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Diffractive limit approach to elastic scattering and inelastic diffraction of high-energy hadrons
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An approach to inelastic diffraction based on the concept of equivalence of diffractive states is developed. In
the classical description of Good and Walker, the inelastic diffraction originates from the diversity of elastic
scattering amplitudes in the initial and final stdte We consider a multichannel correction, accounting for
intermediate transitions inside the equivalence class. This correction can be factorized yielding the diffraction
amplitude in the formNAt, to be taken in the “diffractive limit”N—o~, At—0 such thatNAt is finite. We
analyze elastic scattering and the inclusive inelastic diffraction cross sectigmgafandp-p collisions, in the
range of c.m. energy/s=20-1800 GeV. We claim that the angular distribution of the inclusive inelastic
diffraction at small momentum transfers is determined by elastic scattering in the transition region between the
forward peak and the minimum. This is successfully verified in experiment. The detailed comparison with the
Good-Walker description, with emphasis on the advantages of our approach, is presented.
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I. INTRODUCTION ing amplitude in the form of the two-dimensional Fourier
transform of a function describing the geometry of scatter-
In describing nuclear and hadronic collisions one oftening. In quantum-mechanical scattering the geometrical limi-
encounters the term “diffraction” which originates from tation may be transposed into a reduction or truncation of a
classical optics. Its use is motivated by striking analogiedand of orbital angular momenta consisting of a huge num-
between light scattering in optics and particle scattering irber of partial waves which participate coherently in the in-
wave mechanics. Historicall{l], diffraction was synony- teraction. In either case one can establish a simple relation
mous with scattering in general. Nowadd®g$, “diffraction between the geometrical properties of the scatterer and those
scattering” customarily refers to a limited class of phenom-of the diffraction pattern. The great success of the Glauber
ena which occur in medium-energy nuclear and high-energynodel[3] in nuclear scattering and of the Chou-Yang model
hadron collisions. The sufficient energy of collision allows[4] in hadron collisions represents astonishing evidence that
an opening of a variety of inelastic channels which in turnusing optical concepts, reflecting merely the fact that nuclei
implies strong absorption since the presence of competingnd hadrons have finite sizes, one can achieve a successful
reactions results in a considerable depletion of the particlelescription of the basic features of their scattering.
flux in the elastic channel. Such conditions are analogous to Obviously, still many problems, related to the more de-
those for diffraction of light by opaque or partially transpar- tailed structure of hadrons, remain. For example, the had-
ent objects in optics. ronic analogy of diffractive structure of the differential cross
The diffraction of light on an obstacle leads to a struc-section is often obscured since multiple dips and reinforce-
tured penumbrdinstead of the darkness expected in geo-ments may not be present. In fact, numerous dips arising in
metrical optic$ resulting from the alternating constructive geometrical models of hadron scattering may be washed out
and destructive interference of deflected waves. The diffracwhen including the unitarity contributions from multiparticle
tive analogy in nuclear and hadron physics consists in a subntermediate state§5]. Thus the optical resemblances of
stantial presence of elastic scatteri(and other two-body high-energy hadron diffraction should not be overempha-
channelswhere very little would naively be expected in vio- sized. There is certainly much more dynamics in this process
lent collisions. It also refers to the behavior of the differentialthat could be explained simply in terms of geometrical
cross section which is strongly peaked in the forward direcshapes of absorbing obstacles. The geometrical picture of
tion and often appears as a series of maxima and minimaliffraction on a grey disc may still be useful for modeling the
Another “diffractive” phenomenon is a slow variation with dominant long-range part of scattering. However, it would be
energy of the integrated cross sections which means that theghly desirable to disentangle from the vagueness of geo-
geometry of absorption dominates details of intrinsic dynam-metrical diffraction also phenomena of shorter range related
ics. to intrinsic dynamics of colliding particles.
In the Fraunhofer theory of light diffraction the limitation ~ The way in this direction goes through a better under-
of a wave front by the diffracting object leads to the scatterstanding of the process of “diffractive excitation” or “dif-
fraction dissociation’{6,7] which involves quasielastic tran-
sitions with no exchange of quantum numbers. The qualifier
*On leave of absence from H. Niewodnicsén Institute of  “diffractive” refers here merely to the condition of coher-
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hidden inside geometrical shapes, the analogy between opti- The general formulas derived in Sec. Il are further elabo-
cal and particle diffraction seemed to be complete. On theated on in Sec. IV. We consider there a simple model of
contrary, the “inelastic diffraction” has no classical analogy; diffractive states. They are imagined as built of a hadron
it appears as a peculiar quantum phenomenon connectédlk (representing the ground statand of some quanta
with the existence of internal degrees of freedom. Phenomt diffractons™) corresponding to diffractive excitations. The
enologically[8], the inelastic diffractive channels are char- collisions of hadrons is treated in an analogue model as the

acterized by a slow variation with energy of their cross secScattering of a plane wave off a scatterer composed of two
tions, i.e., by the energy dependence typical of elasti€Xxcited hadronic cores. The two-hadron bulk and the density

scattering. Indeed, the states produced in these channels hgligtribution of dif]r‘]ractons Lnsjde the core are assumed to
dominant quantum numbers corresponding to the groung@Ve Gaussian shapes. Their ragj>R, are to be deter-

state. All other channels where cross sections drop rapidl ined _from fitting to exper!men'gal data. This semiphenom-
with increasing energy are referred to as nondiffractive. nological model thus explicitly includes the two sources of

The requirement of quasielasticity or “diffractiveness” of diffraction: the geometrical diffraction on an absorbing had-

an inelastic transition can be incorporated into a theoreticalo"'C bulk and the dynamical diffraction corresponding to

formalism in either of two ways. In thechannel approach Intermediate transitiondnodeled with the aid of diffractons
inelastic diffraction is described in terms of the exchange Opet_:_/\;]een _equw?lent statel.\s.l i wofold: t
Pomeron, a hypothetical object carrying vacuum quantur‘z{e e am otf our calculations was twolold: to con-

numbers. Most papers, inspired by great successes of Reg 8[.nt :heory W'tﬁ exgetrlment andhto t(r:momp\;a\/re varllous thleo-t_
theory, follow this method9]. Another approach which is ICal approaches between each other. VVe analyze€ elastic

used in this paper is that of tiechannel. It is based on the scattering and the inclusive inelastic diffraction cross sec-
. tions for p-p andp-p collisions, in the range of c.m. energy

presumed relation of equivalend®] between the initial Jom .
(ground state and the states involved in diffractive channels.YS=20-1800 GeV, covered by the measurements carried

This means that the Hilbert space of physical states is delut at the CERN Intersecting Storage Rir@SR), CERN
composable into subspaces of diffractive and nondiffractive>UPer Proton Synchrotrdi$P3, and Fermilab Tevatron col-

states. This assumption is taken so much for granted that it iders [11-18. In _aII cases, the appl|cat|on of our two-
often not stated explicitly. component model is very succesgful. In ela'stlc scattering, the
In order to reveal the equivalence of states one must denglé minimum observed experimentally is explained as a
part from the representation of physical states as eigenstatg@ltichannel interference effect due to scattering off diffrac-
of the hadronic Hamiltonian, in which each state is antons in the presence of the hadronic bulk. The same effect

equivalence class for itself. One is thus looking for a suitabl¢!€termines the angular distribution of inclusive inelastic dif-
unitary transformation which allows one to expand thelraction at low momentum transfers. The detailed dlSCUSSlqn
physical states in terms of the transposed states. The be%ftthese r_esults_, W|th_empha5|s on advantage_z_of our descrip-
known transformation, aimed for the description of diffrac- ion Of diffraction with respect to the traditional Good-
tion, is that of Good and Walkdil0] who imposed on the VWalker approach, is presented in Sec. V.
new base states to be eigenstates of the scattering operator.
Their approach, referred to as the method of “diffractive Il. METHOD OF DIFFRACTIVE EIGENSTATES
eigenstates,” is discussed in Sec. I1. It should be pointed out ¢ qhgiger a unitary transformation of the physical states
that this approach constitutes the ground for the geometrical
models of diffraction (e.g., those of Chou-Yang and [iY—|Uj) 1)
Glaubey, diffractive eigenstates being there identified as the
states describing configurations of hadrof@cnucleay con-  and of the scattering operator
stituents with definite impact parameters. +

The natural base for describing inelastic diffraction is ob- T—=Toe=U'TU. )
tained through a unitary transformation of physical states
such that the transforming operator is reducible in the HiIbergt
space. As discussed in Sec. Ill, we do not additionally re-
quire that the base states diagonalize the scattering operator.
An obvious advantage of rejecting this restriction consists in liy= ; Ui’}|Uj>, 3)
accounting for intermediate virtual transitions inside the set D
of diffractive states. Apparently the resulting expressions are here
quite complicated. However, we were able to show that if the
diffractive subspace contains a huge number of std{ehe Ui =(ilulj) (4)
effect of nondiagonal transitions can be factorized: the dif-
fractive transition amplitude has the fortdAt where At is the matrix element of the unitary transformation operator.
represents a diversity of diagonal matrix elements of the The transition amplitude can be written in terms of the
scattering operator over the set of equivalent diffractivematrix elements of the scattering operator in the new base:
states. Such expressions are to be considered in the “diffrac-
tive limit” [5]: N—o, At—0 under the requirement that To=(f|Tli)= U U*te: )
NAt is finite. Diffraction thus arises as an infinite sum of the e Ii%o e
infinitesimal contributions from all intermediate states be-
longing to the diffractive equivalence class. where

Any state can be expanded in terms of the new base
ates, e.g., for the initial state one has
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tkjE<Uk|T|Uj>:<k|TO|j>_ (6) tion (12) can be interpreted as the requirement that the base
_ _ _ _ states of the diffractive sector are subject only to elastic scat-
Notice that the summations in the above equations extengkring which arises from absorption related to the production

over all physical states. of nondiffractive states.
If the transition takes place between two diffractive states,
A. Transformation of Good and Walker i.e., when|i)e[D] and|f) e[D], one has then
The general transition amplitud®) can be simplified by
considering the unitary transformation which diagonalizes Tsi= E U”Ui’jtj (13
the scattering operator: liyelp]
. . and
TIUj)=t;]U}) 7
which is equivalent to Tiizmz[o] [BES (14)
Toli)=ti), (®)

which only seemingly is the same as E(0) and(11) since
i.e., the transformed scattering operator is diagonal in physithe summation over states is now restricted to the clBgs [
cal states. Such a unitary transformatlds- U g, first con-  of diffractive states.
sidered by Good and Walkgt0], exists since the scattering From Eq.(13) one may easily obtain the inclusive inelas-
operator is normal. Indeed the unitarity of the collision op-tic cross section of diffractive transitions:
eratorS=1+iT implies

TT =TtT=i(T'=T) > ThlP= X Uy g2 -T2
[F)#]i) liye[D]
and
= Uii |2 T —t; ]2 15
ToTo=TiTo=i(TL—To). (9) |J'>EE[D]| al Ta (19

The base statelt)gj) Were named “eigenstates inside Thus while the elastic scattering amplitude is an average
nuclear matter’[10]. They are also referred to as “diffrac- value of the absorption coefficients, the inclusive cross
tive states” or better “diffractive eigenstates.” Using this section of inelastic diffraction appears as their dispersion.

base Eq(5) is simplified to the single sum over states: The approach of Good and Walker constitutes the ground
for the geometrical models of diffraction. In these models

. one takes for granted that the interaction of high-energy

Tfi:% UsUijt; (10 composite hadrons depends on the distribution of their con-

stituents in the impact parameter plane only. There is an

and, in particular, the elastic scattering amplitude appears itinplicit assumption that a very fast projectile passing

the form of an average of the eigenvaluesver the set of through hadronic medium is outside of the target long before
physical states: the changes it induces in the medium take place. Thus when

the projectile interacts with any of the target constituents, the
others are fixed in their positions and can be considered in-

— 2
T”_% Uil 1D active spectators. This means that it is just the states
|by,...,b,), describing the configurations of hadron constitu-
with the weight|U;;|* which satisfie§|j>|uij|2=1. ents with definite impact parameters, which are eigenstates

From Eq.(10) one can see that if the eigenvaluesvere  of diffraction. Equation(12) then reads
the same for all states then the inelastic amplitude would
vanish because of unitarity &f. Thus the inelastic scattering > SN _ B R >R > _
arises from the diversity of the eigenvalugswhich corre- T|b1""’b”>_t(b’b1""’b”)|b1""’b”>+|k>;[~m il Uk),
sponds to various absorptions of diffractive eigenstates as the (16)
components of the initial state. However, this mechanism of- | . ) ) .
inelasticity is very general; it applies to any inelastic scatter? P€ing the impact parameter which describes the trajectory
ing and not exclusively to inelastic diffraction. of the projectile hadron. o

The diagonalizatioii8) was replaced by Biatas, Czyand T_h_e transition amplitude can thus be written in a more
Kotarski [18] with a weaker assumption of diagonalization familiar form:
of the scattering operator in a particular class of states only. o
Denoting the chosen subset of states By gnd its orthogo- (R — 2 2 xR R MR
nal complement by~D] one has for any statg) e [D], Tri(b) nzl P”f by, Aoy @7 E(b.by, - Do)y

17

To|J>:tJ|l>+|k>§[:ND] tiglk)- 12 where ®;,®; are_ the wave functions, e.g.,
- ®(by,....b,)=(bq,...,b,li), and P,, is the probability to
The states belonging td)]] will be called diffractive states find the configuration oh constituents. Assuming the cel-
and those fronj~D] are referred to as nondiffractive. Equa- ebrated cluster form of the hadronic profil&7]:
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. . n L Although the three last equations are equivalent to Egs.
t(b,by,....b,) =il 1 H y(b—by)] (18 (13)—(15), there can be important differences when the two
k= kinds of expressions are applied to phenomenological analy-
ses. The structure of the-type formulas leaves more room
for suitable choices of the theoretical ingredients. While in
the approach using the operatdrall the eigenvalues; are

one obtains then the nuclear Glauber mod8] with
P,= 8,4 and the Chou-Yang modé4] with the Poissonian

Pn. treated on the same footing, in tAedescription the ground
) ) state eigenvalug; is distinguished. One can thus make a
B. Normal part of the unitary transformation particular choice of; irrespectively of the form of;,; .
It is convenient to extract from the unitary operatbithe The phenomenologlcal form of the densjtyIJ |2 is con-
identity transformation: strained only by the normalization to unity. However, the
density |Aij|2 is yet not normalized, yielding thus an addi-
U=1-A. (19 tjonal parameter at disposal. In fact, from Ef2) one has
The operatorA satisfies the relation of normality: 5
Ai|?>=2RdA;)=g;. (26)
AAT=ATA=A+AT (20) liyelD] A =4

In terms of the matrix elements the two last equations read From Eg.(21) one gets

U= 8~ Ay (ReA;; —1)2+1m2A ;= Uy 2. 27
|Ukj|2:|Akj|2+(1_2 ReAjj) 8y (2D BecausdU;| <1, this implies the constraint
and 0=g;<4. (28)
A;‘J:% AgAf (22 Rather a small value of; would be expected to reflect the

experimental fact that the cross sections for inelastic diffrac-
tive processes are about 1 order of magnitude smaller than
elastic ones. It should also be observed that wienl the

two approaches yield the identical expressions.

Using theAnsatz(19) the diffractive transition amplitude
(13 is

=t 8 — Apti— A% T AR
Tri=tidhi—Agit, A'ftf+“>§D] AtitiAj 1. NEW APPROACH TO DIFFRACTION

We will present a new approach to inelastic diffraction
which differs essentially from the classical works discussed
1 in Sec. Il A. One emphasized there the properties of the
Thi=tidi+ 5 (Afi— A (t—t) transformed scattering operat® (i.e., its complete or par-
tial diagonalization rather than the structure of the trans-
forming operatotJ. A convenient tool in this new direction

or, equivalently,

+|j>€E[D] A AT =2 (4 + 1)) (23 is Eq.(19) since by splitting the unitary operator in the two
parts one arrives to the following decomposition of the scat-
In particular, the elastic scattering amplitude reads tering operatof5]:
T=Tog—ATy—ToAT+ATHAT. 29
Tii:ti"'lA)E[D] | A2t —t). (24) 0 o 0 0 (
j)e

We envisage that it is just the three last terms in this
If all A,; were small then retaining only the terms linear expression which describe diffractive processes. All they do
in A (breaking thus unitarityone would yield the elastic contain the operatok which is the essential part of the uni-
scattering amplitude trivially equal to the eigenvaluefgin  tary transformation aimed to distinguish between diffractive
the initial state. Instead, the inelastic diffraction amplitudeand nondiffractive channels. We will considdr to be a
would be proportional to the difference of these eigenvaluessoft” operator which induces a “smooth” transformation
in the initial and final state, which is the classical result ofof the physical statel§) in the diffractive sector so that the
[18]. The last terms of Eq¢23) and(24) can be considered transformed stateld);) are very “close” to each other. We
as the unitarity corrections from the intermediate diffractivehave seen earlier that the “strength” of the operatocan
states. be controlled with the aid of the parametgr. On the other
For completeness we also write down the inclusive crosiand, we considel, to be a “hard” operator which has
section of inelastic diffractiort15) in terms of the operator nothing to do with diffractive processes. It does essentially
A: contribute to a geometricélong-range part of elastic scat-
tering which arises as the shadow of a huge number of in-
12— 120 12T 112 elastic(mostly nondiffractive processes. However, it cannot
\f)E;em T |j>EE[D] A== —uls (29 directly contribute to inelastic diffraction.
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A. Equivalence of diffractive states which projects onto this subspaf®e, ].

The fundamental point in the description of diffraction is ~FOF €ach one has

the presumed existence of two orthogonal subspaces of dif-

fractive and nondiffractive states. This requirement can be

rePhrased by saying that there exist unitary operdtoesd

U'" which are reducible in the Hilbert space of physical

states. This implies the existence of a nontrivial subspace  Ap,=(1-e2"MpP,, ATP,=(1-e27MP,. (39

[D] such that for anyj)e[D] also|U;) and|U"}) belong

to [D]. In consequence, for any stalle) belonging to the These relations prompt a possible connection between the

orthogonal complemerj~D] also|Uk) and|U k) will be- eigenspace§P, ] of the operatorA and the equivalence of

long to[~D]. In terms of the matrix elements this reads  physical states. The states will be said to be equivalent

) , moduloA if they belong to one of the direct sums

(klujy=(jluTk)* =0,

[A,P\]=[AT,P\]=0 (39

[N =[Py\]®[Po] (40)

(KUTj)=(jluk)*=0 (30
. for eachA#0. Thus for any|j) e[\] one has
for any|j)e[D] and |k) e [~D].
Alternatively one may say that the operatdr can be [iY=Puxli)+Poli) (41

decomposed into the direct sum of operators which act on
orthogonal subspacéslasses of equivalengef the physical — or, more explicitly,
Hilbert space:

U=Up@®U_p=Upe. (31) |J'>=n:2_m ¢A;(n)l7\+n>+n§_w eoi(M[n), (42

Such an operator will be referred to as the unitary diffractive o . L
filter Upe. In the base of physical states the matdy; rep- Wherecp)\j(n)=(7\+n|1). The structure of Eq(42) implies

resentingU o has a “diagonal box” form. Assuming that that the set of equi_valemdiffractive) states will genera}IIy be
the initial stDaFte belongs ta]] one has then very numerous which may be related to the compositeness of

the colliding hadrons.
U;;#0—]j)e[D], Since

Uij=0—lj)e[~D]. (32) Aljy=(1-e""MP,lj) (43)

The complementary subspaceD] of states which are non- for any|[j) €[\], the operator is indeed reducible and its
diffractive with respect to the seD]] may eventually further ~Matrix elements between nonequivalent states will vanish:
be decomposed into smaller classes of equwak‘a‘nce. Trle ma- A= (1— €2 (K[P, [j) 6,
trix Uy; would then be made of more than two “boxes. ki MI7EAN

Obviously the reducibility oflU e implies that the corre- o
sponding operators. and /'U will also be reducible in the =(1-e®™) X o} (Mey(n) Sy (44)
space of physical states, i.e., the mathiy is block diago- n=—c
nal. The property of normalit{20) allows their diagonaliza- ) ,
tion. Writing the operatol) g in @ manifestly unitary form ~ for any|j)e[A].[k)[\'].

Upe=e™, M=MT (33 B. Diffractive limit
we have also at disposal the Hermitian operdibr There The direct evidence for the existence of the reducible uni-
exist the common eigenstatps) for which tary transformationUp is provided by a phenomenologi-
cally well-established division of the inelastic hadronic tran-
M|p)=2mu|u), (34)  sitions into the two classes of diffractive and nondiffractive
channels. However, the reducibility &f,r does not imply
Alp)=(1-e*")|u), (35)  that the scattering operatdy, is also reducible in the space
of physical states. In particulaf, restricted to the subspace
where of diffractive states will no longer be normal. Therefore we
reject condition(12) of Sec. Il regarding the diagonalization
p=A+n, n=0x1x2.. 0sA<l. (36 of the scattering operator. We consider it as a redundant

assumption which can be incompatible with the fundamental
requirement of reducibility30). Actually, condition(12) in-
volves two assumptions. The first, regarding the division of
channels into the two classes, inevitably leads to the relations

The statesu)=|\+n) are infinitely degenerated with re-
spect to the eigenvalue Thus with each value of one can
associate a subspadass of equivalengeand the projector

operator of orthogonality (30). A careful inspection of the passage
w from Egs.(10) and(11) to Egs.(13) and(14) indeed reveals
P, = 2 IN+n)(A+n| (37) that th_ese relationsf were implicitly a}ssqmeq. The sgconq as-
n=—o sumption, concerning the diagonalization in the diffractive
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subspace, is not necessary. Moreover, it screens a part of

dynamics. In fact, considering the most general expression Tfizti5fi—N<Afiti+/\i*ftf—mz[m AqtAf | (52

Tolj) = 2 tkj|k>+ 2 tyilK) (45) The presence of the infinite facttt will not cause any
[k)e[D |k)e[~D] problem since the equation can be put in the form

one finds there, in addition to the absorption of nondiffrac-
tive origin, also another source of absorption implied by Tri=t6+N
transitions inside the set of diffractive states.
The statedUpgj) obtained through the unitary transfor- t+t;
mation which reveals the decompositi i +(A '+A'*)(t(fl - _” (53)
position of the Hilbert space fi it/| tav 2
of states into classes of equivalence constitute a natural base
for the description of diffraction. The amplitude of diffrac- where
tive transitions follows then directly from E¢5) by restrict-
ing the summation over states to the claB§ pf diffractive iy 2liyerA ALt
states. Alternatively from Eq29) one obtains av = EIj)e[D]AfJAﬁ

1
> (Ai— A (t—1)

(54)

represents an average value of the diagonal matrix elements
=t 5 — ED Afidi | ED thAu t; weighted with the products of the matrix elements/of
<Dl <Dl between the initialor final) state and the intermediate dif-
fractive states.

We observe that the infinite valu¢ is always accompa-
nied by a deviatiom\t which is either the difference of di-
The three last terms of E@46) can be rewritten as agonal matrix elements between the initial and final state or

the deviation of the two former from the average value over
the whole set D]. In the equivalence class of diffractive
Y Antii=N(To)Agt;, states which are supposed to be “close” to each other these

+ > AndgAl. (46)
[i).|k)e[D]

k<[] deviations should be very small. Therefore we require con-
sidering Eq.(53) in the Bjorken-type limit
* Ak * 1T
(20, AT = ATUNG(TS), N—, At—0 such thatNAt is finite. (55
This can be referred to as the diffractive lirh].
_ 2 Afktkj 2 NfJ(TO)Af,tJA” . (47 It_should be nqticed that in the abpve equations appear the
li).Ik)e[D] T, diagonal matrix elements of the diffractive states only. On
) ) the other hand, the unitarity & =1+iT, implies the rela-
wheret; are the diagonal matrix elements Bf: tion
=t =(j|Tol] (48 .
=Tl 2imt)= I+ 3 T (66

and
where to the “inelastic shadow’” term on the right-hand side
1 ) contribute both states which are diffractive and nondiffrac-
Nij(To)= ATl 2 AwlIToli). (49 tive. The diffractive intermediate states appear manifestly in
kAT ol <o) the average value and their importance is hidden in the infi-
nite value of N. Instead, the nondiffractive intermediate
states occur only implicitly through the unitarity properties
of the matrix elements; which are assumed to be given.

In order to estimate the undimensional quantitigs we
rewrite Eq.(49) in the form

1 -1
NP 1- > A t,{ 2 Ak|t|] (50 C. Elastic scattering and inclusive inelastic diffraction
kj [1)#1j)elD] el . .
. In the case of elastic scattering E§3) becomes
Since A is a “soft” operator its matrix elementd,, in the T, =t-+G(t<i\f—t-) (57)

diffractive sector change smoothly under changes of states.

Thus if the equivalence class of diffractive stateq s very  \\here

rich, i.e., it contains an infinite number of states, then the

second term in Eq50) will approach unity. This means G=Ng;,

Ngj=N—o0 (51
: 6= 2 |Ayl*=2ReA) (58)
for any pair of statesk) and|j) and leads to an enormous :

simplification of Eq.(46): are the coupling constants while
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while the nondiffractive term in elastic scattering is mostly

th = _ED |wij | %t; (59 fed by the shadow of nondiffractive transitions, in the dif-
li<lb] fractive term it is the shadow of diffractive transitions which
is another average value gfwith the weight is dominant.
) It can easily be checked that the elastic diffractive contri-
|Aij| butions in the whole equivalence cla$3][effectively cancel
Wij| P =5—— 2 (60 h other:
S oyl Ail each other:
The elastic scattering amplitud&7) is to be considered ) _ 2 P
in the limit where the coupling consta@—o and E Giltay—t)= 2 LA "= [A;i*]t=0. (62)
li)e[D] [i).liy D]
)y _ 2y Although generally|A;j|*#|A;|? the cancellation in Eg.
fav— \j)za&\i) Wit ~t) —0 61 (62) is exact. Thus the passage from the diffractive ampli-

tude (46) to its simplified form(53) does not destroy invari-
such that the second term in E§7) remains finite. We refer ance of the trace of in the diffractive sector:
to this term as the diffractive contribution to elastic scatter-
ing since it originates from the action of the operatbr
which filters as intermediate states only those equivalent to
the initial state. By contrast, the first term in EGQ7) to
which, as the unitarity equatioib6) shows, contribute inter- The mechanism of the diffractive limit allows us to inter-
mediate states from all possible equivalence classes, may Ipget the diffractive term in elastic scattering as infinite sum
referred to as the nondiffractive contribution to elastic scat-of infinitesimal contributions from all intermediate states be-
tering. This classification of the contributions with respect tolonging to the given equivalence class of diffraction. An
the nature of intermediate states is an approximation. In facgnalogous interpretation applies to the diffractive terms in
in the nondiffractive term there is also a small presence ofhe general diffraction amplitudé&3).
diffractive shadow and the diffractive contribution is affected Making use of the completeness of diffractive states in the
by nondiffractive transitions through the properties of theequivalence subspace one may obtain from &8) the in-
diagonal elements;. However, the essential point is that clusive cross section of inelastic diffraction:

E Tii:_E t. (63
li)e[D] li)e[D]

|f>§¢:|i) |Tﬁ|2: NZ[% |A”|2|tf|2_2[Re(Aii)2_ Re(Aji)

+|Aii|2]|ti|2_‘% | A%t

2
—-2[1-2 Re(An)]Re(ti% |Aif|2t?”- (64)

Applying now the identity IV. PHENOMENOLOGICAL ANALYSIS OF ELASTIC
AND INCLUSIVE INELASTIC DIFFRACTION
|Aii|?+Re(Aj)?=2[Re(Aj)]? . . . .

In this section the general theoretical formulas will be
and using definitiong58) and(60), Eq.(64) can be written in ~ converted into calculable expressions. Our aim is twofold: to
the form confront theory with experiment and to compare various
theoretical approaches between each other. This will be done
2 T2 E 214(i) 5 on the example of elastic and incl_usive inelastic differential
pen | Til*=— |wig | “[ty —tel cross sections, evaluated both in the momentum space,

2

Y% Ji |fye[D . .
#! | [fyelp] where the relevant variable is the momentum transfer
1-g; . =/ |t|, and in the impact parametbrspace.
+ =2 2y, )2, (65) It pactp P
gi
Thus the inclusive cross section of inelastic diffraction is A. Phenomenology of diffractons

built of the two contributions: one which is proportional to @  The formulas considered so far have to be supplemented
dispersion of theT, diagonal matrix elements and another ywith a specification of their basic ingredients: the staj¢s
which equalgup to a constanthe diffractive contribution 10 ang the matrix elements . The inelastic diffractive states
glashc scattering. Another way of writing this cross sectiony|| pe imagined[5,19] as built of a hadron bulkrepresent-
is that similar to Eq(25): ing the ground statéi)) and of some quanta corresponding
G2 to diffractive excitations. The configurations of these quasi-
2. |-|-ﬁ|2:_. 2 i |2t —t;|2= [T =4[ (66) particles(which can be_ called d|ffrac_to_ns) are specified .
|15 i) Ji |fye[D] by a numbem of constituents and their impact parameters:
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[i)=|n; 51 e .Bn). For simplicity, we assume that the diffrac- B. Analysis of elastic scattering
tons are independent of each other which means that the |14 application of our phenomenological recipes to the

function |w;;|* which is weighing the occurrence of multi- 415 (57) yields the imaginary scattering amplitudie b
particle configurations appears as a product of one—partlclgpace:

densities. Thus we write
ImT;i(b)=To+Ngi(n)S(b)(1-TY), (75

o n
|Wij|2"':nzl Pnj dzblf“dzbnkl:[l l6(b)[?--,  where the functiorS(b), describing the average density of

li)e[D] 67) diffractons, is

2

2R}

where|y(b,)|? is the density distribution in the impact plane. S(b)Ef d2s| 1,/1(3)|2y(6—§)= Te , ex;{ _
P,, denotes the probability to find the configurationnodlif- 47R]

fractons and will be approximated by the Poisson distribu-_ ) i ) )
tion The inspection of this expression leads to the conclusion that

for the description of elastic scattering four parameters are
(n)" neededR,, 0y, Ry, and

Ph=——exp—(n)), (68
n: o= lim Ng{n)o.. (77

N—®,0.—0

) . (76)

where(n) is the mean value of. In the calculations we
assumePy<1 and begin the summation from=0. The The imaginary scattering amplitude in momentgrapace
above Ansatzfollows a similar analysis of Miettinen and s obtained by the Fourier-Bessel transform:

Pumplin [20], based on the standard form of the Good-

Walker formalism (g;=1). However, their multiparticle 1 o idE

states|j) referred to configurations of constituent partons ImT;i(q) =5 f d*be?® ImT;; (b)

rather than to configurations of quasiparticles as we do.

The diagonal matrix elements ®f, will be specified(in b *
space as: =/, dbbJ(qb)ImT;;(b). (78)
ti(b)=iT'o(b) 69  The real part of the scattering amplitude may be approxi-
and mated by a simple prescription of Martig1]:
- ReT--(q)=pi[q2 Im T (q)]
t(b)=i| 1-(1-To [I [1-v(b=bY]|, (70 ' do” ’
q oo
wherel’, represents the profile of the hadronic bulk ayisl _p( ImT;i (a) = 2 fo dbb?3y(qb)ImT;(b) |,
correspond to diffractons. In the diffractive lim{55) only
the single-particle term will be retained: (79)
n where p=ReT;; (0)/ImT;;(0) is an additional parameter to be
N(tj—t)=(1-To) lim N '}’(B_Bk)- 72 found by comparing the elastic differential cross section:
— o0, y—0 k=1
. e T (80)
Our analysis, though based on the well-founded frame- djef — " g
work of Sec. lll, has a semiphenomenological character.

Therefore the shapes of the profilEg, v, and of the density ~Wwith experimental data. )

|(b)|* are to be assumed. For simplicity, we take them as In our approach, using thensaze (72)—(74), all the cal-

Gaussians: culations can be done analytically. The elastic scattering am-
plitude read§19]

Op b2
Io(b)= 4R eXl{ - Z_RS) : (72) Ti(Q)=Ag+ A1~ Ay,

5 1 1 -
by— o, b 73 ImAkzﬂ oy ex —Eq Rk,

b2

1
1 Re‘\k=p(1—§q2RE)lmAk, k=0,1,2. (81
PE T I T ) A
1 € 1 €

|y()|?=

0, andR, are simple functions o#y,0q andRgy,R; .
The parameters of these Gaussians, as well as the parameterdn Fig. 1 we show separately the two contributions to
gi and (n), will be determined from comparison of the elastic scattering which are present in our approach. The
theory with experiment. dashed curve represents the téfmA, alone while the dot-
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FIG. 1. Thep-p elastic cross section at c.m. energg=52.8
GeV in the function of the squared momentum trangfgr The
experimental datg11] are compared with the results of our ap-
proach(solid curve. The nondiffractiveldashed curveand diffrac-
tive (dotted curve contributions to the cross section are shown
separately. The parameters are given in the first row of Table I.

FIG. 3. The p-p elastic cross section at c.m. energy
Js=546-630 GeV in the function of the squared momentum trans-
fer [t|. The experimental dafd 4] are compared with the results of
our approach withsolid curve and without(dotted curve the real
part of the scattering amplitude. The parameters are given in the
third row of Table I.

ted curve corresponds to the diffractive teAm—A,, i.e.,to  the c.m. energies\s=53 GeV [13] (53 pointy and
the second term in Eq75). At small momentum transfers \/s=546-630 Ge\[14] (120 point3. The fits are excellent
the nondiffractive contributiord, is dominant. Because of in the whole range of momentum transfer. In addition, the
interference betweeA,; and A, the diffractive term has a two figures put in evidence the role of the real part of the
single zero which, filled up by the real part of the scatteringscattering amplitude in filling up the diffractive dip. The ef-
amplitude, appears as a shallow minimum. Above the dip théect of the real part at very low momentum transfers, in the
nondiffractive contribution is negligible and the diffractive region of the Coulomb hadronic interference, is illustrated in
term dominates the elastic cross section. The solid curve iEig. 4. o
the sum of the two contributions. It was fitted to 44 experi- Finally, in Fig. 5 we present the results for thep elastic
mental points from the data on proton-proton elastic scatterscattering at the highest presently available c.m. energy
ing at the c.m. energy/s=52.8 GeV[11]. The fit shown in Js=1800 GeV[16].
Fig. 1 is very good. The parameters of all our fits, together with the values of
In Figs. 2 and 3 we present the analogous fits to thed, are collected in Table I. We give there also the values of
experimental data on proton-antiproton elastic scattering dhe total cross sectiosy, the integrated elastic cross section
o4, and the forward logarithmic slope of elastic differential
Cross sectiorg.

e NS —
102 B | 300 [~
p—p ELASTIC SCATTERING | I ]
T 53 Gev -] p—p ELASTIC SCATTERING ]
> 10 o 250 — If 546 GeV ]
@] s -
5 s | |
E w02 <
% E
E 107% - =
S 150 |-
<
10-6
0 1001~ ‘ | | 7
t] [GeV®] 0.00 0.01 0.02 0.03 0.04

t] [GeV®]

FIG. 2. Thep-p elastic cross section at c.m. energg=53.0
GeV in the function of the squared momentum trangfgr The FIG. 4. Thep-p elastic cross section at c.m. energg=546
experimental datd13] are compared with the results of our ap- GeV at very low squared momentum transfitsThe experimental
proach with(solid curve and without(dotted curvgthe real part of  data[14] are compared with the results of our approach Wsiblid
the scattering amplitude. The parameters are given in the secormlirve and without(dotted curve the real part of the scattering
row of Table I. amplitude. The parameters are given in the third row of Table I.
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Table | includes the case of proton-proton elastic scatter-
ing at c.m. energy/s=4.4 GeV[17)]. Although the fit is
quite good its property,=0; and Ry;=R; says that this 102 % p-p ELASTIC SCATTERING -
relatively low energy is yet outside the range of application %

. ; o 1800 GeV
of our approach. In fact, for higher energies we always had >
0p>04 andRy>R;. This is reasonable since the nondiffrac- & .
tive effects dominate the long-range part of scattering and 5 9w
are characterized by large values of the effective coupling S
strength. The diffractive scattering, on the other hand, is gov- =
erned by short-distance dynamics and small values of the 7 ;-2 |
coupling strength. T
C. Analysis of inclusive inelastic diffraction
1074 L
The application of the prescriptioi67) to Eq. (66), writ- 0.0 , ,
ten in terms of the Fourier-Bessel transformst¢é, yields t] [Gev®]
the differential cross section of inelastic diffraction @
space as the sum of two contributions: FIG. 5. Thep-p elastic cross section at c.m. energyg=1800
. A GeV in the function of the squared momentum trangfér The
LM: E ITri(q)|?= dacgh(q) dg'”CZOh(q)_ experimental datd16] are compared with the results of our ap-
2w  dltf [£yli) d“q d<q proach. The parameters are given in the fourth row of Table I.
(82

S - -
Such a structure has already been noticed in(&g). The (b1,bz) =N°gi(n)U(by,by) (86)

coherent Cross sectiom,y, is proportional to the square of yenends on the correlation function of diffractons:
diffractive term in the elastic scattering amplitude:

N R\ — 2 2k _A(h 2
d“g"ﬁm=(§—1)|Tn<q)—ti<q)|z - UBs.52)= [ %5/ P3(B,-9)%(B,-9) (@)

hich ki f EG75), b (o)t )L
which, upon making use of E@75), becomes =\ 2 mex m R_f

docon(q) 1 2 12
et | - o= b
g lgt fdbb%(qb)(l To)S(bio=oy)| . Xexp(_ﬁ), @8
(84) €
The name of incoherent contribution is justified by its Whereb=(1/2)(by+by),b’=b, —b,. _ _
proportionality, in a leading order, to the mean va(me. It This choice of variables which factorizes the function

appears in the form of the double Fourier-Bessel transformY (P1.02,), facilitates also the evaluation of the integral
(85). Since the major contribution to the integrand function

doincor(Q) 1 p v b comes from small values ob’, one may approximate:
2q (2n)? J d?b;d?b,e'd P12 1-Tg(by)] To(by) =T'o(b2) =T'g(b), andS(by) = S(b,) = S(b). This al-
lows one to convert the integré85) into a sum of products
X[1=To(by)]lI(by,by) (85  of single integrals.
From the inspection of the above formulas it results that
where the function for the description of inclusive inelastic diffraction only
TABLE I. The parameters of the fits presented in Figs. 1, 2, 3, 4, and 5.
Energy oo Ro o1 Ry Ttot o B
(Gev) (mb  (fm)  (mb)  (fm) P X*/Npe (mb) (mb)  (GeV?
p-p
52.8 39.40 0.70 5.52 0.41 0.066 80.58/39 42.29 7.74 12.04
p-p
53.0 39.37 0.72 6.15 0.44 0.13 39.54/48 42.80 7.75 12.90
p-p
546 55.78 0.76 10.71 0.51 0.194 111.8/115 60.79 13.44 14.87
p-p
1800 66.75 0.82 20.71 0.54 0.175 7.9/125 76.11 17.04 16.97
p-p

4.4 24.71 0.50 24.71 0.50 -0.36 61.21/52 39.76 11.46 8.07
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Although elastic and inelastic diffraction was illustrated

R on the examples involving protons and antiprotons, we did
not discuss the connection betweep and p-p scattering
p-p INELASTIC SCATTERING 4 [23]. A careful inspection of the experimental data in Figs. 1

53 GeV and 2 would reveal, in the vicinity of the dip, a significant
difference between the two differential cross sections which
implies a presence of the odd charge conjugation exchange
(C=-1). The corresponding amplitude contributes with op-
posite signs tg-p and p-p scattering and differs in phase
from the even-undercrossing amplitude which is dominant
beyond the dip region. Since we are mainly interested in the
connection between the elastic scattering and inclusive in-
elastic diffraction we did not touch the delicate problem of
charge conjugation symmetry. However, a joint analysis of
elastic and inelastic diffraction in botp andpp collisions
t] [GeV?] might be very illuminating.

—-

=
=3
I

’

do/dt [mb/GeVZ]
|

1074 1

FIG. 6. Thep-p inclusive inelastic cross section at c.m. energy V. DISCUSSION AND CONCLUSIONS
Js=53 GeV in the function of the squared momentum trangfer . . ) .
The experimental datfl2] are compared with the results of our ~ 1h€ numerical results presented in Sec. IV will be dis-
approach(solid curve. The coherentdotted curvg and incoherent cussed again with emphasis on the comparison of our ap-

(dashed curvecontributions to the cross section are shown sepafroach based on the diffractive limit—o with the classical
rately. The parameters are given in Table II. description of Good and Walker as given in Sec. |l B. We

aim to convince the reader about the advantages of our

three parametersy;, (n), and R,, are required since the method.

remaining parameters are to be determined from elastic scat- !N Order to understand better the relationship of the two
tering. approaches we rewrite their basic formulas using a unified

The coherent and incoherent contributions to inclusive innotation. Thus for the elastic scattering amplitu¢g® and

elastic diffraction are shown in Fig. 6. At small momentum (24 one has

transfers the coherent contributigdotted curve is domi-

nant. At the momentum transfer which corresponds to the

position of the dip in elastic differential cross section the Ti=ti+Ng > |w|%(t—t), (89

coherent contribution becomes negligible and the incoherent <lb]

term (dashed curyedominates the inelastic diffraction at

large momentum transfers. The solid curve is the sum of the

two contributions. It was fitted to 30 experimental points of

the dat\z/;\_on proton-proton inelastic diffraction at the c.m.

energyys=53 GeV[12]. It should be stressed that the shape | . . . . .

of thgyinclusive inelastic cross section is practically insenr;i—WhIIe the inclusive inelastic cross sectioi) and(25) read

tive to the presence of the real part in the elastic scattering

amplitude. 102
In Fig. 7 we present the analogous fit to the experimental i

data on proton-antiproton inelastic diffraction at c.m. energy

Js=546 GeV[15] (23 pointg. Both fits are excellent in the 1ol g

Ti(iGW):ti"'giHEED] w2t = 1)), (90)
j

€

|1‘||\‘||||1||‘

p—p INELASTIC SCATTERING
546 GeV

—

whole range of momentum transfer. Their parameters, to- %
gether with the values of?, are collected in Table Il. We
give there also the values of the integrated cross section of
inelastic diffractionoy; . It is defined as twice the measured
inelastic cross section to account for diffractive dissociation
of both colliding hadrons.

do/dt [mb/Ge

TABLE Il. The parameters of the fits presented in Figs. 7 and 8.

Energy Re O gif 10_30,0 T s 10 s 20 s
(GeV) gi (n) (fm) Xldf (mb) It [Gev?]

p-p

52.8 0.0286 8.28 0.314 52.4/27 6.34 FIG. 7. Thep-p inclusive inelastic cross-section at c.m. energy
p-p Js=546 GeV in the function of the squared momentum transfer
546 0.0630 1.51 0.410 29.9/20 9.32 The experimental datfl5] are compared with the results of our
approach(solid curve. The parameters are given in Table II.
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e various theoretical descriptions. They were all fitted to the
102 | ! ! | experimental data on proton-proton elastic scattering at the
p—p ELASTIC SCATTERING 1 c.m. energy,/s=52.8 GeV[11]. All the parameters are col-
52.8 GeV — lected in Table Ill. The solid curve corresponds to the ap-
proach based on the diffractive limit. The dashed curve was
- obtained in the Good-Walker formalism discussed above.
1 Here it should be pointed out that the choice of the fifth
parameteq; is very ambiguous. Similar fits can be obtained
with very different values o§; , rather the value of the prod-
uctg;o; being important, compare the second and third rows
of Table lll. In particular, if g;—o then oy—0 and the
{_ dashed curve becomes closer and closer to the solid5ne
- Thus the conditiorg;—, being at variance with the unitar-
8 ity constraint(28), may mimick the diffractive limitN—o
It [GeV?] which reflects the numerosity of the diffractive equivalence
class. Seemingly the solid and dashed curves represent fits of
FIG. 8. Thep-p elastic cross section at c.m. energg=52.8  equal quality. But there is an important difference since the
GeV in the function of the squared momentum trangfgr The  dashed curve is characterized by multiple dips while these
experimental dat@11] are compared with various theoretical re- are absent in the solid curve, except for the single one ob-
sults. served experimentally. Finally, the dotted curve corresponds
to the standard version of the Good-Walker approach, with
gi=1 andI',=0 as in Ref.[20]. It fits only the forward
scattering part of the data and also shows multiple dips.
So far, the arguments put forward in favor of our method
E |T<.GW>|2= _ E i |2]t —t,|2— [ TEOW _ do not' seem to be very convincing. Fpr example, the do_tted
Bl fi g'lj)e[D] LI R i it curve in Fig. 8 could be enormously improved by replacing
(92  the Gaussian form of the functid®(b) with a more sophis-
ticated shape like a dipole opacity of the Chou-Yang model
where the weightw;;| is normalized to unity. The two sets [4]. However, such a choice would prevent us from calculat-
of formulas are almost identical except for the factdr ing the inclusive cross section of inelastic diffraction. In fact,
which in the Good-Walker approach is absent. But this dif-j; is a joint analysis of elastic scattering and inelastic diffrac-

ference turns out to be essential. It should also be remindegh, which decides about the success of our approach.
that wheng; =1 the Good-Walker approach reappears in its  pagsing to the analysis of the inclusive inelastic diffrac-

standard form of Sec. Il A. . : e
. tion, we include the releavant formulas describing the coher-
In the Good-Walker approach we apply, instead of the g

. T . ; ent and incoherent contribution in the Good-Walker ap-
d|ﬁract|ye limit (71), thg complgte multlp[e expansldﬁm) proach. Thus in place of E¢84) one has
which yields the following elastic scattering imaginary am-
plitude:

—

o
=]
[

1072 - %

1076 —

do/dt [mb/GeVZ]
5
]
L
T

1078

10-10 L

> |Tfi|2:N29i,2 lw;; 2]t —ti] 2= |T; —t;]%, (91)
[F)#]i) li)e[D]

€

| 2

IMT(W () =To+g;(1—exd —(MS(D)])(1-Ty), (93) doen’(q)
d’q

1
=——1]|g?
Qi )g,

[ abbagabia-ro

to be compared with Eq(75). By inspection we conclude )

that the Good-Walker approach requires for description of
elastic scattering one parameter maRg; o, Ry, 01=(n)o,
and additionallyg; which cannot any longer be absorbed in
the definition ofo .

In Figure 8 we compare three curves corresponding tavhile the incoherent function of E86) is replaced by

(99

X{1-exd —S(b;o=01)]}

TABLE lll. The parameters of the fits given in Fig. 6.

Approach oo (mb) Ry (fm) oy (mb) Ry (fm) gi p Xldf
N—o, g, —0

(solid) 39.40 0.70 5.52 0.41 0.07 80.58/39
N=1,g;#1

(dashedl 40.17 0.70 5.44 0.39 0.835 0.07 582.8/38
N=1, g;#1

(not shown 41.70 0.67 30.45 0.34 0.060 0.07 586.2/38
N=1, g;=1

(dotted 0 51.41 0.74 1 0.09 5628.6/41
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1OW (b, b,y) =g; ex —(n)yS(by) —(n)S(by)]
x{exg (n)U(by,by)]—1}. (95)

2 T T T T T T T T T T T
10 T | T

K p—p INELASTIC SCATTERING
53 GeV

The measurements of the inclusive inelastic cross section
at the ISR and SPS collidef42,15 are perhaps not suffi-
ciently appreciated. The angular distribution of inelastic dif-
fraction is, in a wide range of energy, consistently character-
ized by two different slopes at small and large momentum
transfers. The experimental results could therefore be well
reproduced simply with a sum of two Gaussians described by
four parameters: two slopes and two other parameters which
fix the forward magnitude of each Gaussian. However, in our
phenomenology we need only three parameters since the B ] | L
slope at small momentum transfers is already determined by T "
the diffractive term in elastic scattering. The strength of this lt| [GeV?]
term in inelastic diffraction is setup by the coupling constant
gi. So far,_thls const.anlt was hldd_en n the_ definition of the FIG. 9. Thep-p inclusive inelastic cross-section at c.m. energy
cross sectiorr; and in inelastic diffraction it appears as a Js=

new parameter at disposal. _ The experimental datfl2] are compared with the results of the
It should be stressed that the coherent contribut0  5god-walker approactsolid curve. The coherentdotted curvé

the inclusive cross section is a novelty of our approdd].  and incoherentdashed curvecontributions to the cross section are
In the standard version of the Good-Walker descnp(wﬂlh shown separa’[e|y_ The parameters g{&OOG’ <n>:l.67’ and

g;=1) the coherent contribution to inelastic diffraction doesr_=0.254 fm.
not appear at all. Thus in Ref20] the forward slope of
inelastic diffraction was explained in terms of incoherent
scattering while our analysis shows that this scattering domi-
nates in the region of large momentum transfers. a quantum phenomenon related to the existence of internal

We claim that the shape of inelastic diffraction at smalldegrees of freedom of colliding hadrons. At high energies
momentum transfers is determined by elastic scattering idliffractive states are infinitely degenerated and are treated on
the transition region between the forward peak and the difthe same footing as the ground state, all being the members
fraction minimum. This is successfully verified, as Figs. 6of an equivalence class in the Hilbert space. In the classical
and 7 show, in experiment2,15, being a crucial evidence description[10,18 the inelastic diffraction originates from
in favor of our formalism. On the contrary, the Good-Walker the diversity of elastic diffractive absorptions in the initial
approach, even witly; #1, is not able to accommodate this and final state\t. But there is something more: intermediate
effect. This is so because the coherent contribution to inelassrtual transitions. We were able to show that the multichan-
tic diffraction is there completely fixe@including the value nel correction can be factorized. The diffraction amplitude
of g;) by elastic scattering. The thus determined coherenéppears ablAt to be taken in the “diffractive limit:”"N—oo,
contribution, which is proportional to (4/—1)g?, turns out, At—0 such thatNAt is finite. The resulting expressions
both for small and large values @f, to be too small and were compared at the beginning of this section. The two sets
does not reproduce the inelastic cross section at low momemf formulas are “almost” identical except for the factor
tum transfers as illustrated in Fig. 9. N—o. We stress again that this “petite difsnce” turns out

We end with a brief recapitulation. Inelastic diffraction is to be essential for quantitative results.

do/dt [mb/GeVZ]

53 GeV in the function of the squared momentum trankfer
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