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Cut diagrams for high energy scatterings
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A new approach is introduced to study QCD amplitudes at high energy and comparatively small mome
transfer. Novel cut diagrams, representing the resummation of Feynman diagrams, are used to simpl
calculation and to avoid delicate cancellations encountered in the usual approach. An explicit calculation
sixth order is carried out to demonstrate the advantage of cut diagrams over Feynman diag
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I. INTRODUCTION

The rapidity-gap events recently observed at the DE
ep collider HERA @1# revived the community’s interest in
the Regge-pole description of high energy scattering. T
word ‘‘Pomeron,’’ seldom heard in recent years, is on
again found in the lexicon of experimentalists. It is perha
then a good time to have a new look at the connection
tween perturbative QCD and the Regge pole. Nonpertur
tive effects may be important for a momentum transfer of
order ofLQCD or smaller, but we shall avoid it by going to
larger momentum transfer if necessary.

It was proposed by Low@2# and Nussinov@2# some years
ago that the Pomeron may simply reflect a two-gluon e
change in QCD. Diagrammatic calculations have been c
ried out @3–8# in the leading-logarithmic approximation t
substantiate this proposal and to study other aspects of
high energy near forward scattering amplitudes. We sh
follow the classical approach of implementing physic
(s-channel! unitarity by summing up Feynman diagrams
the Feynman gauge@3,4#. However, other approaches a
available. The use of a physical gauge and dispersion r
tion @5# can sometimes make things more transparent. O
can also emphasize the complex angular momentum as
by concentrating ont-channel towers and their interaction
as guided byt-channel unitarity@6#. We shall speak no fur-
ther of these alternate approaches except to remark tha
cut diagram method, to be discussed below, can be thou
of as an intermediate link between the classical Feynm
diagram sum and the dispersion relation approaches.

Because of the gauge and non-Abelian nature of
theory, perturbative calculations are lengthy and com
cated. Even by ignoring self-energy and vertex correctio
as well as renormalization effects, on the grounds that t
will not alter the qualitative nature of high energy scatteri
we are trying to learn, and even by ignoring quark pair p
ductions as a first step, a complete QCD calculation can
carried out only up to sixth order. In the much simpler ca
of QED, an eighth order calculation@9# was reported to have
taken 16 months and 2000 pages to complete. In the cas
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QCD, it is much worse; a complete calculation of the eigh
order is not available, though partial calculations have be
carried out@7#.

What makes the calculation so complicated is the lar
number of diagrams that have to be tackled, and the ine
table cancellations between them. The computation of ea
diagram is fairly straightforward, though somewhat length
at higher orders. After the individual diagrams are calculate
care must also be exercised to add them up because of
presence of many delicate cancellations. Leadin
logarithmic dependences on energy get subtracted away,
complicated functions of momentum transfer also disappe
What emerges at the end is a product that is surprising
simple. To the extent that it has been verified, high ener
near forward scattering is described by multiple Reggeiz
gluon exchange, supplemented by elementary gluon prod
tion off the Reggeons and bys-channel unitarity@3,7#.

This outcome has been verified up to sixth order@3–5#.
As mentioned above, many delicate cancellations take pla
in the sum to enable this simple picture to emerge. A com
plete calculation in eighth order is not available, but if on
assumes these cancellations which take place up to sixth
der also occur in eighth and higher orders, then th
Reggeized picture has been verified up to tenth order@7#.
This gives strong support to the conjecture that it is true
all perturbative orders.

While the conjecture is attractive, it is impossible t
verify or refute without a new method to simplify the com
plicated calculations. We report in this article such a ne
method, in which high energy scatterings are computed v
cut diagrams rather than the normal Feynman diagram
These cut diagrams arenot the Cutkosky cut diagrams. The
sum of all cut diagrams here is equal to the sum of all Fey
man diagrams, and not just their discontinuities. These c
diagrams can be regarded as a resummation of the Feynm
diagrams in which many of the delicate cancellations e
countered in the latter have been built in and explicit
avoided. Consequently, the simplicity of the final sum is re
vealed already in individual cut diagrams, and not masked
terms to be canceled as is the case with Feynman diagra
In addition, individual cut diagrams are easier to calcula
than individual Feynman diagrams.

In this paper we shall introduce the formalism of cut dia
grams, as well as an explict calculation to sixth order
demonstrate its effectiveness. We shall discuss quark-qu
3114 © 1996 The American Physical Society
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54 3115CUT DIAGRAMS FOR HIGH ENERGY SCATTERINGS
scattering throughout but allow the quarks to carry an
SU(N) color charge. The result should be equally valid fo
gluon-gluon and other scatterings because high energy p
cesses are insensitive to the spins of the colliding partic
@5,7,8#. This is so because the current carried by a high e
ergy particle is dominated by its center-of-mass motion, wi
the spin current only an insignificant part of that. Formall
the two extra terms in a triple-gluon vertex is a facto
D/As down in comparison for transversely polarized gluon
whereD is the momentum transfer andAs is the center-of-
mass energy of the process.

We will study pure SU(N) QCD and ignore the produc-
tion of quark pairs. If one is bothered by considering quar
quark scattering while ignoring quark production, one ca
consider instead gluon-gluon scattering, and as mention
above, the result would be the same.

In a subsequent paper@10# we shall use the cut diagrams
to discuss the Reggeization conjecture in higher orders.

In Sec. II the result of Feynman diagram calculations
O(g6) is reviewed. How these diagrams combine to give
sum much simpler than the individuals will be discussed
some detail. In Sec. III, we begin to examine more carefu
these cancellations by using sum rules. In Sec. IV, t
method of cut diagrams is explained, and in Sec. V, th
method is applied to fourth and sixth order calculations
demonstrate the savings effected by this method.

II. ELASTIC SCATTERING UP TO O„g6…

Leading-logarithmic calculations in QCD, at high c.m. en
ergy As and comparatively small momentum transfe
A2t5AD2, are discussed, among others@13#, by Cheng and
Wu @3#. Citations to the original literature can also be locate
there. We review in this section the calculation of quar
quark scattering to sixth order done in this standard way.

The relevant Feynman diagrams are given in Fig. 1. T
second order diagram is labeledA, the fourth order diagrams

FIG. 1. Quark-quark scattering in QCD up to the sixth orde
The thick lines at the top and bottom of each diagram are the fer
ion lines, and the thin lines are gluon lines.
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labeledB1 andB2, and the sixth order diagramsC1–C21.
This last labeling is identical@11# to the ones used in Fig.
12.7 of Ref.@3#.

Under the interchange of the Mandelstam variable
s5(p11p2)

2 and u5(p12p28)
2, the spacetime parts of

these diagrams are either self-conjugate, or one goes in
another. For example,A↔A, B2↔B1, C2↔C1,
C15↔C16,C17↔C19, andC18↔C20, unders↔u.

Normalizing the Dirac spinors toūu51, and designating
the fermion mass and gauge coupling constant asm andg,
with b5g2/2p, the T-matrix elementT5(g2s/2m2)M re-
ceives the following contributions from the individual dia-
grams toM @3,4,12#:

A52I 1•G1 ,

B152b ln~se2p i !I 2•G2 ,

B251b~ lns!I 2•~G21cG1!,

C151b2ln2~se2p i !@ 1
2D2I 2

22J2I 2#•G3 ,

C252b2~ ln2s!@ 1
2D2I 2

22J2I 2#•~G31c2G1!,

C351b2$ ln2~se2p i !2 ln2s% 1
4 J2I 2•~G32cG2!

5C45C55C6,

C752b2ln2~se2p i ! 14 J2I 2•~2cG2!

5C85C95C10,

C1151b2~ ln2s! 1
4 J2I 2•~2cG22c2G1!

5C125C135C14,

C1552b2~ lns!2J3•G4 ,

C1652b2~ lns!2J3•~G42G313cG21c2G1!,

C1751b2~ lns!~J31p i I 3!•~G41cG2!5C18,

C1951b2~ lns!~J32p i I 3!•~G42G312cG2!

5C20. ~2.1!

Part ofC21 has been combined withC1 to formC1, and the
remaining part ofC21 has been combined withC2 to form
C2. Note that the result for different diagrams is consisten
with their s↔u character, under whose exchange theT am-
plitude responds with the swapse2p i↔s. See Appendixes A
and B for a brief discussion of how these amplitudes a
computed.

The two-dimensional vectorD in the transverse direction
is the momentum transfer. The functionsJn(D) and I n(D)
are defined as

I 1~D!5
1

D2 ,

r.
m-
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3116 54Y. J. FENG, O. HAMIDI-RAVARI, AND C. S. LAM
I n~D!5E S )
i51

n
d2qi'
~2p!2

1

qi'
2 D ~2p!2d2S (

i51

n

qi'2D D ,
J2~D!5E d2q'

~2p!2
1

q'
2 ,

J3~D!5E S )
i51

3
d2qi'
~2p!2

1

qi'
2 D q2'

2

q2'
2 2q3'

2 F lnq2'2q3'2 G
3~2p!2d2S (

i51

n

qi'2D D . ~2.2!

The functionsI 2, I 3, J2, andJ3 are denoted, respectively, by
I , I 1, K, andI 2 in Ref. @3#. The infrared divergences of thes
integrals can be regulated by a mass, either put in by hand
via the Higgs mechanism. This regulation discussed in
literature @3–9# does not affect the following discussions
and so we shall ignore it. There is, however, also an ult
violet divergence in the integral definingJ2(D), but it turns
out that this function disappears in thesumof the sixth order
diagrams, and so it causes no trouble either.

The factorsGi in Eqs. ~2.1! are the color factors, with
c5N/2 for SU(N) colors. As defined in@3#, G1, G2, G3, and
G4 are, respectively, the color factors for the diagramsA,
B1, C1, andC15. They can be computed by an elega
graphical method@3# from the SU(N) commutation relation
and identities

@ ta ,tb#5 i f abctc , f abcf abd52cdcd ,

i 3f adgf bedf cge5ci f abc . ~2.3!

Hence the combination of color factorsGi given in Eqs.~2.1!
for the various diagrams remains valid whatever the color
the quark is, althoughGi themselves would be different for
different colors of the quark. See Appendix A for a brie
discussion on the computation of the color factors.

The sum of all the terms in Eqs.~2.1!, from A to C20, is

M52
1

D2 @12ā lns1 1
2 ā2ln2s#•G1

1 1
2 g

2i ~ I 222bcI3lns!•G2

1g2ib lns@ I 32
1
2 D2I 2

2#•G31g4 1
6 I 3•G4 , ~2.4!

with

ā ~D![bcD2I 2~D!. ~2.5!

It is important to note the various cancellations takin
place to make the sum~2.4! vastly simpler than the indi-
vidual terms appearing in Eqs.~2.1!.

~1! In fourth order, the leading term proportional to lns is
canceled out betweenB1 and B2 in the color amplitude
proportional toG2, though not inG1.

~2! In sixth order, the leading lnscontributions toG4 from
C15 to C20 also add up to zero. The expressions given
Eqs.~2.1! are not accurate enough to deal with the sublea
ing terms. The term in Eq.~2.4! proportional toG4 is ob-
tained separately from the eikonal formula.

~3! As a result of these cancellations, the energy dep
dence and the SU(N) ~or c) dependence of theG1 amplitude
or
he
,
a-

t

of

f

g

in
d-

n-

is (g2clns)m, and those ofG2, G3, andG4 are, respectively,
g2(g2clns)m, g2(g2lns)m, and g4(g2clns)m. These depen-
dences can be summarized all at once by introducing a di
ferent notation for the color factors. We shall use the nota
tion Fi , j to denote a color factor withi parallel vertical lines
connecting the two fermions, andj parallel horizontal lines
joining any two of the vertical gluon lines. We shall also
write Fi ,0 simply asFi . The relations with the color factors
Gi areG15F1, G25F2, G35F2,1, andG45F3. The g, c,
and lns dependences ofFi , j in Eq. ~2.4! are then given by
g2(i21)(g2clns)mc2j for a diagram of order 2(m1 i ). We
shall refer to such dependences asRegge like, for the
Reggeization of the scattering amplitude to be discussed lat
relies critically on this feature of the scattering amplitude.
Note from Eqs.~2.1! that contributions from individual dia-
grams are not Regge like. Only the sum is.

~4! Simplification in transverse-momentum dependence
also occurs in the sum. The simple integralsI n survive, but
the complicated integralJ3 and the divergent integralJ2 do
not appear in the sum. This cancellation is highly nontrivial
because both of them contribute different amounts to differ
ent color amplitudes.

~5! More specifically, the functionJ3(D) appears in all
the color amplitudesG1, G2, G3, and G4 in diagrams
C15–C20. Those inG2, G3, andG4 actually get canceled
out in the sum, but its presence in theG1 amplitude survives.
However, since this term is of orderg6lns, it is negligible
compared to terms of orderg6ln2s appearing in theG1 am-
plitudes ofC2 andC11 to C14; it can be ignored in the
leading-logarithmic result displayed in Eq.~2.4!.

~6! Also, J2(D) appears in the color amplitudesG1, G2,
andG3 in individual diagramsC1–C14 and all these appear-
ances get canceled out.

As a result of these cancellations,M acquires a very
simple interpretation in terms of Reggeized gluon exchange
These exchanges are constructed in such a way to ensu
s-channel unitarity@3,7#.

Let us denote the Reggeon propagator by

R1~D,s!5
1

D2 exp@2ā~D!lns#. ~2.6!

This reduces to the~transverse part of the! ordinary propa-
gator I 1(D)5D22 for smallg2clns. Similarly, let us denote
the Reggeized version ofI n(D) by

Rn~D,s!5E S )
i51

n
d2qi'
~2p!2

R1~qi' ,s!D
3~2p!2d2S (

i51

n

qi'2D D , ~2.7!

indicating the exchange ofn Reggeons. Then to orderg6 in
T, we can write
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M52R1~D,s!•F11 i
g2

2!
@R2~D,s!•F21R2,1~D,s!•F2,1#

1
g4

3!
R3~D,s!•F3 . ~2.8!

In other words, theF1, F2, F2,1, andF3 components looked
precisely like diagramsA, B1, C1, andC15, respectively,
but with the vertical gluons replaced by their Reggeized ve
sion whose propagators are given in Eq.~2.6!, andwith all
longitudinal-momentum integrations omitted. To interpret
this way forR2,1F2,1 we need to know the Lipatov-Dickinson
vertex @8# describing how elementary gluons are produc
and absorbed from the Reggeized gluons.

This remarkable simplicity and regularity led to the con
jecture@3,7# that the Reggeized formula~2.8!, suitably gen-
eralized, is the correct high energy limit to all perturbativ
orders. This conjecture is very difficult to verify on accoun
of the shear complexity in higher order calculations. F
QCD in eighth order it is simply not manageable withou
simplifying assumptions. If one assumes that all cancel
tions that occurred up toO(g6) will also occur in higher
orders, the final result can be extracted from arelatively
small set of diagrams; then, it is reported that this Reggei
tion conjecture is true to eighth and tenth orders@7#. Even so
these calculations are so lengthy and complicated that to
knowledge the full details have never been published.

III. HIGH ENERGY KINEMATICS

We shall discuss in the next two sections a method
using cut diagramsto sum up the Feynman diagrams,
method in which most of the cancellations discussed in t
last section are automatically built in. This simplificatio
shortens the computations and makes it possible to st
higher order diagrams. In this paper we shall discuss how
simplifies the calculations up toO(g6). In a subsequent pa-
per @10# we shall discuss how it helps to verify part of th
Reggeization conjecture to all orders. To prepare t
groundwork for both, we discuss here the relevant kinema
cal features of high energy scattering which enables this n
method to work.

We will assume the colliding beams in their c.m. syste
to be directed along thez direction. In light-cone coordinates
p65p06p3, the components of a four-vector are labeled
the orderpm5(p1 ,p2 ,p'), with the two-dimensional vec-
tor p' lying in the transversex-y plane. In this notation, the
incoming fermion momenta arep15(As,0,0) and
p25(0,As,0), in which their massm has been neglected. The
outgoing fermion momenta are approximately given b
p185(As,0,D) andp285(0,As,2D). See Fig. 1.

Supposen gluons are hooked up to the upper fermion lin
as shown in Fig. 2. The initial and final fermions are on sh
but the gluons can be off shell, though with an amount
energy far less thanAs. At high energy, the numerator of the
propagator can be approximated by

gp52m(
l

ul~p1!ūl~p1!, ~3.1!
r-

it

ed
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provided the Dirac spinors are normalized to
ūl(p)ul8(p)5dll8. With that, the dominant current
ūl(p1)g

aul8(p1) at high energy is just its translational par
dll8p1

a/m. This shows that the spin content at high energy
unimportant. All that it does is to enforce helicity conserva
tion of the fermion, and to produce a factor 2p1 at each
vertex together with an overall normalization factor o
1/2m. For most of the discussions below we shall ignore th
QED factor and concentrate on the contribution from th
denominators, i.e., the corresponding scalar theory.

The denominator of thei th inverse propagator is

S p11(
j51

i

qj D 22m21 i e.sS (
j51

i

xj1 i e D , ~3.2!

wherexi5qi2 /As. The scalar amplitude in Fig. 2 is given
by s2n times

a@12•••n#[22p idS (
j51

n

xj D )
i51

n21
1

( j51
i xj1 i e

. ~3.3!

Note that a momentum conservationd function for the nega-
tive components~together with an explicit factor22p i ) has
been incorporated. In Eq.~3.3! the ordering of the gluon
lines from left to right is@123•••n#. If they are ordered
differently, say, @v1v2•••vn#[V, then the corresponding
amplitude is

a@v1v2•••vn#[a@V#[22p idS (
j51

n

xv j D
3 )

i51

n21
1

( j51
i xv j1 i e

. ~3.4!

IV. SUM RULES

It is possible to compute sums of Feynman diagram
without much of the delicate cancellations discussed in Se
II, by using thecut diagramswhich we shall describe in this
section and the next. The derivation of cut diagrams relies
two exact combinatorial formulas for the quantitya@V# in
Eq. ~3.4!: the factorization formulaand themultiple commu-
tator formula derived in Ref. @14#. We shall discuss the
former in this section, and the latter in the next section.

Consider an ordering of ni gluon lines:
@v i1v i2•••v ini#[Vi . We shall use the notation

$V1 ;V2 ; . . . ;Vm% to denote theset of all orderings of the
M[( i51

m ni gluon lines,provided the relative orderings of
lines within eachVi are maintained. The number of ordering
in this set is given by the multinominal coefficient

FIG. 2. A quark→ quark1 n gluon tree diagram.
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M !/) j51
m nj !. For example, ifV15@135# andV25@24#, then

$V1 ;V2%[$135;24% consists of the 5!/3!2!510 orderings
@13524#, @13254#, @13245#, @12354#, @12345#, @12435#,
@21354#, @21345#, @21435#, and@24135#.

We shall use the notation

a$V1 ;V2 ; . . . ;Vm%5 (
VP$V1 ;V2 ;•••;Vm%

a@V# ~4.1!

to denote the sum of all amplitudes for the gluon orderings
the set. The factorization formula@14# then states that

a$V1 ;V2 ; . . . ,Vm%5)
i51

m

a@Vi #. ~4.2!

In particular, if each setVi5@v i # consists of only one gluon
line labeled byv i , then $V1 ;V2 ; . . . ;Vm% is the set ofall
orderings ofm gluon lines. In that case the factorizatio
formula reduces to the well-knowneikonal formula@3,15#.
Other special cases of this formula have also been discove
before@7,16#.

It is useful to adopt an alternative notation for the righ
hand side of Eq.~4.2! to denote) i51

m a@Vi # simply as
a@V1uV2u•••uVn#. This notation is suggestive because th
vertical bar can be interpreted graphically as a cut in t
fermion propagator between the last gluon line ofVi and the
first gluon line ofVi11. For a cut propagator, instead of th
usual factor (( j51

i xv j1 i e21!, we have22p id(( j51
i xv j).

This notation is also convenient because it makes Eq.~4.2!
deceptively simple. It now readsa$V1 ;V2 ; . . . ;Vm%
5a@V1uV2u•••uVm#; we simply have to change the semico
lons to vertical bars.

Cut propagators are not limited to tree diagrams like F
2. The off-shell gluons can be connected to other diagrams
form a composite diagram that inherits the original cuts. T
cut diagrams so formed are similar to but different from th
Cutkosky cut diagrams, similar because we have the sa
factors for the cut propagators, different because the c
here occur only on fermion lines whereas in a Cutkosky d
gram they can occur on any line. Moreover, via Eq.~4.2!,
our cut diagram represents a sum ofM !/) j51

m nj ! ~uncut!
Feynman diagrams, with their real and imaginary parts fu

FIG. 3. An illustration of summing Feynman diagrams to obta
cut diagrams.
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included, which is unlike the Cutkosky diagrams in which
only the imaginary part or the discontiuity is represented.

It is clear from Eq.~4.2! that the factorization formula can
be thought of as a sum rule to represent sums of Feynm
diagrams as cut diagrams. As will be discussed in Append
B, a cut diagram is easier to compute than an uncut diagra
In this way not only is it unnecessary to compute the ind
vidual diagrams first, the cut diagram representing the sum
actually easier to compute than just one single Feynman d
gram.

We shall now apply the factorization formula to comput
sums of amplitudes quoted in Sec. II. We shall see that t
lns factor and theJi functions that get canceled out in the
sum never once appear in the cut diagrams.

In what follows we shall use the notation^B1& to denote
the spacetime part ofB1 ~without the color factorG2). Simi-
lar notation will be used for the spacetime part of other dia
grams as well.

In fourth order, theG2 coefficient inM is given by
^B1&1^B2&. Using the eikonal formulaa@12#1a@21#
5a@1u2# on the upper fermion line ~see Fig. 3!,
^B1&1^B2& is reduced to a cut diagram that can be easi
calculated~see Appendix B for all the calculations!, yielding
the correct resultg2i I 2/2 given in Eqs.~2.1! and~2.4!. Simi-
lary, the sum rulea$1;2;3%5a@1u2u3# applied to the six
horizontal ladder diagrams in sixth order yields a cut dia
gram ~see Fig. 4! which gives the sum of̂C15&–^C20& to
be g4I 3/6. This is the correct coefficient ofG4 given in Eq.
~2.4!. Note that neither lns nor J3 ever appears.

Let us now look at the cancellation ofJ3(D) in theG2
andG3 color factors, as discussed in point~5! of Sec. II.
According to Eqs.~2.1!, the coefficient of2G3 from dia-
gramsC15–C20 is given by^C16&1^C19&1^C20&. Using
a$31;2%5a@31u2# on the upper fermion line as in Fig. 5, this
sum is given by a cut diagram which can be evaluated to
2g4i lnsI3/2p. Again J3 does not appear in the cut diagram
Similarly, the coefficient ofcG2 from diagramsC15–C20 is
given by Eqs. ~2.1! to be 3̂C16&1^C17&1^C18&
12^C19&12^C20&. This is equal to twice the previous sum
plus ^C16&1^C17&1^C18&. To use the sum rule, this re-
quires an expression ~see Fig. 6! for
a@321#1a@213#1a@132#. It is easy to see that this is equa
to a$21;3%2a$23;1%1a$13;2% and, by the factorization
formula, also equal toa@21u3#2a@23u1#1a@13u2#. There
may seem to be very little gained by replacing the sum
three terms by the sum of another three terms, but this is n
so. We are replacing the sum of three uncut diagrams by t
sum of three cut diagrams. The computation of cut diagram
is much easier than the computation of uncut diagrams. F
one thing the complicated functionJ3 that appears on all
three uncut diagrams but disappears from their sum nev
appears in any of the three cut diagrams. Evaluating the c

in
FIG. 4. Another sum rule.
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diagrams, the coefficient ofcG2 from C15–C20 is
2g4ic lnsI3/2p, agreeing with the answer given in Eq.~2.4!.

V. CUT DIAGRAMS

The method introduced in the last section has a serio
shortcoming. It does not tell us which cut diagrams to com
pute without detailed considerations of the kind carried o
there. In this section we discuss a remedy for this shortco
ing with the help of themultiple commutator formula@12#.

So far we have been treating Fig. 2 mostly as a QED o
scalar amplitude. For QCD the non-Abelian color matric
ta have to be incorporated. Instead of Eq.~3.4! the amplitude
is now

A@v1v2•••vn#5a@v1v2•••vn#t@v1v2•••vn#

[a@V#t@V#[A@V#, ~5.1!

wheret@V#5tv1tv2•••tvn. What we want is a formula for the

sum of then! permuted gluon orderings,A5(VPSn
A@V#.

For QED, where we can take allta51, this is simply the
eikonal formula, and so what we need is the non-Abeli
generalization of it. This is the multiple commutator formu

A[ (
VPSn

a@V#t@V#5 (
VPSn

a@Vc#t@Vc8#. ~5.2!

It expresses the sum ofa@V#t@V# in terms of sums over the
corresponding cut amplitudea@Vc#t@Vc8#. Compared to the
eikonal formula this looks complicated; instead of a sing
term on the right-hand side, we have now a sum overn!
terms. The complication is inevitable because we are
tempting to sum up amplitudes foreverycolor. However, we
shall see that many of these terms are actually zero,
moreover, the cut diagrams on the right are considera
simpler to evaluate than the uncut diagrams on the le
Again delicate cancellations will largely be avoided as b
fore.

What remains to be described is what the cut diagra
Vc that corresponds to the Feynman diagramV is, as well as
what the amplitudesa@Vc# and t@Vc8# are. Given a
V5@v1v2•••vn#, start from the rightmost numbervn and
proceed leftward until one comes to the first number le
thanvn . Put a cut just to the right of this number. Then sta
from this number and proceed leftward again until on

FIG. 5. Yet another sum rule.
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comes to the first number that is less than this number, a
another cut is put just to the right of this new minimum
number. Continue this way until the end and we have co
structed the cut diagramVc . For example, forn52, the two
cut diagrams are@12#c5@1u2# and @21#c5@21#. For n53,
the six cut diagrams are@123#c5@1u2u3#, @213#c5@21u3#,
@312#c5@31u2#, @132#c5@1u32#, @231#c5@231#, and
@321#c5@321#.

To each cut diagram we associate a spacetime cut am
tude a@Vc# as described in the last section. Namely, it i
given by Eq.~3.4! except the propagator at a cut is replace
by 22p id(( j xv j).

The complementary diagramVc8 of a cut diagramVc is
obtained as follows. If a cut appears between two numbers
Vc , then there will be no cut between the same two numbe
in Vc8 , and vice versa. Forn52, the complementary cut
diagrams are@1u2#85@12# and@21#85@2u1#. For n53, the
complementary cut diagrams are@1u2u3#85@123#,
@21u3#85@2u13#, @31u2#85@3u12#, @1u32#85@13u2#,
@231#85@2u3u1#, and@321#85@3u2u1#.

When no cut appears inVc8 the color factort@Vc8# is
simply t@v1v2•••vn#5tv1tv2•••tvn. If a cut appears between

v i and v i11, then the producttv i tv i11
is replaced by

their commutators@ tv i,tv i11
#. If two or more consecutive

cuts appear, then the corresponding product oft ’s is re-
placed by multiple commutators. For example,t@2u13#
5@ t2 ,t1#t3, t@2u3u1#5@ t2 ,@ t3 ,t1##, and t@4u3u2u15#
5@ t4 ,@ t3 ,@ t2 ,t1###t5.

VI. CUT AMPLITUDES TO O„g6…

We shall compute the cut diagrams toO(g6) to demon-
strate the simplifications obtained therefrom.

Using Eq.~5.2! on the upper fermion, we obtain a set o
cut diagrams as shown in Fig. 7. This set is not unique
others can be obtained from a different labeling of the gluo
lines.

In the horizontal ladder diagramsB1, B2, C15–C20, we
choose the planar diagramsB1 and C15 to be the ones
whose upper lines are completely cut. This fixes the labellin
@12# for B1 and @123# for C15 as shown, and it in turn
determines how diagramsB2 andC16–C20 are to be cut.
Using computational methods discussed in Appendixes
and B, these diagrams yield

B1c51 1
2 g

2i I 2•G2 ,

B2c51b~ lns!I 2•cG1 ,

C15c51g4 1
6 I 3•G4 ,
ms.
FIG. 6. An illustration of how sum of Feynman diagrams can be turned into a sum of cut diagra
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FIG. 7. Cut diagrams up to sixth order.
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C16c52b2~ lns!2J3•c
2G1 ,

C17c5C18c50,

C19c50,

C20c52g2b i ~ lns!I 3•~cG22G3!. ~6.1!

Similarly, we choose to cut the line of the planar diagram
C1 to obtain

C1c52g2b i ~ lns!@ 1
2D2I 2

22J2I 2#•G3 ,

C2c52b2~ ln2s!@ 1
2D2I 2

22J2I 2#•c
2G1 ~6.2!

The 12 diagramsC3–C14 can be divided into four
groups of three, each giving identical contributions, and so
is necessary to consider only one of these groups. The gro
of C3,C7,C12 has been chosen for that purpose. There is
symmetry between gluon lines 2 and 3, and so we m
double this group and consider it as a sum of six Feynm
diagrams. By applying the multiple commutator formula, th
six cut diagrams shown in Fig. 7 are obtained. Their valu
are

C3c5
1
2 ~C3c81C3c88!52g2b i ~ lns! 1

4 J2I 2•G3 ,

C7c5
1
2 ~C7c81C7c88!50,

C12c5
1
2 ~C12c81C12c88!5b2~ ln2s! 1

4 J2I 2•~2c2G1!.
~6.3!

The expressions in Eqs.~6.1!–~6.3! should be compared with
those of the uncut diagrams, Eq.~2.1!. It should also be
compared with the sum found in Eq.~2.4!. Several points can
be noted from these comparisons:

~1! lns factors that get canceled in the sum of the Fey
man amplitude@see points~1!–~3! in Sec. II! never even
it
up
a

ay
an
e
es

n-

appear in Eqs.~6.1!–~6.3!. Cancellation of this kind is auto-
matically built into the cut diagram formalism.

~2! The tranverse functionJ3 appears only inC16c in Eq.
~6.1!. This expression survives the sum but can be ignore
compared to the contribution fromC2c . In other words, as
opposed to the Feynman amplitude~2.1! whereJ3 appears in
many places but most of them are canceled out at the e
@see points~4! and ~5! in Sec. II#, in the cut amplitudeJ3
does not appear except when it survives the sum.

~3! The cut amplitude is not as successful in canceling th
transverse functionJ2 @point ~6! of Sec. II#, although there is
still an improvement here over Eqs.~2.1! in that J2 appears
in fewer places. In fact, it appears inC3c–C20c only when
absolutely needed to cancel its previous appearance inC1c
andC2c . In order forJ2 to disappear completely it is nec-
essary to combine diagrams with triple and four gluon verti
ces together using the Lipatov-Dickinson vertex@8#. The
technique of cut diagrams by itself, which deals mainly with
the fermion lines, is not sufficient for that purpose.

~4! Other than theJ2 complication mentioned above, the
summands of the final answer~2.4! appear directly in the cut
amplitudes. In that sense the cut amplitudes are as econom
cal and as simple as they can ever be. In particular, th
Regge-like feature mentioned in point~3! of Sec. II is
present already in individual cut diagrams.
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APPENDIX A: COLOR FACTORS

The method to compute the color factors graphically@3# is
briefly reviewed here. It is suitable for both cut and uncu
diagrams.
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The basic tool is the graphical identities depicted in Fig
8 and 9, which are nothing but the commutation relation an
identities in Eqs.~2.3!. The commutation relation is valid for
all representations of the color matrixta ; hence, Fig. 8 re-
mains true when the quark line is replaced by a gluon line

As an example, the computation of the color factor for th
uncut diagramC19 in Eq.~2.1! is carried out in Fig. 10, and
the computation of the color factor for the cut diagram
C19c in Eq. ~6.1! is carried out in Fig. 11. For the latter, we
have to remember to use thecomplementarycut diagram for
the color factor, and not the cut diagram itself shown in Fi
7.

The color factors in Eqs.~2.1!, ~6.1!–~6.3! can all be ob-
tained in this way.

APPENDIX B: SPACETIME AMPLITUDES

The high energy limit of a Feynman diagram can be com
puted either in the Feynman-parameter representation@13# or
directly in momentum space using light-cone coordinat
@3–5#. We follow the latter approach and review briefly the
main points. For a more detailed discussion see Ref.@3#. It
serves well to remember at this point that the bottom fermio
carries mostly the ‘‘2 ’’ momentum and the top fermion line
carries mostly the ‘‘1 ’’ momentum.

The procedure to follow for the computation is simple:~i!
Carry out the ‘‘1 ’’ momentum integration using residue cal-
culus;~ii ! then carry out the ‘‘2 ’’ momentum integration to
produce the lns dependence. The transverse momentum int
grations are never explicitly carried out, which is why th
answers are all expressed in terms of functions likeI n(D)
andJn(D) given in Eq.~2.2!.

Step~i! requires a knowledge of the location of poles fo
each propagator, which in turn depends on the choice of lo
momentaka . Supposeq5P1(a51

l caka is the momentum
flowing through a propagator, withP being some combina-
tion of external momenta andca some integer coefficients.

FIG. 9. Graphical represenation of the last two identities in E
~2.3!. c5N/2 for SU(N) color.

FIG. 8. Graphical represenation of the commutation relation
color matrices. Thick lines are fermions and thin lines are gluon
The color factor at a gluon-fermion vertex ista of Eq. ~2.3!, and the
color factor for a triple gluon vertex whose color indicesa,b,c in
the diagram are in clockwise order isi f abc . A cut represents a
commutator between two color matrices.
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The propagator D215(q22m21 i e)215(q2q12q'
2

2m21 i e)21 has a pole in the integration variableka1 if
caÞ0. This pole is located in the upper half plane ifcaq2 is
negative, and in the lower half plane if it is positive. A way
to keep track of the sign is to draw aflow diagramfor the ‘‘
2 ’’ momentum, with arrows indicating the direction of the
‘‘ 2 ’’ flow. See Fig. 12 for some illustrative examples. The
arrows around a loop pointing one way~clockwise or coun-
terclockwise! have their poles in one half plane, and thos
pointing the other way have poles in the opposite half plan
The arrows in the flow diagrams must obey momentum co
servation, and one may also assume they do not go aroun
closed loops. Otherwise the poles will all be in the same ha
plane, and the integral is zero if the contour is closed in th
opposite half plane. With these constraints we see in Fig.
that a one-loop diagram allows only one flow path, but fo
two and more loops there is bound to be more than one flo
diagram because these constraints simply cannot fix the
rection of the ‘‘2 ’’ flow on a boundary line of two loops.

Each flow diagram corresponds to a range ofka2 vari-
ables. By definition, the ‘‘2 ’’ variables along the direction
of the flow are always non-negative.

We shall always close integration contours in the lowe
half planes, and indicate the poles so enclosed by a cro
(3) in the flow diagram. For ascalar diagram, the
T-matrix element is equal to the product ofI propagators
D215(q22m21 i e)21, integrated over thel -loop momenta

d4ka5
1
2 dk1dk2d

2k' , with an extra numerical factor
2@ i /(2p)4# l . Each ‘‘1 ’’ integration produces a factor
22p i ; the T matrix is equal to

T52( E Dk'S )
a51

l
dxa
4p D 1

P i51
I Di

, ~B1!

q.

FIG. 10. A sample calculation of the color factor of a Feynma
diagram.

FIG. 11. A sample calculation of the color factor of a cut dia
gram.
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wherexa5ka2 /As is the scaled ‘‘2 ’’ momenta,

Dk'[ )
a51

l
d2ka'
~2p!2

~B2!

is the measure for transverse momentum integration, a
Di is either the propagator evaluated at the3 poles or the
residue of the3 pole divided byAs. Each summand in Eq.
~B1! corresponds to a flow diagram with a pole taken fro
the lower half plane~an3 pole! of each loop. A flow dia-
gram may have more than one set of3 poles, in which case
the sum is taken over all possible sets. For example,
one-loop diagramB1 in Fig. 1 has only one flow path@Fig.
12~a!# and one set of3 poles. The two-loop diagramC17 of
Fig. 1 has two flow paths, Figs. 12~b! and 12~c!. The first
flow diagram has two sets of3 poles, and the latter flow
diagram has one set of3 poles. We shall see later that in th
leading-logarithmic approximation, we may discard theq1

dependence on the upper fermion line and the accompan
poles, in which case Fig. 12~b! is also left with one set of
3 poles.

Equation~B1! is also valid for cut diagrams, provided th
propagator factorD215(q22m21 i e)21 of a cut line is re-
placed by22p id(q22m2).

Let qi25Aszi , i51,2, . . . ,I . Everyzi is a linear combi-
nation ofxa , and in the case of a propagator along the bo
tom fermion line,x0[1 is also involved. The sign of each
zi is fixed by the direction of arrows in the flow diagram. I
there arex cut lines, then the lastx xa will be chosen to be
equal touzi u of these cut lines. TheI indices i will now be
divided into three sets,a,b for indices from 1 tol labeling
the internal lines with an3 pole, u for indices labeling
propagators on the top fermion line, andm for the rest. Then
qa15qa'

2 /Asza and qm1 ,qu1 can be expressed as linea
combinations ofqa1 : e.g.,

qm15(
a

cmaqa15zm(
b

cmbqb'
2 /zb. ~B3!

Within the leading-logarithmic approximation, one has

Da5za ,

Du.szu~uncut!, Du522p id~szu!~cut!,

Dm5(
b

cmb

zm
zb
qb'
2 2qm'

2 1 i e. ~B4!

The ‘‘2 ’’ momentum flows mainly along the bottom
fermion line, with very little seeping out to avoid a substa
tial mixing with the ‘‘1 ’’ momentum coming from the top
fermion line, for a finite mixture of these two at a propagat
would make it proportional tos and therefore negligible.

FIG. 12. Flow diagrams.
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This means that the dominant contribution toT comes from
regions where all xa are small. Since xa50 for
a5l 2x11, . . . ,l , on account of thed functions of the cut
lines, the region of ‘‘2 ’’ integration can be roughly divided
into regions where the remaining (l 85l 2x xa)’s are
strongly ordered, and regions where two or more of the
xa’s are of the same order of magnitude. We shall label an
one of the latter regions byS, and the former regions by
R@12•••l 8#5$1@x1@x2@•••@xl8 >a/s% and its permuta-
tions.

Thex dependence of) iDi in R@12•••l 8# is of the form

)a51
l 8 xa

2ma and so thex integral encountered in Eq.~B1! is

Ea
s

dxl 8

x
l 8

ml 8
E
xl 8

dxl 821

x
l 821

ml 821
•••E

x2

dx1

x1
m1

; sM ~ lns!B, ~B5!

whereM5(a51
l 8 (ma21) andB is determined by how many

times the sum(a51
b (ma21) reaches zero by varyingb from

1 to l 8. ClearlyB<l 8, and the only way forB5l 8 is to
have allma51, in which case we will call the lns depen-
dence ofT saturated. Otherwise it is said to beunsaturated.
For the uncut diagrams,x50 and l 85l . We see in Eqs.
~2.1! that all the diagrams except for the sixth order horizon
tal ladder diagramsC15–C20 are saturated. For the cut dia
grams in Eqs.~6.1!–~6.3!, only C16c is unsaturated, but this
diagram does not contribute to the final sum because of
subdominance.

The integral in anS region is like one in anR region with
l 8 reduced. For example, supposexl 822 to xl 8 are roughly
equal butx1 to xl 9 (l 95l 822) are strongly ordered as in
R@12•••l 9#5R9. Then the volume element in the last thre
variables in spherical coordinates isr 2drdV2, and so the
integration region is effectivelyR9 but with xl 9 replaced by
r . Sincel 9,l , integrals inS will never lead to saturation.

Cut diagrams are easier to compute than uncut Feynm
diagrams for three reasons. First and most trivial, a cut lin
contains ad(sz) which makes the corresponding ‘‘2 ’’ inte-
gration simpler to carry out. Second and more importantl
thed function demands the absence of the ‘‘2 ’’ momentum
across this line, and so the cut line is cut also in the sense
being an open electric circuit. This generally reduces th
number of possible flow diagrams and makes the corr
sponding integral easier to saturate. For example, each of
two-loop diagrams in Fig. 13 has only one flow path. Third
the flow pattern often leads to vanishing cut diagrams. F
example, both diagrams 13~c! and 13~d! are zero from the
‘‘ 1 ’’ integration around the loop~12345! because the
‘‘ 2 ’’ flows around that loop are all in the same direction
This accounts for the equalityC17c5C18c50 in Eq. ~6.1!.

The cost of this simplicity is the presence oftricky dia-
grams, which are cut diagrams that are apparently logarith
mic divergent at largeka1 . This happens whenever there is
a loop with only one arrow present. Arrows on the top ferm
ion line should not be counted for this purpose because th
approximate propagators 1/(sz1 i e) no longer carry any
ka1 . Figures 13~a! and 13~b! are examples of such diagrams
This apparent divergence is produced by the approximati
of replacing the inverse propagators of an upper line b
sz1 i e, thus losing someq1 factors needed for convergence
To regulate it we must replace thed function of the cut line
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FIG. 13. Sample cut diagrams to illustrate their computation.
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by a smearedd function, thereby allowing a small amount o
‘‘ 2 ’’ momentum to flow through, and in the process resto
ing the lostq1 factor. If we do so to Fig. 13~a!, the k1

integration is no longer divergent, it will have exactly th
same flow path as in Fig. 12~a! and this is indicated in Fig.
13~a! by the dotted arrows; so a pole can be taken at t
bottom fermion line as shown. The result is given by E
~B1! to be 1

2(g
4i /2s)I 2, the extra1

2 being there because the
x integration is bounded by the flow path in Fig. 12~a! to be
between 0 and 1, and so only half of thed(sx) is integrated.
When multiplied by the QED vertex and normalization fac
tor (2s)2/(2m)2, one obtainsB1c in Eqs.~6.1!.

There is another way to compute Fig. 13~a!. This is to
recognize the fact that the cut makes it symmetric in lines
and 2, and so we may replace the diagram by half the sum
it and its crossed diagram. Using the sum rule~3.4!,
a@12#1a@21#5a@1u2#, a cut can be produced at the bottom
line, and the resulting factor22p id(Asq11) makes the
q11 integration convergent. See Fig. 14. Moreover, the res
of this ‘‘1 ’’ integration is22p i , exactly the same as if we
were to do it by residue calculus. The extra factor of1

2 ob-
tained in the last paragraph now emerges because the dou
cut diagram on the right of Fig. 14 is the sum of two dia
grams.

Now we come to the tricky diagram 13~b!, which unlike
the one-loop case is much more difficult to compute by reg

FIG. 14. One-loop tricky diagram and its computation.
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lating thed functions. The reason is that there are now two
cut lines, the relative magnitude of the small ‘‘2 ’’ flows
matters, and that produces once again two flow diagrams lik
Fig. 12~b! and 12~c!. The poles are no longer at the bottom
fermion line and the computation is no simpler than the un
cut diagrams. We must then compute it by the secon
method. With the double cuts in Fig. 13~b!, it is symmetric in
all the qi2 variables. Insisting on this symmetry, Fig. 13~b!
is equal to 1/3! times the sum of six diagrams, obtained b
permuting the bottom gluon lines in all possible ways. From
the factorization formulaa$1;2;3%5a@1u2u3# used on the
bottom line, the result is equal to a diagram with all its ferm
ion propagators cut. So Fig. 13~b! is given by Eq.~B1! to be
g6(22p i )2I 3 /(4ps)23!52g6I 3/24s

2. Incorporating the
extra QED factor2(2s)3/(2m)2 for theT matrix, we obtain
the contribution ofC15c toM[(2m2/g2)T shown in Eqs.
~6.1!.

We conclude this appendix by discussing the remainin
expressions in Eqs.~6.1!–~6.3!. We shall use the notation
^B2c& to denote the spacetime contribution toB2c , etc.
Then ^B2c&5^B2&,^C12c8&5^C12c88&5^C12&,^C16c&
5^C16&, and ^C19c&5^C19& can be obtained from Eqs.
~2.1!. The zero ofC19c in Eqs.~6.1! is due to the vanishing
of the color factor as shown in Fig. 11. Next, we compute
^C3c8&5^C3c88&. The flow path of this is shown in Fig. 13~f!,
with the dotted arrows indicating the small regulating curren
which is allowed to flow only in the direction shown. The
calculation is identical to the uncut diagram,@3# except that

the factor2 1
2 ln

2s is replaced by12 (lns)(22pi) (22p i from
the cut, lns because only one uncut line is left on top, and
1
2 because only half of thed function is integrated!. The
result can then be read off from Eqs.~2.1! to be

^C3c8&5^C3c88&52g2b i ~ lns! 1
4 J2I 2 , ~B6!

which gives rise to the expression in Eqs.~6.3!.
Finally, we must show thatC7c850 andC7c88

50. The
former can be seen from the flow path in Fig. 13~g!, where
the arrows around the small triangle go around in a close
loop. The latter is so because the scalar diagram in Fig. 7 f
C7c88 is symmetrical in lines 2 and 3 but the triple gluon
vertex is antisymmetrical in these two lines.



s
o
l

-

,

3124 54Y. J. FENG, O. HAMIDI-RAVARI, AND C. S. LAM
@1# ZEUS Collaboration, M. Derrick, Phys. Lett. B315, 481
~1993!; 332, 228 ~1994!; H1 Collaboration, T. Ahmedet al.,
Nucl. Phys.B429, 477 ~1994!; Phys. Lett. B348, 681 ~1995!.

@2# F.E. Low, Phys. Rev. D12, 163 ~1975!; S. Nussinov, Phys.
Rev. Lett.34, 1286~1975!.

@3# H. Cheng and T.T. Wu,Expanding Protons: Scattering at
High Energies~M.I.T. Press, Cambridge, MA, 1987!.

@4# N.T. Nieh and Y.P. Yao, Phys. Rev. Lett.32, 1074 ~1974!;
Phys. Rev. D13, 1082~1976!; B. McCoy and T.T. Wu, Phys.
Rev. Lett.35, 604 ~1975!; Phys. Rev. D12, 3257~1975!; 13,
1076 ~1976!; L. Tyburski, ibid. 13, 1107 ~1976!; L.L. Frank-
furt and V.E. Sherman, Yad. Fiz.23, 1099 ~1976! @Sov. J.
Nucl. Phys.23, 581 ~1976!#; A.L. Mason, Nucl. Phys.B117,
493 ~1976!.

@5# L.N. Lipatov, Yad. Fiz.23, 642~1976! @Sov. J. Nucl. Phys.23,
338 ~1976!#; Ya.Ya. Balitskii and L.N. Lipatov,ibid. 28, 1597
~1978!; 28, 822 ~1978!.

@6# J. Bartels, Phys. Lett.68B, 258~1977!; Nucl. Phys.B151, 293
~1979!; J.B. Bronzan and R.L. Sugar, Phys. Rev. D17, 585
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