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Cut diagrams for high energy scatterings
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A new approach is introduced to study QCD amplitudes at high energy and comparatively small momentum
transfer. Novel cut diagrams, representing the resummation of Feynman diagrams, are used to simplify the
calculation and to avoid delicate cancellations encountered in the usual approach. An explicit calculation to the
sixth order is carried out to demonstrate the advantage of cut diagrams over Feynman diagrams.
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I. INTRODUCTION QCD, it is much worse; a complete calculation of the eighth
order is not available, though partial calculations have been
The rapidity-gap events recently observed at the DESYtarried ouf7].
ep collider HERA[1] revived the community’s interest in What makes the calculation so complicated is the large
the Regge-pole description of high energy scattering. Th@umber of diagrams that have to be tackled, and the inevi-
word “Pomeron,” seldom heard in recent years, is oncetable cancellations between them. The computation of each
again found in the lexicon of experimentalists. It is perhapsdiagram is fairly straightforward, though somewhat lengthy
then a good time to have a new look at the connection beat higher orders. After the individual diagrams are calculated,
tween perturbative QCD and the Regge pole. Nonperturbaeare must also be exercised to add them up because of the
tive effects may be important for a momentum transfer of thepresence of many delicate cancellations. Leading-
order of Aocp or smaller, but we shall avoid it by going to a logarithmic dependences on energy get subtracted away, and
larger momentum transfer if necessary. complicated functions of momentum transfer also disappear.
It was proposed by Loy2] and Nussinof2] some years What emerges at the end is a product that is surprisingly
ago that the Pomeron may simply reflect a two-gluon exsimple. To the extent that it has been verified, high energy
change in QCD. Diagrammatic calculations have been camear forward scattering is described by multiple Reggeized
ried out[3—-8] in the leading-logarithmic approximation to gluon exchange, supplemented by elementary gluon produc-
substantiate this proposal and to study other aspects of thion off the Reggeons and tsrchannel unitarity3,7].
high energy near forward scattering amplitudes. We shall This outcome has been verified up to sixth orfl@5].
follow the classical approach of implementing physicalAs mentioned above, many delicate cancellations take place
(s-channe) unitarity by summing up Feynman diagrams in in the sum to enable this simple picture to emerge. A com-
the Feynman gaugg3,4]. However, other approaches are plete calculation in eighth order is not available, but if one
available. The use of a physical gauge and dispersion relaassumes these cancellations which take place up to sixth or-
tion [5] can sometimes make things more transparent. Onder also occur in eighth and higher orders, then this
can also emphasize the complex angular momentum aspeReggeized picture has been verified up to tenth of@ér
by concentrating ori-channel towers and their interactions This gives strong support to the conjecture that it is true to
as guided byt-channel unitarity{6]. We shall speak no fur- all perturbative orders.
ther of these alternate approaches except to remark that our While the conjecture is attractive, it is impossible to
cut diagram method, to be discussed below, can be thougkerify or refute without a new method to simplify the com-
of as an intermediate link between the classical Feynmaplicated calculations. We report in this article such a new
diagram sum and the dispersion relation approaches. method, in which high energy scatterings are computed via
Because of the gauge and non-Abelian nature of theut diagramsrather than the normal Feynman diagrams.
theory, perturbative calculations are lengthy and compli-These cut diagrams aret the Cutkosky cut diagrams. The
cated. Even by ignoring self-energy and vertex correctionssum of all cut diagrams here is equal to the sum of all Feyn-
as well as renormalization effects, on the grounds that theynan diagrams, and not just their discontinuities. These cut
will not alter the qualitative nature of high energy scatteringdiagrams can be regarded as a resummation of the Feynman
we are trying to learn, and even by ignoring quark pair pro-diagrams in which many of the delicate cancellations en-
ductions as a first step, a complete QCD calculation can beountered in the latter have been built in and explicitly
carried out only up to sixth order. In the much simpler caseavoided. Consequently, the simplicity of the final sum is re-
of QED, an eighth order calculatigf] was reported to have vealed already in individual cut diagrams, and not masked by
taken 16 months and 2000 pages to complete. In the case tdrms to be canceled as is the case with Feynman diagrams.
In addition, individual cut diagrams are easier to calculate
than individual Feynman diagrams.

“Electronic address: feng@physics.mcgill.ca In this paper we shall introduce the formalism of cut dia-
"Electronic address: omid@physics.mcgill.ca grams, as well as an explict calculation to sixth order to
*Electronic address: lam@physics.mcgill.ca demonstrate its effectiveness. We shall discuss quark-quark
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labeledB1 andB2, and the sixth order diagran@&l -C21.
This last labeling is identicdlll] to the ones used in Fig.
12.7 of Ref.[3].

Under the interchange of the Mandelstam variables
a s=(p1+p,)? and u=(p;—p,)?, the spacetime parts of
these diagrams are either self-conjugate, or one goes into

| s another. For example,A—A, B2-Bl, C2+C1,
< C15~C16,C17~C19, andC18~ C20, unders«u.
c3 cé s cé c7 c8 Normalizing the Dirac spinors tou=1, and designating
- o the fermion mass and gauge coupling constanmnasndg,
, ; A A with B=g?/27, the T-matrix element7= (g%s/2m?) M re-
oo o1o 01 2 e T ceives the following contributions from the individual dia-
grams toM [3,4,12:
/ / \ b
A / ,\\\ // A=—1,-Gy,
c15 c16 c17 c18 c19 Cc20

bs

c21

FIG. 1. Quark-quark scattering in QCD up to the sixth order.
The thick lines at the top and bottom of each diagram are the ferm-
ion lines, and the thin lines are gluon lines.

scattering throughout but allow the quarks to carry any
SU(N) color charge. The result should be equally valid for
gluon-gluon and other scatterings because high energy pro-
cesses are insensitive to the spins of the colliding particles
[5,7,8. This is so because the current carried by a high en-
ergy particle is dominated by its center-of-mass motion, with
the spin current only an insignificant part of that. Formally,
the two extra terms in a triple-gluon vertex is a factor
A/+/s down in comparison for transversely polarized gluons,
whereA is the momentum transfer ang is the center-of-
mass energy of the process.

We will study pure SUN) QCD and ignore the produc-
tion of quark pairs. If one is bothered by considering quark-
quark scattering while ignoring quark production, one can
consider instead gluon-gluon scattering, and as mentioned
above, the result would be the same.

In a subsequent papgt0] we shall use the cut diagrams
to discuss the Reggeization conjecture in higher orders.

In Sec. Il the result of Feynman diagram calculations to
0(g®) is reviewed. How these diagrams combine to give a
sum much simpler than the individuals will be discussed in
some detail. In Sec. lll, we begin to examine more carefully
these cancellations by using sum rules. In Sec. IV, the
method of cut diagrams is explained, and in Sec. V, thi
method is applied to fourth and sixth order calculations to
demonstrate the savings effected by this method.

Bl=—pgIn(se" ™)l,-G,,
B2=+B(Ins)l,- (G,+cG,),
Cl=+p%n%(se” ™)[3A%3-Jal,]- Gs,
C2=— f(In%s)[ 34215~ J,1,]- (G5 +C%Gy),
C3=+p¥In’(se” ™)~ In’s} J,l - (G3—CGy)

=C4=C5=C8,

C7=—p%n’(se”™)7 Jol 5 (—CGy)
=C8=C9=C10,
Cl1l=+2(In?s) Iyl 5+ (— G, — C?Gy)
=C12=C13=C14,
C15=— B2(Ins)2J3- G,,

C16=— B?(Ins)2J3- (G, — G3+ 3¢G,+c%G,),
C17=+ B?(Ins)(Jz+ il 3)- (G4+¢G,)=C18,

C19= + B2(Ins)(J3—7il 3) - (G4 — G3+2¢Gy)
=C20.

(2.9

Part ofC21 has been combined withl to formC1, and the
remaining part ofC21 has been combined with2 to form

C2. Note that the result for different diagrams is consistent

ll. ELASTIC SCATTERING UP TO 0O(g®)

with their s« u character, under whose exchange Tham-
plitude responds with the swag™ ™« s. See Appendixes A

Leading-logarithmic calculations in QCD, at high c.m. en-and B for a brief discussion of how these amplitudes are
ergy \s and comparatively small momentum transfer COmputed.

J—t=1/A?, are discussed, among oth¢t8], by Cheng and

The two-dimensional vectak in the transverse direction

Wu [3]. Citations to the original literature can also be located'S thé momentum transfer. The functiodg(A) and1,(A)
there. We review in this section the calculation of quark-2ré defined as

quark scattering to sixth order done in this standard way.
The relevant Feynman diagrams are given in Fig. 1. The
second order diagram is label@dthe fourth order diagrams

1
|1(A):p,
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" d%g., 1 n is (g2clng)™, and those of3,, G;, andG, are, respectively,
qIL 2 2
Ih(A)= iﬂl em2 (2m)°&8 ;1 di.—Al, 9°(g%cin9™, g%(g?ins)™, and g*(g’clns)™. These depen-
- 'L dences can be summarized all at once by introducing a dif-
d’q, 1 ferent notation for the color factors. We shall use the nota-
Jo(A)= f (ZT)Z q—z tion F; ; to denote a color factor with parallel vertical lines
+ connecting the two fermions, arjdparallel horizontal lines
3 - ) .
~ d?q;, 1 a3, [ a3, joining any two of the vertical gluon !mes. We shall also
Jsa)=| [ I1 52 a2 | g7 —g2 | N2 write F; o simply asF;. The relations with the color factors
i=1 (2m)° qi, qZL_q3L|_ CET :

G; are Gy =F,, G,=F,, G3=F;,;, andG,=F;. Theg, c,

n and Irs dependences df; ; in Eq. (2.4) are then given by

><(27T)252(2 Qu—A)- (22 g?0=Y(g%clns)™c™! for a diagram of order Z+i). We

=t shall refer to such dependences RBRegge like for the
The functiond ,, |5, J,, andJs are denoted, respectively, by Reggeization of the scattering amplitude to be discussed later
[, 14, K, andl, in Ref.[3]. The infrared divergences of these relies critically on this feature of the scattering amplitude.
integrals can be regulated by a mass, either put in by hand ®ote from Eqgs.(2.1) that contributions from individual dia-
via the Higgs mechanism. This regulation discussed in thgrams are not Regge like. Only the sum is.
literature [3—9] does not affect the following discussions, (4) Simplification in transverse-momentum dependences
and so we shall ignore it. There is, however, also an UItraéIso occurs in the sum. The simple integrajssurvive, but

violet divergence in the integral defininky(A), but it turns . . : i
out that this function disappears in teemof the sixth order the compllcgted integrals a_md the dlve_:rge_nt 'F‘tegrd'z do_ .
not appear in the sum. This cancellation is highly nontrivial

diagrams, and so it causes no trouble either. i X X
The factorsG; in Egs. (2.1) are the color factors, with because both Qf them contribute different amounts to differ-

c=N/2 for SUN) colors. As defined ifi3], G;, G,, G, and €Nt color amplitudes. , ,

G, are, respectively, the color factors for the diagrats (5) More specifically, the functiol3(A) appears in all

B1, C1, and C15. They can be computed by an elegantthe color amplitudesG;, G,, Gs, and G, in diagrams

graphical methodi3] from the SUN) commutation relation C15-C20. Those inG,, G3, and G, actually get canceled

and identities out in the sum, but its presence in tBg amplitude survives.
. B However, since this term is of ordgPIns, it is negligible
[ta:to]=iTapde,  Tancfapa™2Ccq, compared to terms of ordgIn?s appearing in thes; am-

(2.3  plitudes of C2 andC11 to C14; it can be ignored in the
o _ . leading-logarithmic result displayed in E@.4).
Hence the combination of color factd® given in Eqs(2.1) (6) Also, J,(A) appears in the color amplitud&s;, G,,

for the various diagrams remains valid whatever the color obndG, in individual diagram€1-C14 and all these appear-
the quark is, althougl®; themselves would be different for 5nces get canceled out.

different colors of the quark. See Appendix A for a brief  aAq 5 result of these cancellationg/ acquires a very

d'S_IC_ESS'on onfthltla (r:]omputatl_onEof thi C]E)|OI' fzctorg.zo _ simple interpretation in terms of Reggeized gluon exchanges.
e sum of all the terms in Eq@2.1), from A to 1S These exchanges are constructed in such a way to ensure

| 1:adgfbedfcge_ C|fabc-

1 _ L s-channel unitarity{3,7].
M==3z[1-alns+ 7 @®In’s]- G, Let us denote the Reggeon propagator by
+ 2 g%i(1,—-2Bclsns) -G, .
+gziB|nS[|3_ %A2|§]_G3+g4%|3_e4, (24) Rl(A,S):Pqu_a(A)lnS]. (26)
with
a(A)=BcA?l,(A). (2.5 This reduces to thétransverse part of theordinary propa-

gatorl;(A)=A"2 for small g%cIns. Similarly, let us denote
It is important to note the various cancellations takingthe Reggeized version of(A) by

place to make the surf2.4) vastly simpler than the indi-
vidual terms appearing in Eq&2.1).

(2) In fourth order, the leading term proportional t®ls d2q;

. . 1L

canceled out betweeB1 and B2 in the color amplitude Rn(A,s):f (H —Ry(qi, ,s))
proportional toG,, though not inG;. i<1 (2m)

(2) In sixth order, the leading scontributions taG, from n
C15 to C20 also add up to zero. The expressions given in ><(21-r)262( > CIu—A)7 2.7)
Egs. (2.1 are not accurate enough to deal with the sublead- i=1
ing terms. The term in Eq2.4) proportional toG, is ob-
tained separately from the eikonal formula.

(3) As a result of these cancellations, the energy depenindicating the exchange of Reggeons. Then to ordgf in
dence and the SW) (or c) dependence of th&, amplitude 7, we can write

n
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2

/
M:—Rl(A,s).F1+i%[RZ(A,s).FZJrRZ,l(A,s).FZ]] p — - -

A
o

g4
+§R3(A,s)-F3. (2.9

i 2 3 n
In other words, thé-;, F,, F,;, andF3; components looked
precisely like diagram#\, B1, C1, andC15, respectively,
but with the vertical gluons replaced by their Reggeized ver- rovided the Dirac spinors are normalized to
sion whose propagators are given in E2.6), and with all p_( Yu, (p)= & With Itahat the dominant current
longitudinal-momentum integrations omitted. To interpret it YalP u*; P)=onr- W o : _cu
this way forR, 4F, ; we need to know the Lipatov-Dickinson ux(p1) y*Ur-(py) at high energy is just its translational part

vertex [8] describing how elementary gluons are produced‘swpi’/m' This ShOWS_ that th_e spin content at_ high energy is
and absorbed from the Reggeized gluons. gnlmportant. All Fhat it does is to enforce helicity conserva-
This remarkable simplicity and regularity led to the con-tion Of the fermion, and to produce a factop2at each

jecture[3,7] that the Reggeized formui@.8), suitably gen- vertex together with an ovgrall normalization .factor of
eralized, is the correct high energy limit to all perturbativellz“' For most of the discussions below we shall ignore this

orders. This conjecture is very difficult to verify on account QED factor and concentrate on the contribution from the

of the shear complexity in higher order calculations. Ford€nominators, i.e., the corresponding scalar theory.
QCD in eighth order it is simply not manageable without "€ denominator of theth inverse propagator is
simplifying assumptions. If one assumes that all cancella-
tions that occurred up t@®(g®) will also occur in higher
orders, the final result can be extracted fronreatively
small set of diagrams; then, it is reported that this Reggeiza-
tion conjecture is true to eighth and tenth ordétk Even so  wherex;=q;_/+/s. The scalar amplitude in Fig. 2 is given
these calculations are so lengthy and complicated that to odoy s™" times

knowledge the full details have never been published.

FIG. 2. A quark— quark+ n gluon tree diagram.

2 i
pl+j21 qj) —m2+iezs(j21 Xjtiel, (3.2

n n—-1
a[12 - -n]=—2mi 5( 21 xj) 11 _r (3.9
=

Ill. HIGH ENERGY KINEMATICS <1 Zj_gxtie

We shall discuss in the next two sections a method oNote that a momentum conservatiériunction for the nega-
using cut diagramsto sum up the Feynman diagrams, ative componentstogether with an explicit factor 2i) has
method in which most of the cancellations discussed in théeen incorporated. In Eq3.3) the ordering of the gluon
last section are automatically built in. This simplification lines from left to right is[123---n]. If they are ordered
shortens the computations and makes it possible to studyifferently, say,[vqv,---v,]=V, then the corresponding
higher order diagrams. In this paper we shall discuss how i&mplitude is
simplifies the calculations up t©(g®). In a subsequent pa-

per [10] we shall discuss how it helps to verify part of the n

Reggeization conjecture to all orders. To prepare the alvivy: - -vp]=a[V]=—2m7i 5( > ij)
groundwork for both, we discuss here the relevant kinemati- =1

cal features of high energy scattering which enables this new n-1 1

method to work. X[ ——— (3.4

. i e’
We will assume the colliding beams in their c.m. system =1 2j-1X, e

to be directed along thedirection. In light-cone coordinates

p.=p°=p3, the components of a four-vector are labeled in IV. SUM RULES
the orderp#=(p.,p_,p.), with the two-dimensional vec- _ ) )
tor p, lying in the transversg-y plane. In this notation, the It is possible to compute sums of Feynman diagrams

incoming fermion momenta arep,=(4s,0,0) and without much of the delicate cancellations discussed in Sec.

p,=(0,15,0), in which their mase has been neglected. The I, by using thecut d|agram3Nh|ch_ we shall d'escrlbe in t'h|s

outgoing fermion momenta are approximately given bysectlon and the next. 'I_'he derivation of cut dlagrgms re_hes on

p1=(\/§,0,A) and p§=(0,\/§,—A). See Fig. 1. two exa.ct combmqtor!al formulas for the qu_anta{/V] in
Supposen gluons are hooked up to the upper fermion line Eq. (3.4: thefactquzan_on formulaand themulUpIc_—z commu-

as shown in Fig. 2. The initial and final fermions are on sheIItator formula derived in Ref.[14]. We shall discuss the

but the gluons can be off shell, though with an amount 01Iormer in this section, and the latter in the next section.
energy far less thag's. At high energy, the numerator of the Consider an ordering of n; ~gluon lines:

propagator can be approximated by [viwiz---vin]J=V;. We shall use the notation
{V1;Vy; ... ;Vy} to denote thesetof all orderings of the

M=3"n; gluon lines,providedthe relative orderings of
_ — lines within eachV; are maintained. The number of orderings
=2m2, u u , 3.1 . . N . . gy
i ; A(PLU(P) GD i this set is given by the multinominal coefficient
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1, 2 included, which is unlike the Cutkosky diagrams in which
T only the imaginary part or the discontiuity is represented.
— Itis clear from Eq.(4.2) that the factorization formula can
be thought of as a sum rule to represent sums of Feynman
1 > ﬁ 1 > diagrams as cut diagrams. As will be discussed in Appendix
B, a cut diagram is easier to compute than an uncut diagram.
FIG. 3. An illustration of summing Feynman diagrams to obtainIn this way not only is it unnecessary to compute the indi-
cut diagrams. vidual diagrams first, the cut diagram representing the sum is
actually easier to compute than just one single Feynman dia-
M!/Hjmzlnj!. For example, iV, =[135] andV,=[24], then  gram.

{V1;V,}={135;24 consists of the 5!/3!12+10 orderings We shall now apply the factorization formula to compute

[13524], [13254, [13245, [12354, [12345, [12435, sums of amplitudes quoted in Sec. Il. We shall see that the

[21354], [21345, [2143Y, and[24135. Ins factor and thel; functions that get canceled out in the
We shall use the notation sum never once appear in the cut diagrams.

In what follows we shall use the notatigB1) to denote
. N the spacetime part &1 (without the color factoG,). Simi-
a{Vi:Va; . .. ’Vm}_VE{Vl;VEZ:;_“;Vm} VI (4D |ar notation will be used for the spacetime part of other dia-
grams as well.

to denote the sum of all amplitudes for the gluon orderings in In fourth order, theG, coefficient in M is given by

the set. The factorization formu[d4] then states that (B1)+(B2). Using the eikonal formulaa[12]+a[21]
=a[1]2] on the upper fermion line(see Fig. 3,
m (B1)+(B2) is reduced to a cut diagram that can be easily
a{Vy; Vs ... ,Vm}:H a[Vil. (4.2 calculatedsee Appendix B for all the calculationgyielding
=1 the correct resulg?il ,/2 given in Eqs(2.1) and(2.4). Simi-
) _ ) lary, the sum rulea{1;2;3}=a[1|2|3] applied to the six
In particular, if each se¥; =[v;] consists of only one gluon  porizontal ladder diagrams in sixth order yields a cut dia-
line labeled byv;, then{V;V,;...;V,} is the set ofall gram (see Fig. 4 which gives the sum ofC15—(C20) to
orderings ofm gluon lines. In that case the factorization phe ¢4|./6. This is the correct coefficient &, given in Eq.
formula reduces to the well-knoweikonal formula[3,15]. (2.4). Note that neither lanor J; ever appears.

Other special cases of this formula have also been discovered | ot us now look at the cancellation dk(A) in the G,

before[7,16]. _ _ _and G; color factors, as discussed in poif®) of Sec. II.

It is useful to adopt an alternative notation for the right- According to Eqs(2.1), the coefficient of— G from dia-
hand side of Eq.4.2) to denotelli2;a[V;] simply as  gramsC15-C20 is given by(C16)+(C19)+(C20). Using
a[Vy|Va|- --[Vy]. This notation is suggestive because thea(31:2) = a[31|2] on the upper fermion line as in Fig. 5, this
vertical bar can be interpreted graphically as a cut in they;m is given by a cut diagram which can be evaluated to be
fermion propagator between the last gluon line/pfand the —g%iInsly/27r. Again J; does not appear in the cut diagram.
first gluon line ofV; ;. For a cut propagator, instead of the sjmjjarly, the coefficient o£G, from diagramsC15-C20 is
usual factor Ej_x, +ie '), we have—2mi8(Zj_1x,). given by Egs. (2.1) to be 3IC16)+(C17)+(C18)

This notation is also convenient because it makes(Bg)  +2(C19)+ 2({C20). This is equal to twice the previous sum,
deceptively simple. It now readsa{Vi;V,;...;Vy}  plus(C16)+(C17)+(C18). To use the sum rule, this re-
=a[V4|V,|: - - |Vn]; we simply have to change the semico- quires an expression (see Fig. 6 for

lons to vertical bars. a[321]+a[213]+a[ 132]. It is easy to see that this is equal

Cut propagators are not limited to tree diagrams like Figto a{21;3}—a{23;1}+a{13;2} and, by the factorization
2. The off-shell gluons can be connected to other diagrams tformula, also equal t@[213]—a[231]+a[132]. There
form a composite diagram that inherits the original cuts. Thanay seem to be very little gained by replacing the sum of
cut diagrams so formed are similar to but different from thethree terms by the sum of another three terms, but this is not
Cutkosky cut diagrams, similar because we have the samsb. We are replacing the sum of three uncut diagrams by the
factors for the cut propagators, different because the cutsum of three cut diagrams. The computation of cut diagrams
here occur only on fermion lines whereas in a Cutkosky diais much easier than the computation of uncut diagrams. For
gram they can occur on any line. Moreover, via E42), one thing the complicated functiody that appears on all
our cut diagram represents a sum Mﬂ/H}“:lnj! (uncup)  three uncut diagrams but disappears from their sum never
Feynman diagrams, with their real and imaginary parts fullyappears in any of the three cut diagrams. Evaluating the cut

1 23 21 3 1 32 312 312 321 1, 2, 3
NV =T

/ AN /
123 123 123 123 123 1 23 1 2 3

FIG. 4. Another sum rule.
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comes to the first number that is less than this number, and

2 2/1 3\\/1 /2 2\ 3\_} 3\: =’/,/2 another cut is_ put ju_st to the .right of this new minimum
+ Y = N number. Continue this way until the end and we have con-
A A VARV structed the cut diagraM, . For example, fon=2, the two
123 123 123 L2 3 cut diagrams ar¢12].=[1/2] and[21].=[21]. Forn=3,

the six cut diagrams argl23].=[1|2|3], [213].=[21|3],
[312).=[312], [132.=[1]|32], [231].=[231], and
[321].=[321].

To each cut diagram we associate a spacetime cut ampli-
tude a[V.] as described in the last section. Namely, it is

V. CUT DIAGRAMS gi;/einzlﬁ/i (;E(qg(?(4; except the propagator at a cut is replaced
[T

FIG. 5. Yet another sum rule.

diagrams, the coefficient ofcG, from C15-C20 is
—gicInsly/27, agreeing with the answer given in E@.4).

The method introduced in the last section has a serious The complementary diagram, of a cut diagramV, is
shortcoming. It does not tell us which cut diagrams to com-obtained as follows. If a cut appears between two numbers in
pute without detailed considerations of the kind carried out/., then there will be no cut between the same two numbers
there. In this section we discuss a remedy for this shortcomin V., and vice versa. Fon=2, the complementary cut
ing with the help of thenultipl_e commutator formul§12]. diagrams ar¢1|2]’ =[12] and[21]' =[2|1]. Forn=3, the

So far we have been treating Fig. 2 mostly as a QED or gomplementary cut diagrams are[1[2|3]' =[123],
scalar amplitude. For QCD the non-Abelian color matrices[21|3]r=[2|13], [312]'=[3|12], [1]|32]'=[132],

t, have to be incorporated. Instead of E8.4) the amplitude [231]' =[2|3|1], and[321]’ =[3|2|1].

IS now When no cut appears iV, the color factort[V(] is
simplyt[vyvy- - -vp]=t, t, - - -t, . If acut appears between
v; and v;,q1, then the producttvitvi+l is replaced by
=a[V]ti[V]=ALV], GD  their commutatordt, ,t, ]. If two or more consecutive

wheret[V]=t, t, ---t, . What we want is a formula for the cuts appear, then the corresponding product’sfis re-

sum of then! permuted gluon orderingsd=2>,,_s A[V]. ;1Iaced by multiple c_ommutators. For example2|13]
S =[to,t,]ts,  t[2[3]1]=[t5,[t5,t1]], and t[4[3]2[15]

For QED, where we can take dll=1, this is simply the =[t4,[ta,[ts,t1]]]ts.

eikonal formula, and so what we need is the non-Abelian

generalization of it. This is the multiple commutator formula

Alvivy---vp]=alvivs: - -valt[vivs: - v

VI. CUT AMPLITUDES TO 0(g®)

A= E a[VIt[V]= E a[V It Vy]. (5.2 We shall compute the cut diagrams ®@{g®) to demon-
VeSn VesSy strate the simplifications obtained therefrom.
Using Eq.(5.2) on the upper fermion, we obtain a set of
cut diagrams as shown in Fig. 7. This set is not unique as
others can be obtained from a different labeling of the gluon

It expresses the sum af V]t[V] in terms of sums over the
corresponding cut amplitudd V. ]t[ V. ]. Compared to the
eikonal formula this looks complicated; instead of a singlel.
term on the right-hand side, we have now a sum aver ines. . .

ST Y T ’ In the horizontal ladder diagrani&l, B2, C15-C20, we
terms. The complication is inevitable because we are at-

: : choose the planar diagrani®l and C15 to be the ones
tempting to sum up amplitudes fewerycolor. However, we . e :
hose upper lines are completely cut. This fixes the labelling
shall see that many of these terms are actually zero, a
I

moreover, the cut diagrams on the right are considerab ez'c]erfr?1rinzsl h%rx Ejliazg]r;r?irszc g’} daélzkl%gg’ ;r;dt(;t blg éﬂrtn
simpler to evaluate than the uncut diagrams on the left Y :

Again delicate cancellations will largely be avoided as be-USIng computa_ltlonal mgthods discussed in Appendixes A
and B, these diagrams yield

fore.
What remains to be described is what the cut diagram
V. that corresponds to the Feynman diaghdris, as well as Bl.=+ 3d2il,-G,,
what the amplitudesa[V.] and t[V.] are. Given a
V=[vqvs---v,], Start from the rightmost number, and B2.=+B(Ins)l,-cGy,

proceed leftward until one comes to the first number less
thanv,. Put a cut just to the right of this number. Then start

from this number and proceed leftward again until one Cl15=+g*%15 -Gy,
321 213 1 32 21 3 2 3 1 13 2

/ + + = - SN -+

/K )\ X \ /N
123 123 12 3 12 3 1 23 12 3

FIG. 6. An illustration of how sum of Feynman diagrams can be turned into a sum of cut diagrams.
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1, 2 2 1 1, 2 2 1 31, 2 21, 3
><// 7 ”/ 7
2 2 3/ "
B1, B2, Cle C2¢ 3, 3l
1,3 2 1,2 3 2 3 3 2 1 1,2,3
! " / "
7, c7! c12. c12! c15,
321 1.3 2 21,3 2 31 31,2
7 T T - ViR
/ \ \\ / /
Cch C17c C18c C19. C20c

FIG. 7. Cut diagrams up to sixth order.

C16.=— B?%(Ins)2J;-c%G,,
C17,=C18.=0,
C19.,=0,

C20.=—g?Bi(Ins)l3- (cG,— G3). (6.1

Similarly, we choose to cut the line of the planar diagram

C1 to obtain

0O

1c=—g?Bi(Ins)[ 34213 J,l,]- Gs,
C2=—BA(IN*s)[3A%135-J,1,]-¢°G; (6.2

The 12 diagramsC3-C14 can be divided into four

appear in Eqs(6.1)—(6.3). Cancellation of this kind is auto-
matically built into the cut diagram formalism.

(2) The tranverse functiod; appears only irC16. in Eq.
(6.1). This expression survives the sum but can be ignored
compared to the contribution fro@2.. In other words, as
opposed to the Feynman amplitu@l) whereJ; appears in
many places but most of them are canceled out at the end
[see pointg4) and (5) in Sec. Ill, in the cut amplitudel;
does not appear except when it survives the sum.

(3) The cut amplitude is not as successful in canceling the
transverse functiod, [point (6) of Sec. Il], although there is
still an improvement here over EqR.1) in thatJ, appears
in fewer places. In fact, it appears @3,—C20, only when
absolutely needed to cancel its previous appearan€lin
andC2.. In order forJ, to disappear completely it is nec-
essary to combine diagrams with triple and four gluon verti-
ces together using the Lipatov-Dickinson vertg. The

groups of three, each giving identical contributions, and so iféchnique of cut diagrams by itself, which deals mainly with
is necessary to consider only one of these groups. The grodpe fermion lines, is not sufficient for that purpose.

of C3,C7, C12 has been chosen for that purpose. There is a (4) Other than thel, complication mentioned above, the
symmetry between gluon lines 2 and 3, and so we mapummands of the final answét.4) appear directly in the cut
double this group and consider it as a sum of six Feynma@mplltudes. In that sense the cut amplitudes are as economi-
diagrams. By applying the multiple commutator formula, the¢@l and as simple as they can ever be. In particular, the
six cut diagrams shown in Fig. 7 are obtained. Their valueftegge-like feature mentioned in poiri8) of Sec. Il is

are
C3,=3(C3.+C3")=—g?Bi(Ins) 3 Il - G,
C7.=3(C7,+C7.")=0,

C12,=3(C12,+C12")=p*(In%s) 1 Il ,- (— C*Gy).
(6.3

present already in individual cut diagrams.
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APPENDIX A: COLOR FACTORS

The method to compute the color factors graphicgdlyis

(1) Ins factors that get canceled in the sum of the Feyn-briefly reviewed here. It is suitable for both cut and uncut

man amplitude[see points(1)—(3) in Sec. I) never even

diagrams.
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I IS DR B 4

FIG. 8. Graphical represenation of the commutation relation of w
color matrices. Thick lines are fermions and thin lines are gluons. - - T R - !
The color factor at a gluon-fermion vertextisof Eq. (2.3), and the
color factor for a triple gluon vertex whose color indicgd,c in

the diagram are in clockwise order i§,,.. A cut represents a
commutator between two color matrices.

G,+ 2¢G, -G,

FIG. 10. A sample calculation of the color factor of a Feynman

. : o o : .. diagram.
The basic tool is the graphical identities depicted in Figs.

8 and 9, which are nothing but the commutation relation andrhe  propagator D l=(g>-m?+ie) '=(q_q.—q*
identities in Eqs(2.3). The commutation relation is valid for —m?+ie)~! has a pole in the integration variabkg, if

all _representations of the co_lor matrlig; hence, Fig. 8 ré- ¢ 0. This pole is located in the upper half planejf]_ is
mains true when the quark line is replaced by a gluon line.negative, and in the lower half plane if it is positive. A way
As an example, the computation of the color factor for they, keep track of the sign is to drawflaw diagramfor the “
uncut diagranC19 in Eq.(2.1) is carried out in Fig. 10, and  _» omentum, with arrows indicating the direction of the
the computation of the color factor for the cut diagram« _» fiow. See Fig. 12 for some illustrative examples. The
C19. in Eq. (6.]) is carried out in Fig. 11. For the latter, we 4rrows around a loop pointing one wéglockwise or coun-
have to remember to use tbemplementargut diagram for  arcjockwisg have their poles in one half plane, and those
the color factor, and not the cut diagram itself shown in F'g-pointing the other way have poles in the opposite half plane.
7 The arrows in the flow diagrams must obey momentum con-
servation, and one may also assume they do not go around in
closed loops. Otherwise the poles will all be in the same half
plane, and the integral is zero if the contour is closed in the
APPENDIX B: SPACETIME AMPLITUDES opposite half plane. With these constraints we see in Fig. 12
that a one-loop diagram allows only one flow path, but for

puted either in the Feynman-parameter representptigjor two and more loops there is bound to be more than one flow
directly in momentum space using light-cone coordinateéj'ag.ram because these consiraints S'”.‘p'y cannot fix the di-
[3-5]. We follow the latter approach and review briefly the reclgonhoilthe d'_ flow on a bounddary line of LV‘ZOIIOODS'
main points. For a more detailed discussion see F3f.It ach flow diagram corresponds to a rangexgt vari-

serves well to remember at this point that the bottom fermior?P/€s. By definition, the *” variables along the direction

carries mostly the “-"” momentum and the top fermion line of the flow are always non-negative. :
carries mostly the % momentum. We shall always close integration contours in the lower

The procedure to follow for the computation is simgie: half planes, and indicate the poles so enclosed by a cross

Carry out the *+” momentum integration using residue cal- () n the ﬂOW. diagram. For ascalar diagram, the
culus; (i) then carry out the =" momentum integration to 7-matrix element is equal to the product bfpropagators

“1_(m2_ 2.1 ;
produce the ladependence. The transverse momentum inteD4 _(1q m +'62) ' |nt.egrated over thef Ioop.momenta
grations are never explicitly carried out, which is why thed’ka= 3 dk.dk_dk, , with an extra numerical factor

The color factors in Eq92.1), (6.1)—(6.3) can all be ob-
tained in this way.

The high energy limit of a Feynman diagram can be com

answers are all expressed in terms of functions likg\) —[i/(27)*)”. Each “+” integration produces a factor
andJ,(A) given in Eq.(2.2). — 2qri; the 7 matrix is equal to

Step(i) requires a knowledge of the location of poles for y
each propagator, which in turn depends on the choice of loop T 2 f Dk H % 1 (BY)
momentak, . Supposeq=P+2§:1caka is the momentum ot 4m HleDi’
flowing through a propagator, witR being some combina-
tion of external momenta ancl, some integer coefficients. — .

- 7T--TIT- 111

I |

= 2c

I
oo
9}
i}
[}
3]
L8] PR
]
1

—_
FIG. 9. Graphical represenation of the last two identities in Eq. FIG. 11. A sample calculation of the color factor of a cut dia-
(2.3). c=N/2 for SUN) color. gram.
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< -~ -——— This means that the dominant contributionZ@omes from
\ A / i \Q regiqns where all x, are small. Sinqe Xa=0 for
I < < a=/—x+1,.../, onaccount of the functions of the cut

lines, the region of integration can be roughly divided
@) (b) (© into regions where the remaining/(=/—x Xy)'s are
strongly ordered, and regions where two or more of these
X5's are of the same order of magnitude. We shall label any
one of the latter regions b, and the former regions by

FIG. 12. Flow diagrams.

wherex, =k, /\s is the scaled *-" momenta, R[12---/"]={1>Xx>Xx,>--->X/=als} and its permuta-
e tions.
Dk, =]] 2_"’“2 (B2) The x dependence dfl;D; in R[12- - - /"] is of the form
a=1 (2m) Hg;lx;ma and so thex integral encountered in E4B1) is
is the measure for transverse momentum integration, and dx dx
D, is either the propagator evaluated at tkepoles or the f m/,'f /Z = f ~sM(Ins)B,  (B5)
residue of thex pole divided byy/s. Each summand in Eq. s /,/ X1 X / 1 X2 X 1

(B1) corresponds to a flow diagram with a pole taken from
the lower half plangan X pole) of each loop. A flow dia- WhereM =34’ 1(ma_ 1) andB is determined by how many
gram may have more than one setofpoles, in which case times the sunE®_,(m,— 1) reaches zero by varyirtgfrom
the sum is taken over all possible sets. For example, th& to /. ClearlyB</", and the only way foB=/" is to
one-loop diagranB1 in Fig. 1 has only one flow patlFig.  have allm,=1, in which case we will call the Bxdepen-
12(a)] and one set oK poles. The two-loop diagrai@l7 of  dence of7 saturated Otherwise it is said to bansaturated
Fig. 1 has two flow paths, Figs. @ and 1Zc). The first  For the uncut diagramg¢=0 and/’=/. We see in Egs.
flow diagram has two sets of poles, and the latter flow (2.1) that all the diagrams except for the sixth order horizon-
diagram has one set of poles. We shall see later that in the tal ladder diagram€15-C20 are saturated. For the cut dia-
leading-logarithmic approximation, we may discard the  grams in Eqs(6.1)—(6.3), only C16; is unsaturated, but this
dependence on the upper fermion line and the accompaniatiagram does not contribute to the final sum because of its
poles, in which case Fig. 18 is also left with one set of subdominance.
X poles. The integral in arg region is like one in afmR region with
Equation(B1) is also valid for cut diagrams, provided the /' reduced. For example, suppose _, to X, are roughly
propagator factob ~1=(g?—m?+ie) ! of a cut line is re- equal butx, to x,» (/"=/"—2) are strongly ordered as in
placed by—27i 5(q2—m?). R[12---/"]=R". Then the volume element in the last three
Letq,_=+/sz, i=1,2,...,l. Everyz is a linear combi- variables in spherical coordinates iddrdQ),, and so the
nation ofx,, and in the case of a propagator along the botintegration region is effectiveliR” but with x,» replaced by
tom fermion line,x,=1 is also involved. The sign of each r. Since/”</, integrals inS will never lead to saturation.
z; is fixed by the direction of arrows in the flow diagram. If =~ Cut diagrams are easier to compute than uncut Feynman
there arey cut lines, then the last x, will be chosen to be diagrams for three reasons. First and most trivial, a cut line
equal to|z]| of these cut lines. The indicesi will now be  contains aj(s2 which makes the corresponding-"" inte-
divided into three sets,b for indices from 1 to/” labeling  gration simpler to carry out. Second and more importantly,
the internal lines with anx pole, u for indices labeling the d function demands the absence of the ™ momentum
propagators on the top fermion line, amdfor the rest. Then across this line, and so the cut line is cut also in the sense of
qa+=q;/¢§za and g, ,q,+ can be expressed as linear being an open electric circuit. This generally reduces the
combinations ofj,. : e.g., number of possible flow diagrams and makes the corre-
sponding integral easier to saturate. For example, each of the
two-loop diagrams in Fig. 13 has only one flow path. Third,

m+:§ CmaQa+:Zm§ Contllp1 /Zo- (B3 the flow pattern often leads to vanishing cut diagrams. For
example, both diagrams (3 and 13d) are zero from the
Within the leading-logarithmic approximation, one has “+” integration around the loop(12345 because the
" flows around that loop are all in the same direction.
D.=2z,, This accounts for the equaliig17.=C18.=0 in Eq.(6.2).
The cost of this simplicity is the presence tocky dia-
Dy=sgz(uncuy, D,=—2mid(sz)(cub), grams which are cut diagrams that are apparently logarith-

mic divergent at larg&,, . This happens whenever there is
a loop with only one arrow present. Arrows on the top ferm-

2 .
E Cmb qu O, e (B4) ion line should not be counted for this purpose because their
approximate propagators $£+ie) no longer carry any
The “—" momentum flows mainly along the bottom k,. . Figures 18a) and 13b) are examples of such diagrams.

fermion line, with very little seeping out to avoid a substan-This apparent divergence is produced by the approximation
tial mixing with the “+” momentum coming from the top of replacing the inverse propagators of an upper line by
fermion line, for a finite mixture of these two at a propagatorsz+i e, thus losing some . factors needed for convergence.
would make it proportional tes and therefore negligible. To regulate it we must replace tl&function of the cut line
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' — ;1 S 1
:<-l. . A T T t T » f/ y
2 i 1 3 ‘2 ‘1' 4 2>( 6 6>&\4 2
) D 3 7 7 3
@) (b) (c) (d)
6 7. L o L
PERR A
3 5 d
> 11 "2: - -
(e) ® (@)

FIG. 13. Sample cut diagrams to illustrate their computation.

by a smeared function, thereby allowing a small amount of lating the 6 functions. The reason is that there are now two
“ —" momentum to flow through, and in the process restor-cut lines, the relative magnitude of the smalt-* flows

ing the lostg, factor. If we do so to Fig. 13), the k.. matters, and that produces once again two flow diagrams like
integration is no longer divergent, it will have exactly the Fig. 12b) and 12c). The poles are no longer at the bottom
same flow path as in Fig. 18 and this is indicated in Fig. fermlo_n line and the computation is no 5|n_1pler than the un-
13(a) by the dotted arrows; so a pole can be taken at th€ut diagrams. We must then compute it by the second
bottom fermion line as shown. The result is given by Eq.method. With the double cuts in Fig. @8, it is symmetric in
(B1) to be (g“i/2s)l,, the extra} being there because the f’i” theq;_ varlab!es. Insisting on th.|s symmetry, Flg..(ﬂ)B

x integration is bounded by the flow path in Fig.(aRto be IS €qual to 1/3! times the sum of six diagrams, obtained by
between 0 and 1, and so only half of thésx) is integrated. permuting the bottom gluon lines in all possible ways. From

e Tl b 1 OED et ane i oS80 (muB(1 2o o 12 et o e
tor (2s)%/(2m)?, one obtaind1, in Egs.(6.1). ’ q 9

There is another way to compute Fig.(&8 This is to lon propagators cut. So Fig. &3 is given by Eq(B1) to be

6/ 5. i\2 22— b 2 ;
recognize the fact that the cut makes it symmetric in lines ﬁﬁ( 2mi)15/(4ms) 31 =~ g'l5/24s". Incorporating the

: tra QED factor— (2s)®/(2m)? for the 7 matrix, we obtain
and 2, and so we may replace the diagram by half the sum Qf,o contribution 0fC15, to M= (2m?/g?)T shown in Egs.

it and its crossed diagram. Using the sum ru&4), 6.1).

a[12]+a[21]=a[1|2], a cut can be produced at the bottom  \we conclude this appendix by discussing the remaining
line, and the resulting factor-2i (\/sgy.) makes the expressions in Eqe6.1)—(6.3. We shall use the notation
d,. integration convergent. See Fig. 14. Moreover, the resultB2.) to denote the spacetime contribution B2, etc.
of this “+" integration is — 2i, exactly the same as if we Then (B2.,)=(B2),{C12/)=(C,2.")=(C12),(C16.)
were to do it by residue calculus. The extra factozobb-  =(C16), and (C19,)=(C19) can be obtained from Egs.
tained in the last paragraph now emerges because the doubl@-1). The zero ofC19, in Egs.(6.1) is due to the vanishing
cut diagram on the right of Fig. 14 is the sum of two dia- of the color factor as shown in Fig. 11. Next, we compute
grams. (C3[)=(C3."). The flow path of this is shown in Fig. 13,
Now we come to the tricky diagram (8§, which unlike  with the dotted arrows indicating the small regulating current
the one-loop case is much more difficult to compute by reguwhich is allowed to flow only in the direction shown. The
calculation is identical to the uncut diagraf)] except that
the factor— % In%sis replaced by (Ins)(—2i) (— 2 from
the cut, Irs because only one uncut line is left on top, and

 because only half of thé function is integrated The
result can then be read off from Ed&.1) to be

[ NN

T2 T2 T2 (C3)=(C3,)=—gBi(N9) 1305, (B6)

2 which gives rise to the expression in E¢8.3).
Finally, we must show thaC€7.=0 and C7.'~°. The
former can be seen from the flow path in Fig.(g)3 where
= . the arrows around the small triangle go around in a closed
1 2 loop. The latter is so because the scalar diagram in Fig. 7 for
C7." is symmetrical in lines 2 and 3 but the triple gluon
FIG. 14. One-loop tricky diagram and its computation. vertex is antisymmetrical in these two lines.

DN | =
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