does not give the interference te
between parton processes that producecc̄ pairs with differ-
ent total angular momentumJ. Fleming and Maksymyk ap-
plied their method to the production of unpolarizedc from
the parton processesqq̄→cc̄ and gg→cc̄. Our cross sec-
tions agree with theirs after summing over helicities.

VI. SUMMARY

The NRQCD factorization formalism@1# is a powerful
tool for analyzing the production of heavy quarkonium
Cross sections are factored into short-distance coefficie
that can be calculated using perturbative QCD and lon
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distance matrix elements that scale in a definite way w
v. In this paper, we presented a general matching presc
tion for calculating the short-distance coefficients in the i
clusive cross sections for quarkonium states. Using th
matching prescription, the cross sections are obtained in
form that applies equally well to any quarkonium state. Th
specific state enters only in the reduction of the NRQC
matrix elements using rotational symmetry and heavy-qua
spin symmetry. For simplicity, we discussed the reduction
the NRQCD matrix elements only for the case of thec. The
generalization to other states will be presented elsewhere@5#.

Our approach has interesting implications for cross se
tions for producing quarkonium states with definite polariz
tion. We showed that cross sections for polarized producti
can involve new matrix elements that do not contribute
cross sections for unpolarized production. We also show
that there are interference terms involving the production
cc̄ states with different total angular momentumJ. These
interference terms must be taken into account in the cro
sections for polarized production from order-as

3 parton pro-
cesses.

Our method has a significant advantage over the covari
projection method in that it can be straightforwardly gene
alized toN space dimensions. This is important, because
allows the use of dimensional regularization in calculatio
of radiative corrections. There are potential inconsistenc
in combining the covariant projection method with dimen
sional regularization for calculations involving orbital angu
lar momentumL51 or higher, because the projections ont
states with definite total angular momentumJ are specific to
three dimensions. Our method for calculating the sho
distance coefficients of NRQCD matrix elements involve
matching Taylor expansions in the relative momentum
which can be readily calculated inN dimensions. After using
renormalization to remove the poles in 1/(N23) from the
short-distance coefficients, we can specialize toN53 dimen-
sions, and use rotational symmetry and heavy-quark s
symmetry to simplify the matrix elements. Our approac
thus allows the convenience of dimensional regularization
be combined with the full power of the NRQCD factoriza
tion approach.

While this paper was being completed, Beneke and Ro
stein@10# presented a paper that also points out that there
interference terms involvingcc̄ pairs with different total an-
gular momentum. They presented a thorough phenome
logical analysis of the production in fixed-target hadron
hadron collisions ofc, c8, and xcJ via order-as

2 parton
processes.
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APPENDIX A: NONRELATIVISTIC EXPANSION
OF SPINORS

In this Appendix, we give the nonrelativistic expansion
for the spinors of a heavy quarkc and antiquarkc̄ with
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arbitrary total four-momentumP. We assume that the rela-
tive three-momentumq of the c in the center-of-momentum
~c.m.! frame of thecc̄ pair is small compared to the quark
massmc . The four-momentap and p̄ of the c and c̄ can be
written

p5 1
2 P1Lq, ~A1a!

p̄5 1
2 P2Lq, ~A1b!

whereP is the total four-momentum andL is a Lorentz boost
matrix. From the mass-shell conditions,p25 p̄25mc

2 , we
have P•Lq50 and P254Eq

2 , where Eq5Amc
21q2. The

components of the four-momentaP andLq in the c.m. frame
of the pair are

PmuCM5~2Eq ,0!, ~A2a!

~Lq!muCM5~0,q!. ~A2b!

When boosted to an arbitrary frame in which the pair ha
total three-momentumP, these four-momenta are

Pm5~A4Eq
21P2,P!, ~A3a!

~Lq!m5L j
mqj . ~A3b!

The boost matrixL j
m , which has one Lorentz index and one

Cartesian index, has components

L j
05

1

2Eq
Pj , ~A4a!

L j
i5d i j2

PiPj

P2
1

P0

2Eq

PiPj

P2
. ~A4b!

The boost tensorLi
m has many useful properties. Its con

traction with the Lorentz vectorP vanishes:

PmL j
m50. ~A5!

The contractions of two boost matrices in their Lorentz ind
ces or in their Cartesian indices have simple forms:

gmnLi
mL j

n52d i j , ~A6a!

Li
mLi

n52gmn1
PmPn

P2 . ~A6b!

There are also simple identities involving contractions o
boost matrices with the Levi-Civita tensorsemnlr ande i jk :

emnlrLi
mL j

nLk
l5e i jk P̂r , ~A7a!

emnlrLi
mL j

nP̂l5e i jkLrk , ~A7b!

emnlrLi
mL j

n5e i jk~ P̂lLrk2 P̂rLlk!, ~A7c!

emnlrLi
mP̂n5e i jkLl jLrk , ~A7d!

emnlrLi
m5e i jk~ P̂nLl jLrk1 P̂lLr jLnk1 P̂rLn jLlk!,

~A7e!
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emnlrP̂
m5e i jkLn iLl jLrk , ~A7f!

where P̂m5Pm/AP2. Our sign convention is
e0i jk52e0i jk5e i jk .

The representation for gamma matrices that is most c
venient for carrying out the nonrelativistic expansion of
spinor is the Dirac representation:

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D . ~A8!

In the c.m. frame of thecc̄ pair, the spinors for thec and
the c̄ are

u~p!uCM5
1

AEq1mc
S ~Eq1mc!j

q•sj
D , ~A9a!

v~ p̄!uCM5
1

AEq1mc
S 2q•sh

~Eq1mc!h
D . ~A9b!

Color and spin quantum numbers on the Dirac spinors a
on the two-component Pauli spinorsj andh are suppressed.
When boosted to a frame in which the pair has total thre
momentumP, the spinors for thec and c̄ are

u~p!5
1

A4Eq~EP12Eq!~Eq1mc!
~2Eq1P” g0!

3S ~Eq1mc!j

q•sj
D , ~A10a!

v~ p̄!5
1

A4Eq~EP12Eq!~Eq1mc!
~2Eq1P” g0!

3S 2q•sh

~Eq1mc!h
D . ~A10b!

These spinors are normalized so thatūu52 v̄v52mc if the
Pauli spinors are normalized so thatj†j5h†h51.

There are 16 independent quantities that can be formed
sandwiching Dirac matrices betweenū(p) and v( p̄). They
are

ū~p!v~ p̄!522j†~q•s!h, ~A11a!

ū~p!gmv~ p̄!5L j
mS 2Eqj

†s jh2
2

Eq1mc
qjj†~q•s!h D ,

~A11b!

ū~p!Smnv~ p̄!5~PmL j
n2PnL j

m!S imc

Eq
j†s jh

1
i

Eq~Eq1mc!
qjj†~q•s!h D

22L j
mLk

ne jklqlj†h, ~A11c!
on-
a

nd

e-

by

ū~p!gmg5v~ p̄!5
mc

Eq
Pmj†h22iL j

mj†~q3s! jh,

~A11d!

ū~p!g5v~ p̄!52Eqj
†h. ~A11e!

From these expressions, it is trivial to carry out the nonrela
tivistic expansions in powers ofq. For example, through
linear order inq, we have

ū~p!v~ p̄!522j†~q•s!h, ~A12a!

ū~p!gmv~ p̄!'2mcL j
mj†s jh, ~A12b!

ū~p!Smnv~ p̄!' i ~PmL j
n2PnL j

m!j†s jh22L j
mLk

ne jklqlj†h,
~A12c!

ū~p!gmg5v~ p̄!'Pmj†h22iL j
mj†~q3s! jh,

~A12d!

ū~p!g5v~ p̄!'2mcj
†h. ~A12e!

APPENDIX B: PRODUCTION MATRIX ELEMENTS

In this Appendix, we define some of the standard NRQC
production matrix elements that were introduced in Ref.@1#.
In order to establish the notation for the fields, we give th
Lagrangian for minimal NRQCD:

L5c†S iD t1
D2

2M Dc1x†S iD t2
D2

2M Dx1LQCD, ~B1!

wherec is the Pauli spinor field that annihilates a heav
quark,x is the Pauli spinor field that creates a heavy ant
quark, andLQCD is the usual QCD Lagrangian for the gluons
and the light quarks and antiquarks.

The production operators in Ref.@1# were defined using a
projection operatoraH

† aH[PM (l)
NR defined by

PH~l!
NR 5(

S
uH~P50,l!1S&^H~P50,l!1Su, ~B2!

where the states in the sum have the standard nonrelativis
normalization. For example, the normalization of the quarko
nium state is

^H~P8,l8!uH~P,l!&5~2p!3d3~P2P8!dll8. ~B3!

Thus the projection operator~B2! has energy dimension
23.

The production operators of dimension six are

O1
H~1S0!5x†cPH~l!

NR c†x, ~B4a!

O1
H~3S1!5x†s icPH~l!

NR c†s ix, ~B4b!

O8
H~1S0!5x†TacPH~l!

NR c†Tax, ~B4c!

O8
H~3S1!5x†s iTacPH~l!

NR c†s iTax. ~B4d!

Some of the production operators of dimension eight are
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O1
H~1P1!5x†S 2

i

2
DJ i DcPH~l!

NR c†S 2
i

2
DJ i Dx, ~B5a!

O1
H~3P0!5

1

3
x†S 2

i

2
DI•sDcPH~l!

NR c†S 2
i

2
DI•sDx,

~B5b!

O8
H~1P1!5x†S 2

i

2
DJ i DTacPH~l!

NR c†S 2
i

2
DJ i DTax,

~B5c!

O8
H~3P0!5

1

3
x†S 2

i

2
DI•sDTacPH~l!

NR c†S 2
i

2
DI•sDTax,

~B5d!

wherec†DIx5c†Dx2(Dc)†x.
Note that the projection operator defined by Eq.~B2! dif-

fers from the corresponding projection operator~2.4!, which
is defined using states with the standard relativistic norma
ization. At leading order inv2, these operators differ simply
by an overall factor:PH(l)'4mcPH(l)

NR . Beyond leading or-
der, the relation between the two projectors is complicate
because the normalization differs for each term in the su
over soft statesS. For physical quantities, such as the cros
section in Eq.~3.1!, the difference between the projection
operators is compensated by the short-distance coefficien

(
mn

Cmn̂ x†K8m
†cPH~l!c

†Knx&

5(
mn

Cmn
NR^x†K8m

†cPH~l!
NR c†Knx&. ~B6!
l-

d
m
s

ts:

We now list the relations between scalar matrix elemen
defined with the projection operator~2.4! and the matrix el-
ements of the operators defined above. At leading order
as and to leading order inv2, we have

^x†cPH~l!c
†x&54mcO1

H~1S0!, ~B7a!

^x†s icPH~l!c
†s ix&54mcO1

H~3S1!, ~B7b!

K x†S 2
i

2
DJ i DcPH~l!c

†S 2
i

2
DJ i Dx L 54mcO1

H~1P1!,

~B7c!

K x†S 2
i

2
DI•sDcPH~l!

NR c†S 2
i

2
DI•sDx L 512mcO1

H~3P0!.

~B7d!

The corresponding color-octet matrix elements are

^x†TacPH~l!c
†Tax&54mcO8

H~1S0!, ~B8a!

^x†s iTacPH~l!c
†s iTax&54mcO8

H~3S1!, ~B8b!

K x†S 2
i

2
DJ i DTacPH~l!c

†S 2
i

2
DJ i DTax L 54mcO8

H~1P1!,

~B8c!

K x†S 2
i

2
DI•sDTacPH~l!

NR c†S 2
i

2
DI•sDTax L

512mcO8
H~3P0!. ~B8d!
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