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We present a general method for calculating inclusive cross sections for the production of heavy quarkonium
states with definite polarization within the NRQCD factorization approach. Cross sections for polarized pro-
duction can involve additional matrix elements that do not contribute to cross sections for unpolarized pro-
duction. They can also include interference terms between parton processes that [@@@ymsdrs with
different total angular momentum. The interference terms cancel upon summing over polarizations. Our
method can be generalized kb dimensions and is, therefore, compatible with the use of dimensional regu-
larization to calculate radiative corrections. We illustrate the method by applying it to the produciibnag
the parton processeg— cc andgg— cc. [S0556-282(196)05717-1

PACS numbe(s): 13.85.Ni, 13.88te, 14.40.Gx

I. INTRODUCTION diative corrections using this method. The Dirac matrices
that are used to project onto the appropriate angular momen-
Calculations of inclusive production rates of heavytum states are specific to three space dimensions. However,
quarkonium have recently been placed on a firm theoreticahe most convenient method for regularizing the ultraviolet
foundation by the development of a factorization approachand infrared divergences that arise in higher-order calcula-
based on nonrelativistic quantum chromodynamicgions is dimensional regularization. It is not easy to general-
(NRQCD) [1]. In this formalism, the cross section is ex- ize the projection matrices td dimensions, since the repre-
pressed as a sum of products of short-distance coefficiententations of the rotational symmetry group are different for
and NRQCD matrix elements. The short-distance coeffieach integer value dfl.
cients can be calculated as perturbation series in the coupling In this paper, we develop a method for calculating
constanta at the scale of the heavy quark mass. The matrixquarkonium production rates that fully exploits the NRQCD
elements scale in a definite way with the typical relativefactorization framework. The short-distance coefficients are
velocity v of the heavy quark in the quarkonium state. Thuscalculated in a form that holds for every quarkonium state.
the production cross sections can be calculated systemaii-he corresponding NRQCD matrix elements are then simpli-
cally to any desired order iag andv? in terms of well-  fied using rotational symmetry and the approximate heavy-
defined NRQCD matrix elements. There have been manguark spin symmetry of NRQCD. It is only at this stage that
recent applications of this formalism to quarkonium produc-the angular momentum guantum numbers of the quarkonium
tion in various high-energy processey. state come into play. Relativistic corrections are easily cal-
Most calculations of quarkonium production have beenculated in this framework. Our method for calculating the
carried out using a covariant projection formalism developedhort-distance coefficients is readily generalizetlltspacial
for calculations in the color-singlet modg3]. In the ampli-  dimensions, so that dimensional regularization can be used to
tude for producing ac pair with total momentunP and  cut off infrared and ultraviolet divergences. After removing
relative momentung, the spinor factouv is replaced by an the divergences, one can specializeNe3 and use rota-
appropriate Dirac matrix that projects out a state with thetional symmetry and spin symmetry to simplify the NRQCD
desired angular momentum quantum numbers. The resultingatrix elements. This approach allows the consistent use of
prescription is relatively simple fd8-wave states. The Dirac dimensional regularization to calculate inclusive heavy
matrix is proportional toys(P—2m,) for a 1S, state and quarkonium production and decays.
£(P—2m,) for a 3S; state, and the relative momenturis Our method has important implications for the production
set to zero. FoP waves, the Dirac matrix is more compli- of quarkonium states with definite polarization. We demon-
cated, and the amplitude must be differentiated with respeditrate that cross sections for polarized production involve
to the relative momentum. The resulting expression for thenew matrix elements that do not appear in cross sections for
amplitude can be very complicated. unpolarized production. Thus, measurements of cross sec-
The covariant projection method also has a number ofions for unpolarized production are not necessarily sufficient
other drawbacks. For each angular momentum state, a sepa- predict production rates for polarized quarkonium states.
rate calculation of the cross section is required, beginning afVe also show that cross sections for polarized production
the level of the amplitude forc production. Another draw- can involve interference between parton processes that pro-
back is that it is difficult to generalize the projection methodducecc pairs with different total angular momentuin The
to allow the calculation of relativistic corrections to the crossinterference terms vanish upon summing over polarizations.
section. There is also a potential difficulty in calculating ra-Thus the cross sections for produciog states with definite

0556-2821/96/5¢%)/321612)/$10.00 54 3216 © 1996 The American Physical Society



54 HELICITY DECOMPOSITION FOR INCLUSIVE)/ ¢ ... 3217

total angular momentum are not sufficient to determine altolor matrix (1 orT?), a spin matrix (1 ow'), and a poly-
the short-distance coefficients in cross sections for polarizedomial in the gauge covariant derivati@& The projection
production. operatorPy ) can be written

The NRQCD factorization approach is summarized in
Sec. Il. In Sec. Ill, we present a general matching procedure
for calculating the short-distance coefficients in the factoriza- Pron= ES [H(P=0M)+S)(H(P=0\)+S[. (24
tion formula. We illustrate the method by applying it to the

parton processesg— cc andgg—cc. The resulting expres-  The sum is over soft hadron stat8swhose total energy is
sions for the cross sections hold for every quarkonium stat§egs than the ultraviolet cutofk of NRQCD. Thus this op-

In Sec. 1V, we show how the NRQCD matrix elements canerator projects onto the subspace of states that in the asymp-
be simplified by using rotational symmetry and the approxi-otic future include the quarkonium staké()\) at rest plus
mate heavy-quark spin symmetry of NRQCD. For simplicity, soft hadrons. The normalization of the meson states in Eq.

we focus on the matrix elements féfys production. In Sec. (2 4 must coincide with those in tHe-matrix element in Eq.
V, we calculate the cross section and the spin alignment ofp 1), The standard relativistic normalization is

the ¢ from the parton processeg]—cc andgg—cc. We
point out that several previous calculations of quarkonium (H(P' \")|H(P,\))=2Ep(2m)38%(P—P') 6y, .
production need to be reconsidered in light of our results. (2.5

Il. NRQCD FACTORIZATION FORMALISM With this normalization of states, the projection operator
_ ) _ ) _ Pu has energy dimension 2.

We consider the inclusive production of a quarkonium |f the colliding particles are leptons, the cross section for
stateH with momentumP and helicity\ via a parton pro-  quarkonium production is given directly by the factorization
cess of the form 12:H(P,\)+X. The differential cross formula(2.2). If the colliding particles are hadrons, the cross
section, summed over additional final staXesan be written  section (2.2) must be folded with parton distributions for

partons 1 and 2 in the colliding hadrons. In this case, the
E do(12—H(P,\)+X) derivation of the factorization form_ula requires that the trans-
X verse momentum+ of the quarkonium be large compared to
3 Aqcp, the scale of nonperturbative effects in QCD. This
_ 1 d°p restriction to largep; follows from the diagrammatic analy-
4E Eov 1, (27)32Ep sis that underlies the factorization formith. This analysis
shows that the dominant contributions to the cross section
% 4 tko— P— 2 _ can be factored intéa) hard-scattering amplitudes for parton
; (2m) 5k tho =P Kl Tz-mipa el (29 processes of the form 12cc+34 ..., (b) jet-like subdia-
grams for the incoming partons 1 and 2 and the outgoing
whereEp= \/M2H+ P? and the sum oveX includes integra- partons 3, 4, etc(c) a subdiagram involving ac pair with
tion over the Lorentz-invariant phase space for the additionalelative momentum that is small compared to the quark mass
particles. m., and(d) a soft part. The soft part involves soft gluons

The NRQCD factorization formalism can be used to fac-that couple to the jetlike subdiagrams and to tleesubdia-

tor the cross sectiof®.1) into short-distance coefficients and gram, but not to the hard-scattering subdiagram. The effects

long-distance matrix elemeng4]: of soft partons that are exchanged between the various sub-
diagrams cancel upon summing over all possible connections

of the soft partons. This cancellation is effective provided

zx: do(12—H(P.M)+X) that thecc pair has large transverse momentum relative to

the incoming hadrons. All the effects of soft partons can then

_ 1 d’pP » be factored into parton distributions associated with the in-
 4E Epvq, (2m)°2Ep T Crun(Pok1.kz) coming hadrons, fragmentation functions associated with the
outgoing partons produced by the hard scattering, and a fac-
X(OHMY, (2.2 tor associated with thec pair that depends on their relative

momentumg. In this step in the derivation of the factoriza-
The coefficient<,, are functions of the kinematic variables tion formula, the short-distance scalps andm, are sepa-
P, ki1, andk;. They take into account the effects of short rated from the long-distance scale,cp. The effects of the
distances of order fii, or smaller, and therefore can be cal- short-distance scales appear only in the hard-scattering am-
culated as perturbation series in the QCD coupling constanglitudes, and all effects of the scaleycp are factored into
a(me). The matrix elementsO"!(M) are expectation values parton distributions, fragmentation functions, armifactors.
in the NRQCD vacuum of local four-fermion operators that The remaining step in the derivation of the factorization

have the structure formula involves separating the scale. in the hard-
scattering amplitude from the scate.v of the relative mo-
O =T L Prony b Knx, (2.3 mentum in the charmonium state. This separation can be

accomplished by Taylor expanding the hard-scattering am-
where ¢ and y are the field operators for the heavy quarkplitude in powers ofg. A naive Taylor expansion generates
and antiquark in NRQCD, and, andlC’,Tn are products of a ultraviolet divergences in thec factor. The effective field



3218 ERIC BRAATEN AND YU-QI CHEN 54

theory framework provided by NRQCD makes this Taylor The operatorP.¢7 scin the matrix element in Eq(3.1) is
expansion meaningful. The long-distance factors generatedefined by

by the Taylor expansion can be identified with matrix ele-

ments of local operators in NRQCD. The renormalization

framework of NRQCD allows the ultraviolet divergences in PC?’CC_ES“ le(a’.&")e(=a".7")+9)

these matrix elements to be systematically removed. The re- _

sulting expression for the cross section has the form of the X(c(q,6€)c(—q,m) + 5. (3.2
NRQCD factorization formul#2.2). The effects of the scale ] ]

m. appear only in the short-distance coefficiefts,,. All The sum is over soft parton states whose total energy is less

effects involving momentum scales of ordegy or smaller than the ultraviolet cutoff\ of NRQCD. The normalization

have been factored into the NRQCD matrix elementsof the cc states in Eq(3.2) must coincide with those in the
HON) -matrix elements in .1). The standard relativistic nor-
(OHO)y T ix el in Eq2.1). Th dard relativisti
mn "

malization is
when the colliding particles are hadrons can be attributed t P eINAT ! ot —
“higher-twist” processes. In the factorization formu(2.2), %oy £ )e(ag, 7)ol ay £1¢(d 7))
the ¢ andc that form charmon_iu_m are as_sumed_ to be pro- :4quEq2(2ﬂ-)6é\3(q1—qi) S(q—ay)Ete n' Ty,
duced by a hard-scattering collision involving a single parton
from each of the colliding hadrons. Higher-twist processes 3.3
can involve more than one parton from a single hadron. An . ) +
example of a higher-twist process for charmonium producWhere the Spinors are normalized so tEi%_xszn ,’7:1’ and
tion is one in which thec andc that bind to form charmo- Similarly for & and »". In expressions lik&'¢’, both the
nium are produced by a quantum fluctuation of the hadrorsPin and color indices are contracted. Note that with the nor-
into a state containing ac pair [4]. The transition of the Malization(3.3), the operatoP. ¢ in Eq.(3.2) has dimen-
cc to a charmonium state can then be induced by the colliSion —4. The difference in the dimensions of the operators
sion with the other hadron. The short-distance part of thid’+ @ndPcc cc matches the difference in the dimensions of
process is the fluctuation of the hadron into a stategmtaininﬂ“e T-matrix elements in Eq92.1) and (3.1). ,
thecc pair. The cross section for the scattering of toepair To carry out the matching procedure, the left side of Eq.
from the other hadron involves long-distance effects thaf3-1 is calculated using perturbation theory in full QCD, and

cannot be expressed in terms of matrix elements of locde€n expanded as a Taylor seriesgrand q’. The matrix
NRQCD operators. elements on the right side of E(B.1) are calculated using

perturbation theory in NRQCD, and then expanded as Taylor
series ing andq’. The short-distance coefficien&,,, are
IIl. SHORT-DISTANCE COEFFICIENTS obtained by matching the terms in these Taylor expansions
order by order inag.

The breakdown of the factorization formula at smaj

The short-distance coefficien,,, in Eq. (2.2) can be
determined by matching perturbative calculations in full _ o
QCD with the corresponding perturbative calculations in B. Matching for gq—cc

NRQCD. In most previous calculations, the coefficients were \ye first jllustrate the matching procedure by applying it

determined by matching cross sections for produoiy o the processjg—cc. The T-matrix element in Feynman
pairs with definite total angular momentum. Howevet,  gauge is

states with different angular momentum quantum numbers

can have a nonzero overlap with the same final state ,1— a _ o —

|H+S). The resulting interference terms cannot always be  Z12—ce=9" 520 (k2) 7, T2u(k)u(p) ¥*T*v(p). (3.4
obtained by matching cross sections. Below we present a

matching prescription that is sufficiently general to provideDirac and color indices are implicit in the spinors. The four-

these interference terms. momenta of the outgoing and ¢ can be expressed as
p=3P+Lqg and p=3P—Lg, where P is the total four-
A. General matching prescription momentum of thec pair, g is the relative three-momentum

Let ¢c(q, &, 7) represent a state that consists of and of thec in the center-of-momenturft.m) frame of the pair,
a’c that have total momenturR, three-momenta: q in the andL{ is a Lorentz boost matrix. The boost matti¥ trans-
cc rest frame, and spin and color states specified by th&rms a purely spacelike four-vector, such agjjpfrom the
spinors £ and 7. These spinors are two-component Pauli¢-M- frame where the components fare (%,,0) to the
spinors with a color index. Using the abbreviated notatiorfr@me in which its components aR¥. The matrix is given
cc=co(q,&, 77) andcc’ =cc(q’,¢',7'), the matching con- explicitly in Appendix A. The expressions for the Dirac
dition is R spinorsu(p) andv(p) in terms of Pauli spinorg and » are

also given in Appendix A. Identities in Appendix A can be
used to expandi(p) v*T? (p) as a Taylor series ig. To
4 —
; (2m) 54(k1+k2_P_kx)lez_)c?+x712—>cc+X linear order ing, the T-matrix element3.4) is

2
g° — .
=2 Conl Py k) (XK FoPesr s Kox). (3.0 Lo o5 v(k) v, ToUk) LI E o' T2y, (3.5)
mn C
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The components of the boost matrix to linear ordeqgiare Having determined the short-distance coefficient, we can
insert it into Eq.(2.2) to obtain an expression for the differ-
ential cross section for producing a mesdnwith helicity

LiOIch P, (3.6a )\ via the parton procesgg— cc:
o aa Epoaa do(qgq—H(P,\))= il (2m)*s
L{zé"—PJP'-i-Z—mCP'P', (3.6b ' 4E1Epvyp (2m)%2Ep
7T2a2
whereEp= \/4m?+ P2, X(ki+ka=P) gmzs[ﬁji —AIAT]
In order to carry out the matching procedure, we first ¢
calculate the left side of Eq3.1). In this case, there is no X{xToI T3y Pyl o' Tx). (3.12

sum overX. Multiplying Eq. (3.5) by the complex conjugate
of 71,_,co7 and averaging over initial spins and colors, we Using the delta function to integrate over the phase space of

obtain P, we find that the cross section is
4 5 — 2 Trsag i
(2m)* 8K+ ko= P) 2 Trp o Tho oo a(Qg—H0\))= 5(5—4mc)36m4[ S —271]
C
2 2 . .
=(2m)*8*(ky+ kz—P)47TgaS X(x T TPy o' T2x), (3.13

i aiain ot icaer o ica where s=(k; +k,)? and we have assumed that the three-
X[&"=nin']yn" oI T2 E10' T 7. 3.7 momentum of the colliding partons is along thexis. Note
that the expressiofB.13 is dimensionally correct. Each of

We have simplified the expression by using the identitie§he quark fields has dimensignand the projection operator
(A.5) and(A.6a) in Appendix A. We have also used the fact 55 gimension- 2, so the dimension of the matrix element is

that (k; —ky) ,L#*=— VP?A', wherefi is a unit vector, which 4 The expressior3.13 gives a contribution to the cross
follows from Eq(A6b) In a frame in V\{\h|ChP, kl! and k2 section for every quarkonium stakte
are collinear, they are also collinear with

We next consider the right side of the matching equation
(3.1). We must construct an operator of the fof2a3) whose
vacuum matrix element, when calculated to leading order in We next illustrate the matching procedure by applying it
ag, reproduces the spinor factor in E8.7) upon expanding 1o the procesgg— cc. TheT-matrix element can be decom-
to linear order ing andg’. One can see by inspection that the Posed into three independent color structures:
appropriate operator ig' o T2yP. o7 s/ o' T3x. At leading
order in ag, only the cc states in the projection operator
Pcer cc CONtribute:

C. Matching for gg—cc

1 1
%QHCF_ngz(kl)fg(kz)(g5absﬂv+§dabcDWC

(XTI T Pew cap o' T2x) =(0lx oI T2ylcc(a’, €', 7)) +'§fab°|:w0) , (3.14

x(cc(q,& )| ¢! o' T2x|0).
(3.9 The Dirac factor for thes®” term is

YHP—Ki+me)y” ¥y (Pp—Katme)y |
+ v(p).
2p-ky 2p-k;
(3.15

cc(q,&é n) |y o' T3x|0)=2E T o' T2y, 3.9

{eela.& mly X0 at 7 (3.9 The termD#*° in Eq. (3.14 differs from Eq.(3.15 only by
where the factor of B, arises from the relativistic normal- inserting the color matriX® between the spinors. The Dirac
ization of states. Expanding to linear ordergrandq’, the  factor for thef2¢ term in Feynman gauge is
matrix element3.8) reduces to

The vacuum-tasc matrix element reduces at leading orderin _
g 1o S*"=u(p)

. _ . , purve_grgy| Yo (P Kt me)y” ¥ (p—kotme)
(XTU]TalﬂPC?,C—CtﬁTo"Tax>=4m§77'T0'lTa§’§Jro"Ta7]. =u(p) 2p-k, 2p-ks
(310 (P+ka)#y"—=(P+ky)"y*+g""(Ky—Ky)
Comparing Eqs(3.7) and(3.10, we can read off the short- -2 p2
distance coefficient for the matrix element: o
X T (p). (3.16

2 2
s

Cli=(2m)*5*(ky+ko— p)ﬂ- a2 [S—AIAT. (3.1D) Using the identities in Appendix A, we expand E@3.15
omg and(3.16 to linear order ing:
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[
T MM N

1 1
Hg(kl' L)n((ky—ka)#Lj+(ky—kg) "L{") — Hg(kl' L)j(P*Ly—P"LE)

q"E'ol g, (3.17

2 2
- m_ggw(kl' L)n(ks-L)j+ E(L#Lr+ Lok

1 :
ve_ __ v_ LV T _
Frre= m(k‘ij ksz’“)f ol Ty o

C

M (kg —ko)yP,y(Ky- L)nQ"ETE. (3.18

The first term inF#*¢ vanishes when contracted with the polarization vectQ(:kl) ande®(k,) in Eq. (3.14. Multiplying Eq.
(3.14 by the complex conjugate df;, .. and averaging over the spins and colors of the initial gluons, we obtain

- 2 2
T o 15 . ' I
2 Tog cologco=—g | 7 €m0 T E T —[(5’““—n A")( 81 —'Rl) + (™= ARl (8" — AR
- o o . ) 15 . )
+ 5m|5nj_(5m|_nmnl)(gnj_nnnj)]q/mqn( 77'T0'|§'§T0']7]+ Eﬂ’TUITaflfTUJTaﬂ
4 ’ ﬁmﬁnq/mqn 'TTaf’gTTa (3 19)
8ms: K 7 '

At leading order inag and to linear order i andq’, the spinor factors on the right side of E§.19 can be identified with
the following matrix elements:

(X"WPcer s x)=4min'T¢ &y, (3.204
(XTTY P s Tx)=4mi ' T3¢ ETT2y, (3.20b
|
<X (_EDm)Talrl/PCC C_Ld/ (__Dn>-|—a > qumq anTaglgTTan, (3ZOO
| o .
< X (_sz)UTal//Pcc e (——D“)alTa > am2q' Mgy T TaE el Ty, (3.200

where ¢ Dy =y'Dy— (D) x.

Matching terms on the left side and right side of E811), we determine the short-distance coeffici€nt, for each of the
matrix elements. Inserting these coefficients into @), we obtain the differential cross section for productiotdgh ) from
the parton procesgg— cc. The final result, after integrating over phase space, is

3a2 T T 15 tTa tra 1 mn__5ms5n ij __5i5)
144m? X PPao ¥ X>+§<X T Puonb Tox) + E[w —2"2") (8" -2'2)

+(M=2"2) (8" -2"Z) + 8™ — (8™ - 2"2) (8" - 2"2)]

a(gg—H(\))=5(s—4mZ)

X XT _ I_Sm o P, wT — I_Sn ol + 1_5 T _ I_Sm a'iTal/fP (//T — I_Sn T
2 H(N) 2 X 8 X 2 H(\) 2 X
g 20 sman| 1 L TP o) (3.21)
8m2 2 HOOW =22 DX -

The expressior{3.21) for the cross section applies equally the matrix elements. The matrix elements can be simplified
well to any quarkonium statel. The relative importance of by using rotational symmetry and the approximate heavy-
the various terms for a given statkdepends on the magni- quark spin symmetry of NRQCD. Their magnitudes can be

tude of the matrix elements. estimated using velocity-scaling rules for NRQCD matrix
elements. In this section, we apply these methods to simplify
IV. REDUCING THE MATRIX ELEMENTS the matrix elements that appear in inclusive cross sections

The cross section@.13 and(3.21) hold for any quarko- for the production ofd/¢. The extension to other quarko-
nium stateH, with the dependence af appearing only in  hium states will be presented elsewhgsé
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A. Rotational symmetry where the matrix elements on the right sides are defined in
Appendix B.

Under rotations, each of the matrix elements in Eqgs! i ) ) .
(3.13 and(3.22) transforms as a component of a tensor. The We next consider matrix elements with two vector indi-

S : L o Tl t ol i im-
indices of the tensor include vector indices, suchi,gsm, ~ C€S» such agx'a' Py ' o'x). Rotational symmetry im
andn, and the helicityA in the projection operatoPyy . plies that such a matrix element can be expressed in terms of

; T T
The helicity A appears both in the ket and in the bra in thethree independent tensors?, U,;Uj,, andU,;Uj, . Thus
expression for the projection operator given in E24). If there are three independent matrix elements. If we sum over

the meson has total angular momentdnthenPy,, trans- the helicities)\_, the onl_y possible tensor i§", so there_ is

forms like the {,—\) component of the direct product rep- only_one pOSSIZbIe matrix element. Thus, up to corrections of

resentation)®J. Thus the entire operator transforms as anfélative orden?, we have

element of the representatid® J® 1©1® - - -, where there 4

is al for each vector index of the operator. The vacuumz (x'o' 4117%@)1/;0")(): = 8Im(OY(3Sy)), (4.43

matrix element of the operator can be expressed in terms oh 3

N independent matrix elements, whexeis the number of 4

times the trivial representatioh appears in the decomposi- i—a Ay i 3

tion of the direct pF;oducﬂ@)Jélégg@- -+ into irreducit?le 2;‘ (X o TPy o Tox) = §5Jmc<08¢( Su).

representations. - (4.4b
In the case of the/, the independent matrix elements

can be determined by elementary tensor analysis.JI has N e : i -,

total angular momenturd= 1, and the helicity label is just 2 X\~ §D PPyon¥’| — §D X

a vector index in a spherical basis. The spherical basis and

the Cartesian basis are related by a unitary transformation 4 i e
with matrix =30'm(O1(°Py)), (4.49
—1N2 —il2 0 i i
T ——Bi)Ta P T(__Sj)-ra >
u.=| °© 0 1 @.1) ; <X( > PPy’ =3 X
12 ~—il2 0 4
N = 38'm(O5(*Py)), (4.4

The helicity labels\ in the ket and in the bra in E@2.4) are
related to the corresponding Cartesian indicasdj by the
transformation matriced),; and UJ-TA, respectively. Since i £ oS £ oS o
there are no momentum vectors that the matrix element cafatrix element(x" (= (i/2)D) TP, ' (= (1/2)D")T%x)
depend on, it must be expressible in terms of the invarianfontracted withz'zl. This can be expressed in terms of
tensorss™ and ™. The number of independent matrix (©O8(*P1)) and one additional matrix element

elements is the number of invariant tensors that can be

where the matrix elements on the right sides are defined in
Appendix B. In the cross sectidi3.21), we also require the

formed out of the available indices. Sisi{ L — | o a T i “j) a >
7'z D' | THyP =DNT
We first consider operators with no vector indices, such as <X 2 YPund 2 X
A T o .
(X"¥Pyoy¥'x). The only indices that are available axe 2(1-8y 36,—1

and\ from the projection operatd?,,. The only invariant ) mc<08‘/’(1pl)>+

tensor iséy, =1. Therefore, we have 3 2

><<XT( - '553) Tadfm(o)(/ﬁ( N '553)T3X> .
(4.9

Whezrsejiw:Ewa(AlZ - Standard production matrix elements ypon summing over helicities, we recover &4.49.
Of(*S*1L,) and Oy ( |—|J) were deEEflne)dltl:Reﬂl] USIngd Matrix elements with four vector indices, such as
a projection operator analogous to Ef.4), but constructe (o (=i Sm t (= (1/2)D"

. o o (X o' (= (i12DM Py o' (= (1/2)DMx), can be re-
out of states with the standard nonrelativistic normalization. . . :
As discussed in Appendix B, the two projection operatorsduced by rotational symmetry to 15 independent matrix ele

differ at leading order simply by a normalization factor of ments. Upon summing over helicities, the number of inde-
9 Simply by pendent matrix elements is reduced to three.
4m.. Thus, we can write

t T :E t t 2
KPP 0=3 xR, 42

B. Vacuum-saturation approximation

4
X WPyo ' x) = §mc<0f(lso)>: (4.33 The vacuum matrix elemerly'o' P, ¥ ol x) can be
simplified by using thevacuum-saturation approximatioin
this approximation, only the NRQCD vacuum is retained in
the sum over soft states in the projection operé2of). The

4
tTa tra, \— _ Yl
XTHPy0 ¥ Tox) 3m°<08( S)). (43D matrix element then reduces to
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(XTUi¢7’¢(x>lﬂTUjX>“<O|XTUi¢| H(P=0\)) efficients of the terms_in the NRQCD Lagrangian can pe
. tuned so that the effective theory reproduces the quarkonium
X(p(P=0\)|¢'0x|0). (4.6)  spectrum and low-energy quarkonium matrix elements to
any desired order iv. Minimal NRQCD reproduces the
spectrum and matrix elements to a relative accuracy of order
Y2, Tf21is theory has exact heavy-quark spin symmetry. With
L . . i the v°-improved NRQCD Lagrangian, the accuracy is im-
o o roved . However thesimproe Lagrangian ncluces
Sis a soft state. Since th¢ is a color singlet, the stats & term y B- oy~ x B- oy that breaks the spin symmetry.
. o Thus spin symmetry gives relations between matrix elements
must also be a color singlet. Suppose it is not the NRQCQhat are accurate up to corrections of relative ongfer

vacuum. Since a single chromoelectric dipole transition will The consequences of spin symmetry are particularly
produce a color-octet state, at least two chromoelectric d'éimple for spin-triplet matrix elements of the, such as
p(_)le tra_n5|t|ons are required to produce the sgat€he am- (1o W)w(}\)wfajm_ Since they is anS-wave state, its he-
Eg?dﬁ_ﬁé;uﬂgreass;ieﬁy aoevc()av;/e(rjgaszc;:;ﬁlc?hzu(;P;;:alrzas):- licity N\ is a spin index. Spin symmetry implies that the he-

; . power P ._licity label A in the ket of the projection operat@t,,, must
conjugate4amp||tude, and this gives an overall SUPPTIESSIOPs matched with the vector indéx while the\ in the bra
factor of v™.

. . N must be matched with the indgx Thus the matrix element
After using the vacuum-saturation approximation, the ma-

trix element(4.6) can be further simplified by using rota- _must b_e proportional .tU“UJ’K The proportllonallt.y cionstant
tional symmetry. The vacuum-tp- matrix element must is obtained by summing ovér and contracting withs". We
have the form find that, up to corrections of relative ordef,

As pointed out in Ref[1], the vacuum-saturation approxi-
mation is a controlled approximation in the case of heav
quarkonium, with a relative error of ordef. The reason for

— . . 4
<l//(P=0,)\)|l//T0'jX|0>=UB\/ZMLI,\/%Rw. @.7) (X' uP o0 ol x) = 3UNUKML 01 (3Sy),

(4.123

The factor ofy2M , comes from the relativistic normaliza-

tion of the charmonium state. The factgB/2w has been t iva + e 4 + 43

inserted so thaR, can be interpreted as the nonrelativistic (X' TPy o Tox) = §UMUime<OS( Sv)-

radial wavefunction evaluated at the origin. Inserting Eq. (4.12b

(4.7) into Eq. (4.6), it reduces to

3 The relative error ofv? in Eq. (4.123 is larger than the
. . _— —_— . 4 . . .
(x'o W’w(A)l/ITUJX):UMU;&—MM R¢|2+ O(v4mC|R¢,|2). relatlve_ error ofv” obtained by using the vacuum saturation
™ approximation(4.8). One can easily show that the error in
(4.8 Eq. (4.123 can be improved ta* by replacing 4n; by
2M,,.
. 4
C. Heavy-quark spin symmetry The matrix element
The most powerful tool at our disposal for simplifying the

production matrix elements of heavy quarkonium is the ap- + _i_em T _i_en

proximate heavy-quark spin symmetry of NRQCD. The spin X7 2D YPyiho 2D X

symmetry transformations of the heavy-quark and antiquark

fields are can also be reduced to a single matrix element by using spin

symmetry. This symmetry implies that the tensor structure in
Y=V, (4.93 the indices\, i, andj must be the same as in E@.12h.
Rotational symmetry then implies that the matrix element
X, 1) —Wyx(x,1), 4.9h . :
XX —Wx(x.b) (4.9 must also be proportional t8™". Thus, up to corrections of
whereV and W are SU2) matrices. Under a rotation, the relative order?, we have
transformation of the fields is

. i~ . i o
l/f(X,t)—>VIJI(O-X,t), (4103. <XTUI<_EDm lﬂtp,#()\)lﬂTO'J( _EDn)X>
x(X,1)—=Vx(O0-x,t), (4.10b =4U,;U], 8™'m(OY(®Py)), (4.133
whereO is the Q3) matrix whose elements are . )
. i . i o
1 <XT0'( - EDm)TalﬂPw(mlﬂTUJ( - EDn)Tax>
o'l =§tr(VT0'iVa'j). (4.11)
=4U,;,U], 8™"m(O4(®Py)). (4.13h

While rotational symmetry is an exact symmetry of
NRQCD, spin symmetry is only an approximate symmetry. Spin symmetry can also be applied to spin-singlet matrix
NRQCD is equivalent to full QCD in the sense that the co-elements of thef, such as
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i o (P i o [P
et -l

L . - — I I ke (Og(*Py)).
A spin-singlet operator likg/"(— (i/2)D))y creates &c pair also scales as ™ like (Og("P1))

in a spin-singlet state. At leading orderuR, the transition to
a final state of the form{y+S) must involve the term V. CROSS SECTIONS FOR POLARIZED #

y'B: q¢_XTB' oy from the v_z-lmproved NRQCD La- In this section, we combine the results of Sec. Ill and IV
grangian. The resulting constraints on the matrix element cagy gptain the cross sections for productionyofuith definite
be deduced using angular momentum theory. These CO'I“TeIicity via the ordera? parton processesjg—cc and
straints are simply those that are already provided by rot §g— cC. These cross sesctions can be folded with parton dis-
tional invariance. Spin symmetry does give new relation ributioﬁs to obtain cross sections fop production in

between the production matrix elements'of thgang_ those hadron-hadron scattering. The resulting cross sections should
of the 7¢, but they are not of great practical significance. not be taken too seriously, since these parton processes pro-
duce ay with zero transverse momentum. The factorization
D. Velocity-scaling rules formula (2.2) is therefore not strictly applicable, since its
derivation requires the transverse momentum ofihte be
large compared td ocp. We choose to ignore this difficulty,
since our primary purpose is to illustrate the calculation of

The relative importance of the NRQCD matrix elements
that appear in cross sections foproduction are determined
by how they scale with the relative velocity of the charm cross sections for polarized production.

quark in the mesofl]. When applied to the matrix elements . : :
(0,(3S*1L,)), the scaling rules are fairly simple. The opera- _ The cross section foy production via the parton process

tor ©,(25*1L,) creates and annihilates a pointlige pairin 09 ¢S obt:’:uned by inserting the matrix elemet12t
. into Eq. (3.13:

the color staten and in the angular momentum state

25t1,. The scaling of the matrix element is determined by -

the orbital angular momentum quantum numbeand by the — O N TP w3

number of chromoelectric and chromomagnetic dipole tran- a(@g—¥(r))=d(s 4m°)27m§(1 50){05(*S1))-

sitions that are required for thec pair to reach the state (5.2

cc(n,?5* 1L ;) from the dominant Fock state of the meson. If

the m_inimum number_ of these transitionsBsand M, re-  We have used the fact that the matdxin Eq. (4.1) satisfies

spectively, the matrix elemen{O,(*>"'L;)) scales as 3,U, Ul =1 ands; U], 7= 8,,. The cross sectio(b.1) im-

3+2L+2E+4M . , A

v K _ - plies thaty’s produced by this process are transversely po-
The dominant Fock state of thie consists of ac pairin  |arized, which could be anticipated from the fact that the

a color-singlet S, state. Thus the matrix element gluon interaction with the light quark conserves helicity.

(04(%s))) scales as>. Thecc pair can reach the color-octet Summing over helicities, we obtain

statescc(8,°P;), cc(8,%S;), and cc(8,'Sy)) through a

single chromoelectric, a double chromoelectric, and a single 2302
chromomagnetic dipole transition, respectively. Thus the a(qq——np):5(5—4m2)%(08‘/’(381)>. (5.2)
matrix elements Og(3P;)), (0g(3S,)), and{(Og(1Sp)) all ¢ 2

scale asv’. All the other matrix element$0,(>>"1L;))

scale asv!! or smaller. Those that scale like'! include The cross section for producinga with helicity A via
(O01(*P)), (O(*P1)), (01(*Sp)), and(O;(3P,)). The ma-  the parton procesgg— cc is obtained by inserting the ma-
trix element trix elements(4.3), (4.5, and(4.13 into Eq. (3.21):
|
ma? 15 3(3—26)0) 453-26,0)
(99— $(N)= (s 4m) a1 (OF('So))+ (08 ("So))+ —— 7 (Of(*Po) + —g = (O(*Po))
27(1— 6y0) 81(1—36y0) i o i o
tTamz (08Pt — (x| = 3D° TPy w| = 30° | Tox ) - (5.3
Summing over helicities, this reduces to
, T 15 . 7 s 105, . 9 ..
0(99H¢):5(5_4mc)36m2 (O1( So)>+§<os( So)>+m_§<01( P0)>+8_m§<08( Po))+ 8m§<08( P))¢-

(5.9
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Note that the contribution from the matrix element matrix elemen{4.13D is thereby expressed as a linear com-
<XT(—(i/2)53)Ta¢7’¢(0)¢T(—(i/2)53)TaX> drops out of bination  of ’ma}tnx elements of the form
the cross section for unpolarized production. If we retain(7 (3.0 P,y J(3',h")), where the operataf(J,h) creates

the cross sectiofb.3) reduces to numbers] andh. The projection operatdP,,,) projects onto

states that contain & with helicity A plus soft hadrons. If

5m3al the soft hadrons have total angular momentign then the
o(gg— w()\))~5(s—4m§)288n3( (04(*sy)) angular momentum structure of the matrix element is
C
3(3—24)0) JN|IN; I (1N Ik I'h'). 5.
+ T(O%@%)) . (5.5 é (JN[IN;IA)(IN;IshgI'D") (5.7

Rotational symmetry requires thiat=h’ and that both) and

J’ lie in the irreducible decomposition df® Js. It does not
require that)=J’, so there can be interference terms involv-
ing matrix elements witll# J’. If we sum Eq.(5.7) over the
helicities A, the orthogonality relations for Clebsch-Gordan
coefficients imply thatl=J'. Thus the interference terms
cancel upon summing over helicities. The method used by
"®ho and Leibovich therefore gives the correct cross sections
for unpolarized production. In the specific caseggf—cc,
Cho and Leibovich found that the only amplitudes for the
production of spin-triplefP-wave cc pairs that are nonzero
aregg—cc(8,°Py) andgg—cc(8,°P,,[h|=2). Since there

The (0%(1Sp)) term givesy’s that are unpolarized, while
the (O4(3Po)) term givesy’s with helicity —1, 0, and+1
in the proportions3:1:3.

The production ofd/¢ from the color-octet parton pro-
cesses|q—cc andgg—cc has been studied previously by
several group§6—§]. In particular, the spin alignment of the
¢ from these processes has been calculated by Tang a
Vantinnen[6] and by Cho and Leibovicf7]. We proceed to
compare our results with this previous work.

Tang and Vatinnen[6] have used the covariant projec-
tion method to calculate the cross sections for polarized

AR .
and ¢’ in fixed-target hadron-hadron collisions from the is at most one nonzero amplitude for any given valué of

qrdera§ parton processes. Our res(Bt1) for the cross sec-  here cannot be any interference terms. Thus their method
tion from qg—cc is in agreement with theirs. Our result gjyes the correct cross sections for polarized production from
(5.5 for the cross section frorgg—cc agrees with theirs e ordera? parton processes. However, for the ordér-
only after summing over helicities. We disagree on the he'parton proéesseisj—wa k, there are nonvanishing ampli-
licity dependence of thé0g (*Sy)) term. Their result for this  y,qes with different values af and the same helicitp, so
term is proportional to * 6,0, which implies that the/ is  the interference terms are nonzero. These interference terms
produced with transverse polarization. This is clearly incor-yst pe taken into account in calculating the term propor-
rect, because a pointlikec pair in a 'S, state is rotationally  jong| to (04(3Py)) in the inclusive cross section for polar-
invariant in its rest frame. The's that are produced by the ;64 The only calculation thus far in which these interfer-
binding of thecc pair must therefore be unpolarized, as in gnce terms have been correctly included is a calculation of
our result(5.5). _ . the gluon fragmentation function for the production of a lon-
Cho and Leibovich7] have used t.he covariant projection gitudinally polarizedys by Beneke and Rothste[i9].
method to calculate the cross sections goand ¢" in pp Fleming and MaksymyK8] recently presented a method
collisions, including not only the orders parton processes for calculating cross sections for the production of unpolar-
but also the ordere: processes of the fortij —cc+k. Our  ized heavy quarkonium. To determine the short-distance co-
results(5.1) and (5.5 for the cross sections from orde¢  efficients of the NRQCD matrix elements, they matched
parton processes agree with theirs. Cho and Leibovich deteeross sections for producirar pairs with specific color and
mined the short-distance coefficients by matching cross se@angular momentum quantum numbers. The cross sections
tions for producing color-octetc pairs with vanishing rela- were expressed as integrals over the relative three-
tive momentum and in specific angular momentum statesnomentuny of thecc pair, and they used the nonrelativistic
This method gives the correct cross sections for unpolarizegxpansions of the Dirac spinors given in Appendix A to ex-
production, but it fails in general for polarized production. In pand the integrands as Taylor seriesginin general, their
particular, as we show below, it fails to give the correctmethod would fail if applied to cross sections for polarized
short-distance coefficients for spin-tripletwave matrix el-  production, because it does not give the interference terms
ements. In the matrix elemef.13h, the indicesi andm  between parton processes that prodacepairs with differ-
can be decomposed into contributions from total angular moent total angular momentuth Fleming and Maksymyk ap-

mentumJ=0,1,2 by using the identity plied their method to the production of unpolariz¢dfrom
the parton processeasq— cc and gg—cc. Our cross sec-
roq o tions agree with theirs after summing over helicities.
Sir Smm =ULUT, % (1a;18|dh)(JIh[1a’;18") 9 9
VI. MMARY
XU grieU gra, (5.6 sV

The NRQCD factorization formalismil] is a powerful
where a sum over, B, a', and B8’ is implied. A similar  tool for analyzing the production of heavy quarkonium.
identity can be used to decompose the indicesdn into  Cross sections are factored into short-distance coefficients
contributions from total angular momentui=0,1,2. The that can be calculated using perturbative QCD and long-
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distance matrix elements that scale in a definite way witharbitrary total four-momentun®?. We assume that the rela-
v. In this paper, we presented a general matching prescrifive three-momentung of the c in the center-of-momentum
tion for calculating the short-distance coefficients in the in-(c.m) frame of thecc pair is small compared to the quark
clusive cross sections for quarkonium states. Using thisnassm,. The four-momentg andp of the c andc can be
matching prescription, the cross sections are obtained in waritten

form that applies equally well to any quarkonium state. The

specific state enters only in the reduction of the NRQCD p=3P+La, (Ala)
matrix elements using rotational symmetry and heavy-quark —
spin symmetry. For simplicity, we discussed the reduction of p=zP-Lq, (Alb)

theenglriﬁg{?onm%”éﬁ;r:g:; Sv?llﬁ/b?r trgiecr?tse?j C;flslge'rhere whereP is the total four-momentum arldis a Lorentz boost
g P 1541€  hatrix. From the mass-shel conditiong?=p?=m?, we

Our approach has interesting implications for cross sec- 5 ; £

tions for producing quarkonium states with definite polariza-N@ve P-Lq=0 and P*=4Eg, where E;=ymc+q”. The
tion. We showed that cross sections for polarized productiof®mponents of the four-momeriaandL q in the c.m. frame
can involve new matrix elements that do not contribute to°f the pair are
cross sections for unpolarized production. We also showed ul
that there are interference terms involving the production of P*lem=(2Eq,0), (A23)
cc states with different total angular momentuim These (LQ)*|cm=(0q). (A2b)

interference terms must be taken into account in the cross
sections for polarized production from ord@i-parton pro-  When boosted to an arbitrary frame in which the pair has

cesses. total three-momentur®, these four-momenta are
Our method has a significant advantage over the covariant
projection method in that it can be straightforwardly gener- P/‘=(\/4E§+ P2,P), (A3a)
alized toN space dimensions. This is important, because it
allows the use of dimensional regularization in calculations (Lq)”sz‘qi. (A3b)

of radiative corrections. There are potential inconsistencies
in combining the covariant projection method with dimen- The boost matrix./*, which has one Lorentz index and one
sional regularization for calculations involving orbital angu- Cartesian index, has components
lar momentumL=1 or higher, because the projections onto

states with definite total angular momentunare specific to o 1

three dimensions. Our method for calculating the short- Li_z_EqPJ’ (Ada)
distance coefficients of NRQCD matrix elements involves

matching Taylor expansions in the relative momentum, . PP PO PP

which can be readily calculated b dimensions. After using Lj=6"- T TE P (Adb)
renormalization to remove the poles in NA-3) from the a

short-distance coefficients, we can specializBto3 dimen- The boost tensok/ has many useful properties. Its con-
sions, and use rotational symmetry and heavy-quark spifraction with the Lorentz vectoP vanishes:

symmetry to simplify the matrix elements. Our approach

thus allows the convenience of dimensional regularization to PMLf‘zo. (A5)

be combined with the full power of the NRQCD factoriza-

tion approach. The contractions of two boost matrices in their Lorentz indi-

While this paper was being completed, Beneke and Rothces or in their Cartesian indices have simple forms:
stein[10] presented a paper that also points out that there are

interference terms involvingc pairs with different total an- 9ukiLi=- &', (A6a)
gular momentum. They presented a thorough phenomeno- pup
logical anal_y_S|s of the production in flxed-targzet hadron- LEL = —grr+ . (A6b)
hadron collisions ofiy, ', and x.; via orderag parton P2
processes. . _ o . .
There are also simple identities involving contractions of
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APPENDIX A: NONRELATIVISTIC EXPANSION Sv_ i
OF SPINORS €umplt P = €Lyl ok, (A7d)

In this Appendix, we give the nonrelativistic expansions ewxpL{‘=e”k(l5,,LMka+ ﬁ’xLPJLykvL IADPL,,J-LAK),
for the spinors of a heavy quark and antiquarkc with (A7¢)
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Pr= el Lyl ok, ATf — . m .
Suene T N A U(p) v ys0 (PI=g P“€"n—2iL1 (g o)),
R q
where P#=P#/\JP2.  Our sign convention is (A11d)
Ok = _EOijkzeijk. o o
The representation for gamma matrices that is most con- u(p) ysv(p)=2E4¢" . (Alle
venient for carrying out the nonrelativistic expansion of a ) o
spinor is the Dirac representation: From these expressions, it is trivial to carry out the nonrela-
tivistic expansions in powers of. For example, through
1 0 0 o linear order inq, we have
0_ L yi= _ A8 -
7 (0 —1) 7 (—«f‘ 0) "o Wpo(P=—2¢(q- )7, (A129
In the c.m. frame of thec pair, the spinors for the and u(p) y*v(p)~2meLLE el g, (A12b)
thec are
u(p) v (p)=~i(PHLy—P"LI Tl p—2L1L kel g Ty,
) 1 (Eqt mc)g) (A%) (Al12¢)
ulp)iem=—=——= , 2)
VEqtme | droe U(p) v ys (B~ Pr¢' - 2iL ¢ (ax o),
(A12d)
@ =S ) (A9b) Tp) oo ()~ 2met’
v —————— . ~
P)lcm JEqrme | (Eq+me)7 u(p) ysv(p)~2me&' 7. (Al2¢)

Color and spin quantum numbers on the Dirac spinors and APPENDIX B: PRODUCTION MATRIX ELEMENTS
on the two-component Pauli spinafsand » are suppressed.
When boosted to a frame in which the pair has total three
momentumP, the spinors for the andc are

In this Appendix, we define some of the standard NRQCD
production matrix elements that were introduced in REJ.
In order to establish the notation for the fields, we give the
Lagrangian for minimal NRQCD:

2

u(p)= (2Eq+Pyp) 2
® \/4Eq(EP+2Eq)(Eq+mc) ‘ & ,CZI,ZIJr iDt+2D—M l,[i-l-)(T iDt—m X+£QCD1 (B1)
(Eqtme)é
X g ) (A108  where ¢ is the Pauli spinor field that annihilates a heavy
quark, y is the Pauli spinor field that creates a heavy anti-
quark, andCqcp is the usual QCD Lagrangian for the gluons
— 1 and the light quarks and antiquarks.
v(p)= VAE(Ep+ 2E)(Eg+m )(2Eq+ P0) The production operators in R¢fl] were defined using a
4 e projection operatoay,a,=P},, defined by
—q-on )
. (A10b)
(Eqtmc)7 Pﬂf‘M:ES IH(P=0\)+S)KH(P=0\)+S|, (B2

These spinors are normalized so that= —vv =2m, if the _ S
Pauli spinors are normalized so thdie= 7" 7=1. where the states in the sum have the standard nonrelativistic

There are 16 independent quantities that can be formed Hgy_ormalizati(_)n. For example, the normalization of the quarko-
sandwiching Dirac matrices betweerfp) andv(p). They  Nium state is

are (H(P' \)H(PA))Y=(2m)3%(P—P') 6y, (B3)
T Ay — T
u(p)v(p)=-2¢'(q- o) 7, (Al11d 1,5 the projection operatoiB2) has energy dimension
-3,
— — - ; The production operators of dimension six are
u(p)y#v(p)=Lf‘(2Eq5*an— = qlgT(q-am), P P
C
! (A11b) O (tso) =xTyPNR u'x, (B4a)
_ o ime . OYCs)=x"a yPit, o' x, (B4b)
U(p)S#u ()= (PHL]—P'LY) | == &0ty
, ‘ 05 (*sp)=x"TYPhR ' T2, (B49)
| .
Eq(Eqrmg @& (47 OYCs)=x'o' TPl o' Ty (B4

—2L1 LM ey, (A110  some of the production operators of dimension eight are
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We now list the relations between scalar matrix elements

i o .
@?(1P1)=XT( - EDI) YPrin l//T( - —D') X, (B53  defined with the projection operat(2.4) and the matrix el-

ements of the operators defined above. At leading order in

1 as and to leading order in?, we have
01(Po)=3x (‘ED «r) z/fPH?MwT( -D- o)x, ]
(B5h) X"YPan ) =4m Ol ('Sy), (B7a

i i Tol P, Tolx)=4m0%(3S)), B7b
O§<1P1>=XT(—'§D')Ta¢ H?M(—'ED')T KoY Propy ) =4m01 (), (87D
(B50 < (__D )'r’fPH(x)l/’ (——D') > am,0%Y (*Py),

1
08(3P0)_ 3X (_ ED O')Tal,bPH()\)wT( D 0') TaX, (B7C)

(B5d) i o
. X' _ED o | yPay¥T| = 5D | x | =12m07 (Py).
wherey'Dy=y¢'Dxy—(Dy)Ty. (B7d)
Note that the projection operator defined by EBR) dif-

fers from the corresponding projection opera®#), which  The corresponding color-octet matrix elements are
is defined using states with the standard relativistic normal-

ization. At leading order in?, these operators differ simply <x*Ta¢7’H<x>¢*Tax>=4ch§(1So), (B8a)
by an overall factorPH()\)~4mCPH§). Beyond leading or-
der, the relation between the two projectors is complicated <XT0.iTal//rPH()\)¢‘ra_iTaX>:4mcog(3sl) (B8b)

because the normalization differs for each term in the sum
over soft state$. For physical quantities, such as the cross
section in Eq.(3.1), the difference between the projection < (

——D)T P (——D)T >=4m(9H1P :
operators is compensated by the short-distance coefficients: 2 ¥Puond s ("P1)

(B8c)
z Cmn(XTIC,LwPH(A)‘pTKn)O
mn <X (— ED O')Talﬂ'PH()\)lﬂT( -D- O')T X>
:% C <XTIC,;¢PH x)¢T’CnX>- (B6) :12mco'é|(3p0)_ (B8d)
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