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Diffractive limit approach to elastic scattering and inelastic diffraction of high-energy hadrons

Andrzej Małecki*
KEN Pedagogical University, Institute of Physics and Computer Science, ul. Podchora¸żych 2, 30-084 Krako˙w, Poland

and Laboratori Nazionali di Frascati dell’ INFN, Frascati, Italy
~Received 18 August 1994!

An approach to inelastic diffraction based on the concept of equivalence of diffractive states is developed. In
the classical description of Good and Walker, the inelastic diffraction originates from the diversity of elastic
scattering amplitudes in the initial and final stateDt. We consider a multichannel correction, accounting for
intermediate transitions inside the equivalence class. This correction can be factorized yielding the diffraction
amplitude in the formNDt, to be taken in the ‘‘diffractive limit’’N→`, Dt→0 such thatNDt is finite. We
analyze elastic scattering and the inclusive inelastic diffraction cross sections forp-p andp- p̄ collisions, in the
range of c.m. energyAs520–1800 GeV. We claim that the angular distribution of the inclusive inelastic
diffraction at small momentum transfers is determined by elastic scattering in the transition region between the
forward peak and the minimum. This is successfully verified in experiment. The detailed comparison with the
Good-Walker description, with emphasis on the advantages of our approach, is presented.
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I. INTRODUCTION

In describing nuclear and hadronic collisions one ofte
encounters the term ‘‘diffraction’’ which originates from
classical optics. Its use is motivated by striking analogi
between light scattering in optics and particle scattering
wave mechanics. Historically@1#, diffraction was synony-
mous with scattering in general. Nowadays@2#, ‘‘diffraction
scattering’’ customarily refers to a limited class of phenom
ena which occur in medium-energy nuclear and high-ene
hadron collisions. The sufficient energy of collision allow
an opening of a variety of inelastic channels which in tu
implies strong absorption since the presence of compet
reactions results in a considerable depletion of the parti
flux in the elastic channel. Such conditions are analogous
those for diffraction of light by opaque or partially transpa
ent objects in optics.

The diffraction of light on an obstacle leads to a stru
tured penumbra~instead of the darkness expected in ge
metrical optics! resulting from the alternating constructive
and destructive interference of deflected waves. The diffr
tive analogy in nuclear and hadron physics consists in a s
stantial presence of elastic scattering~and other two-body
channels! where very little would naively be expected in vio
lent collisions. It also refers to the behavior of the differenti
cross section which is strongly peaked in the forward dire
tion and often appears as a series of maxima and minim
Another ‘‘diffractive’’ phenomenon is a slow variation with
energy of the integrated cross sections which means that
geometry of absorption dominates details of intrinsic dyna
ics.

In the Fraunhofer theory of light diffraction the limitation
of a wave front by the diffracting object leads to the scatte
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ing amplitude in the form of the two-dimensional Fourie
transform of a function describing the geometry of scatt
ing. In quantum-mechanical scattering the geometrical lim
tation may be transposed into a reduction or truncation o
band of orbital angular momenta consisting of a huge nu
ber of partial waves which participate coherently in the i
teraction. In either case one can establish a simple rela
between the geometrical properties of the scatterer and th
of the diffraction pattern. The great success of the Glau
model@3# in nuclear scattering and of the Chou-Yang mod
@4# in hadron collisions represents astonishing evidence
using optical concepts, reflecting merely the fact that nuc
and hadrons have finite sizes, one can achieve a succe
description of the basic features of their scattering.

Obviously, still many problems, related to the more d
tailed structure of hadrons, remain. For example, the h
ronic analogy of diffractive structure of the differential cros
section is often obscured since multiple dips and reinfor
ments may not be present. In fact, numerous dips arising
geometrical models of hadron scattering may be washed
when including the unitarity contributions from multiparticl
intermediate states@5#. Thus the optical resemblances o
high-energy hadron diffraction should not be overemph
sized. There is certainly much more dynamics in this proc
that could be explained simply in terms of geometric
shapes of absorbing obstacles. The geometrical picture
diffraction on a grey disc may still be useful for modeling th
dominant long-range part of scattering. However, it would
highly desirable to disentangle from the vagueness of g
metrical diffraction also phenomena of shorter range rela
to intrinsic dynamics of colliding particles.

The way in this direction goes through a better und
standing of the process of ‘‘diffractive excitation’’ or ‘‘dif-
fraction dissociation’’@6,7# which involves quasielastic tran
sitions with no exchange of quantum numbers. The quali
‘‘diffractive’’ refers here merely to the condition of coher
ence which must~like in elastic diffraction! be satisfied to
assure that the interacting particles do not change their c
acter. In elastic scattering where the intrinsic dynamics
3180 © 1996 The American Physical Society
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54 3181DIFFRACTIVE LIMIT APPROACH TO ELASTIC . . .
hidden inside geometrical shapes, the analogy between o
cal and particle diffraction seemed to be complete. On t
contrary, the ‘‘inelastic diffraction’’ has no classical analogy
it appears as a peculiar quantum phenomenon conne
with the existence of internal degrees of freedom. Pheno
enologically @8#, the inelastic diffractive channels are cha
acterized by a slow variation with energy of their cross se
tions, i.e., by the energy dependence typical of elas
scattering. Indeed, the states produced in these channels
dominant quantum numbers corresponding to the grou
state. All other channels where cross sections drop rapi
with increasing energy are referred to as nondiffractive.

The requirement of quasielasticity or ‘‘diffractiveness’’ o
an inelastic transition can be incorporated into a theoreti
formalism in either of two ways. In thet-channel approach,
inelastic diffraction is described in terms of the exchange
Pomeron, a hypothetical object carrying vacuum quantu
numbers. Most papers, inspired by great successes of Re
theory, follow this method@9#. Another approach which is
used in this paper is that of thes channel. It is based on the
presumed relation of equivalence@5# between the initial
~ground! state and the states involved in diffractive channe
This means that the Hilbert space of physical states is
composable into subspaces of diffractive and nondiffract
states. This assumption is taken so much for granted that
often not stated explicitly.

In order to reveal the equivalence of states one must
part from the representation of physical states as eigenst
of the hadronic Hamiltonian, in which each state is a
equivalence class for itself. One is thus looking for a suitab
unitary transformation which allows one to expand th
physical states in terms of the transposed states. The
known transformation, aimed for the description of diffrac
tion, is that of Good and Walker@10# who imposed on the
new base states to be eigenstates of the scattering oper
Their approach, referred to as the method of ‘‘diffractiv
eigenstates,’’ is discussed in Sec. II. It should be pointed
that this approach constitutes the ground for the geometr
models of diffraction ~e.g., those of Chou-Yang and
Glauber!, diffractive eigenstates being there identified as t
states describing configurations of hadronic~or nuclear! con-
stituents with definite impact parameters.

The natural base for describing inelastic diffraction is o
tained through a unitary transformation of physical stat
such that the transforming operator is reducible in the Hilb
space. As discussed in Sec. III, we do not additionally r
quire that the base states diagonalize the scattering oper
An obvious advantage of rejecting this restriction consists
accounting for intermediate virtual transitions inside the s
of diffractive states. Apparently the resulting expressions a
quite complicated. However, we were able to show that if t
diffractive subspace contains a huge number of statesN, the
effect of nondiagonal transitions can be factorized: the d
fractive transition amplitude has the formNDt where Dt
represents a diversity of diagonal matrix elements of t
scattering operator over the set of equivalent diffracti
states. Such expressions are to be considered in the ‘‘diffr
tive limit’’ @5#: N→`, Dt→0 under the requirement tha
NDt is finite. Diffraction thus arises as an infinite sum of th
infinitesimal contributions from all intermediate states b
longing to the diffractive equivalence class.
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The general formulas derived in Sec. III are further elab
rated on in Sec. IV. We consider there a simple model
diffractive states. They are imagined as built of a hadro
bulk ~representing the ground state! and of some quanta
~‘‘diffractons’’ ! corresponding to diffractive excitations. The
collisions of hadrons is treated in an analogue model as
scattering of a plane wave off a scatterer composed of t
excited hadronic cores. The two-hadron bulk and the dens
distribution of diffractons inside the core are assumed
have Gaussian shapes. Their radiiR0.R1 are to be deter-
mined from fitting to experimental data. This semiphenom
enological model thus explicitly includes the two sources
diffraction: the geometrical diffraction on an absorbing had
ronic bulk and the dynamical diffraction corresponding t
intermediate transitions~modeled with the aid of diffractons!
between equivalent states.

The aim of our calculations was twofold: to con
front theory with experiment and to compare various the
retical approaches between each other. We analyze ela
scattering and the inclusive inelastic diffraction cross se
tions forp-p andp- p̄ collisions, in the range of c.m. energy
As520–1800 GeV, covered by the measurements carr
out at the CERN Intersecting Storage Rings~ISR!, CERN
Super Proton Synchrotron~SPS!, and Fermilab Tevatron col-
liders @11–16#. In all cases, the application of our two-
component model is very successful. In elastic scattering,
single minimum observed experimentally is explained as
multichannel interference effect due to scattering off diffra
tons in the presence of the hadronic bulk. The same eff
determines the angular distribution of inclusive inelastic di
fraction at low momentum transfers. The detailed discussi
of these results, with emphasis on advantage of our desc
tion of diffraction with respect to the traditional Good
Walker approach, is presented in Sec. V.

II. METHOD OF DIFFRACTIVE EIGENSTATES

Consider a unitary transformation of the physical states

u j &→uUj & ~1!

and of the scattering operator

T→T05U†TU. ~2!

Any state can be expanded in terms of the new ba
states, e.g., for the initial state one has

u i &5(
u j &

Ui j* uUj &, ~3!

where

Ui j[^ i uUu j & ~4!

is the matrix element of the unitary transformation operato
The transition amplitude can be written in terms of th

matrix elements of the scattering operator in the new bas

Tf i[^ f uTu i &5 (
u j &,uk&

UfkUi j* tk j , ~5!

where
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3182 54ANDRZEJ MAL”ECKI
tk j[^UkuTuUj &5^kuT0u j &. ~6!

Notice that the summations in the above equations exte
over all physical states.

A. Transformation of Good and Walker

The general transition amplitude~5! can be simplified by
considering the unitary transformation which diagonaliz
the scattering operator:

TuUj &5t j uUj & ~7!

which is equivalent to

T0u j &5t j u j &, ~8!

i.e., the transformed scattering operator is diagonal in phy
cal states. Such a unitary transformationU5UGW, first con-
sidered by Good and Walker@10#, exists since the scattering
operator is normal. Indeed the unitarity of the collision o
eratorS511 iT implies

TT†5T†T5 i ~T†2T!

and

T0T0
†5T0

†T05 i ~T0
†2T0!. ~9!

The base statesuUGWj & were named ‘‘eigenstates inside
nuclear matter’’@10#. They are also referred to as ‘‘diffrac-
tive states’’ or better ‘‘diffractive eigenstates.’’ Using thi
base Eq.~5! is simplified to the single sum over states:

Tf i5(
u j &

Uf jUi j* t j ~10!

and, in particular, the elastic scattering amplitude appears
the form of an average of the eigenvaluest j over the set of
physical states:

Tii5(
u j &

uUi j u2t j ~11!

with the weightuUi j u
2 which satisfies(u j &uUi j u

251.
From Eq.~10! one can see that if the eigenvaluest j were

the same for all states then the inelastic amplitude wou
vanish because of unitarity ofU. Thus the inelastic scattering
arises from the diversity of the eigenvaluest j which corre-
sponds to various absorptions of diffractive eigenstates as
components of the initial state. However, this mechanism
inelasticity is very general; it applies to any inelastic scatte
ing and not exclusively to inelastic diffraction.

The diagonalization~8! was replaced by Białas, Czyz˙, and
Kotański @18# with a weaker assumption of diagonalizatio
of the scattering operator in a particular class of states on
Denoting the chosen subset of states by [D] and its orthogo-
nal complement by@;D# one has for any stateu j &P[D],

T0u j &5t j u j &1 (
uk&P@;D#

tk juk&. ~12!

The states belonging to [D] will be called diffractive states
and those from@;D# are referred to as nondiffractive. Equa
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tion ~12! can be interpreted as the requirement that the b
states of the diffractive sector are subject only to elastic sc
tering which arises from absorption related to the product
of nondiffractive states.

If the transition takes place between two diffractive stat
i.e., whenu i &P[D] and u f &P[D], one has then

Tf i5 (
u j &P@D#

Uf jUi j* t j ~13!

and

Tii5 (
u j &P@D#

uUi j u2t j ~14!

which only seemingly is the same as Eqs.~10! and~11! since
the summation over states is now restricted to the classD]
of diffractive states.

From Eq.~13! one may easily obtain the inclusive inela
tic cross section of diffractive transitions:

(
u f &Þu i &

uTf i u25 (
u j &P@D#

uUi j u2ut j u22uTii u2

5 (
u j &P@D#

uUi j u2uTii2t j u2. ~15!

Thus while the elastic scattering amplitude is an avera
value of the absorption coefficientst j , the inclusive cross
section of inelastic diffraction appears as their dispersion

The approach of Good and Walker constitutes the grou
for the geometrical models of diffraction. In these mode
one takes for granted that the interaction of high-ene
composite hadrons depends on the distribution of their c
stituents in the impact parameter plane only. There is
implicit assumption that a very fast projectile passin
through hadronic medium is outside of the target long bef
the changes it induces in the medium take place. Thus w
the projectile interacts with any of the target constituents,
others are fixed in their positions and can be considered
active spectators. This means that it is just the sta
ubW 1 ,...,bW n&, describing the configurations of hadron constit
ents with definite impact parameters, which are eigensta
of diffraction. Equation~12! then reads

TubW 1 ,...,bW n&5t~bW ,bW 1 ,...,bW n!ubW 1 ,...,bW n&1 (
uk&P@;D#

tk juUk&,

~16!

bW being the impact parameter which describes the traject
of the projectile hadron.

The transition amplitude can thus be written in a mo
familiar form:

Tf i~bW !5 (
n51

`

PnE d2b1 ,...,d
2bnF f* t~bW ,bW 1 ,...,bW n!F i ,

~17!

where F f ,F i are the wave functions, e.g.
F i(bW 1 ,...,bW n)[^bW 1 ,...,bW nu i &, and Pn is the probability to
find the configuration ofn constituents. Assuming the cel
ebrated cluster form of the hadronic profile@3,7#:
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t~bW ,bW 1 ,...,bW n!5 i S 12)
k51

n

@12g~bW 2bW k!# D ~18!

one obtains then the nuclear Glauber model@3# with
Pn5dnA and the Chou-Yang model@4# with the Poissonian
Pn .

B. Normal part of the unitary transformation

It is convenient to extract from the unitary operatorU the
identity transformation:

U[12L. ~19!

The operatorL satisfies the relation of normality:

LL†5L†L5L1L†. ~20!

In terms of the matrix elements the two last equations rea

Ukj5dk j2Lk j ,

uUkju25uLk ju21~122 ReL j j !dk j ~21!

and

Lk j1Lk j* 5(
u l &

LklL j l* . ~22!

Using theAnsatz~19! the diffractive transition amplitude
~13! is

Tf i5t id f i2L f i t i2L i f* t f1 (
u j &P@D#

L f j t jL i j*

or, equivalently,

Tf i5t id f i1
1

2
~L f i2L i f* !~ t f2t i !

1 (
u j &P@D#

L f jL i j* @ t j2
1
2 ~ t f1t i !#. ~23!

In particular, the elastic scattering amplitude reads

Tii5t i1 (
u j &P@D#

uL i j u2~ t j2t i !. ~24!

If all Lk j were small then retaining only the terms linea
in L ~breaking thus unitarity! one would yield the elastic
scattering amplitude trivially equal to the eigenvalue ofT0 in
the initial state. Instead, the inelastic diffraction amplitud
would be proportional to the difference of these eigenvalu
in the initial and final state, which is the classical result
@18#. The last terms of Eqs.~23! and~24! can be considered
as the unitarity corrections from the intermediate diffractiv
states.

For completeness we also write down the inclusive cro
section of inelastic diffraction~15! in terms of the operator
L:

(
u f &Þu i &

uTf i u25 (
u j &P@D#

uL i j u2ut j2t i u22uTii2t i u2. ~25!
d
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Although the three last equations are equivalent to Eq
~13!–~15!, there can be important differences when the tw
kinds of expressions are applied to phenomenological ana
ses. The structure of theL-type formulas leaves more room
for suitable choices of the theoretical ingredients. While
the approach using the operatorU all the eigenvaluest j are
treated on the same footing, in theL description the ground
state eigenvaluet i is distinguished. One can thus make
particular choice oft i irrespectively of the form oft jÞ i .

The phenomenological form of the densityuUi j u
2 is con-

strained only by the normalization to unity. However, th
density uLi j u

2 is yet not normalized, yielding thus an addi
tional parameter at disposal. In fact, from Eq.~22! one has

(
u j &P@D#

uL i j u252 Re~L i i ![gi . ~26!

From Eq.~21! one gets

~ReL i i21!21Im2L i i5uUii u2. ~27!

BecauseuUii u<1, this implies the constraint

0<gi<4. ~28!

Rather a small value ofgi would be expected to reflect the
experimental fact that the cross sections for inelastic diffra
tive processes are about 1 order of magnitude smaller th
elastic ones. It should also be observed that whengi51 the
two approaches yield the identical expressions.

III. NEW APPROACH TO DIFFRACTION

We will present a new approach to inelastic diffractio
which differs essentially from the classical works discuss
in Sec. II A. One emphasized there the properties of t
transformed scattering operatorT0 ~i.e., its complete or par-
tial diagonalization! rather than the structure of the trans
forming operatorU. A convenient tool in this new direction
is Eq. ~19! since by splitting the unitary operator in the two
parts one arrives to the following decomposition of the sca
tering operator@5#:

T5T02LT02T0L
†1LT0L

†. ~29!

We envisage that it is just the three last terms in th
expression which describe diffractive processes. All they
contain the operatorL which is the essential part of the uni-
tary transformation aimed to distinguish between diffractiv
and nondiffractive channels. We will considerL to be a
‘‘soft’’ operator which induces a ‘‘smooth’’ transformation
of the physical statesu j & in the diffractive sector so that the
transformed statesuUj& are very ‘‘close’’ to each other. We
have seen earlier that the ‘‘strength’’ of the operatorL can
be controlled with the aid of the parametergi . On the other
hand, we considerT0 to be a ‘‘hard’’ operator which has
nothing to do with diffractive processes. It does essentia
contribute to a geometrical~long-range! part of elastic scat-
tering which arises as the shadow of a huge number of
elastic~mostly nondiffractive! processes. However, it canno
directly contribute to inelastic diffraction.
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A. Equivalence of diffractive states

The fundamental point in the description of diffraction i
the presumed existence of two orthogonal subspaces of
fractive and nondiffractive states. This requirement can
rephrased by saying that there exist unitary operatorsU and
U† which are reducible in the Hilbert space of physic
states. This implies the existence of a nontrivial subspa
[D] such that for anyu j &P[D] also uUj& and uU† j & belong
to [D]. In consequence, for any stateuk& belonging to the
orthogonal complement@;D# also uUk& and uU†k& will be-
long to @;D#. In terms of the matrix elements this reads

^kuUj &5^ j uU†k&*50,

^kuU† j &5^ j uUk&*50 ~30!

for any u j &P[D] and uk&P[;D].
Alternatively one may say that the operatorU can be

decomposed into the direct sum of operators which act
orthogonal subspaces~classes of equivalence! of the physical
Hilbert space:

U5UD%U;D[UDF. ~31!

Such an operator will be referred to as the unitary diffracti
filter UDF. In the base of physical states the matrixUkj rep-
resentingUDF has a ‘‘diagonal box’’ form. Assuming that
the initial state belongs to [D] one has then

Ui jÞ0→u j &P@D#,

Ui j50→u j &P@;D#. ~32!

The complementary subspace@;D# of states which are non-
diffractive with respect to the set [D] may eventually further
be decomposed into smaller classes of equivalence. The
trix Ukj would then be made of more than two ‘‘boxes.’’

Obviously the reducibility ofUDF implies that the corre-
sponding operatorsL andL† will also be reducible in the
space of physical states, i.e., the matrixLk j is block diago-
nal. The property of normality~20! allows their diagonaliza-
tion. Writing the operatorUDF in a manifestly unitary form

UDF5eiM , M5M† ~33!

we have also at disposal the Hermitian operatorM . There
exist the common eigenstatesum& for which

M um&52pmum&, ~34!

Lum&5~12e2p il!um&, ~35!

where

m5l1n, n50,61,62,..., 0<l,1. ~36!

The statesum&5ul1n& are infinitely degenerated with re-
spect to the eigenvaluel. Thus with each value ofl one can
associate a subspace~class of equivalence! and the projector
operator

Pl5 (
n52`

`

ul1n&^l1nu ~37!
s
dif-
be
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which projects onto this subspace@Pl#.
For eachl one has

@L,Pl#5@L†,Pl#50 ~38!

and

LPl5~12e2p il!Pl , L†Pl5~12e22p il!Pl . ~39!

These relations prompt a possible connection between t
eigenspaces@Pl# of the operatorL and the equivalence of
physical states. The states will be said to be equivale
moduloL if they belong to one of the direct sums

@l#5@Pl# % @P0# ~40!

for eachlÞ0. Thus for anyu j &P@l# one has

u j &5Plu j &1P0u j & ~41!

or, more explicitly,

u j &5 (
n52`

`

wl j~n!ul1n&1 (
n52`

`

w0 j~n!un&, ~42!

wherewl j (n)[^l1nu j &. The structure of Eq.~42! implies
that the set of equivalent~diffractive! states will generally be
very numerous which may be related to the compositeness
the colliding hadrons.

Since

Lu j &5~12e2p il!Plu j & ~43!

for any u j &P@l#, the operatorL is indeed reducible and its
matrix elements between nonequivalent states will vanish:

Lk j5~12e2p il!^kuPlu j &dl8l

5~12e2p il! (
n52`

`

wl8k
* ~n!wl j~n!dl8l ~44!

for any u j &P[l], uk&P@l8#.

B. Diffractive limit

The direct evidence for the existence of the reducible un
tary transformationUDF is provided by a phenomenologi-
cally well-established division of the inelastic hadronic tran
sitions into the two classes of diffractive and nondiffractive
channels. However, the reducibility ofUDF does not imply
that the scattering operatorT0 is also reducible in the space
of physical states. In particular,T0 restricted to the subspace
of diffractive states will no longer be normal. Therefore we
reject condition~12! of Sec. II regarding the diagonalization
of the scattering operator. We consider it as a redunda
assumption which can be incompatible with the fundament
requirement of reducibility~30!. Actually, condition~12! in-
volves two assumptions. The first, regarding the division o
channels into the two classes, inevitably leads to the relatio
of orthogonality ~30!. A careful inspection of the passage
from Eqs.~10! and~11! to Eqs.~13! and~14! indeed reveals
that these relations were implicitly assumed. The second a
sumption, concerning the diagonalization in the diffractiv
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subspace, is not necessary. Moreover, it screens a par
dynamics. In fact, considering the most general expressio

T0u j &5 (
uk&P@D#

tk juk&1 (
uk&P@;D#

tk juk& ~45!

one finds there, in addition to the absorption of nondiffra
tive origin, also another source of absorption implied b
transitions inside the set of diffractive states.

The statesuUDFj & obtained through the unitary transfor
mation which reveals the decomposition of the Hilbert spa
of states into classes of equivalence constitute a natural b
for the description of diffraction. The amplitude of diffrac
tive transitions follows then directly from Eq.~5! by restrict-
ing the summation over states to the class [D] of diffractive
states. Alternatively from Eq.~29! one obtains

Tf i5t f id f i2 (
uk&P@D#

L f ktki2 (
u j &P@D#

t f jL i j*

1 (
u j &,uk&P@D#

L f ktk jL i j* . ~46!

The three last terms of Eq.~46! can be rewritten as

(
uk&P@D#

L f ktki5Nf i~T0!L f i t i ,

(
u j &P@D#

t f jL i j*5L i f* t fNi f* ~T0
†!,

(
u j &,uk&P@D#

L f ktk jL i j*5 (
u j &P@D#

Nf j~T0!L f j t jL i j* , ~47!

wheret j are the diagonal matrix elements ofT0:

t j[t j j5^ j uT0u j & ~48!

and

Nkj~T0![
1

Lk j^ j uT0u j &
(

u l &P@D#
Lkl^ l uT0u j &. ~49!

In order to estimate the undimensional quantitiesNkj we
rewrite Eq.~49! in the form

1

Nkj
512 (

u l &Þu j &P@D#
Lklt l j F (

u l &P[D]
Lklt l j G21

. ~50!

SinceL is a ‘‘soft’’ operator its matrix elementsLkl in the
diffractive sector change smoothly under changes of sta
Thus if the equivalence class of diffractive states [D] is very
rich, i.e., it contains an infinite number of states, then t
second term in Eq.~50! will approach unity. This means

Nkj[N→` ~51!

for any pair of statesuk& and u j & and leads to an enormous
simplification of Eq.~46!:
of
n

-
y

e
ase

es.

e

Tf i5t id f i2NS L f i t i1L i f* t f2 (
u j &P@D#

L f j t jL i j* D . ~52!

The presence of the infinite factorN will not cause any
problem since the equation can be put in the form

Tf i5t id f i1NF12 ~L f i2L i f* !~ t f2t i !

1~L f i1L i f* !S tav~ f i !2
t f1t i
2 D G , ~53!

where

tav
~ f i !5

S u j &P@D#L f jL i j* t j
( u j &P@D#L f jL i j*

~54!

represents an average value of the diagonal matrix eleme
t j weighted with the products of the matrix elements ofL
between the initial~or final! state and the intermediate dif-
fractive states.

We observe that the infinite valueN is always accompa-
nied by a deviationDt which is either the difference of di-
agonal matrix elements between the initial and final state
the deviation of the two former from the average value ove
the whole set [D]. In the equivalence class of diffractive
states which are supposed to be ‘‘close’’ to each other the
deviations should be very small. Therefore we require co
sidering Eq.~53! in the Bjorken-type limit

N→`, Dt→0 such thatNDt is finite. ~55!

This can be referred to as the diffractive limit@5#.
It should be noticed that in the above equations appear t

T0 diagonal matrix elements of the diffractive states only. O
the other hand, the unitarity ofS0511 iT0 implies the rela-
tion

2 Im~ t j !5ut j u21 (
uk&Þu j &

u^kuT0u j &u2, ~56!

where to the ‘‘inelastic shadow’’ term on the right-hand sid
contribute both states which are diffractive and nondiffrac
tive. The diffractive intermediate states appear manifestly
the average value and their importance is hidden in the in
nite value of N. Instead, the nondiffractive intermediate
states occur only implicitly through the unitarity properties
of the matrix elementst j which are assumed to be given.

C. Elastic scattering and inclusive inelastic diffraction

In the case of elastic scattering Eq.~53! becomes

Tii5t i1G~ tav
~ i !2t i !, ~57!

where

G5Ngi ,

gi5 (
u j &P@D#

uL i j u252 Re~L i i ! ~58!

are the coupling constants while
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tav
~ i !5 (

u j &P@D#
uwi j u2t j ~59!

is another average value oft j with the weight

uwi j u25
uL i j u2

( uk&P@D#uL iku2
. ~60!

The elastic scattering amplitude~57! is to be considered
in the limit where the coupling constantG→` and

tav
~ i !2t i5 (

u j &Þu i &
uwi j u2~ t j2t i !→0 ~61!

such that the second term in Eq.~57! remains finite. We refer
to this term as the diffractive contribution to elastic scatte
ing since it originates from the action of the operatorL
which filters as intermediate states only those equivalent
the initial state. By contrast, the first term in Eq.~57! to
which, as the unitarity equation~56! shows, contribute inter-
mediate states from all possible equivalence classes, may
referred to as the nondiffractive contribution to elastic sca
tering. This classification of the contributions with respect t
the nature of intermediate states is an approximation. In fa
in the nondiffractive term there is also a small presence
diffractive shadow and the diffractive contribution is affecte
by nondiffractive transitions through the properties of th
diagonal elementst j . However, the essential point is that
r-

to

be
t-
o
ct,
of
d
e

while the nondiffractive term in elastic scattering is mostly
fed by the shadow of nondiffractive transitions, in the dif
fractive term it is the shadow of diffractive transitions which
is dominant.

It can easily be checked that the elastic diffractive contr
butions in the whole equivalence class [D] effectively cancel
each other:

(
u i &P@D#

gi~ tav
~ i !2t i !5 (

u i &,u j &P@D#
@ uL i j u22uL j i u2#t j50. ~62!

Although generallyuL i j u
2ÞuL j i u

2 the cancellation in Eq.
~62! is exact. Thus the passage from the diffractive ampl
tude~46! to its simplified form~53! does not destroy invari-
ance of the trace ofT in the diffractive sector:

(
u i &P@D#

Tii5 (
u i &P@D#

t i . ~63!

The mechanism of the diffractive limit allows us to inter-
pret the diffractive term in elastic scattering as infinite sum
of infinitesimal contributions from all intermediate states be
longing to the given equivalence class of diffraction. An
analogous interpretation applies to the diffractive terms
the general diffraction amplitude~53!.

Making use of the completeness of diffractive states in th
equivalence subspace one may obtain from Eq.~53! the in-
clusive cross section of inelastic diffraction:
(
u f &Þu i &

uTf i u25N2F(
u f &

uL i f u2ut f u222@Re~L i i !
22Re~L i i !

1uL i i u2#ut i u22U(
u f &

uL i f u2t fU222@122 Re~L i i !#ReS t i(
u f &

uL i f u2t f* D G . ~64!
to
s
ne
l
ce,

ed

i-

:

Applying now the identity

uL i i u21Re~L i i !
252@Re~L i i !#

2

and using definitions~58! and~60!, Eq.~64! can be written in
the form

(
u f &Þu i &

uTf i u25
G2

gi
(

u f &P@D#
uwi f u2utav

~ i !2t f u2

1
12gi
gi

G2utav
~ i !2t i u2. ~65!

Thus the inclusive cross section of inelastic diffraction
built of the two contributions: one which is proportional to
dispersion of theT0 diagonal matrix elements and anothe
which equals~up to a constant! the diffractive contribution to
elastic scattering. Another way of writing this cross sectio
is that similar to Eq.~25!:

(
u f &Þu i &

uTf i u25
G2

gi
(

u f &P@D#
uwi f u2ut f2t i u22uTii2t i u2. ~66!
is
a
r

n

IV. PHENOMENOLOGICAL ANALYSIS OF ELASTIC
AND INCLUSIVE INELASTIC DIFFRACTION

In this section the general theoretical formulas will be
converted into calculable expressions. Our aim is twofold:
confront theory with experiment and to compare variou
theoretical approaches between each other. This will be do
on the example of elastic and inclusive inelastic differentia
cross sections, evaluated both in the momentum spa
where the relevant variable is the momentum transferq
[A utu, and in the impact parameterb space.

A. Phenomenology of diffractons

The formulas considered so far have to be supplement
with a specification of their basic ingredients: the statesu j &
and the matrix elementst j . The inelastic diffractive states
will be imagined@5,19# as built of a hadron bulk~represent-
ing the ground stateu i &! and of some quanta corresponding
to diffractive excitations. The configurations of these quas
particles~which can be called ‘‘diffractons’’! are specified
by a numbern of constituents and their impact parameters
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u j &[un;bW 1 ,...bW n&. For simplicity, we assume that the diffrac
tons are independent of each other which means that
function uwi j u

2 which is weighing the occurrence of multi-
particle configurations appears as a product of one-part
densities. Thus we write

(
u j &P@D#

uwi j u2•••5 (
n51

`

PnE d2b1 ,•••d
2bn)

k51

n

uc~bk!u2••• ,

~67!

whereuc(bk) u
2 is the density distribution in the impact plane

Pn denotes the probability to find the configuration ofn dif-
fractons and will be approximated by the Poisson distrib
tion

Pn5
^n&n

n!
exp~2^n&!, ~68!

where ^n& is the mean value ofn. In the calculations we
assumeP0!1 and begin the summation fromn50. The
aboveAnsatz follows a similar analysis of Miettinen and
Pumplin @20#, based on the standard form of the Goo
Walker formalism ~gi51!. However, their multiparticle
statesu j & referred to configurations of constituent parton
rather than to configurations of quasiparticles as we do.

The diagonal matrix elements ofT0 will be specified~in b
space! as:

t i~b!5 iG0~b! ~69!

and

t j~bW !5 i S 12~12G0!)
k51

n

@12g~bW 2bW k!# D , ~70!

whereG0 represents the profile of the hadronic bulk andg’s
correspond to diffractons. In the diffractive limit~55! only
the single-particle term will be retained:

N~ t j2t i !5~12G0! lim
N→`,g→0

N(
k51

n

g~bW 2bW k!. ~71!

Our analysis, though based on the well-founded fram
work of Sec. III, has a semiphenomenological charact
Therefore the shapes of the profilesG0, g, and of the density
uc(b) u2 are to be assumed. For simplicity, we take them
Gaussians:

G0~b!5
s0

4pR0
2 expS 2

b2

2R0
2D , ~72!

g~b!5
se

4pRe
2 expS 2

b2

2Re
2D , ~73!

uc~b!u25
1

2p~R1
22Re

2!
expS 2

b2

2~R1
22Re

2! D . ~74!

The parameters of these Gaussians, as well as the param
gi and ^n&, will be determined from comparison of the
theory with experiment.
-
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B. Analysis of elastic scattering

The application of our phenomenological recipes to th
formula ~57! yields the imaginary scattering amplitude~in b
space!:

ImTii ~b!5G01Ngi^n&S~b!~12G0!, ~75!

where the functionS(b), describing the average density of
diffractons, is

S~b![E d2suc~s!u2g~bW 2sW !5
se

4pR1
2 expS 2

b2

2R1
2D . ~76!

The inspection of this expression leads to the conclusion th
for the description of elastic scattering four parameters a
needed:R0, s0, R1, and

s1[ lim
N→`,se→0

Ngi^n&se . ~77!

The imaginary scattering amplitude in momentumq space
is obtained by the Fourier-Bessel transform:

ImTii ~q!5
1

2p E d2beiqW •b
W
ImTii ~b!

5E
0

`

dbbJ0~qb!ImTii ~b!. ~78!

The real part of the scattering amplitude may be approx
mated by a simple prescription of Martin@21#:

ReTii ~q!5r
d

dq2
@q2 Im Tii ~q!#

5rS ImTii ~q!2
q

2 E
0

`

dbb2J1~qb!ImTii ~b! D ,
~79!

wherer[ReTii ~0!/ImTii ~0! is an additional parameter to be
found by comparing the elastic differential cross section:

dsel

dutu
5puTii ~q!u2 ~80!

with experimental data.
In our approach, using theAnsätze~72!–~74!, all the cal-

culations can be done analytically. The elastic scattering a
plitude reads@19#

Tii ~q!5A01A12A2 ,

ImAk5
1

4p
sk expS 2

1

2
q2Rk

2D ,
ReAk5rS 12

1

2
q2Rk

2D ImAk , k50,1,2. ~81!

s2 andR2 are simple functions ofs0,s1 andR0 ,R1 .
In Fig. 1 we show separately the two contributions to

elastic scattering which are present in our approach. T
dashed curve represents the termt i5A0 alone while the dot-
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ted curve corresponds to the diffractive termA12A2 , i.e., to
the second term in Eq.~75!. At small momentum transfers
the nondiffractive contributionA0 is dominant. Because of
interference betweenA1 and A2 the diffractive term has a
single zero which, filled up by the real part of the scatterin
amplitude, appears as a shallow minimum. Above the dip
nondiffractive contribution is negligible and the diffractive
term dominates the elastic cross section. The solid curve
the sum of the two contributions. It was fitted to 44 expe
mental points from the data on proton-proton elastic scatt
ing at the c.m. energyAs552.8 GeV@11#. The fit shown in
Fig. 1 is very good.

In Figs. 2 and 3 we present the analogous fits to t
experimental data on proton-antiproton elastic scattering

FIG. 1. Thep-p elastic cross section at c.m. energyAs552.8
GeV in the function of the squared momentum transferutu. The
experimental data@11# are compared with the results of our ap
proach~solid curve!. The nondiffractive~dashed curve! and diffrac-
tive ~dotted curve! contributions to the cross section are show
separately. The parameters are given in the first row of Table I.

FIG. 2. Thep- p̄ elastic cross section at c.m. energyAs553.0
GeV in the function of the squared momentum transferutu. The
experimental data@13# are compared with the results of our ap
proach with~solid curve! and without~dotted curve! the real part of
the scattering amplitude. The parameters are given in the sec
row of Table I.
g
the

is
ri-
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the c.m. energiesAs553 GeV @13# ~53 points! and
As5546–630 GeV@14# ~120 points!. The fits are excellent
in the whole range of momentum transfer. In addition, th
two figures put in evidence the role of the real part of th
scattering amplitude in filling up the diffractive dip. The ef-
fect of the real part at very low momentum transfers, in th
region of the Coulomb hadronic interference, is illustrated i
Fig. 4.

Finally, in Fig. 5 we present the results for thep- p̄ elastic
scattering at the highest presently available c.m. ener
As51800 GeV@16#.

The parameters of all our fits, together with the values o
x2, are collected in Table I. We give there also the values
the total cross sectionstot , the integrated elastic cross section
sel , and the forward logarithmic slope of elastic differentia
cross sectionb.

-

n

-

ond

FIG. 3. The p- p̄ elastic cross section at c.m. energy
As5546–630 GeV in the function of the squared momentum tran
fer utu. The experimental data@14# are compared with the results of
our approach with~solid curve! and without~dotted curve! the real
part of the scattering amplitude. The parameters are given in t
third row of Table I.

FIG. 4. Thep- p̄ elastic cross section at c.m. energyAs5546
GeV at very low squared momentum transfersutu. The experimental
data@14# are compared with the results of our approach with~solid
curve! and without ~dotted curve! the real part of the scattering
amplitude. The parameters are given in the third row of Table I.
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Table I includes the case of proton-proton elastic scatte
ing at c.m. energyAs54.4 GeV @17#. Although the fit is
quite good its propertys05s1 and R05R1 says that this
relatively low energy is yet outside the range of applicatio
of our approach. In fact, for higher energies we always ha
s0@s1 andR0.R1 . This is reasonable since the nondiffrac
tive effects dominate the long-range part of scattering an
are characterized by large values of the effective couplin
strength. The diffractive scattering, on the other hand, is go
erned by short-distance dynamics and small values of t
coupling strength.

C. Analysis of inclusive inelastic diffraction

The application of the prescription~67! to Eq. ~66!, writ-
ten in terms of the Fourier-Bessel transforms oft j ’s, yields
the differential cross section of inelastic diffraction inq
space as the sum of two contributions:

1

2p

dsdif~ t !

dutu
5 (

u f &Þu i &
uTf i~q!u2[

dscoh~q!

d2q
1
ds incoh~q!

d2q
.

~82!

Such a structure has already been noticed in Eq.~65!. The
coherent cross sectionscoh is proportional to the square of
diffractive term in the elastic scattering amplitude:

dscoh~q!

d2q
5S 1gi21D uTii ~q!2t i~q!u2 ~83!

which, upon making use of Eq.~75!, becomes

dscoh~q!

d2q
5S 1gi21D U E dbbJ0~qb!~12G0!S~b;se5s1!U2.

~84!

The name of incoherent contribution is justified by its
proportionality, in a leading order, to the mean value^n&. It
appears in the form of the double Fourier-Bessel transform

ds incoh~q!

d2q
5

1

~2p!2
E d2b1d

2b2e
iqW •~bW12bW2!@12G0~b1!#

3@12G0~b2!#I ~bW 1 ,bW 2! ~85!

where the function
r-

n
d
-
d
g
v-
he

:

I ~bW 1 ,bW 2!5N2gi^n&U~bW 1 ,bW 2! ~86!

depends on the correlation function of diffractons:

U~bW 1 ,bW 2![E d2suc~s!u2g~bW 12sW !g~bW 22sW ! ~87!

5S se

4p D 2 1

2R1
22Re

2 expS 2
b2

2R1
22Re

2D 1

Re
2

3expS 2
b82

4Re
2D , ~88!

wherebW [(1/2)(bW 11bW 2),b
W 8[bW 12bW 2 .

This choice of variables which factorizes the function
U(bW 1 ,b

W
2 ,), facilitates also the evaluation of the integra

~85!. Since the major contribution to the integrand function
comes from small values ofb8, one may approximate:
G0(b1)5G0(b2)5G0(b), andS(b1)5S(b2)5S(b). This al-
lows one to convert the integral~85! into a sum of products
of single integrals.

From the inspection of the above formulas it results tha
for the description of inclusive inelastic diffraction only

FIG. 5. Thep- p̄ elastic cross section at c.m. energyAs51800
GeV in the function of the squared momentum transferutu. The
experimental data@16# are compared with the results of our ap-
proach. The parameters are given in the fourth row of Table I.
TABLE I. The parameters of the fits presented in Figs. 1, 2, 3, 4, and 5.

Energy
~GeV!

s0
~mb!

R0
~fm!

s1
~mb!

R1
~fm! r x2/NDF

stot
~mb!

sel
~mb!

b
~GeV22!

p-p
52.8 39.40 0.70 5.52 0.41 0.066 80.58/39 42.29 7.74 12.04
p- p̄
53.0 39.37 0.72 6.15 0.44 0.13 39.54/48 42.80 7.75 12.90
p- p̄
546 55.78 0.76 10.71 0.51 0.194 111.8/115 60.79 13.44 14.87
p- p̄
1800 66.75 0.82 20.71 0.54 0.175 7.9/25 76.11 17.04 16.97
p-p
4.4 24.71 0.50 24.71 0.50 20.36 61.21/52 39.76 11.46 8.07
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three parameters,gi , ^n&, and Re , are required since the
remaining parameters are to be determined from elastic sc
tering.

The coherent and incoherent contributions to inclusive in
elastic diffraction are shown in Fig. 6. At small momentum
transfers the coherent contribution~dotted curve! is domi-
nant. At the momentum transfer which corresponds to th
position of the dip in elastic differential cross section th
coherent contribution becomes negligible and the incohere
term ~dashed curve! dominates the inelastic diffraction at
large momentum transfers. The solid curve is the sum of t
two contributions. It was fitted to 30 experimental points o
the data on proton-proton inelastic diffraction at the c.m
energyAs553 GeV@12#. It should be stressed that the shap
of the inclusive inelastic cross section is practically insens
tive to the presence of the real part in the elastic scatteri
amplitude.

In Fig. 7 we present the analogous fit to the experiment
data on proton-antiproton inelastic diffraction at c.m. energ
As5546 GeV@15# ~23 points!. Both fits are excellent in the
whole range of momentum transfer. Their parameters, t
gether with the values ofx2, are collected in Table II. We
give there also the values of the integrated cross section
inelastic diffractionsdif . It is defined as twice the measured
inelastic cross section to account for diffractive dissociatio
of both colliding hadrons.

FIG. 6. Thep-p inclusive inelastic cross section at c.m. energ
As553 GeV in the function of the squared momentum transferutu.
The experimental data@12# are compared with the results of our
approach~solid curve!. The coherent~dotted curve! and incoherent
~dashed curve! contributions to the cross section are shown sep
rately. The parameters are given in Table II.

TABLE II. The parameters of the fits presented in Figs. 7 and 8

Energy
~GeV! gi ^n&

Re

~fm! x2/d f
sdif
~mb!

p-p
52.8 0.0286 8.28 0.314 52.4/27 6.34
p- p̄
546 0.0630 1.51 0.410 29.9/20 9.32
at-
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Although elastic and inelastic diffraction was illustrated
on the examples involving protons and antiprotons, we d
not discuss the connection betweenp-p andp- p̄ scattering
@23#. A careful inspection of the experimental data in Figs.
and 2 would reveal, in the vicinity of the dip, a significan
difference between the two differential cross sections whic
implies a presence of the odd charge conjugation exchan
~C521!. The corresponding amplitude contributes with op
posite signs top-p andp- p̄ scattering and differs in phase
from the even-undercrossing amplitude which is domina
beyond the dip region. Since we are mainly interested in th
connection between the elastic scattering and inclusive i
elastic diffraction we did not touch the delicate problem o
charge conjugation symmetry. However, a joint analysis o
elastic and inelastic diffraction in bothpp andpp̄ collisions
might be very illuminating.

V. DISCUSSION AND CONCLUSIONS

The numerical results presented in Sec. IV will be dis
cussed again with emphasis on the comparison of our a
proach based on the diffractive limitN→` with the classical
description of Good and Walker as given in Sec. II B. W
aim to convince the reader about the advantages of o
method.

In order to understand better the relationship of the tw
approaches we rewrite their basic formulas using a unifie
notation. Thus for the elastic scattering amplitudes~57! and
~24! one has

Tii5t i1Ngi (
u j &P@D#

uwi j u2~ t j2t i !, ~89!

Tii
~GW!5t i1gi (

u j &P@D#
uwi j u2~ t j2t i !, ~90!

while the inclusive inelastic cross sections~66! and~25! read

y

a-

FIG. 7. Thep- p̄ inclusive inelastic cross-section at c.m. energ
As5546 GeV in the function of the squared momentum transferutu.
The experimental data@15# are compared with the results of our
approach~solid curve!. The parameters are given in Table II.

.
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(
u f &Þu i &

uTf i u25N2gi (
u j &P@D#

uwi j u2ut j2t i u22uTii2t i u2, ~91!

(
u f &Þu i &

uTf i
~GW!u25gi (

u j &P@D#
uwi j u2ut j2t i u22uTii

~GW!2t i u2,

~92!

where the weightuwi j u
2 is normalized to unity. The two sets

of formulas are almost identical except for the factorN
which in the Good-Walker approach is absent. But this di
ference turns out to be essential. It should also be remind
that whengi51 the Good-Walker approach reappears in it
standard form of Sec. II A.

In the Good-Walker approach we apply, instead of th
diffractive limit ~71!, the complete multiple expansion~70!
which yields the following elastic scattering imaginary am
plitude:

ImTii
~GW!~b!5G01gi~12exp@2^n&S~b!# !~12G0!, ~93!

to be compared with Eq.~75!. By inspection we conclude
that the Good-Walker approach requires for description
elastic scattering one parameter more:R0 ,s0 ,R1 ,s1[^n&se
and additionallygi which cannot any longer be absorbed in
the definition ofs1.

In Figure 8 we compare three curves corresponding

FIG. 8. Thep-p elastic cross section at c.m. energyAs552.8
GeV in the function of the squared momentum transferutu. The
experimental data@11# are compared with various theoretical re-
sults.
f-
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various theoretical descriptions. They were all fitted to th
experimental data on proton-proton elastic scattering at
c.m. energyAs552.8 GeV@11#. All the parameters are col-
lected in Table III. The solid curve corresponds to the a
proach based on the diffractive limit. The dashed curve w
obtained in the Good-Walker formalism discussed abov
Here it should be pointed out that the choice of the fift
parametergi is very ambiguous. Similar fits can be obtaine
with very different values ofgi , rather the value of the prod-
uctgis1 being important, compare the second and third row
of Table III. In particular, if gi→` then s1→0 and the
dashed curve becomes closer and closer to the solid one@5#.
Thus the conditiongi→`, being at variance with the unitar-
ity constraint~28!, may mimick the diffractive limitN→`
which reflects the numerosity of the diffractive equivalenc
class. Seemingly the solid and dashed curves represent fit
equal quality. But there is an important difference since th
dashed curve is characterized by multiple dips while the
are absent in the solid curve, except for the single one o
served experimentally. Finally, the dotted curve correspon
to the standard version of the Good-Walker approach, w
gi51 and G050 as in Ref.@20#. It fits only the forward
scattering part of the data and also shows multiple dips.

So far, the arguments put forward in favor of our metho
do not seem to be very convincing. For example, the dott
curve in Fig. 8 could be enormously improved by replacin
the Gaussian form of the functionS(b) with a more sophis-
ticated shape like a dipole opacity of the Chou-Yang mod
@4#. However, such a choice would prevent us from calcula
ing the inclusive cross section of inelastic diffraction. In fac
it is a joint analysis of elastic scattering and inelastic diffrac
tion which decides about the success of our approach.

Passing to the analysis of the inclusive inelastic diffra
tion, we include the releavant formulas describing the cohe
ent and incoherent contribution in the Good-Walker a
proach. Thus in place of Eq.~84! one has

dscoh
~GW!~q!

d2q
5S 1gi21Dgi2U E dbbJ0~qb!~12G0!

3$12exp@2S~b;se5s1!#%U2 ~94!

while the incoherent function of Eq.~86! is replaced by
TABLE III. The parameters of the fits given in Fig. 6.

Approach s0 ~mb! R0 ~fm! s1 ~mb! R1 ~fm! gi r x2/d f

N→`, se→0
~solid! 39.40 0.70 5.52 0.41 0.07 80.58/39
N51, giÞ1
~dashed! 40.17 0.70 5.44 0.39 0.835 0.07 582.8/38
N51, giÞ1
~not shown! 41.70 0.67 30.45 0.34 0.060 0.07 586.2/38
N51, gi51
~dotted! 0 51.41 0.74 1 0.09 5628.6/41
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I ~GW!~bW 1 ,bW 2!5gi exp@2^n&S~b1!2^n&S~b2!#

3$exp@^n&U~bW 1 ,bW 2!#21%. ~95!

The measurements of the inclusive inelastic cross sect
at the ISR and SPS colliders@12,15# are perhaps not suffi-
ciently appreciated. The angular distribution of inelastic d
fraction is, in a wide range of energy, consistently charact
ized by two different slopes at small and large momentu
transfers. The experimental results could therefore be w
reproduced simply with a sum of two Gaussians described
four parameters: two slopes and two other parameters wh
fix the forward magnitude of each Gaussian. However, in o
phenomenology we need only three parameters since
slope at small momentum transfers is already determined
the diffractive term in elastic scattering. The strength of th
term in inelastic diffraction is setup by the coupling consta
gi . So far, this constant was hidden in the definition of th
cross sections1 and in inelastic diffraction it appears as
new parameter at disposal.

It should be stressed that the coherent contribution~83! to
the inclusive cross section is a novelty of our approach@22#.
In the standard version of the Good-Walker description~with
gi[1! the coherent contribution to inelastic diffraction doe
not appear at all. Thus in Ref.@20# the forward slope of
inelastic diffraction was explained in terms of incohere
scattering while our analysis shows that this scattering dom
nates in the region of large momentum transfers.

We claim that the shape of inelastic diffraction at sma
momentum transfers is determined by elastic scattering
the transition region between the forward peak and the d
fraction minimum. This is successfully verified, as Figs.
and 7 show, in experiment@12,15#, being a crucial evidence
in favor of our formalism. On the contrary, the Good-Walke
approach, even withgiÞ1, is not able to accommodate thi
effect. This is so because the coherent contribution to inel
tic diffraction is there completely fixed~including the value
of gi! by elastic scattering. The thus determined cohere
contribution, which is proportional to (1/gi21)g i

2, turns out,
both for small and large values ofgi , to be too small and
does not reproduce the inelastic cross section at low mom
tum transfers as illustrated in Fig. 9.

We end with a brief recapitulation. Inelastic diffraction i
ion
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a quantum phenomenon related to the existence of inte
degrees of freedom of colliding hadrons. At high energ
diffractive states are infinitely degenerated and are treated
the same footing as the ground state, all being the mem
of an equivalence class in the Hilbert space. In the class
description@10,18# the inelastic diffraction originates from
the diversity of elastic diffractive absorptions in the initia
and final stateDt. But there is something more: intermedia
virtual transitions. We were able to show that the multicha
nel correction can be factorized. The diffraction amplitu
appears asNDt to be taken in the ‘‘diffractive limit:’’N→`,
Dt→0 such thatNDt is finite. The resulting expression
were compared at the beginning of this section. The two s
of formulas are ‘‘almost’’ identical except for the facto
N→`. We stress again that this ‘‘petite diffe´rence’’ turns out
to be essential for quantitative results.

FIG. 9. Thep-p inclusive inelastic cross-section at c.m. ener
As553 GeV in the function of the squared momentum transferutu.
The experimental data@12# are compared with the results of th
Good-Walker approach~solid curve!. The coherent~dotted curve!
and incoherent~dashed curve! contributions to the cross section ar
shown separately. The parameters aregi50.06, ^n&51.67, and
Re50.254 fm.
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