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We consider th&? evolution of asymmetrA;(x,Q?) in the kinematical range 0.85<<1.0. To estimate
possible effects on the spin-dependent structure functiér, Q2), we apply our results to the E143 and SMC

proton data[S0556-282(196)03215-9
PACS numbegs): 13.60.Hb, 11.55.Hx, 13.88e

I. INTRODUCTION

The spin-dependent structure functi@F) of the nucleon

0, is extracted from the virtual photon-nucleon asymmetry

A;(x,Q?) according to the equation

gl(erz) =A1(X1Q2)F1(X!Q2) 1+

4M?2x2

Q* )
where F,(x,Q?) is the spin average SF arld is proton
mass.

The behavior of the SIF, at largex can be presented in
the LO approximatioh[8] as

(1—x)"FLa@)]
T (1+ve[@(Q)])’

F1(x,Q%) ~1AF[a(Q2)]_d°

X—
where

16

d0:1_6(§_c), vela]=ve— In a(Q?),
360 |4 380

The most stringent theoretical predictions on the spin-

dependent structure functions refer to their first momé&nts
Experimentally data oA, are collected at different values of
Q? for different values ok but the correct calculation of the
I'; value requires the same value®f at allx. The accuracy
of previous experimentfl—5| allows one to analyze data
under the assumption the asymmefry(x,Q?) is Q? inde-
penden{3-7]. However, in view of more precise forthcom-
ing data it is important to know th@? dependence of the
asymmetry following from QCD.

The assumptior\;(x,Q?) is Q? independent means the
SFg,(x,Q%) andF(x,Q?) have the sam&? dependence.
This is right asymptotically fok—1 where theQ? evolution
of the SF is determined by the nonsing(&tS) anomalous
dimensioft  (AD)  yys(a,n)=an(n) +a?yi(n) + O(ad)

C is the Eulerian constant, ang), is the first coefficient of
the B function in thea expansion.

The behavior ofy; at largex can be presented in the same
way by replacing the values @ andvg to A; andy, . Then
SFF, andg, have the sam®? behavior a—1 if v and Vg
are close.

The values ofA; andy; (j=F,g) cannot be defined in the
framework of perturbative theory, unfortunately. However,
from the quark counting ruleye[Q?] and »,[Q?] are close
to 3 that is in agreement with the experimental d&@a5]
(see reviewg11]). As a consequence the asymmefry=1
at x—1 will be used in our analysis further.

In general, at moderate and small SF F;(x,Q?) and
9:(x,Q?) have different and more complicate®? depen-

and by the first coefficients of the NS coefficient functionsdences.

B;(a,n)=1+ab;(n)+0(a?) (j=F,g); see[8,9]. In the

In this article we present the results @3 evolution of the

leading ordeXLO) of the perturbative theory the NS AD and aSymmetryA,(x,Q?) in kinematical rangec=0.05, applied
the coefficient functions are the same for polarized and nont© the E1435] and SMC[3] proton data.

polarized SH10]. In the next-to-leading ordgiNLO) they
are close, too. They are same within an accur@gy/n?)
[10].

*On leave of absence from Particle Physics Laboratory,

At large x (x=0.3) our analysis is done in the NS case of
QCD evolution(due to the absence of the gluon terms at this
kinematical range This allows us to work in the NLO ap-
proximation(the nonsinglet polarized AD are known in this
order of the theory At x<0.3 we add the gluon distribution

JinraNd work in the LO approximation because NLO singlet AD
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In contrast with the standard

@(Q%)=ay(Q%/(4m).

case, we
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2The NLO corrections may be found [8].

use below *While completing this study, the NLO polarized AD have been

calculated(see[12)).
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Il. LARGE x REGION

The evolution equation for the asymmethy(x,Q?) can
be determined from the evolution equations forfSfx,Q?)

andg;(x,Q?):

dFy(x,Q%) Ldy _
dn(QY ——zfx y ( Fi(y,.Q%), (18
dg:(x,Q?) 1d
dng(QQ?) :_Efx yy ( )gl(yQ) (1b)
dA(x,Q3) 1 1 Ldy _ [x
d In(Q?) __E{ F.(x,Q7) fx m ')’g(y) 91(y,Q%)
91(x,Q% [tdy_
Q) b ( ) 1(YQ)]
@
where  the  splitting  functions y;(x)= ay?(x)

+a?(y(x) +2B4b;(x)) +O( 3) (j=F %;) are the Mellin
transforms of the correspond @D (n), ¥{(n), and
Wilson coefficients; (n)

Let us suppose thayF(x)~ g(X)=¥(x) (see[13]) and
express the functiory,(x,Q?) |n terms of A;(x,Q?) and

Fai(x, Q? )E
B -1 fl dy
©2F4(x,Q%) y

dAy(x,Q%)
—As(x, Q%) IF1(y,Q%). )

d In(Q?)
The evolution equationgla), and(1b) are written for the SF

X
( )[ 1(YQ)

but not for the parton distributions; that is why they include

Wilson coefficient functionsb;(n) on the right-hand side
(RHS). These coefficients diffeisee[10,9]) in polarized and
nonpolarized cases:
b b = !
o(M—Dbe(n)=7 nnT1)’

or by(x) —bg(x)= g X(1—X)

which leads to the correction in Eq2)~4/302By(1—x)?
which is small and we will neglect it in the analysis.
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& (2)= 1, z>0,
(D=0, z<o,

and the value of the asymmetry in the last bin is known and
fixed:

Ai(X+1,QH)=A1(1Q%) = (4)

Equation(2) and conditions(3,4) allow us to write the
relation for eachx bin to recalculate the measured values of
the asymmetnA, (x;,Q?) at fixed Q? (see Appendix A

To simplify obtained formulagAl)—(A4) we evaluate
A,(x,Q?) at the upper edge of the bins and introduce the
new variable:

Ri(Q)=[Ay,(Q*)—Ay,  IF1(x,Q). ®
The evolution procedure starts at the last bip,1.].
xe]x,,1.0]:
R,+1=O<—>A1H1=const. (6)

This result confirms the fact that the asymmetrydisinde-
pendent ak=1.
xel]x, _1,%]1:

R(Q)=R(Qf), ie, R(Q)=R/=const. (7)
Xe]X|—2,X 1]
Following Egs.(A3,7) we have
R-1(Q%)=R_1(Qf_ 1) +RL _1(t) (8

where

t
|—|—1,|(t):jt déT,_1,(§)
|

and T,_1,(§)= [Fi(Xi-1,6) —Fa(x,9)]

1
F1(xi,€) df

with t;=In(Q#A?) andt=In(Q%A?).
Xe[X-3,% 2]

From Eqg.(A4) ati=|—2 and Eqgs(7) and(8) we obtain

|
t
R_2(Q%)— R _2(QZ )= f dskg_l Ri(€) T 14(&)

Let us suppose that we have the measured values of the t_o

symmetry inlx bins at the range [0.3;1.0, thesex bins
are small enough so thag (x,Q?) has nox dependence into
the bins, i.e.,

1+1

Al(X:QZ):El AL(QY)O(X—X)O(x=Xi-1), (3

where function®(z) is defined as

“The AD y{M(n) (j=F,g) coincide with the “+” and °
components of NS ADAILE () (see[10)), i.e., y&V (n) y(l”(n)
and y§(n)=ywi (n). The difference y{I(n)—yE(n)
—128/(3ns)+0(n‘7) (see[13]) can be neglected

t
:ft df”R|1(Q|22)

t
+R, ft dfﬂu(f)}

XT|—2,|—1(§)+R|T|—1,|(§)]

= lel(lefz)Llfz,lfl(t)
+R1Ly5)(1), 9

where
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t ¢ dA(x,Q)  «a dy
L, t=J dET| o, f doT,_ __ ¢ f (©) 2
1—2,(t) - ETi—2,-1(8) - nTi—1,(7) dIn(Q?) 2 | F.0Q%) 7¢¢ gl(yQ)
! X 91(X,Q2)
+ déT, _ SO = 2y | 2L\ <
t ~ ¢ 1 dy 0
= t déT—2;-1(8) : d7Ti-11(y) Xj Ve ‘}’(4)35 F1(y,Q?)
1-2 -2 X y
7 ) 2 le.Q) 1
andT, 5 1(§)=T 21+ (t—¢) 9y ’ '
Let us consider thgenericbin now.
Xe[X_1,%]. whereG(x,Q%) =g, +g_ andAG=g, —g_ are gluon dis-
By analogy with Eqs(8,9) the evolution equation d®;(Q?) tributions in the polarlzed and nonpolarized cases, respec-
can be written as tively. Functionsysy(x), v $9(x), andy)(x) are the Mel-

lin transforms of the LO smglet unpolanzed and polarized
AD y(of,)(n) yQ(n), andy{Y(n), respectively.
' As in the previous sectlon functian (x,Q?) is expressed
R(Q)=R(Q))+ 2 RUQILQ?, (10 in terms ofA;(x,Q%) andFy(x,Q%):

dA(X,Q%) N (X)
dIn(Q% 2F1(x Q?) f {Mb v [Ai(y.Q%)

~ A%, Q) TF41(,Q?) +?;£g(§) AG(y,Q?)

where

t - £
Li,k(Qz):f dgTi,H—l(f)f dnTiyiva(n) -
g i (12)

- ygg( )Al(x Q)G(y,Q?)|.

5 ~ T
X ft d7T)2,-1(7) ft T, (5)d¢. We still use condition$3,4) for the extended region. Equa-

' : tions (12,3,4 allow us to write I equations to recalculate
the measured values of the asymmetry(x;,Q?) at fixed
Q? (see Appendix B To simplify the picture and by analogy
metry in the range ok=0.3. The final equatiofiEq. (10)] with th2e previous section we evaluate the asymmetry
shows an advantage of our method as soon as it does ng (x,Q%) at the uppzer edge of eastbin and work in a term
contain the Mellin convolution. Th€? dependence is ex- Of the variableR;(Q") defmgd below. .
pressed as a multiple integral of some known functions and Here we stgrt the evolution procedure at big_1,x].
can be calculated directly. XelX_1x]:

RI(Q)=R(Q})—K;,(Q?, (13
lll. AN EXPANSION TO THE INTERMEDIATE X whereK,J(QZ):ﬁIde,(g) and

We have equations which descri@é evolution of the asym-

Let us consider the case when the gluon term is not neg-

ligible. The evolution equationda,1b on the SFFl(x,QZ), Q,(é)= a($) [ dy Yoo ( )AG(y &)
g1(x,Q?) and the asymmetr, (x,Q?) (1) have to be modi- 2 gy y
fied then: «
—Almyi’g()—/)G(y,f)}
dF;(x,Q%) a (1dy ( (0)(x) «
—x .z -2 elX—2,% 1]
d In(Q*) 2 fx y |79 Py Q%) Accordir;gztolEcIJ.(BZ) we have
40 ;)GW,QZ)), 1g  R-a(Q)=Ri-1(QF ) +RI(QF )Li-y (D =Ky (V)
—Kj_1y-a(t), (14
where

dgs(x,Q?) dy[ ( ) 2
T~ T T & Yoo gl(ny ) t
a3 ), y L= depy @

7¢g y)AG(y QZ)] (11b) and



a(§) [« dy

P|—1,I(§):T|*1’I(§)+ m 2 X|-1 7

G(y,é);

X
0) —

t 3
Klfl,l(t):J; d§P|71,|(§)jt d7Q(7)

e[X-3.X 2]
From Eqg.(B2) ati=1—2 and Eqs(7,13 we obtain
R|_2(Q2)—Rl_Z(Q|2_2)=R|_1(Q,2_2)L|_2’|_1(t)
+R.(Q|2_2)L|-z|(t)
_kZ_ Ki—2k(t), (15
where

t ~ 3
|—|72,|(t):ft dfplfz,lfl(f)jt dnP,_1,(7)
1-2 1-2

and
t ~ 3
Kl_z’l(t):ft,2d§PI_2’I_1(§)ft,Zdnpl_l’l(m

n
Xﬁ,_ldm'“)

with Elfz,lfl(g): Pi_zi-11 o(t—¢).
Consider now theyenericbin:
Xe[Xi_1,%].
From Eq.(B3) by analogy with Egs(8,9,13,14 the evolu-
tion equation ofR,(Q?) can be written in the form

|
Ri<QZ>=k§i [R(QIL; (Q)—K; (QH],  (16)

where

Lij(t)=1 andK,;(t)= J:de,(&)
Li,k<Q2>=ft:dgﬁ,w(affdnﬁmm(n)---
X f:drﬁ.zy.l(r)ftjp.1,.(g)dg

K4 Q)= | 36Pis0a(6) [ anPros ol

5 ; p
X fti dTF)IZ,Il(T)fti P|1,|(g)d§ftid5Qi(5),
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Pi,m(é):TiM(me@
XJ dyy <°>( ) G(y.£),
Qi<§>=%§) f dyy [Wﬁ(y)mw)

—A1|+1y;§’g>( )G(y sﬂ

The polarized and unpolarized gluon teriggy,Q?) and
AG(x,Q?) we describe in the form

G(x,Q%)=0(x,Q) O (xx—x)
and
AG(x,Q%)=Ag(x,Q%)O (X —X),

wherexy [Xmin,1.0]. It allows us to represent the functions
Pii+1 andQ;(é) as

O(Xk—Xi+1) a($)
Fi(Xit1,6) 2

Xi+1 dy
XL y 7%( )G(y &

Piicz1()=T;i1(&)+

a(§)

Qu(E)= " O (X x.+1>f [mg( )AG(y £

—Almy;&’g( )G(y &|.

So, Eq.(16) describes th&? dependence of the asymmetry
in the rangex<<0.3. By analogy with the previous section the
Q2 evolution is expressed as a multiple integral of the known
functions and can be calculated directly.

IV. RESULTS

To apply our calculations we took the E1fg and SMC
[3] proton data as an input. The spin independent SF
F,(x,Q?) was defined as

Fa(x,Q?)

F10QY)= ST R QD]

17

and we used parametrizationsfof andR by the New Muon
Collaboration (NMC) [14] and SLAC global fit [15],
respectively’>. Duke-Owens parametrizatiofl6] was used
for gluon distributiong(x,Q?). The polarized gluon distribu-

5The terms responsible for high-twist effects were removed from
parametrizations. The consideration of the high-twist effects is
above our analysis. However, we hope that their importance is
strongly reduced when we consider the SF ratio but not SF itself.
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® - E143 measured data

09}
0 - corrected to Q2 =3 GeV* data

0.8
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X

FIG. 1. E143 measured virtual photon-nucleon asymmatly
[9] (shown as closed pointin comparison with evolved t@?=3
GeV? (open squarés

tion is less knowr(see discussions {ri7]) and we apply the
suggestion by Brodskysee[18]) and parametrize it in the
form

. 1=(1-x)? )
Ag(x,Q )—m g(x,Q%).
E143[Spin Muon CollaboratiofSMC)] has measured the
proton asymmetry in the kinematical range ¢@<10(70)
Ge\? and 0.0290.003=x=0.8(0.7). The averag®? of the
E143 and SMC proton data i%=3 Ge\? and(Q%=10
Ge\?, respectively.

First we evolved E143 dafasing the original experimen-
tal binning which have been measured at the rarg®.3 to
Q%=3 Ge\ (see Fig. 1

It is seen from the figure the corrections #n coming

due to evolution procedure are small in an accuracy of a

existing experimental data but not negligible.
The main advantage of our meth@@presentation of the
evolution equation as the sum of the multiple integrgises

its main technical restriction: the number and the multiplica

tion of the integrals.
The number of E143 and SMC measunredins is too

high to apply our method directly on the experimental data
To decrease the complexity of the analysis we parametriz

both E143 and SMC measurements as a functions (@ke
Fig. 2 and Fig. 3and create a new, more convenigiatr us)

binning. Using these smooth curves as an input we got co
rections on the asymmetries coming due to evolution t
Q?=3 GeV? and 10 GeV. The values of the correction are

shown in Figs. 2, 3 as the grey arddark for(Q%=3 Ge\?
and light for(Q?)=10 Ge\* in Fig. 2 and dark foxQ?=10
GeV? in Fig. 2.

The next figures show the functiorg(x,Q?) calculated
(E143 data were usg@t Q=3 Ge\? and 10 GeV with an
original andQ? corrected values of the asymmetsee Figs.
4, 5. The functionsg; were defined as

A. V. KOTIKOV AND D. V. PESHEKHONOV
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® - E143 measured data
g - correction to Q2=3 GeV?

0.8 I .« - correction to Q2=1 0 GeV?

0.2

0 0.1

02 03 04 05 06 07 08 09 1

X

FIG. 2. E143 measured data on the asymmaAtras a function
of x and their parametrization. Variations of the asymmetry caused
by the Q? evolution procedure shown as dark and light areas for
Q?=3 GeV? andQ?=10 Ge\?, respectively.

22
G000 = AT Fx,08) 1+ 0,

4M2x?

& |
and A'®@"correspond to original an@?-evolved values
of the asymmetry, respectively.

Figure 6 shows the same calculatiorQft=10 Ge\* pro-
duced for SMC data. The main uncertainty of our method
came from the conditio3)—the asymmetryA; has nox
dependence into the bin. Figure 7 showsttaependence of

this source of the uncertainty. As it is seen from the Figs.
3—6 we do not evolve data belox=0.04 where the uncer-

91(x, Q%) =A7"(x) Fl(X,QZ)( 1+

ri'ainy of the method is greater than 30%.

Finally, we estimate the influence of the evolution proce-
dure to the first moment valug¥. To do this, we calculate
the values of the spin-dependent structure function
g‘l’(x,(Q2>), using the corrected values of the asymmetry
A;(x,(Q?) and parametrizations ofF,(x,(Q?)) and
R(x,{Q?)). For SMC datd 3] obtained results are shown in
léig. 6 for (Q®=10 Ge\’. To calculate the integral at
X=<0.05 we suggest that the measured asymmet(yZisn-
dependent at the range. To get the integral for experimen-
tally unmeasured sma¥ region (x<0.003 we use the esti-
mation by SMCJ[3]. The first moment values calculated in

Yhese suggestions are

1
rh(10 Ge\ﬁ):f g1(x,10 GeV¥)dx=0.125+0.002,
0

which differs from the SMC published result &d"=—0.006

+0.002. Presented uncertainfy0.002 is caused by the
method.
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09 I
* - measured data .
0.8
07}
' -
X 0.6 /
Q "‘
< g5 ’ ® FIG. 3. SMC measured data on the asymme-
o try A, as a function ofx and their parametriza-
tion. Variations of the asymmetry caused by the
Q? evolution procedure shown as a dark area

(Q%=10 GeV?).

For E143 data th&? evolution illustrated by Figs. 4, 5 V. CONCLUSION
leads to the changeAl'=0.003+0.001 andAI'=-0.002
+0.001 for the first momenE /(3 GeV?) andT'?(10 Ge\?), Based on these results we can conclude thatQhele-
respectively. pendence of the asymmetrj;(x,Q?%) [and hence SF
0.09 0.09
0.08 | O - E143 data 0.08 | O - E143 data
W - E143 corrected data W - E143 corrected data

007l @’=3GeV oorl  0'=10GeV

o L
-1
10 x 1

FIG. 4. E143 data. Structure functiongf(x) calculated at FIG. 5. E143 data. Structure functiongf(x) calculated at
Q?=3 GeV\ in the assumptio; has noQ? dependencéshown as Q=10 Ge\? in the assumptiom; has noQ? dependencéshown
open points and with the asymmetry evolved by our method as open poinjsand with the asymmetry evolved by our method
(closed points Curves correspond tog?(x) (at Q?=3 Ge\) cal- (closed points Curves correspond tagh(x) (at Q?=10 Ge\?)
culated with initial andQ?evolved parametrizations of the asym- calculated with initial andQevolved parametrizations of the
metry. asymmetry.
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g:(x,Q?) itself] is not negligible, essentially at largeval-  starting with the last one and evolve the asymmetry value
ues. It is important to add th@? evolution procedure to data As, (xbink,Qﬁmk) based on Eq92,3,4.
analysis in view of the forthcoming more precise measure- _* .
) S X e [%,1.0]:

ment and to compare experimental data measured in differ-
entx— Q? kinematical ranges. dA, (Q?) 1 1dy [x

Notice that the corrections caused by & evolution of 3 IHl = > J — y( —)[AlIH(QZ)
the A;(x,Q?) are opposite in sign at large and intermediate n(Q% 1(%,Q%) Jx Y y
x. Thus the value of'§ does not change a lot when tQ¥ —A 21F 2y=0
evolution of theA;(x,Q?) is incorporated. 1., (QOIF(Y, Q) =0,

We have compared our results with other predictid®-  that derives toA;  =const, i.e.,A;(x,Q?) [in agreement
_21] and _have founc_i the re_sults to be in qualitative agreeme%ith [20,21] and Eq.(4)] is not evolving ax—1.
in the discussed kinematical range. xelx_xl:

Here we would like to note that the addition of NLO A
corrections at the intermediakevalues does not change the dAll(QZ) -1 fl dy (x)

VR4

results of the present analysis too much. In our approach

these extra contributions are connected basically with gluon dIn(Q% ~ 2F4(x,Q% x ¥ Y
distribution, because NLO corrections to quark distributions X[A; —AL (Q3)]F4(y,Q?)
are taken into account automatically by using NLO represen- 1+1 !

tation of dF,/d In Q? [see the RHS of EqgA1,B1b)]. The —[and using Eq.(18)]

nonpolarized gluon distribution does not effecigid Q?) [it )
contributes only toA;(x,Q?)] and hence td";(Q?. The ef- (A, —A(Q))] dFy(x,Q%) 1

fect of polarized gluon distribution is smafkee, for ex- T T dIin Q% F(x,Q%"
ample,[20]) in the considereda range and will be essential

only at smallex values(see[21-23). The smalix range has (A1)

become the subject of intensive stucee[17] for a recent  Note that Eq.(A1l) has no Mellin convolution. This very
review of the situation in the spin-dependent gabet itis  important result allows us to evaluate the asymmetry value
beyond the scope of the present analysis. without AD.

Note added After completion of this study we became  To be in accordance with conditidB) we have to fix the
aware of Ref[24], where theQ? dependence of asymmetry x position into the bin and evolve the asymmetry at this fixed
A;(x,Q?) was studied. Our results are in qualitative agree point. In agreement with our suggestifsee Eqs(2,3,4]
ment with the SLAC analysis. thatx bin is small enough, we can choose the most conve-

nientx point for the analysis. It i¢x);,, | x1=Xi- Then
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In|A —A+1/=—In Fy(x,,Q%) +const
This work was partially supported by the Russian Fund | 1'(Q )= Al 104.Q7)

for the Fundamental Investigatio85-02-04314-a and Eq.(Al) is simplified as
F , 2
APPENDICA ALQ)=A,, + (AL QD) - Ay, ) —Flg' 8'2; -
In the following we briefly resume how evolution equa- BA
tion (10) was obtained. We consider eaghbin separately xe]x;_5,% 4]
|
dAll_l(Qz) 1 x d X
F1(x,Q%) dnQd - 2 ‘ Ll i 7(;)[A1|(Q2)_A1|1(Q2)]F1(y:Q2)
1d X
+ L| 7}/ 7(§>[A1H1_Al|1(Q2)]F1(ny2)}
dFy(x-1,Q%) dFy(x1,Q%) dFy(x,Q)
=[A1|(Q2)—A1|1(Q2)]( TInOD g oD )+[A1,+1—A1,1(Q2)] FIGLR
dF.(x,_1,Q%) d
=LA, As Q] —ien 1AL~ AL@)] gz [Fax @)~ Faxi-1,Q%))

The Mellin convolution disappears again. The solution at fixed, 4 is
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N Fi(x-1,Q7-1) 2 ~(me? | dIFa(X ) —Fa(x -5, 0)]/dt B
[Ay, (Q)—Ay 1= i 109 [Ay, (Q-)—Ay ] Janlzld Fx 1,07 ) [A(D—Ay, 1t

(A2)

XelXi_1,%].
Looking through the bins step by step, we have found the form of the equation which describes the variation@f) as
a function ofQ? in any x bin:

dAL(x,Q%) 1 o1 dy (X
Fl(X’QZ)dTQz:_E[L. y (

X dy
(A (@)~ A (@A Q@+ [ S ( )[ (@)

2 2 ! dy X 2 2
A @IFLY. Q)+ | 7| |TAL, AL (Q)IFA(Y.QY)

d
=[Ay, (@) —AL(QY)] dn o2 [F1(xi,Q%) —F1(Xi+1,Q%)]+ - +[A1(Q?)
2 d ) d
—AL(QY] din Q? [F1(x-1,Q%)—F1(x,Q? I+[AL, —AL(QY)] dinQ? F1(x,Q%)

d d
=[As,,,(Q1)~A1(Q)] gz Falx ,Q2>+k;+l [As (O ~As, ] g g Fa%e-1,Q7)
~F104, Q)1 (A3)

By analogy with the previous the solution of E#\3) can be written ak=x; as

-1

(% .QP)
i [AL(Q))- A1|+l]+f th [AL(D-A; ]

d(F1(Xg_1,t) —F1(x,,1))/dt
[A1i(Q) Amﬂ‘w 1\%k-1 1(Xk

Fi(x,Q7)

(A4)

APPENDIX B

Here we briefly consider how evolution equati@6) containing gluons was obtained. By analogy with Appendix A we
consider eaclk bin separately starting with the next to last one and evolve the asymmetryA@bl,H(exbink,Qﬁink) based on
M
Egs.(12,3,9.
Xe]X—1,X]:

Fl(X,QZ)

dAll(Qz) —a| (1dy ©
dln(szT“,V V¢

d
( )[ AR+ [ mg( )AG(yQ) AL(Q )G(yQ)”

dFi(x,Q%) a
dinQZ 2

1d
=[and using Eq.(118]=[A;  —A;(Q%)] f yy?;?g(y)AG(y Q?)
d
Ay %v@?&() (¥,Q2)— Ay (QP) f ygfg)(;)e(y,Q%} (B1a)

Using our experience from Appendix A, below we evolve the asymmetry in poifiar every Ix; _1,%;] bin. We putx=x;
in Eq. (B1a) and have

AL (Q%) o dF1(x Q%) @ [rdy[ ( ()
1(XQ)W [Ag,,,—A(Q )]TnQr ZJ y y)AG(YQ) AL V5 y G(y,Q%|.

(B1b)

The solution of Eq(B1b) may be represented in the form
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-2 -1
02— t0® " 14
0.18 | ] 0.09
@  -xg’(x10 GeV’)
0.16 -  0.08
0.14 | 1 007
—
S 02 O 1 0.06 FIG. 6. SMC data. Structure
b [ d function xgf(x) calculated at
=l U 4 1 0.05 Q?=10 GeV\? with the asymmetry
: ' U 1 33 evolved by our methogshown as
O 1 - closed points The value of
1 x X .
0.08 | ® 1004 Q J1idxgy(x) is shown as the open
] ~ points.
0.06 | ] 0.03
0.04 | O 1 0.02
002 | + + O q 0.01
o b ] g
107 107 L
Fi(x,Q7) 1 nQZa2  a(t) (1dy
AL (QY)=A; +(A(Q%)-A — f dt—f—_m) AG(y,t
ll(Q ) 141 ( ll(QI) 1I+1) F1(X| ,QZ) F1(X| ,QZ) n Q|2/A2 2 % 7¢g y (y )
A v X ey, (B1)
1I+1y¢9 (y

Xe]X 2% -1]:

day, (Q%) a X dy
=z (0)
FQ) gy 2“ y (

[AL(Q)—Ay (Q )]Fl(yQ>+f —y“’)( )[ 11,

d 1 d
~Ay (Q)IFy(Y.Q >+fo 1 yy(mg(y)AG(y Q%—fxlJyy;;)g(;)Al(y,QZ)G(y,QZ))]

Fi(x-1,Q%) dFy(x,Q% Fi(x,Q%
d1n(Q?) d1n(Q?) )+[A1|+1 Ag @ dn(Q?)

d
=[A1(Q)—A, (QY)]

o

2

by o bt <0>( )
f y s (y)AG(YQ) Al,HJ 4 G(y,Q%)

xd X
~AL(QY) f 7 7%(;)6(3@2)}

dFl(levaZ)

=[Ay, ,~ Ay (Q))] TdInQ?)

2 d 2 a2 (Y dY—o
FTAL =A@ g [Pl @)= Futx 1@21-5 | [ 78[5 |ac.e2

d
A1I+1f| yy v“”(y) (¥,Q%) = Ay 2>f| Y mg( )G(y Q).
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FIG. 7. The uncertainty of our method caused by the condit®n

Analogously to the previous case we have the general solution in the form

Fa(x - 1,Q| 1)
1(X|—1,Q )

1 fm Q2/A? d a(t)
[

In Q2 at dlF1(x),t) =F1(x;-1,t) ]/dt
InQ7_, Fi(x-1,.Qf 1)

1 dy
— YO Z ] AG(y,t
f)q . y 7¢g(y) (y )

[A, (QY)—Ay = [Aq,_ l(Q| DAy 1 f [Ag,()—Aq ]

B Fl(X| -1 ,Qz) n Q|271/A2 2
1+1
-2 A(Q7) f v;ﬁ’g(y) G(y,b). (B2
XelXi_1,%].
By analogy with the priliminary steps and the analysis of Appendix A, we can easily obtain the solutitay{@d):
Fi(x;,Qf) d(F1(Xg-1,8) —F1(X,t))/dt

[Al (@) - A1,+1]_

2 |
[AL(Q))— Ay, ]+ f "t S (AL (DA ]
In Q; k=i+1

Falx. Q9 Fi(xi,Q)
1 (meEa? a(t) dy [ X

F1(x,Q%) Jinqia? ' Li y Yealy AG(y,1)

1+1
- 2 AQ )f ys,gg G(y,t)”. @3




3172

[1] EM Collaboration, J. Ashmaet al, Phys. Lett. B206, 364
(1988; Nucl. Phys.B328 1 (1989.

[2] SLAC-E80 Collaboration, M. J. Alguaret al, Phys. Rev.
Lett. 37, 1261(1976; 41, 70 (1978; SLAC-E130 Collabora-
tion, G. Baumet al, ibid. 51, 1135(1983.

[3] SM Collaboration, B. Adeveet al., Phys. Lett. B302 533
(1993.

[4] SLAC-E142 Collaboration, P. L. Anthongt al, Phys. Rev.
Lett. 71, 959(1993.

[5] SLAC-E143 Collaboration, K. Abet al, Phys. Rev. Lett74,
346 (1995.

[6] J. Ellis and M. Karliner, Phys. Lett. B13 131(1993.

[7] F. E. Close, Report No. RAL-93-034, 1994npublishegt F.
E. Close and R. G. Roberts, Phys. Lett3B6 165 (1993.

[8] D. I. Gross, Phys. Rev. LetR2, 1071(1974); D. I. Gross and
S. B. Treimanjbid. 32, 1145(1974); F. Martin, Phys. Rev. D
19, 1382 (1979; C. Lopez and F. J. Yndurain, Nucl. Phys.
B171, 231(1980.

[9] C. Lopez and F. J. Yndurain, Nucl. Phy&183 157(1981); A.
V. Kotikov, Report No. E2-88-422, 198@inpublishegl

[10] J. Kodairaet al, Phys. Rev. D20, 627 (1979; Nucl. Phys.
B159, 99 (1979.

[11] M. Anselmino, A. Efremov, and E. Leader, Phys. R2f1, 1
(1995; J. Ellis and M. Karliner, Report No. CERN-TH.279/95
and TAUP-2297-95, 1995unpublishegt B. L. loffe, The
Nucleon Spin Structurelhe Proceeding of Quarks-4vorld
Scientific, Singapore, 1995p. 14.

[12] R. Merting and W. L. van Neervan, Z. Phys.70, 637 (1996.

[13] D. A. Ross and C. T. Sachrajda, Nucl. PhBd49, 497(1979.

A. V. KOTIKOV AND D. V. PESHEKHONOV

54

[14] NM Collaboration, P. Amaudruet al, Phys. Lett. B295 159
(1992.

[15] SLAC Collaboration, L. W. Whitlowet al, Phys. Lett. B250,
193(1990.

[16] D. W. Duke and J. F. Owens Phys. Rev.3D, 49 (1984).

[17] S. Forte, Report No. CERN-Th/95-30bep-ph/9511345(un-
published; R. D. Ball, Report No. Edinburg 95/55@ep-ph/
9511330 (unpublishedt T. Morii, S. Tanaka, and T. Yaman-
ishi, Report No. KOBE-FHD-95-05 (hep-ph/9508231
(unpublishe@t T. Gehrmann and W. J. Stirling, Report No.
DTP/95/78(hep-ph/9510243(unpublishedt Phys. Rev. D63,
6100(1996.

[18] S. J. Brodsky, M. Burkardt, and I. Schmidt, Nucl. PhsdJ,
197 (1995.

[19] A. V. Kotikov and D. V. Peshekhonov, Report No. ENSLAPP-
A-499/94, 1994(unpublished

[20] G. Altarelli, P. Nason, and G. Ridolfi, Phys. Lett.30, 152
(1994; T. Gehrmann and W. J. Stirling, Z. Phys. 85, 470
(1995; M. Gluck, E. Reya, and W. Vogelsang, Phys. Lett. B
359 210(1995.

[21] M. Gluck et al, Phys. Rev. D63, 4775(1996.

[22] R. D. Ball, S. Forte, and G. Ridolfi, Reports No. CERN-Th/
95-266, No. Edinburg 95/556, and No. GeF-TH-9(@&p-ph/
9510449 (unpublishegt T. Gehrmann and W. J. Stirling,
Phys. Lett. B365 347 (1996.

[23] R. D. Ball, S. Forte, and G. Ridolfi, Nucl. PhyB444, 287
(1995; B449, 680E) (1995.

[24] SLAC-E143 Collaboration, K. Abet al, Phys. Lett. B364,

61 (1995.



