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Q2 evolution of the spin-dependent asymmetryA1
p at large and intermediate x
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We consider theQ2 evolution of asymmetryA1(x,Q
2) in the kinematical range 0.05<x<1.0. To estimate

possible effects on the spin-dependent structure functiong1(x,Q
2), we apply our results to the E143 and SMC

proton data.@S0556-2821~96!03215-8#
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I. INTRODUCTION

The spin-dependent structure function~SF! of the nucleon
g1 is extracted from the virtual photon-nucleon asymmet
A1(x,Q

2) according to the equation

g1~x,Q
2!5A1~x,Q

2!F1~x,Q
2!S 11

4M2x2

Q2 D ,
where F1(x,Q

2) is the spin average SF andM is proton
mass.

The most stringent theoretical predictions on the spi
dependent structure functions refer to their first momentsG1.
Experimentally data onA1 are collected at different values o
Q2 for different values ofx but the correct calculation of the
G1 value requires the same value ofQ

2 at all x. The accuracy
of previous experiments@1–5# allows one to analyze data
under the assumption the asymmetryA1(x,Q

2) is Q2 inde-
pendent@3–7#. However, in view of more precise forthcom
ing data it is important to know theQ2 dependence of the
asymmetry following from QCD.

The assumptionA1(x,Q
2) is Q2 independent means the

SF g1(x,Q
2) andF1(x,Q

2) have the sameQ2 dependence.
This is right asymptotically forx→1 where theQ2 evolution
of the SF is determined by the nonsinglet~NS! anomalous
dimension1 ~AD! gNS~a,n!5agNS

~0!(n)1a2gNS
~1!(n)1O~a3!

and by the first coefficients of the NS coefficient function
Bj (a,n)511abj (n)1O(a2) ( j5F,g); see @8,9#. In the
leading order~LO! of the perturbative theory the NS AD and
the coefficient functions are the same for polarized and no
polarized SF@10#. In the next-to-leading order~NLO! they
are close, too. They are same within an accuracyO(1/n2)
@10#.
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Dubna, Russia. Electronic address: kotikov@lapphp0.in2p3
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1In contrast with the standard case, we use belo

a(Q2)5as(Q
2)/(4p).
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The behavior of the SFF1 at largex can be presented in
the LO approximation2 @8# as

F1~x,Q
2! ;

x→1
AF@a~Q2!#2d0

~12x!nF@a~Q2!#

G„11nF@a~Q2!#…
,

where

d05
16

3b0
S 342CD , nF@a#5nF2

16

3b0
ln a~Q2!,

C is the Eulerian constant, andb0 is the first coefficient of
theb function in thea expansion.

The behavior ofg1 at largex can be presented in the same
way by replacing the values ofAF andnF toAg andng . Then
SFF1 andg1 have the sameQ

2 behavior atx→1 if nF andng
are close.

The values ofAj andnj ( j5F,g) cannot be defined in the
framework of perturbative theory, unfortunately. Howeve
from the quark counting rule,nF[Q

2] and ng[Q
2] are close

to 3 that is in agreement with the experimental data@2–5#
~see reviews@11#!. As a consequence the asymmetryA151
at x→1 will be used in our analysis further.

In general, at moderate and smallx, SF F1(x,Q
2) and

g1(x,Q
2) have different and more complicatedQ2 depen-

dences.
In this article we present the results onQ2 evolution of the

asymmetryA1(x,Q
2) in kinematical rangex>0.05, applied

to the E143@5# and SMC@3# proton data.
At largex ~x>0.3! our analysis is done in the NS case o

QCD evolution~due to the absence of the gluon terms at th
kinematical range!. This allows us to work in the NLO ap-
proximation~the nonsinglet polarized AD are known in this
order of the theory!. At x,0.3 we add the gluon distribution
and work in the LO approximation because NLO singlet AD
are unknown yet.3

R,
.fr;

w

2The NLO corrections may be found in@9#.
3While completing this study, the NLO polarized AD have bee

calculated~see@12#!.
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II. LARGE x REGION

The evolution equation for the asymmetryA1(x,Q
2) can

be determined from the evolution equations for SFF1(x,Q
2)

andg1(x,Q
2):

dF1~x,Q
2!

d ln~Q2!
52

1

2 E
x

1 dy

y
g̃FS xyDF1~y,Q

2!, ~1a!

dg1~x,Q
2!

d ln~Q2!
52

1

2 E
x

1 dy

y
g̃gS xyDg1~y,Q2!, ~1b!

dA1~x,Q
2!

d ln~Q2!
52

1

2 H 1

F1~x,Q
2!
E
x

1 dy

y
g̃gS xyD g1~y,Q2!

2
g1~x,Q

2!

F1
2~x,Q2!

E
x

1 dy

y
g̃FS xyDF1~y,Q

2!J ,
~1!

where the splitting functions g̃ j (x)5agNS
~0!(x)

1a2
„g j

(1)(x)12b0bj (x)…1O~a3! ( j5F,g) are the Mellin
transforms of the corresponding4 AD gNS

~0!(n), g j
( i )(n), and

Wilson coefficientsbj (n).
Let us suppose thatg̃F(x)'g̃g(x)[g(x) ~see@13#! and

express the functiong1(x,Q
2) in terms of A1(x,Q

2) and
F1(x,Q

2):

dA1~x,Q
2!

d ln~Q2!
5

21

2F1~x,Q
2!
E
x

1 dy

y
gS xyD @A1~y,Q

2!

2A1~x,Q
2!#F1~y,Q

2!. ~2!

The evolution equations~1a!, and~1b! are written for the SF
but not for the parton distributions; that is why they include
Wilson coefficient functionsbj (n) on the right-hand side
~RHS!. These coefficients differ~see@10,9#! in polarized and
nonpolarized cases:

bg~n!2bF~n!5
8

3

1

n~n11!
,

or bg~x!2bF~x!5
8

3
x~12x!

which leads to the correction in Eq.~2!;4/3a2b0~12x!2

which is small and we will neglect it in the analysis.
Let us suppose that we have the measured values of

symmetry inIx bins at the rangexP@0.3;1.0#, thesex bins
are small enough so thatA1(x,Q

2) has nox dependence into
the bins, i.e.,

A1~x,Q
2!5(

i51

I11

A1i
~Q2!Q~xi2x!Q~x2xi21!, ~3!

where functionQ(z) is defined as

4The AD g j
(1)(n) ( j5F,g) coincide with the ‘‘1’’ and ‘‘ 2’’

components of NS ADgNS
~1!6(n) ~see@10#!, i.e., g F

(1)(n)[gNS
~1!1(n)

and g g
(1)(n)[gNS

~1!2(n). The difference g g
(1)(n)2g F

(1)(n)
5128/(3n6)1O(n27) ~see@13#! can be neglected.
the

Q~z!5 H1, z.0,
0, z,0,

and the value of the asymmetry in the last bin is known an
fixed:

A1~xI11 ,Q
2![A1~1,Q

2!51. ~4!

Equation ~2! and conditions~3,4! allow us to write the
relation for eachx bin to recalculate the measured values o
the asymmetryA1(xi ,Q i

2) at fixedQ2 ~see Appendix A!.
To simplify obtained formulas~A1!–~A4! we evaluate

A1(x,Q
2) at the upper edge of thex bins and introduce the

new variable:

Ri~Q
2!5@A1i

~Q2!2A1I11
#F1~xi ,Q

2!. ~5!

The evolution procedure starts at the last bin#xI ,1.#.
xP]xI ,1.0]:

RI1150↔A1I11
5const. ~6!

This result confirms the fact that the asymmetry isQ2 inde-
pendent atx51.

xP]xI21,xI ]:

RI~Q
2!5RI~QI

2!, i.e., RI~Q
2!5RI5const. ~7!

xP]xI22,xI21].
Following Eqs.~A3,7! we have

RI21~Q
2!5RI21~QI21

2 !1RILI21,I~ t ! ~8!

where

LI21,I~ t !5E
t I21

t

djTI21,I~j!

and TI21,I~j!5
1

F1~xI ,j!

d

dj
@F1~xI21,j!2F1~xI ,j!#

with t i5ln~Q i
2/L2! and t5ln~Q2/L2!.

xP[xI23,xI22].

From Eq.~A4! at i5I22 and Eqs.~7! and ~8! we obtain

RI22~Q
2!2RI22~QI22

2 !5E
t I22

t

dj (
k5I21

I

Rk~j!Tk21,k~j!

5E
t I22

t

djH FRI21~QI22
2 !

1RIE
t I22

t

djTI21,I~j!G
3TI22,I21~j!1RITI21,I~j!J

5RI21~QI22
2 !LI22,I21~ t !

1R1LI22,I~ t !, ~9!

where
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LI22,I~ t !5E
t I22

t

djTI22,I21~j!E
t I22

j

dhTI21,I~h!

1E
t I22

t

djTI21,I~j!

[E
t I22

t

djT̃I22,I21~j!E
t I22

j

dhTI21,I ~h!

and T̃I22,I21(j)5TI22,I211d(t2j)
Let us consider thegenericbin now.
xP[xi21,xi ].

By analogy with Eqs.~8,9! the evolution equation ofRi(Q
2)

can be written as

Ri~Q
2!5Ri~Qi

2!1 (
k5 i11

I

Rk~Qi
2!Li ,k~Q

2!, ~10!

where

Li ,k~Q
2!5E

t i

t

djT̃i ,i11~j!E
t i

j

dhT̃i1 l ,i12~h!•••

3E
t i

d
dtT̃I22,I21~t!E

t i

t

TI21,I~z!dz.

We have equations which describeQ2 evolution of the asym-
metry in the range ofx>0.3. The final equation@Eq. ~10!#
shows an advantage of our method as soon as it does
contain the Mellin convolution. TheQ2 dependence is ex-
pressed as a multiple integral of some known functions a
can be calculated directly.

III. AN EXPANSION TO THE INTERMEDIATE x

Let us consider the case when the gluon term is not ne
ligible. The evolution equations~1a,1b! on the SFF1(x,Q

2),
g1(x,Q

2) and the asymmetryA1(x,Q
2) ~1! have to be modi-

fied then:

dF1~x,Q
2!

d ln~Q2!
52

a

2 E
x

1 dy

y H gff
~0! S xyDF1~y,Q

2!

1gfg
~0!S xyDG~y,Q2!J , ~11a!

dg1~x,Q
2!

d ln~Q2!
52

a

2 E
x

1 dy

y H gff
~0! S xyDg1~y,Q2!

1ḡfg
~0!S xyDDG~y,Q2!J , ~11b!
not

nd

g-

dA1~x,Q
2!

d ln~Q2!
52

a

2 H 1

F1~x,Q
2!
E
x

1 dy

y Fgff
~0! S xyD g1~y,Q2!

1ḡfg
~0!S xyDDG~y,Q2!G2

g1~x,Q
2!

F1
2~x,Q2!

3E
x

1 dy

y Fgff
~0! S xyDF1~y,Q

2!

1gfg
~0!S xyDG~y,Q2!G , ~11!

whereG(x,Q2)5g11g2 andDG5g12g2 are gluon dis-
tributions in the polarized and nonpolarized cases, respe
tively. Functionsgff

~0! (x), g fg
(0)(x), and ḡ fg

(0)(x) are the Mel-
lin transforms of the LO singlet unpolarized and polarized
AD gff

~0! (n), g fg
(0)(n), andḡ fg

(0)(n), respectively.
As in the previous section functiong1(x,Q

2) is expressed
in terms ofA1(x,Q

2) andF1(x,Q
2):

dA1~x,Q
2!

d ln~Q2!
5

2a

2F1~x,Q
2!
E
x1

1 dy

y Fgff
~0! S xyD @A1~y,Q

2!

2A1~x,Q
2!#F1~y,Q

2!1ḡfg
~0!S xyDDG~y,Q2!

2gfg
~0!S xyDA1~x,Q

2!G~y,Q2!G . ~12!

We still use conditions~3,4! for the extendedx region. Equa-
tions ~12,3,4! allow us to write ‘‘I ’’ equations to recalculate
the measured values of the asymmetryA1(xi ,Q i

2) at fixed
Q2 ~see Appendix B!. To simplify the picture and by analogy
with the previous section we evaluate the asymmetr
A1(x,Q

2) at the upper edge of eachx bin and work in a term
of the variableRi(Q

2) defined below.
Here we start the evolution procedure at bin ]xI21,xI ].
xP]xI21,xI ]:

RI~Q
2!5RI~QI

2!2KI ,I~Q
2!, ~13!

whereKI ,I(Q
2)5* t I

t djQI(j) and

QI~j!5
a~j!

2 E
x1

1 dy

y F ḡfg
~0!S xyDDG~y,j!

2A1I11
gfg

~0!S xyDG~y,j!G .
xP]xI22,xI21].

According to Eq.~B2! we have

RI21~Q
2!5RI21~QI21

2 !1RI~QI21
2 !LI21,I~ t !2KI21,I~ t !

2KI21,I21~ t !, ~14!

where

LI21,I~ t !5E
t I21

t

djPI21,I~j!

and
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PI21,I~j!5TI21,I~j!1
1

F1~xI21 ,j!

a~j!

2 E
xI21

x1 dy

y

3gfg
~0!S xyDG~y,j!;

KI21,I~ t !5E
t I21

t

djPI21,I~j!E
t I21

j

dhQI~h!

P@xI23,xI22#.

From Eq.~B2! at i5I22 and Eqs.~7,13! we obtain

RI22~Q
2!2RI22~QI22

2 !5RI21~QI22
2 !LI22,I21~ t !

1RI~QI22
2 !LI22,I~ t !

2 (
k5I22

I

KI22,k~ t !, ~15!

where

LI22,I~ t !5E
t I22

t

dj P̃I22,I21~j!E
t I22

j

dhPI21,I~h!

and

KI22,I~ t !5E
t I22

t

dj P̃I22,I21~j!E
t I22

j

dhPI21,I~h!

3E
t I21

h
dzQI~z!

with P̃I22,I21(j)5PI22,I211d(t2j).
Consider now thegenericbin:

xP[xi21,xi ].
From Eq.~B3! by analogy with Eqs.~8,9,13,14! the evolu-
tion equation ofRi(Q

2) can be written in the form

Ri~Q
2!5(

k5 i

I

@Rk~Qi
2!Li ,k~Q

2!2Ki ,k~Q
2!#, ~16!

where

Li ,i~ t !51 and Ki ,i~ t !5E
t i

t

djQi~j!,

Li ,k~Q
2!5E

t i

t

dj P̃i ,i11~j!E
t i

j

dh P̃i11,i12~h!•••

3E
t i

d
dt P̃I22,I21~t!E

t i

t

PI21,I~z!dz,

Ki ,k~Q
2!5E

t i

t

dj P̃i ,i11~j!E
t i

j

dh P̃i11,i12~h!•••

3E
t i

d
dt P̃I22,I21~t!E

t i

t

PI21,I ~z!dzE
t i

z

ddQi~d!,
Pi ,i11~j!5Ti ,i11~j!1
1

F1~xi11 ,j!

a~j!

2

3E
xi

xi11 dy

y
gfg

~0!S xyDG~y,j!,

Qi~j!5
a~j!

2 E
xi

1 dy

y F ḡfg
~0!S xyDDG~y,j!

2A1I11
gfg

~0!S xyDG~y,j!G .
The polarized and unpolarized gluon termsG(x,Q2) and
DG(x,Q2) we describe in the form

G~x,Q2!5g~x,Q2!Q~xK2x!

and

DG~x,Q2!5Dg~x,Q2!Q~xK2x!,

wherexKP@xmin ,1.0#. It allows us to represent the functions
Pi ,i11 andQi~j! as

Pi ,i11~j!5Ti ,i11~j!1
Q~xK2xi11!

F1~xi11 ,j!

a~j!

2

3E
xi

xi11 dy

y
gfg

~0!S xyDG~y,j!,

Qi~j!5
a~j!

2
Q~xK2xi11!E

xi

xK dy

y F ḡfg
~0!S xyDDG~y,j!

2A1I11
gfg

~0!S xyDG~y,j!G .
So, Eq.~16! describes theQ2 dependence of the asymmetry
in the rangex,0.3. By analogy with the previous section the
Q2 evolution is expressed as a multiple integral of the known
functions and can be calculated directly.

IV. RESULTS

To apply our calculations we took the E143@5# and SMC
@3# proton data as an input. The spin independent SF
F1(x,Q

2) was defined as

F1~x,Q
2!5

F2~x,Q
2!

2x@11R~x,Q2!#
~17!

and we used parametrizations ofF2 andR by the New Muon
Collaboration ~NMC! @14# and SLAC global fit @15#,
respectively.5 Duke-Owens parametrization@16# was used
for gluon distributiong(x,Q2). The polarized gluon distribu-

5The terms responsible for high-twist effects were removed from
parametrizations. The consideration of the high-twist effects is
above our analysis. However, we hope that their importance i
strongly reduced when we consider the SF ratio but not SF itself.
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tion is less known~see discussions in@17#! and we apply the
suggestion by Brodsky~see@18#! and parametrize it in the
form

Dg~x,Q2![
12~12x!2

11~12x!2
g~x,Q2!.

E143 @Spin Muon Collaboration~SMC!# has measured the
proton asymmetry in the kinematical range 1.3,Q2,10~70!
GeV2 and 0.029~0.003!>x>0.8~0.7!. The averageQ2 of the
E143 and SMC proton data iŝQ2&53 GeV2 and ^Q2&510
GeV2, respectively.

First we evolved E143 data~using the original experimen-
tal binning! which have been measured at the rangex.0.3 to
Q253 GeV2 ~see Fig. 1!.

It is seen from the figure the corrections onA1 coming
due to evolution procedure are small in an accuracy of
existing experimental data but not negligible.

The main advantage of our method~representation of the
evolution equation as the sum of the multiple integrals! gives
its main technical restriction: the number and the multiplic
tion of the integrals.

The number of E143 and SMC measuredx bins is too
high to apply our method directly on the experimental da
To decrease the complexity of the analysis we parametr
both E143 and SMC measurements as a functions ofx ~see
Fig. 2 and Fig. 3! and create a new, more convenient~for us!
binning. Using these smooth curves as an input we got c
rections on the asymmetries coming due to evolution
Q253 GeV2 and 10 GeV2. The values of the correction are
shown in Figs. 2, 3 as the grey areas~dark for ^Q2&53 GeV2

and light for^Q2&510 GeV2 in Fig. 2 and dark for̂Q2&510
GeV2 in Fig. 2!.

The next figures show the functionxg1
p(x,Q2) calculated

~E143 data were used! atQ253 GeV2 and 10 GeV2 with an
original andQ2 corrected values of the asymmetry~see Figs.
4, 5!. The functionsg1 were defined as

FIG. 1. E143 measured virtual photon-nucleon asymmetryA 1
p

@9# ~shown as closed points! in comparison with evolved toQ253
GeV2 ~open squares!.
an

a-

ta.
ize

or-
to

g1
m~x,Q2!5A1

meas~x!F1~x,Q
2!S 11

4M2x2

Q2 D ,
g1
c~x,Q2!5A1

corr~x!F1~x,Q
2!S 11

4M2x2

Q2 D ,
andA1

meas,corrcorrespond to original andQ2-evolved values
of the asymmetry, respectively.

Figure 6 shows the same calculation atQ2510 GeV2 pro-
duced for SMC data. The main uncertainty of our meth
came from the condition~3!—the asymmetryA1 has nox
dependence into the bin. Figure 7 shows thex dependence of
this source of the uncertainty. As it is seen from the Fig
3–6 we do not evolve data belowx50.04 where the uncer-
tainy of the method is greater than 30%.

Finally, we estimate the influence of the evolution proc
dure to the first moment valueG 1

p. To do this, we calculate
the values of the spin-dependent structure funct
g 1
p(x,^Q2&), using the corrected values of the asymme

A1(x,^Q
2&) and parametrizations ofF2(x,^Q

2&) and
R(x,^Q2&). For SMC data@3# obtained results are shown i
Fig. 6 for ^Q2&[10 GeV2. To calculate the integral a
x<0.05 we suggest that the measured asymmetry isQ2 in-
dependent at thex range. To get the integral for experimen
tally unmeasured smallx region ~x<0.003! we use the esti-
mation by SMC@3#. The first moment values calculated i
these suggestions are

G1
p~10 GeV2!5E

0

1

g1~x,10 GeV2!dx50.12560.002,

which differs from the SMC published result toDG520.006
60.002. Presented uncertainty~60.002! is caused by the
method.

FIG. 2. E143 measured data on the asymmetryA1 as a function
of x and their parametrization. Variations of the asymmetry cau
by theQ2 evolution procedure shown as dark and light areas
Q253 GeV2 andQ2510 GeV2, respectively.
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FIG. 3. SMC measured data on the asymme
try A1 as a function ofx and their parametriza-
tion. Variations of the asymmetry caused by th
Q2 evolution procedure shown as a dark are
~Q2510 GeV2!.
d

For E143 data theQ2 evolution illustrated by Figs. 4, 5
leads to the changesDG50.00360.001 andDG520.002
60.001 for the first momentsG 1

p~3 GeV2! andG 1
p~10 GeV2!,

respectively.

FIG. 4. E143 data. Structure functionxg1
p(x) calculated at

Q253 GeV2 in the assumptionA1 has noQ
2 dependence~shown as

open points! and with the asymmetry evolved by our method
~closed points!. Curves correspond toxg1

p(x) ~atQ253 GeV2! cal-
culated with initial andQ2-evolved parametrizations of the asym-
metry.
V. CONCLUSION

Based on these results we can conclude that theQ2 de-
pendence of the asymmetryA1(x,Q

2) @and hence SF

FIG. 5. E143 data. Structure functionxg1
p(x) calculated at

Q2510 GeV2 in the assumptionA1 has noQ
2 dependence~shown

as open points! and with the asymmetry evolved by our metho
~closed points!. Curves correspond toxg1

p(x) ~at Q2510 GeV2!
calculated with initial andQ2-evolved parametrizations of the
asymmetry.
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g1(x,Q
2) itself# is not negligible, essentially at largex val-

ues. It is important to add theQ2 evolution procedure to data
analysis in view of the forthcoming more precise measu
ment and to compare experimental data measured in dif
ent x2Q2 kinematical ranges.

Notice that the corrections caused by theQ2 evolution of
theA1(x,Q

2) are opposite in sign at large and intermedia
x. Thus the value ofG 1

p does not change a lot when theQ2

evolution of theA1(x,Q
2) is incorporated.

We have compared our results with other predictions@19–
21# and have found the results to be in qualitative agreem
in the discussed kinematical range.

Here we would like to note that the addition of NLO
corrections at the intermediatex values does not change th
results of the present analysis too much. In our appro
these extra contributions are connected basically with glu
distribution, because NLO corrections to quark distributio
are taken into account automatically by using NLO repres
tation of dF1/d ln Q

2 @see the RHS of Eqs.~A1,B1b!#. The
nonpolarized gluon distribution does not effect tog1(Q

2) @it
contributes only toA1(x,Q

2)# and hence toG1~Q
2!. The ef-

fect of polarized gluon distribution is small~see, for ex-
ample,@20#! in the consideredx range and will be essentia
only at smallerx values~see@21–23#!. The smallx range has
become the subject of intensive study~see@17# for a recent
review of the situation in the spin-dependent case!, but it is
beyond the scope of the present analysis.

Note added. After completion of this study we becam
aware of Ref.@24#, where theQ2 dependence of asymmetr
A1(x,Q

2) was studied. Our results are in qualitative agre
ment with the SLAC analysis.
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APPENDIX A

In the following we briefly resume how evolution equa
tion ~10! was obtained. We consider eachx bin separately
The Mellin convolution disappears again. The solution at
re-
fer-

te

ent

e
ach
on
ns
en-

l

e
y
e-

nd

-

starting with the last one and evolve the asymmetry val
A1bink

(xbink,Qbink
2 ) based on Eqs.~2,3,4!.

xP[xI ,1.0]:

dA1I11
~Q2!

d ln~Q2!
5

21

2F1~x,Q
2!
E
xI

1 dy

y
gS xyD @A1I11

~Q2!

2A1I11
~Q2!#F1~y,Q

2![0,

that derives toA1I11
5const, i.e.,A1(x,Q

2) @in agreement
with @20,21# and Eq.~4!# is not evolving atx→1.

xP]xI21,xI ]:

dA1I~Q
2!

d ln~Q2!
5

21

2F1~x,Q
2!
E
xI

1 dy

y
gS xyD

3@A1I11
2A1I

~Q2!#F1~y,Q
2!

5@and using Eq.~1a!#

5@A1I11
2A1I

~Q2!#
dF1~xI ,Q

2!

d ln Q2

1

F1~x,Q
2!
.

~A1!

Note that Eq.~A1! has no Mellin convolution. This very
important result allows us to evaluate the asymmetry val
without AD.

To be in accordance with condition~3! we have to fix the
x position into the bin and evolve the asymmetry at this fixe
x point. In agreement with our suggestion@see Eqs.~2,3,4!#
that x bin is small enough, we can choose the most conv
nient x point for the analysis. It iŝx& ]xI21 ,xI ]

5xI . Then

lnuA1I
~Q2!2AI11u52 ln F1~xI ,Q

2!1const

and Eq.~A1! is simplified as

A1I
~Q2!5A1I11

1„A1I
~QI

2!2A1I11
…

F1~xI ,QI
2!

F1~xI ,Q
2!
.

xP]xI22,xI21]:
F1~x,Q
2!
dA1I21

~Q2!

d ln~Q2!
52

1

2 H E
xI21

xI dy

y
gS xyD @A1I

~Q2!2A1I21
~Q2!#F1~y,Q

2!

1E
xI

1 dy

y
gS xyD @A1I11

2A1I21
~Q2!#F1~y,Q

2!J
5@A1I

~Q2!2A1I21
~Q2!#S dF1~xI21 ,Q

2!

d ln~Q2!
2
dF1~x1 ,Q

2!

d ln~Q2! D 1@A1I11
2A1I21

~Q2!#
dF1~xI ,Q

2!

d ln~Q2!

5@A1I11
2A1I21

~Q2!#
dF1~xI21 ,Q

2!

d ln~Q2!
1@A1I11

2A1I
~Q2!#

d

d ln Q2 @F1~xI ,Q
2!2F1~xI21 ,Q

2!#.
fixedx5xI21 is
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@A1I21
~Q2!2A1I11

#5
F1~xI21 ,QI21

2 !

F1~xI21 ,Q
2! H @A1I21

~QI21
2 !2A1I11

#2E
ln QI21

2

ln Q2

dt
d@F1~xI ,t !2F1~xI21 ,t !#/dt

F1~xI21 ,QI21
2 !

@A1I
~ t !2A1I11

#J .
~A2!

xP]xi21,xi ].
Looking through the bins step by step, we have found the form of the equation which describes the variation ofA1(x,Q

2) as
a function ofQ2 in any x bin:

F1~x,Q
2!
dA1i~x,Q

2!

d ln Q2 52
1

2 H E
xi

xi11 dy

y
gS xyD @A1i11

~Q2!2A1i
~Q2!#F1~y,Q

2!1•••1E
xI21

xI dy

y
gS xyD @A1I

~Q2!

2A1i
~Q2!#F1~y,Q

2!1E
xI

1 dy

y
gS xyD @A1I11

2A1i
~Q2!#F1~y,Q

2!J
5@A1i11

~Q2!2A1i
~Q2!#

d

d ln Q2 @F1~xi ,Q
2!2F1~xi11 ,Q

2!#1•••1@A1I
~Q2!

2A1i
~Q2!#

d

d ln Q2 @F1~xI21 ,Q
2!2F1~xI ,Q

2!#1@A1I11
2A1i

~Q2!#
d

d ln Q2 F1~xI ,Q
2!

5@A1I11
~Q2!2A1i

~Q2!#
d

d ln Q2 F1~xi ,Q
2!1 (

k5 i11

I

@A1k
~ t !2A1I11

#
d

d ln Q2@F1~xk21 ,Q
2!

2F1~xk ,Q
2!#%. ~A3!

By analogy with the previous the solution of Eq.~A3! can be written atx5xi as

@A1i
~Q2!2A1I11

#5
F1~xi ,Qi

2!

F1~xi ,Q
2! H @A1i

~Qi
2!2A1I11

#1E
ln Qi

2

ln Q2

dt (
k5 i11

I21

@A1k
~ t !2A1I11

#
d„F1~xk21 ,t !2F1~xk ,t !…/dt

F1~xi ,Qi
2! J .

~A4!

APPENDIX B

Here we briefly consider how evolution equation~16! containing gluons was obtained. By analogy with Appendix A w
consider eachx bin separately starting with the next to last one and evolve the asymmetry valueA1bink

(xbink,Qbink
2 ) based on

Eqs.~12,3,4!.
xP]xI21 ,xI ]:

F1~x,Q
2!
dA1I~Q

2!

d ln~Q2!
5

2a

2 F E
xI

1 dy

y
gff

~0! S xyD @A1I11
2A1I

~Q2!#F1~y,Q
2!1E

x

1S dyy ḡfg
~0!S xyDDG~y,Q2!2A1I

~Q2!G~y,Q2! D G
5@and using Eq.~11a!#5@A1I11

2A1I
~Q2!#

dF1~xI ,Q
2!

d ln Q2 2
a

2 F E
x

1 dy

y
ḡfg

~0!S xyDDG~y,Q2!

2A1I11
E
xI

1 dy

y
gfg

~0!S xyDG~y,Q2!2A1I
~Q2!E

x

xI dy

y
gfg

~0!S xyDG~y,Q2!G . ~B1a!

Using our experience from Appendix A, below we evolve the asymmetry in pointxi for every ]xi21,xi ] bin. We putx5xI
in Eq. ~B1a! and have

F1~x,Q
2!
dA1I~Q

2!

d ln~Q2!
5@A1I11

2A1I
~Q2!#

dF1~xI ,Q
2!

d ln Q2 2
a

2 E
xI

1 dy

y F ḡfg
~0!S xyDDG~y,Q2!2A1I11

gfg
~0!S xyDG~y,Q2!G .

~B1b!
The solution of Eq.~B1b! may be represented in the form
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A1I
~Q2!5A1I11

1„A1I
~QI

2!2A1I11
…

F1~xI ,QI
2!

F1~xI ,Q
2!

2
1

F1~xI ,Q
2!
E
ln QI

2/L2

ln Q2/L2

dt
a~ t !

2 E
xI

1 dy

y F ḡfg
~0!S xyDDG~y,t !

2A1I11
gfg

~0!S xyDG~y,t !. ~B1!

xP]xI22,xI21]:

F1~x,Q
2!
dA1I21

~Q2!

d ln~Q2!
52

a

2 H E
xI21

xI dy

y
gff

~0! S xyD @A1I
~Q2!2A1I21

~Q2!#F1~y,Q
2!1E

xI

1 dy

y
gff

~0! S xyD @A1I11

2A1I21
~Q2!#F1~y,Q

2!1E
xI21

1 dy

y S ḡfg
~0!S xyDDG~y,Q2!2E

xI21

1 dy

y
gfg

~0!S xyDA1~y,Q
2!G~y,Q2! D J

5@A1I
~Q2!2A1I21

~Q2!#S dF1~xI21 ,Q
2!

d ln~Q2!
2
dF1~xI ,Q

2!

d ln~Q2! D 1@A1I11
2A1I21

~Q2!#
dF1~xI ,Q

2!

d ln~Q2!

2
a

2 F E
xI21

1 dy

y
ḡfg

~0!S xyDDG~y,Q2!2A1I11
E
xI

1 dy

y
gfg

~0!S xyDG~y,Q2!

2A1I
~Q2!E

xI21

xI dy

y
gfg

~0!S xyDG~y,Q2!G
5@A1I11

2A1I21
~Q2!#

dF1~xI21 ,Q
2!

d ln~Q2!

1@A1I11
2A1I

~Q2!#
d

d ln Q2 @F1~xI ,Q
2!2F1~xI21 ,Q

2!#2
a

2 F E
xI21

1 dy

y
ḡfg

~0!S xyDDG~y,Q2!

2A1I11
E
xI

1 dy

y
gfg

~0!S xyDG~y,Q2!2A1I
~Q2!E

xI21

xI dy

y
gfg

~0!S xyDG~y,Q2!.

FIG. 6. SMC data. Structure
function xg1

p(x) calculated at
Q2510 GeV2 with the asymmetry
evolved by our method~shown as
closed points!. The value of
* 1
xdxg1(x) is shown as the open

points.
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Analogously to the previous case we have the general solution in the form

@A1I21
~Q2!2A1I11

#5
F1~xI21 ,QI21

2 !

F1~xI21 ,Q
2! H @A1I21

~QI21
2 !2A1I11

#2E
ln QI21

2

ln Q2

dt
d@F1~xI ,t !2F1~xI21 ,t !#/dt

F1~xI21 ,QI21
2 !

@A1I
~ t !2A1I11

#J
2

1

F1~xI21 ,Q
2!
E
ln QI21

2 /L2

ln Q2/L2

dt
a~ t !

2 F E
xI21

1 dy

y
ḡfg

~0!S xyDDG~y,t !

2(
l5I

I11

A1l
~Q2!E

xl21

xl dy

y
gfg

~0!S xyDG~y,t !. ~B2!

xP]xi21,xi ].
By analogy with the priliminary steps and the analysis of Appendix A, we can easily obtain the solution forAi(Q

2):

@A1i
~Q2!2A1I11

#5
F1~xi ,Qi

2!

F1~xi ,Q
2! H @A1i

~Qi
2!2A1I11

#1E
ln Qi

2

ln Q2

dt (
k5 i11

I

@A1k
~ t !2A1I11

#
d„F1~xk21 ,t !2F1~xk ,t !…/dt

F1~xi ,Qi
2!

2
1

F1~xi ,Q
2!
E
ln Qi

2/L2

ln Q2/L2

dt
a~ t !

2 F E
xi

1 dy

y
ḡfg

~0!S xyD DG~y,t !

2 (
k5 i11

I11

A1k
~Q2!E

xk21

xk dy

y
gfg

~0!S xyDG~y,t !G J . ~B3!

FIG. 7. The uncertainty of our method caused by the condition~3!.
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