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Perturbative resummed series for top quark production in hadron reactions
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Our calculation of the total cross section for inclusive productiot‘t_phirs in hadron collisions is presented.
The principal ingredient of the calculation is resummation of the universal leading-logarithm effects of gluon
radiation to all orders in the quantum chromodynamics coupling strength, restricted to the region of phase
space that is demonstrably perturbative. We derive the perturbative regime of the resummed series, starting
from the principal-value resummation approach, and we isolate the perturbative domain in both moment space
and, upon inversion of the corresponding Mellin transform, in momentum space. We show that our perturba-
tive result does not depend on the manner nonperturbative or infrared effects are handled in principal-value
resummation. We treat both the quark-antiquark and gluon-gluon production channels consistently in the
MS factorization scheme. We compare our method and results with other resummation methods that rely on the
choice of infrared cutoffs. We derive the renormalization or factorization scale dependence of our re-
summed cross section, and we discuss factorization scheme dependence and remaining theoretical uncertain-
ties, including estimates of possible nonperturbative contributions. We include the full content of the exact
next-to-leading order calculation in obtaining our final results. We present predictions of the physical cross
section as a function of top quark mass in proton-antiproton reactions at center-of-mass energies of 1.8 and
2.0 TeV. We also provide the differential cross section as a function of the parton-parton subenergy.
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[. INTRODUCTION sion. We provide a detailed exposition of our approach, high-
. _ _ . _ light the similarities and differences with Ref3,4], and
In hadron interactions at collider energies, the main prospow that our predictions are independent of the particular
duction mechanisms for inclusive top-quark—top-antiquarkeqgylarization of the infrared and nonperturbative regions
(tt) produ_ction, as mpdeled in perturbative quantum Chfoimposed by principal-value resummati¢PVR). We present
modynamics(PQCD), involve parton-parton collisions. The predictions of the inclusive top-quark production cross sec-
perturbative series begins at second or@w?Z) in the tion as a function of top-quark mass in proton-antiproton
strong coupling strengtlys. At this order, the parton sub- reactions at center-of-mass energiéd=1.8 and 2.0 TeV,
processes are and in proton-proton reactions at the energies of the CERN
_ Large Hadron Collider(LHC). We demonstrate that the
i+j—t+t, (1 renormalization or factorization scale dependence of our re-
summed cross sections is very modest. At the end, we specu-
where the initial partons,j are either a quark-antiquark late on modeling the unknown dynamics of the nonperturba-
(gq) or a gluon pair ¢g). In higher orders, gluons are radi- tive region and its possible contribution to the cross section.
ated in these two production channels,_and there are addi- |n “infrared safe” processes, such as the total cross sec-
tional production channels, such gg—ttq. The gluonic tion for e"e™ annihilation to hadrons, there is only one
radiative corrections to the lowest-order channels creatghysical scale that characterizes the perturbative cross sec-
large enhancements of the partonic cross sections near tfign, namely the total energy of the electroweak initial state.
top pair production thresholfil,2]. The magnitude of the |n hadron-hadron scattering, according to the factorization
O(ad) corrections implies that fixed-order perturbation theorem of PQCD, the cross sections for the partonic subpro-
theory will not necessarily provide reliable quantitative pre-cesses are the main object of theoretical calculations. In most
dictions for (t) pair production at Fermilab Tevatron ener- hard-scattering processes, however, partonic cross sections
gies. A resummation of the effects of gluon radiation to allare not free of singularities. Initial-state hadronic interactions
orders in perturbation theory is called for in order to improverequire that a nontrivial “mass factorization” be performed
the reliability of the theory. This was the main motivation for in order to absorb a singular part of these cross sections into
the published resummation calculations tf production a redefinition of the long-distance parton distribution func-
[3-5]. tions in a universal, process-independent way. Once mass
In a prior paper, we presented a brief exposition of ourfactorization is performed, the object of theoretical interest is
method of resummation and its applicationttgproduction  the short-distance part of the partonic cross sectighs
[5]. Our guiding principle is the all-orders resummation of “hard part”). The hard part usually depends on more than
the universal leading-logarithm effects of initial-state radia-one momentum scale, typically because of gluon radiation.
tion, restricted to the region of phase space which is maniThe hard part is calculated as a series in the strong coupling
festly perturbative Our purpose in this paper is to expand strength of PQCD, and the domain of applicability of the
upon our earlier theoretical and phenomenological discusseries is a function o&ll pertinent momentum scales. In
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determining the region of applicability of this series, onerecover the inclusive cross section, one then integrates over
encounters difficulties including, but not limited to, infrared the available radiation phase space down to the partonic
renormalong6]. Most discussiongnot necessarily in agree- threshold. An inherent ambiguity and limitation of the
meny on the range of validity of PQCD have focused onmethod of Ref[3] is the introduction of undetermined infra-
momentum-scaling properties of Green’s functipns], but  red(IR) cutoffs. The need for these cutoffs arises because the
color factor constants are an equally important aspect of thRinematically allowed region meets the Landau pole of the
serie:_s and should be taken seriously into account. Both ca8ACD running coupling. More generally, the exponentiation
contribute to the breakdown of PQCD. Although the formerqt |ogarithmic corrections results in essential singularities,
have a more “dynamical” appearance because they depengaiher expressible as singularities of the running coupling

on momentum, both create difficulties that are combinatoriq)r not, while a finite-order expansion in termsafat a fixed
in nature. Infrared renormalons create factorial growth assop g écale exhibits a polynomignd hence integrablale-
ciated with massless vacuum polarization dlagra_m_s, aNBendence on the logarithms. Since the IR cutoff dependence
large constants enhance the strength of the partonic intera

. . ; , . ) 5 exponentiated in Ref3], the sensitivity of their predicted
tions according to their corresponding fields in color spacegsq sections to the value of the cutoffs is very significant

Among the many virtues of Reff3] is the demonstration that ,, erically, especially when multiplicative color factors are
large mL_JItlpllcgtn_/e c_olor_factors are indeed extremely 'm'large, as in theyg production channel.

portant in realistic S|tuat|ons..The|r effects transcend stan- 5, advantage of our resummation approdhis that it
dard operator-product-expansit@PB arguments {0 the ef- 564 ot require arbitrary IR cutoffs. We use the principal-

fegt tgat nonperturbative effects are suppressed by at Iea%me resummatiofPVR) technique[10] to bypass the Lan-
A*/m" or approaches th_at are usua_lly form_al_ and model deg,, poles and associated renormalon singularities, and we
pendent(8]. We treat .th's. probllem In deta_|| in the present ohtain a mathematically unambiguous expression for the re-
paper from the realistic viewpoint of applying resummationg;\mation exponent in moment space. The PVR procedure
to a specific reaction of significant phenomenological impor-51ows us to identify theperturbative properties of the re-
tance. From an operator point of view, however, this is arng;, . mation exponent and to separate these frormainger-
issue that deserves further investigation, to be addressed in gy ative behavior of the exponent. The perturbative proper-

future publication(9]. _ _ ties are obtained through a short-distance asymptotic
Top-quark production, Eq(1), embodies all the issues 555 qyimation valid in a specific region of moment space.

mennongd above. _An instructive |IIu_strat|on can be found inTpq separation is in turn used to derive a perturbative regime
the O(«s) calculation of the partonic hard part, or 100Sely or the hard part itself in moment space, which is more re-
speaking, the “partonic cross section” for heavy flavor pro-gyicted due to large color factors and exponentiation. The
duction[1]. Figures 12 and 13 of the first paper in REf]  jnyersion of the Mellin transforil 1] provides the hard part
show that theO(?) hard part is much larger than the directly in momentum space, and we obtain a resummed per-
leading-ordeiO( ) hard partin specific regions of partonic  turbative expression for the partonic cross section, along
subenergyAnalogous results are shown here in Fig. 7, to bewith the corresponding determination of the perturbative re-
discussed in Sec. V. Not all of the range of the partonicgime in momentum space. This new method should be con-
subenergy can be considered part of the perturbative domairasted with the resummation approach of Ré&f] where
despite the facthat, at finite orders, the resulting radiative explicit use of IR cutoffs makes a perturbative separation
corrections are integrable throughout that phase space amghpossible.
yield finite inclusive predictions. Dominance of the higher- It may be argued that adoption of the PVR technique is
order contributions in thgq andgg channels near threshold, the adoption of a model and that the IR cutoff dependence of
and in thegg channel at large values of the subenergy, feedRef. [3] is merely concealed. We argue that this is not the
back (albeit not as enhancgdo the physical cross sections case precisely because we apply our method only in a well-
obtained after convolution with parton densities. In this pa-defined perturbative region. To the extent that PVR is a
per, we limit our attention to processes in which the nearmodel, it is a model only for the nonperturbative region that
threshold region is the most important influence. At Fermilabwe do not include. The main physical issue on which we
Tevatron collider energies, the next-to-leading-order enfocus is not the finiteness PVR regularization imposes.
hancement of the top-quark cross section is approximatelRather, it is how this finitenedselps us to prob¢he asymp-
25% relative to the leading-order value. For comparison, at &otic properties of the perturbative cross section. Therein lies
scale specified by the massn of the top quark, part of the usefulness of PVR, even though it is possible that
ag(m)=10%. Top-quark production at the Tevatron is onethe regularization it imposes throughout phase space, includ-
that involvesmultiple QCD scales. ing the nonperturbative regime, may be physically signifi-
Dominance of the next-to-leading-order contributions tocant. For example, PVR applied to the Drell-Yan process at
top-quark production near threshold in thg andgg chan-  fixed target energies is in excellent agreement with experi-
nels is mentioned earlier in this Introduction as a primaryment[12]. We will discard the cross section in the nonper-
motivation for theoretical study of resummation of the ef-turbative region as model dependent, notwithstanding its fi-
fects of gluon radiation to all orders. One method of resum+iteness in PVR.
mation was implemented fait pair production some time The perturbative regime should be independent of infra-
ago[3,4]. In most resummation methods, the threshold corted regulators, including the principal-value regulator. To
rections are exponentiated into a function of the QCD run-demonstrate this independence, we show in detail in this pa-
ning coupling strengthg, evaluated at a variable momen- per how one may obtain the same expressions as ours for the
tum scale which is a measure of the radiated momentum. Tperturbative resummed cross section, independently of any
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regularization. To do so, we must make two physically plau-this latter expression that is best suited for the determination
sible assertions about the perturbative behavior of the resunef the perturbative regime in momentum space. The two de-
mation exponent in moment space, assertions that are natuitgrminations of the perturbative regime for the cross section
ingredients of the PVR exponent. in moment and momentum space are in good agreement with
Our resummation includes thieading large threshold €ach other. We conclude that the resummed perturbative par-
logarithmic contributions to all orders in perturbation theory.tonic cross section derived from the PVR approach is inde-
These contributions are interpreted to be universal, charafendent of the PVR regularization and is valid in a well-
teristic of the initial states that produce the hard scatteringtStablished perturbative regime. It is derived basically from
They are common with other hard-scattering processes, ngimultaneous minimization of the factorial growth of IR
tably massive lepton-pail( production, the Drell-Yan pro- renormalonsand color factor combinatorics in the exponen-

o . tiated hard part.
cess. A completeO(aé) calculation is available for the In Sec. V we discuss the numerical properties and phe-

Drell-Yan process, meaning that the logarithmic structure is,omenological behavior of the resummed partonic and
known e?<pI|C|tIy in that case to one orQer in perturbation physical cross sections, for both thg and gg production
theory higher than fortt production. Final-state effects, channels, in theViS and DIS factorization schemes. Predic-
which differentiate among hard-scattering processes, produgg,ns are presented in the form of both figures and tables of
subleading logarithmic structures that are not universal anghe inclusive cross section for top-quark production as a
Sh0u|d not be inCIUded in a UniVersaI I’esummation approachunction Of top mass in proton_antiproton Co”isions at
It is possible, and even probable, that resummation of sub;/§: 1.8 and 2.0 TeV. We display the factorization-
Ieading Iarge IOgaritth from final-state and interference efrenormaﬁzation scale dependence of the physica| Cross sec-
fects can be accomplished, but such a resummation will bgons and provide extensive comparisons with the corre-
process dependent. For the application we have in mind, itsponding quantities of Ref3]. We address the issue of
numerical effects will be subleading in nature. We considefperturbative theoretical uncertainties in both our approach
the resummation of final-state logarithms beyond the scopand that of Refs[3,4]. In Sec. VI we present estimates of
of this work. nonperturbative uncertainties based on physically motivated
An outline of this paper is as follows. In Sec. Il we assumptions about the behavior of the cross section in that
present the kinematics of the inclusive cross section for topregime. We summarize our conclusions in Sec. VII.
quark production and the form of its resummed version. We
include a general discussilon on counting powers of loga- || PRODUCTION KINEMATICS AND RESUMMATION
rithms for the hard part at finite orders and for its resummed
version. In Sec. Il we present the perturbative properties of In this section we begin with expressions for the partonic
the PVR resummation exponeftin moment space, in both and physical cross sections in finite orders of QCD perturba-
the modified minimal subtractionM_S) and deep-inelastic- tion theory and the associated kinematicstioproduction.
scattering (DIS) factorization schemes, as well as its Subsequently, we present a resummed expression for the par-
renormalization-grougRG) invariance properties. We con- tonic cross section in PVR, based on universality of the lead-
sider a formally identical exponent but without regulariza-ing threshold corrections with those in massive lepton-pair
tion, and we examine its factorial growth in moment space in(ll) production. In this paper, we use upperc&s® denote
order to compare the resulting perturbative asymptotic apthe square of the total energy in the hadron-hadron system
proximation at fixed momentsvith the one resulting from and lowercase for the square of the energy in the partonic
PVR. The two perturbative approximations are in agreemengystem.
with each other, but the one without the PVR prescription
does not directly constrain the moment variable since it de- A, Next-to-leading-order cross section and kinematics

rives from an unregularized expression that exists only for- . . L
g b y We start with the next-to-leading-order one-particle inclu-

mally. We offer additional physically motivated criteria one . S ; e )
could use in this latter approach to constrain the momentive partonic differential cross section in the DIS factoriza-

variable, and we show that the resulting constraints are simf-'o.n scheme. We use the .nOt.at'm“)E.aS(!“)/W’ where
lar to those imposed by PVR. Using a heuristic argument, wé* is the common renormaI_|zat|on—fac_tor|z_at|on hard scale of
describe how one may estimate the perturbative regime fOtlh[ie] Pf?b'em- (f?‘ perturbz%'_c;v_e quantitiR is expanded as
the exponentiated hard part itself in moment space. R=%j_oa'RY, whereR" is the ordera’ radiative cor-
In Sec. IV we discuss the universality of the thresholdr€ction to R, above the leading orderUnless otherwise
logarithmic corrections in comparison with massive lepton-SPecified, a=a(u=m) where m is the mass of the top
pair (I) production, using threshold asymptotics and the requark. Following the notation of Ref3] for the subprocess
sults of the completé)(ag) calculation of heavy quark pro- i(ky)+]j(Kp)—t(py) +(po) +g(K) )
duction[1,2]. We examine the detailed structure of the hard- '
scattering function in the gluon radiation phase spacend defining the partonic invariants
(momentum spageand the corresponding determination of

the perturbative regime in that space. The hard-scattering s=(kitKkp)?, ti=(kp—py)2—m?,
function is proportional to ex), which resums the thresh-
old corrections directly. The inversion of the Mellin trans- u;=(k;—py)2—m?, s;=s+t;+uy, ©)

form produces a hard part in momentum space that includes
a series of subleading structures deriving frenj11]. It is  we express the partonic differential cross section as
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d2q¢ _ In Eq. (3), s, is a measure of the inelasticity of the radiative
22 'J _ . B . .
m<s dt,du, (s,tl,ul)—2C”-Dl(s4,A)aij(s,t1,u1)+R. process, and it is proportional to the gluon momentkim
! 4) One can show thas,=2k-p; and hence, for soft gluons,
s,—0. The distributionD; can be shown to be a “plus”
In Eq. (4), aﬁ(s,tl,ul) is the lowest-order Born cross sec- distribution. Indeed, defing,/m?=1-z and
tion, expressed in terms of three-particle final-state variables,

and the remaindeR stands for terms that do not contain Dy(2)= In(1—z)) @
leading logarithmic corrections near threshold. The quantity ! 1-z |~
Cj; is the color factor for thej production channel, and
Then, for any smooth functioe,
m? ) 1, A
1(34,m A)=—In ®(s4 A)+m 5(54)§In ) 1 1 (1 z)
[ aza-20u0= | dgsa-2-s01
5) 1-y 1-
whereA is understood in the distribution sense: 1-y In(1-2)
y _
IimJ’ d(s,/m?)p(s4/m?)D4(s,,m%A). (6) . . .
A—0J0 The right-hand side can be written as

e - e _ ® B
Jl dz¢(1_z)m(11TZ)_¢(0)Ll—ydzln(l Z)+2 ) d(l 2)* ln(1-2)— ¢(0)fl de—ln(l Z).

1-y 1-z =1 k! 1—e 1-z

©)

The series tends to zero as-0, and the result is

1 1-€ ( — ) 1 yd
f dz¢(1—z)D1(z)=f dz¢p(l—2) ———— ¢(0)§|n26=f —d>(s4/m2)ln< )+d>(0)—|n €. (10)
1-y €

This is the result obtained also from EdS) and (6) with the identificatione=A/m?. Hence we have proved the identity
D1(sq4,m%A)=D4(2), with s,/m?=1—z. The identifications,/m?=1—2z is suggestive of the similarity of the present
reaction,tt production, with the Drell-Yan proceg40,12 where z=Q?/s is the fraction of the squared invariant energy
carried by the dilepton pair. The threshold izat 1, as it is in our case as well. We useather thars, in this paper to stress
the similarity between these two reactions.

We can write the differential cross section, including the Born term, as

2 2d2 o] In(1-2) B
M’ gy, (51U =] A(1-2)+a2Cq| —7—=| toii(styuy). (1)

If we compare the above expression and the corresponding one for the Drell-Yan process, we may verify that the logarithmic
structure is identical through next-to-leading order. It is important to note here that the exact calculation of the cross section
for tt production, including the remainder terRin Eq. (4), contains subleading terms, such[d$(1—-2z)],, as well as
constants. These structures are not common to the Drell-Yan reaction, and they cannot be resummed as part of initial-state
radiation only. As in Ref[3], we disregard these subleading structures in our resummation. We demonstrate the nonuniversal
character of these subleading corrections in Sec. IV.

Following Ref.[3] we integrate Eq(11) over the whole partonic phase space. Using the appropriate kinematic bounds, we
obtain

L 1 In(1-2) —8
att(p,m?)= f dz{ 8(1-2)+a2Cij| ————| toh(n.z,m?), (12
1-4(1+ 9 +4/TF 7 1-z |,
where
V(s/Im?—1+2z)?>—4s/m
;ﬁ(mzymZ)E T f_ldcoﬁaﬁ(s,tl,ul). (13

The kinematic transformations
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1
ty=— 5 m[s/m’~1+z- V(s/m?—1+2)?—4s/m’cos],

1
Up=— Emz[s/mz— 1+z+ (s/m?—1+2z)?— 4s/m?coss],

s=4m?(1+ 7) (14)

are used to obtain Egél2) and(13). The lower limit of integration in Eq(12) is derived from the kinematics of Eq®) and
(3), namelys,<s—2my/s.

As in the Drell-Yan case, one may eliminate #iéunction and plus distribution in Eq12) by integrating by parts. Using
the identity

1 z
[Caxtoor, =~ [Caxion, (15)
z 0
and the kinematic constraint
o B(9,2=1-4(1+ n)+4\1+ 7),m?) =0, (16

we arrive at the following expressions for the cross sections. In the DIS factorization scheme,

1
a'i[jl](ﬂ,mz):f _dZ{l-i— aCijlnz(l—Z)}Ui’j(7],Z,m2), (17
1-4(1+p)+4/TF 7
and, in theMS scheme,
1
(Ti[jl](”];mz)zf ~dA1+ aZCijlnz(l—Z)}oi’j(7],Z,m2), (18)
1-4(1+ ) +4/TF 7

d
oij(n,z.m)= oy (7,2,m?). (19)

The explicit expression for the derivative of the Born cross section irgthehannel is

3 (20

, 5 2 s o7 5 27
aqa(n,z,m )=zCrma gx(z)| X(z)—4r+ m]
where

x(2)=1-(1-2)7, (21)

r=m?/s=[4(1+ 5)]" %, andCr=4/3. In thegg channel,

, s 3 LT ( 47 )3’2 ( T Tz) ( 47 3272) 1
Tgg(7,Z,M )—Ew a CFE Ce| — 1__x2(z) + 1__x2(z)+_x4(z) Iny(z)+ 2+x2(z)_x4(z) s
N5

, . 52 47 477 47 477 1
+Ca) —( ¥+ 3 1__x2(z)_Wz)lny(z)_(?_3x2(z) = , (22
Ve

whereC,=3 and B. Resummation and power counting

The large logarithms near threshold, both at finite orders
and in resummation, play a major role in our considerations.

1+ [1-[47/x(2)] In this section, we provide a general description that estab-
(23) lishes the notion of leading and subleading logarithmic struc-

1-V1—-[47/x%(2)] tures and the way we use this terminology. Generalizing the

y(2)=
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notation of Eqs(17) and (18), we write the partonic cross is the “K factor” due to thec(l,m) radiative correction in
section resulting from a finite-order perturbative calculationEq. (25). Near threshold,

as

ImL(7np)=1-27. (30
n—0

1
O'[k](n,mz):f __dzH¥(z,@)0{;(7,2,m?).
1=+ m+ailty (24 While both Ho(7) and H'™(%,a) vanish as»—0, the
function K™ (#,a) diverges as théth power of the loga-
Here rithm. Relative to the lowest-order term, its contribution can
be arbitrarily large iny space for a sufficiently high power
k 2m I, despite the perturbative suppressiefi. The logarithmic
HIK(z,a)= >, a™>, c(l,m)x}, terms will have a significant effect on the physical cross
m=0  1=0 section, obtained as the integral overof Eq. (27) convo-
1 luted with the parton distributions, especially if the hadronic
—> (25 center-of-mass energy is such that the support of this inte-
1- gration emphasizes the threshold region. Under such circum-

. - . stances we may view as a second important physical pa-
andc(l,m) are calculable numerical coefficients. In this rep- y View b phy P

. s o .rameter, in addition ton, that is probed phenomenologically.
resentation, the classification of the logarithmic structures i . 1vo-scale nature of the problem is evident in that we

obvious. Leading logarithms are the monomials proportiona|1ave one hard scale and a ration=(s/4m?) —1 whose

to c(2m,m), first subleading Iogarithms the monomials pro- important physical domain is near 0. The perturbative QCD
portional toc(2m—1m), etc. Since we are concerned with series is required to have reliable behaviobath variables,
threshold enhancements—1 or, equivalently,x,—+%, and »

the nomenclature is relgted dlreptly to the numer_lcal IMPOr™ ~ The objective of resummation is to derive formulas, based
tance of the corresponding logarithmic structures in the CroS§, the properties of QCD as a field theory, that prc;vide a
section. summation of the various classes of monomials in §).

At finite orders, the logarithmic structures are mtegrableIn typical resummation methods, the partial sums of the hard

near threshold, and their contributions to the cross sectioBart Eq.(25), are replaced with a resummed hard function
are finite, provided the Born cross sections are also intey. ..’ .~ .’

bl i< indeed th e fd trati that contains the numerically important pieces of the partial
grable(as is indeed the casd-or purposes o emonstration, ¢, ms to all orders in PQCD. Most resummations of thresh-
let us assume that the Born cross section behaves

1-72)" —1<yp Usi ¥d effects result in exponentiation of the large logarithmic
(1-2 v. Using contributions. A generic resummation may result in an ex-
pression such as

with x,=In

x'=|n'<i)=(—1)'|im(i)l(1—z)f (26)
z 1-z Je ’

e—0

H(z,a)=eF2 @), (3D

. o P , The principal content of resummation resides in the exponent
and denoting.(»)=1-4(1+7) +4y1+7, we find E(x,,a), which is typically a function of the QCD running

coupling strength, integrated through intermediate momen-

1
HEM (5, 0)=a™c( ,m)j dz(l—z)”x'z tum scales. The particular form of this function is fairly pro-
L() cess independent and follows from general field-theoretical
o\ r1 argumentg13]. For the present, we concentrate on power
:amc(l,m)(—l)'lim(—> f dz(1-z)v*¢ counting, ignoring complications specific to particular re-
e~0 L(m) summation methods. A large part of the remainder of the
I\ [L(m)tvre paper is devoted to the complications.
=a™c(l,m)(—1)'lim (_> (7]—) Under specific conditions that we analyze in detail later,
e—0\ J€ 1+v+te the resummation exponent can be cast into a perturbative
form similar to that of Eq(25):
=Ho(n)K"™(9,a), (27)
N m+1
where E(x,, )= >, a™>, e(l,m)x,. (32
=1 I=0
Ho( )= Tlﬂ"—(ﬂﬂ”” (29) The precise power structure above follows from first prin-
14

ciples. For a resummation method to be realistic in practice,
the exponenE(x,,a) should be calculable in a finite num-
ber of steps. One consequence is that the exponent is not
calculable with arbitrary precision, implying, in turn, a level
of uncertainty in some of the coefficieraél,m), for specific
(1+v) ranges ofl,m. The only consistent treatment of this limita-
| tion is to calculate the exponent in enough detail that the
xS (= )i(1+)in[1-L(n)] (29 uncalculab!e coefficients in _E(q32) accompany !ogarithmic
j=o0 structuresx, that are numerically insignificant in the range

is the “Born” cross section, and

KEM(5,a)=a"c(l,m)
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where the representation E(B2) makes sense in the first For example, to account for gle(2m—1,m)}, a nonleading

place. As demonstrated explicitly in the Drell-Yan processexponent in Eq(32) would have to be calculated, i.e., all

[11], and as will become apparent below, use of the two-loogoefficients{e(m,m)} in Eg. (32) would in addition have to

QCD running coupling strength is necessary in the calculabe specified. Upon expansion, such a resummation of finite-

tion. Roughly speaking, the representation BBp) is valid  order first subleading logarithms would produce a series

when ax,<1. This inequality determines the limit of calcu-

lational accuracy of the exponent. The upshot is that the * 2m

coefficientse(l,m), | € {0,m—1}, m=3 are undetermined. H(z,a)= 2, a™>, h(l,m)x;, (37)
Because the exponent is the central object in resumma- m=0  I=m

tion, most of the approximations are effected on that quan- - .

tity. By way of de[f)iﬁition we say that we resunhaading where each coefiicierfi(l,m) is a product of{e(l,m_)}’s.

logarithmswhen all{e(m+1,m)} are determined, andon- ~We remark th‘?lt. Eq(37) does not determine uniquely all

leading logarithmswhen all {e(m,m)} are determined in finite-order coefficientdc(l=m,m)}, for all values of m

addition. Resummation of leading and nonleading Iogarithm?m It leaves a supset undete_rmm_ed. To illustrate Fh's point,
has been done in detail for the Drell-Yan procgsg]. It is consider the leading uncertainty in the resummation expo-

important to note, however, that our definition is not identi-"ent. Since the one-loop running coupling constant produces

cal to the obvious definition that exists at finite orders. TheaII {e(m+1m); and part offle(m,m)}, me N, and the two-

latter is contained in the former. In the next few paragraphsl,o.Op runfmng :oupllnghccinstja}nt producgs the hremalnmg
we establish the relationship between the power counting df'€€S o{g(rz'n_/z,m)}, the leading uncertainty in the expo-
logarithms in resummation and the obvious finite-order defieNt IS da”X; in realistic resummations. This is the lowest
nition at the beginning of this section. order ina, highest order irx, undetermined monomial that
Leading-logarithm resummation includet leading loga- comes from expanding the three-loop running coupling

rithms at finite orders. Indeed, suppose we have performegfréngth in the exponent.

leading-logarithm resummation. Then A product of the form
N @ aklxiklekl(z’l) % a3k2X§k25k2
E(X,,)= >, a™e(m+1m)x"*? (33 | , (38
m=1 K1=0 k! Ko=0 k,!
and the kernel of the hard part is would then be present in the resummed hard kernel. The
N general monomial is
H(zoa)= [ ememeim=™ (34 2k
! m=1 ' ak1+3k2X (ky+ 2)ek1(2,1)5k2
: (39)

e kqilky!
To compare with finite-order PQCD, we must make a rhe

Taylor expansion of Eq.34) in «. It is clear that all leading-
logarithm coefficients in Eq(25), c(2m,m), are obtained
from the sefe(m+1,m)} of Eq.(34) and, more specifically,
from e(2,1) itself. Consider for example the Taylor expan-
sion of the two first terms of the product of E@4):

We wish to investigate the degree to which the second series
in Eq. (38) maximally changes the coefficienfa(l,m)} of

Eq. (37). Setting 2k, + ky) =2(k; + 3k,) —n, we see that we
obtaink,=n/4. Hence the minimum=4, and the minimum
k,=1. Maximum uncertainty arises in the coefficients

e 2,1) 7 a®aCeke(3,2)

>

(35) h(2m—4m). (40

Ki=0 Kq! Kz=0 k!
The coefficientsh(l=m,m)} are affectedor high enough
The general monomial of this product is m. For example at minimum power af, m=4, the “diag-
ket 2k 2Ki+ 3Kk ‘ onal” coefficienth(4,4) is affected, an=5 the coefficients
a1 T Te"(2,1)e"(3,2) h(6,5) h(5,5) are affected, etc. However, the leading, first-,
kqlks! d (36) second-, and third-subleading logarithms, as defined in

finite-order power counting, are unaffected for any orders.
and the only terms that fit the set described dfgm,m) These finite-order logarithmic structures are then resummed
are ke N, k,=0. Therefore,c(2m,m)=e™(2,1)/m!, and to all orders, by a resummation of leading and nonleading
leading-logarithm resummation includes all finite-order lead-ogarithms. It is unlikely that the affected structures are sig-
ing logarithms, along with a specification of the values ofnificant numerically in such a resummation, once we restrict
these terms beyond the order in perturbation theory at whichurselves to the perturbative regimexp.
they may have been computed explicitly. It should be re- We complete this section by returning to the reaction of
marked that it includesnore The product of Eq(34) gen-  interest,tt production. At this point, we invoke universality
erates upon expansion subleading logarithms in finite-ordewith the Drell-Yan case. Because the finite-order leading
PQCD. For examplek;eN, k,=1 in Eq. (36) are of the logarithms are identical in theg andll cases, we can resum
first-subleading kind&(2m—1,m) of Eqg. (25). These are not them intt production with the same function we use in the
a closed set, i.e., they account only partially for all the sub-Drell-Yan case. According to Ref11], the structure of the
leading logarithms resulting from a finite-order calculation.kernel of the resummed hard part in the Drell-Yan case is
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(%g,a) @ HereP is a principal-value contoJn0]; g; andg, are func-
I(Z,a)zé‘(l—z)—(?z Qj(Xz,a) (41 tions of the QCD running coupling strength(Am). It is
=0 + important to note that Eq$45) and (46) include in general
all large logarithmic structures in the Drell-Yan case. This
For simplicity, we drop the channel indicesj; exponentis renormalization-group invariant, by construction.

X,=In[1/(1—2)]. We defer to Secs. lll and IV an explana- The logarithmic structures generated by this exponent are
tion of the various functions in this equation. One can thererecovered upon expanding the functiogsas perturbative

fore write the resummed partonic cross section as

1

Uij(ﬂamz):f (42)

dzl(z,e)of (n,2,m?).
1-4(1+p)+4VI+ g

After integration to get rid of theé function and plus distri-
butions, we find

1

dzH(z, @) O'i'j (7,2,m?).
(43

Uij(’?rmz):f

1-4(1+p)+4VI+ gy
The kernel of the hard part is

H(Z,a):1+J‘In[l/(l—Z)]dXeE(x,a)EO Q]-(X,a). (44)
0 i=

series with respect to the running coupling strength and re-
expanding the running coupling strengths in terms of the
hard-scale coupling strengti{m) [10]. As we argued in the
general discussion of Sec. Il B, and as shown explicitly in
[10], a series of truncations can include all large threshold
corrections.

The only necessary ingredients are the two-loop running
coupling strength and a few terms in the expansions of the
g;'s. In general,g; generates all the leading threshold cor-
rections and some nonleading ones, apdcompletes the
resummation of numerically important nonleading ones.
Since we base our resummation on universality, which is
valid for leading logarithms only, we disregagg for most
of the rest of this paper, and we use the notatieng;. We
apply the consistency requirement of resumming leading
logarithms only by performing the appropriate truncations
and neglecting subleading structures whenever they appear.
We describe these structures quantitatively in this section.

The kernel in Eq(44) depends solely on the resummation We discuss the renormalization-gro(lRG) properties of re-
exponentE(x, @), either explicitly, or through the functions summation in Sec. lll D. The process of resumming leading

Q; which depend exclusively o&. This exponent, in turn,

depends on the factorization scheme, i.e.,
under consideration, on Eg€l7) and (18). It is to this ex-
ponent that we turn our attention in the next section.

Ill. THE RESUMMATION EXPONENT

logarithms only, and the associated truncations, result in an

for the processpproximation of the renormalization-group-invariant expo-

nent of Eqg. (45 by an exponent that ispproximately
renormalization-group  invariant. By varying the
factorization-renormalization scaje within a logical range
about its central valuge=m, we obtain a variation of the
resulting resummed cross section that serves as a quantitative

Invoking universality with the Drell-Yan case, we can measure of the effects of logarithmic structures that are not
express the exponent fat production using the results of resummable in thé process. Variation with is the bulkof

Ref.[13]. By the same tokerhecause of the restrictiorsn

the theoretical uncertainty.

that universality we may keep only the pieces of the expo-

nent that are universal in the two cases, i.e., the pieces that
reproduce upon expansion the leading logarithmic structures

attributable to initial-state radiation, exemplified in Ed7).

The details of the inversion of the Mellin transform, ex-

pressed in Eq(44), may be found in Refd.11,12 and are
analyzed further in Sec. IV.

In this section, we present the expondi(ix,«) of Eq.
(44) in moment space, where the moment exp(). For the

A. Truncation and perturbative representation
of the exponent

Using the truncations

[

g[a<xm>]=21ai<xm>g<1'>za<xm>g<l>, (47)
P

along with

Drell-Yan process, the exponent in moment space in the

PVR approach may be written in either the DIS or &
factorization schemgl10,14. In the DIS scheme,

£ (xa)= fdg -1 f(l od\ .
“ 1-¢ 1-02 N o\ die

+gz{a[(l—§)m]}], (45
and, in theMS case,
B d M1 1 da
E(x,a>——f Ty IS o NECSL U A

a(Am)= a=a(m), (48

o
1+ ab,ln\’
we write the PVR exponent in tHdS scheme as

o101 dh 1
E(x, a)’v—ag(l)f dg

1-¢ Ja- §)2T 1+ abyln\
(49
This integral can be evaluated exadti0]. The result is
(11~ —
9P 1g a-n),
E(X,a)=— D, T2 min? ——rg(m), (50)

where
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= 1 1 _F(l—n+ m) s
" 2ab,’ (1=n)m= r(1—-n) °’ s |
=z
&y)=ye YEi(y), G)
and the exponential integral is defined by the principal value
. y
E|(y)EPJ dxe/x. (52) r
Equation(49) or, equivalently, Eq(50) has a perturbative =~ | “——————eeeeeemer 777
asymptotic representatidiO]
N(+1  p+l LT
E(x,@)=E(x,a,N(1)=g® > a”> s X. (53 N
p=1 =0 " mm———eee
This representation is valid in the moment-space interval
1<x=Inn<t. (549
o | | | | | | 1 | | | L | ! | | | |
t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
The coefficients are (a) N, m=175 GeV
sj,=—bs (= 1)rti2re, ., j(p—D)Uj!, (55 o

and the constantg, are obtained from the expansion
F(1+z)=2fzockzk, wherel is the Euler gamma function.

The number of perturbative ternh(t) in Eq. (53) is ob-
tained by optimizing the asymptotic approximation
|E(X,a) — E(X,a,N(t))| =minimum. (56)

Using Eqgs.(50), (53), and(55), we rewrite Eq.(56) as

n N(t) p+2 i—1
(1= (-1 (— 1) e,
= /m _ j
2, i G- 2 2 X :
= minimum. (57

Equation(57) denotes an approximation between two func-
tions of the momenh, and it determines the optimum num-
ber of perturbative termsl as a function of the parameter
t. Indeed, as shown numerically below, within the interval of
Eqg. (54), the optimization of Eq(57) has a solution that
depends om only, N=N(t). It also can be showfi2] that in
the complementary interval

t<x=Inn<w, (59
the approximation Eq(55) breaks down for any intege¥
that is a function oft only. For very largen within the
interval of Eq.(58) the asymptotic approximation

(1)

e

E(X,a)z—b— ?—1

— x] (59

holds, and it is clearly a nonperturbative one.
Throughout this paper, we use the two-loop formula for
the fixed coupling strength

- 1 by IN[In(M?/A?)]
“byn(m?A%) b3 InA(m?A?)

ag(m)

a(m)= (60)

with

N(t)

| | I ! 1 | { | | | | |
20 40 60 80 100 120 140 160 180 200 220 240

m (GeV)

0
(b)

FIG. 1. Optimum number of perturbative terms in the exponent.
(8 Normalized principal-value exponentsolid) and their pertur-
bative approximationgdashed as a function ofN, for fixed mass
and for four parametric moment valugfrom the bottom, at
n=10,20,30,40). Optimization occursdft(m=175 Ge\j|=6 for
all four moments(b) The functionN[t(m)] (solid) and its simple
analytic approximatioft(m)—3/2] (dasheg

b2:(11CA_ 2nf)/12,

b3=[34C4— (10CA+ 6Cg)n;]/48, (61)
and number of flavors;=5. We setA=0.158 GeV (the
CTEQ3M value[15)).

In Fig. 1 we illustrate the validity of the asymptotic ap-
proximation for a value of corresponding tan=175 GeV.
In Fig. 1(a) we show howN(t) is determined from Eq57)
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for a fixedt and selected parametric valuesrof The plot
shows that optimization works perfectly, and it demonstrates %

~
the typical breakdown of the asymptotic approximation as <

N increases beyonN(t). This rise is the exponential rise of &
the infrared renormalons, the growth in the second term

of Eq. (57). As long as is in the interval of Eq(54), all the 3
members of the family inn are optimized at the same

N(t), showing that the optimum number of perturbative
terms is a function of only. In Fig. 1(b) we plot the function

N(t) for a range ot relevant tott production. An excellent
numerical approximation is provided by the fit

4

N(t)=[t—3/2], (62)

where the integer part is defined as the closest integer from
either direction[lt is amusing that this fit suggests a lower
limit for the hard scalem. A perturbative series is an im-
provement in accuracy N (t)=1 which, from the above fit,
implies t—3/2=0.5. Using for simplicity a one-loop fit of
a(m) and A, we deduce that the hard scal#A=>e?=8,
well within our expectation$.

Equations(54) and (57) suggest a perturbative behavior
for the exponent in moment spatwlependently athe color
factors which reside ig™. In particular, the range of valid-
ity of the perturbative expression for the exponenit<1,is  with the coefficients
obtained bydirect comparisorwith the exact principal-value
definition, as shown in Fig. ZEquations(58) and (59) are Sy=S,+1,=05 2%/ p(p+1). (64)
also suggestive, but they constitute an asymptotic limit, vali
for x larger thant.] This range of validity has the conse-
quence that terms in the exponent of the fasin“n are of
order unity, and terms with fewer powers of logarithms, (1)
a¥In"™n, are negligible. This explains why resummation is  E(X,a,N)= b, ¢ —1>In(1—2ab2x)’,
completed in a finite number of steps in the Drell-Yan pro- (65)
cess, as discussed earlier. The same is true here, but, in ad-
dition, we discard monomials¥Inn in the exponent because as long asx<1/(2ab,)=t. This, of course, is not true for
of the restricted universality between ttteandll processes. the exponent of Eq(53) that contains the full subleading

The exponent we use in the rest of the paper is the trunfogarithmic structures in the Drell-Yan process. We use the

| | 1 | | I | | |
0 100 200 300 400 500 600 700 800 900 1000

n, m=175 GeV

(=}

FIG. 2. The normalized principal-value exponéstlid) and its
perturbative approximatiofdashedg vs the momentn.

qu note in passing that the leading-logarithm truncation of
the exponent, Eq463) and (64), forms a convergent series,

1+

2ab2X

cation convergent version of the exponent E65) in special cases
to arrive at simplified expressions for the perturbative regime
N(t) +1 in momentum space.
E(x,a,N)=gV >} afs, Pt (63 There are equivalent expressions appropriate for the DIS
=1 factorization scheme. Equati@q#9) becomes

" - 1=¢ d\ 1 g(l) (1=n)m 1 (1=n)m
~— gD - - 2
E(x,a)=—ag J'dg - (1,02)\ 1+ abylnn b, mzzl m! m? “mimez cm 2tE m!m? “mim? cemyr. - (66)
|
The perturbative approximation, subject to the truncation re- gV
quirements discussed previously, is E(x,a,N)= o, [ Zabyx l)ln(l—Zabzx)
(H)+1 N(2t)+1 p _( _ ) _ ]
@ 1]In(1—abyx);. 68
E(x,a,N)=g X arsxrti—g® (—) s,xP L, ab,x (1= abyx) (68)
p=1 p=1 2
(67)

The convergent exponents, E¢85) and(68), suggest the
perturbative interval of Eq54), independently of PVR. On
or, in convergent form, the other hand, beyond the end poist 1/(2ab,) these con-



54 PERTURBATIVE RESUMMED SERIES FOR TOP QUAR .. 3095

vergent expressions are ill defined because the leading ternot represent a convergent infinite series for a fixeshd
has a branch-point singularity. n. The factorial growth is precisely the infrared renormalon
induced by the existence of the Landau-pole singularity of

B. Regularization-independence of the perturbative exponent  the original integral. Without this factorial, as in the trun-
cated expression, E¢63), the resulting infinite series is con-

It is valuable to stress that we can derive the perturbativ% . o
; . ergent for a fixedn, but it diverges nevertheless at the
expressions, Eq$53), (54), (55), and(62), without the PVR fthréqsholdn—mo due to the powersg of the logarithm. Since

prescription, although with less certitude. The analysis O'l:' is the exponent of the cross section, the resulting singu-

this subsection is presented in order to show that our fina\ o . Lo L
, e arities in the cross section would be essential singularities.
perturbative results do not depend on the specific manner

that the infrared region is regularized in the PVR approachfgczﬁta"l Inrcl)zv(afﬁ (221 arg)?/v(e?ri) ;??oreg:ﬁthamtsr?d?ggtet;eft;\;\ggﬂal
We begin with theunregularizedform of Eq. (49), i.e., 9 P 9 -9

with the integration ovek done on the real axis: g_rovvth is accompanied by fewer POwers O.f moment loga-
’ rithms (and hence of momentum logarithms in the cross sec-

1 x"l-1r1 dn 1 tion).
Eo(X, @)= —ag(l)f dx — f N 1Fabinn We conclude that the nature of the series in E&f) is
0 (1= ab2 69 asymptotic, and we rewrite EG74) as
) . . N pt1l
We expand the inner integrand as a Taylor series ar@upd Eo(x,a)zE(x,a,N):g(l)Z apz Sj‘pxj, x=1Inn.
As we will see, part of the problem now transforms into p=1 [=0
ignorance of the asymptotic properties of this expansion. (75

writing Because the original integral is unregulated, the properties
1 dh 1 (=1)° and range of validity of this asymptotic series are not obvi-
j ZTWZZZ —=1In"(1=x), (70 ous. In PVR, regularization is incorporated, and, since there
(1-%) absInh p=1 pt . - .
are no undetermined extra scales, such as the introduction of
we deduce IR cutoffs, the asymptotic properties are determinable fully,
as shown in Sec. Il A.
(—1)” fidy no1 In? For a fixedt andn, one may use the monotonicity behav-
fo 7[(1_3’) —1]In%y. ior of the corresponding partial sums to try to determine an
(72) upper limit for the number of terms in E¢75). This proce-
dure is illustrated in Fig. @ for m=175 GeV. We note that
The upper limit of the summation in Er1) is left undeter-  beyond a certain range of, the exponent increases factori-
mined, because, as is made evident below, the series repralty, a demonstration of both the asymptotic nature of the
sented is only formal, i.e., not convergent. Lack of conver-series and of the effect of the IR renormalons. A range of
gence is associated with the Landau pole exhibited by theptimumN can be determined where the growth of the sum

Eo(X,@)=—2ag? -
o(x@)=~2ag™ 2, 5oy

original integral, Eq(69). Using the identity reaches a plateau, before the factorial growth sets in at large
N. The exponent is fairly flat in this region so the indetermi-
9 \P . S .
InPy = lim _) y7 (72) nacy of the optimuni is insignificant numerically. The pla-
70\ ' teau is centered around,,~6 to 7 for a wide range of

moments, in agreement with the results of the previous sub-
and the Stirling approximation for the beta function section. One can make these statements quantitative by de-

B(n,7), fining the slope
9\° 1 rl—1y IE(X,a,N)
Iim(—) (B(n,n)——)=p!2 ¥CP+1,jInPn, (73 S(X,a,N)ETZE(X,a,NJrl)—E(X,a,N)-
7—01 97 U] =0 J!
(76)
we find

For a range ofi where there is a plateau, the optimircan
ptl be determined by the equation

Eox,a)=gP > a2 s x, x=In, (74
p=1 j=0 Nopt: S(X, @,N) | 4 fixeg= Minimum. (77

with the coefficients of Eq.(55). This expression for |, kg 31), we observe that the optimization of the pertur-

Eo(x,a) is the same as E@53), the only and major differ-  pative exponent with this method gives the same results as
ence being that we do not know the asymptotic properties ofy,q principal-value method: i.e.

this series in the full range of moments The added infor-

mation is precisely what is furnished by PVR, as we saw Nopr— 1=N(t)=[t—3/2]. (79
earlier. Both the functioriN(t) and the range of validity of

the perturbative expression<k=Inn<t, are provided by A second issue is whether one could determine the same
the principal-value prescription. range of validity, Eq.(54), of the representation Eq75)

To be more explicit, we examine E/4) in some detail. without PVR. This is possible if we impose tisepplemen-
Because the coefficienss , grow factorially, the series does tary requirement that this representation results in a value of
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the left of the figure. For values of close to the boundary of
Eq. (54), the slope in Eq(76) becomes substantial.

The two requirements, a plateauk(x,«,N) and a value
of Ngp that depends only on the hard scale, allow one to
make statements concerning the perturbative representation
of the exponent that are similar to those the PVR approach,
albeit with less certitude. The perturbative representation of
the exponent, Eqg53), (54), (55), and(62), is obtained in
straightforward fashion in PVR, but the analysis of this sub-
section shows that the result is approximately independent of
the regularization PVR imposes. The result can be recovered
by a study of the factorial growth of the partial sums and the
reasonable physical requirement that the plateau of stability
of the exponent depend on the hard scale of the problem
only.

C. Perturbative regime of the hard part in moment space

We have established a perturbative representation for the
| | | ! | | | | | { | 1 1 1 1 1 -

T e B B SR TIETEET I T I ves T exponent in moment space, with or W|_thput principal-value

(@) N. M=175 GeV regularization. The conclusions are similar. The exponent

has a perturbative representation in the range

1<x=Inn<t= (79

26‘(b2

independent of the constarg®, i.e., of the channel-
dependent color factors. This ismaximumrange allowed

for the perturbative cross section in moment space. One
should distinguish, however, between the range in moment
space where the exponent has a perturbative representation,
and the range where the cross section itself is perturbative.
The distinction arises because the cross section, which is
proportional in moment space to thexponential of
E(Inn,a,N), is much more sensitive to variations m The
cross section also depends exponentially on the color factors
g™, which can be much larger than unity, while the pertur-
bative representation of the exponent in the regime of Eq.
(79) is independent of the color factors.

, We address the question of the perturbative regime in
O s e s v o s 5 a5 s momentum space in Sec. IV, where we present the inverse
(b) N, m=175 GeV Mellin transform that provides the cross section. However,
one can furnish a heuristic argument in moment space as

FIG. 3. The normalized perturbative exponent without regula—v_ve”' Agalr!, t_h's arg“mef?t S In_dependent of the r(_agularlza-
tors. (@) Partial sums vs the numbet of terms as a parametric tion prescription of the orlg!nal_ integral rep_resentatlon_ of the
family in n: The solid bunch is fon e {100,1000 (increasingin  €XPOnent, once we work with its asymptotic perturbative ap-
steps of 100. The dotted bunch is for-2000,3000(ncreasing ~ Proximation, Eqs(53) and(63). _ .

The dashed bunch is for=10 000,20 000,30 00@ncreasing. (b) The idea is to regard the plateau of Figa)as a region of
Slope function vaN for n=10,50,100,500,1000,200@hcreasing. perturbative stabilityin both of the variables it depends on,
The minimum is attained aN—1=N[t(m=175 GeV)|=6, for ~nhamelyN andn. Denote the kernel of the hard part in mo-
n<1000=m/A. ment space by

N opt that depend®nly on the hard scale mand not on the I(n, a,N) =g, (80)
momentn. In Fig. 3b) we showN, the minimum of the

slope S(n,N) for various values oh at m=175 GeV. We Then, this kernel is perturbatively stable in an intervahof
observe thalN,, is constant in approximately the same rangesuch that variations around the center of the platdét),

of n as in Eq.(54). Whenn is increased beyond that range, which does not depend anin the perturbative regime, pro-
the correspondindN,,; becomes a function ofi. As nis  vide O(«s) variations forl (n,a,N), i.e., numerically negli-
increased, the plateau created by the corresponding values gible contributions that are not enhanced by threshold ef-
the exponent starts shrinking, and the renormalons move tfects. This statement is made quantitative by the requirement
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Sul(n, a,N(t))=eEm.aN®) 5 E(Inn, @, N(t)) we consider them at most equaldqQ, rather than assuming
definite numerical coefficients, large or small, unsupported
by exact calculations. This statement is corroborated by the
exact one-loop calculation of the cross section, and by the

where the slopés is defined in Eq.(76). Another way of one- and two-loop calculations of the Drell-Yan cross sec-
reaching the condition of Eq81) begins with the order-by- tion. It is in general assumed in all resummation procedures.
order perturbative hard part written as

=eflmaNOg(Inn, a,N(t))<as, (81)

k k D. Renormalization-group properties
T, e)= 2, a™sy(n)+ >, a™y(n). (82) of the perturbative exponent

m=0 m=t We have studied the exponent under the simplification
The first sum in Eq(82) contains singular functions ofthat ~ that the renormalization-factorization scale, the “hard
produce large threshold enhancements and must be récale,” is fixed atu=m. In this subsection, we discuss the
summed, while the second sum contains regular functions gfependence op of the resummation exponent in moment
n, whose numerical effects are Gf(as). The first sum is  space. We work entirely in théS scheme. Since RG invari-
replaced by our resummedn, &, N(t)), and the condition in @nce is one of the ingredients of resummation, we expect that
Eq. (81) is equivalent to a plateau of perturbative stability the full Drell-Yan exponent, containing the full scale depen-
such that variations of the resummed terms around the p|§1ence, Is exgctly RG_ Inva_rlant. It can be seen by inspection
teau belong to the second, regular, sum of BQ): that Eq.(46) is scale invariant:

eE(Inn,a,N(t))+ SNE(Nn, a,N(t))
E(X,a)=EX,a(w),m/ u)

:eE(Inn,a,N(t))+eE(Inn,a,N(t))s(n,a’N(t)) gn—l_l m2/ 2 dn
| a APV

| 1-¢ Ja-p2m2u2 N

= gElnn,a,N(1)) 1 E amr;n(n), (83 0
m=1

so thatéyl (n,a,N(t))=0(ay). This is the same criterion as Here we ask to what degree the truncations we impose,
Eq. (81). starting from Eq.(49), affect this invariance. We begin with

The regular sums in Eq$82) and(83), have been calcu- the explicitly u-dependent equivalent of E19), read from
lated only to first order irtt production. This is the reason Eg. (84). The corresponding expression[i4]

§n71_1
1-¢

mzl,u,2 dx 1
| (85)

~_ (1) - -
£t ) /)=~ alwg® [ e e TR

where the dependence @nis both implicit[in «(w)] and explicit. Working along the lines of Sec. Il B, we may show that

N(p)+1 (—1)”2”b’§_1 P p! ktl (-1 i .
E,a(p),m/w)=E( a(uw),muN(p)=-g" 2 a(u) M) X o,
p=1 p k=1 (p—K)! i=o |’

(86)

We use the approximatioN(u)=N[t(u«)]. This equation makes clear thexplicit w-variation (i.e., k<p) is equivalent to
inclusion of nonleadinglogarithmsx/, j<p+1. In this sense, uncertainty expressed througlvariation overlaps with
uncertainty expressed through inclusion of nonuniversal logarithms. In the triple sum @B@&gthe k=p term is the
numerically dominant term in the exponent. This term represents the implé@pendence, E¢53). All other In(m/u) terms
are nonleading ix=Inn. The linear term in Infyw), obtained fork=p—1, has a universal msubstructure. It is the one
containing equal powers ef(x) and Im. It comes from the same diagrams as the leadingtructures ag.=m and amounts
to exponentiation of the eprich(_ag) M variation.
Our u-dependent exponent fot production can therefore be written

N(u)+1 bp*l p N(u)+1 bp*lzp

E(X, (), M/ a,N()) =gV El aﬂ(mmxp*l—lmm/m 21 () =

XP . (87)
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We call attention to the sign structure of E§7). For a fixed IV. LEADING AND SUBLEADING LOGARITHMIC
moment and scalgs decreasing fronm, the implicit growth STRUCTURES
of the first sum due to the increase @fu) is cancelled by

i ' - In this section we describe the resummed partonic cross
the minus sign of the explicit dependence of the second sum, .. = . ) .
Section in momentum space, derive a perturbative approxi-

and vice versa. On the other hand, in the truncation from Eqm L i . f d di
(86) to Eq.(87), nonuniversal subleading logarithmic struc- . ation in a specific region of momentum space, and discuss
) ' in general how to include leading logarithmic structures con-

tures are d_|scarded. Therefore we expect only approxmatglstemly in the resummation. We also demonstrate how the
scale invariance of Eq87).

(l) . . _ .
In Fig. 4 we plot the normalized exponent, in each of theconstantg’= is determined from the one-loop calculation,

truncated versions of Eq5), (86), and(87), versus a wide qnd we discus_s the issue of universality of the Ie_ading loga-
variation of u € {100,300 GeV, and for various perturbative ”th”.‘s- In part|c_ular, we demonstrate that retention of sub-
values of the moment. We see that both the PV Drell-Yan leading pieces in the exponent, of a structure similar to the
exponent, Eq(85), and its perturbative Drell-Yan version, Drell-Yan case, would not account correctly for the sublead-

Eq. (86) are straight lines, practically coincident. The univer-'"9 structure at the OF‘e"OOF’ level in top quark p_roduc_tlon.
) . . . We justify the truncations we use consistently with univer-
sal exponent, Eq87), is a gently increasing function qf,

o sality of initial-state radiation.
and it lies somewhat below the Drell-Yan exponent. The L
P The general form of the PVR cross section in t&

increase creates a partial compensation of the explice- :

pendence of the Born cross sections, more so than if the fuﬁCheme IS

Drell-Yan exponent were used. This difference stands to rea- 1

son, since no implici. dependence exists in the Drell-Yan  ofY(5,m?) = ___dzH(z,@)0{(n,z.mP),

process at the Born level. Thegedependent properties con- -4t m) ity 89)

form to the intuition that our resummed cross section should

show less variation withu than the next-to-leading-order where the kernel of the hard part is

counterpart. We call attention to Fig(b}, where we show

the effects ofu dependence as a function of the number of X -

terms in the partial sums. For the Drell-Yan exponent, the H(z,a)=1+ fo der(X'a)ZO Qj(x,a), (89

addition of perturbative termsp to the optimum number .

N[t(x)] makes the exponent progressively scale invariant. gnd
Smooth behavior under scale transformations is not a

property of the resummation of Rdf3]. If an IR cutoff is

used, conventional RG-scale invariance looses much of its

meaning since an additional and arbitrary scale is introduced.

We return to this issue in Sec. V when we discuss the physiThe functionsQ;(x,«) in Eq. (89) appear during the inver-

cal cross section and compare scale variations in our agsion of the Mellin transforrm«z [11]. They are obtained

_ ( 1
XZ=|n E . (90)

proach with the corresponding ones of Ré. from the generating function
|
1 * PT1P?2. .. pmﬁzl 9 my+2my+ - (N+1)my i
P.,P,,...,P =Re — lim__ o — eI (1+
Q[ 1 2 N+1] |7Tm1 my, . mN+l:O ml! m2| mN+1! e—0 Je ( 6)
91
|
through the identification structuresQ; resum thejth subleading logarithms in the
physical cross section through the index identity
Q[P1,Py,...PN1]=2 Q). (92
R = i=> mk-1) (94

k=2

This notation is slightly different from that of Ref11]. In
particular, in the present notation the real part is extractehat connects Eqg91) and (92).
explicitly from the generating function. In Eq$91) and
(92, A. The leading resummed perturbative cross section
and its range of validity
IE(X, @)

Pr=Pu(X,a)= i (93 For best accuracy, in a process like the Drell-Yan process,

the expression for the hard part should include enough of the
set ofQ;’s to reproduce the resummable finite-order sublead-
The functionQ;=Q;(x,a) is defined as the set of terms in ing logarithms up to two loops. On the other hand, owing to

Eq. (89) that contributej more powers ofx than ofx. The  the constrained universality that characterizes ttheross
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section, we should include only terms that do not create non-
universal subleading logarithms. In addition, we must dis-
cuss the range in momentum space where our perturbativ
resummation is valid.

We turn first to the issue of the perturbative regime in
momentum space. Specification of this region follows from 15
general expressions for the inversion of the Mellin transform
and the meaning of the successive terms in this inversion,
once their perturbative approximations are used. The kernel
of the hard part is provided in E¢89), and the functions
Qo andQ, obtained from Eqs(91) and(93), are k T

2

o)

N3 /g

E(n

Qo=—_sin(7P)['(1+Py) (95) I

05 | T

and

Q=2 (1+P,)Pycog 7P)W(1+P;).  (96) [N

The functions? =¥ and¥® are the usual polygamma 0100 120 140 160 180 200 220 240 260 280 300
functions. For simplicity we include in the expression for & H» m=175 GeV
Q. only terms that generate corrections startingOdiv).
According to the general discussion at the beginning of this
section,Q, contributes one less power wfthan of« in the
integrand of Eq(89), and it is formally subleading relative
to the contribution ofQ,. Nevertheless, from Eq$95) and
(96), we see that this suppression is not true for values of
such thatP(x,«@)=1. When sin{P,)=0, the dominance of
Qo over Qq is destroyed. For values of such thatP;>1,
Qo and Q, are out of phase, with amplitudes that are not
constrained, and the perturbative dominanc&gfover Q,
is again vitiated. | E—x0n
We conclude that the perturbative region in momentum
space is defined by the inequality constraint

E(nN)/g"

n
T

Pl(XZ,a)il. (97)

In our discussion in moment space in Sec. lll, we saw that
the perturbative approximation for the exponent is valid in
the interval KInn<t=1/2ab,, i.e., where terms containing ‘ ‘ | ‘ . ‘ r | |
equal powers of In and a are at mosO(1). Our Eq.(97) 0100 120 140 160 180 200 220 240 260 280 300
translates this condition consistently into momentum space(b) #, m=175 GeV
In Fig. 5 the upper two curves show the range in=hx ‘
where the constraint of Eq97) is satisfied. The lower three FIG. 4. Renormalization-factorization hard-scale dependence of
curves in Fig. 5 pertain to the corresponding constraint fothe resummation exponents) Drell-Yan perturbativesolid), prin-
the hard part in moment space, Eg§1). We see that the two cipal value(dotted, and leading-logarithnidashed exponents vs
criteria are in good agreement: the value af#x at which ~ w for fixed mass and parametric moment values10,50,100(in-
Eq. (97) is satisfied agrees fairly well with the value ofat ~ creasing, N=N[t(m=175GeV)+1. (b) Parametric families of
which Eq.(81) is also. partial sumsN=1, . ,N[t(m:l_75 GeV)]_+1 (increasing vs w

We take up next the issue of universal logarithmic strucfor the Drell-Yan(solid) and leading-logarithnidashed exponents,
tures in our resummation. Power-counting, discussed geneﬁ‘-t n=>50.
cally in Sec. Il B, must be altered when applied to the kernel
of the integral in Eq(89) because the extra integration sup- Qo(X, @) =Qp(X,a) — P1(X,&) + P1(X, )
plies one more power of the logarithm. We begin with the =A(X,a)+Pi(X,a). (99
following expression for the kernel of the hard part:

§ Using Eq.(63), we can express
H(z,a)zl+J “AXEXDQy(x, @), (98)
0

0 2m
_ eExa=>" 4m > (1, m)x, (100
and we rewrite m=0 I=m+1
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FIG. 5. Evaluation of the perturbative regim@) Saturation of
the perturbative constraint in thgg channel as derived in moment
space[ S(n), solid; ase™ 5™, dashed(Drell-Yan); dotted (leading
logarithmg] and in momentum spadeP;(n)<1; dashed, Drell-
Yan; dotted, leading logarithmisN=N[t(m=175 GeV]+1. The
upper curves are those in momentum spélseSame as ir(a) but
for the gg channel.

and, from the definitions oy and P, we find the expan-
sion

[’

AX,a)= D, a™8x™.

m=2

(101

Therefore,

EDMOND L. BERGER AND HARRY CONTOPANAGOS

Xz
J dxeEFXYA(X, )
0

o] m 2k
:z am+22 €(1,K) Om+2-k 3+m+l-k
m=0 =0 1=%%1 3+m+l—-k *

(102

For a fixedm, the maximum monomial in powers of, is

a?*™x2™*3 n the notation of Sec. Il B, the integral in Eq.

(102 contributesat mostto the first-subleading logarithms

c(2m—1m). Since we intend to resum leading logarithms

only, we ignore the contribution from the integral Ed02).

For the same reason, we discard@|ls but Q, in Eq. (89).
Our main result for the perturbative resummed partonic

cross section, denoted km;ﬂe”, is, therefore,

20
of P pm?) = J dz

1-4(1+9)+4VI+7n

XZ
X 1+f dxeEXIP, (x, @) a'i'j(n,z,mz)
0

79
:f dz&0= Y] (5,2,m?).
1-4(1+ ) +4VI+ 7y

(103

The upper limit of integratiorzg=z,(«) is determined from
the equation for the perturbative regime

=e*0, Py(Xp,a)=1. (104

1_20

The preceding expressions in this subsection are valid in
either factorization scheme. The only distinction is the value
of the multiplicative constarg(®) in Eq. (64). This constant
can be determined from a comparison of @gy) expansion
of the resummed partonic cross section with the finite-order
calculation of Refs[1,2].

It is useful for purposes of comparison to expand the cross
section toO(a?). In theMS factorization scheme, using Egs.
(63) and (64), we obtain

El2)(x, ) = agPx%+ 2a2gVb,x3/3. (105
Substituting Eq(105) into Eq.(103), we find that the corre-
sponding finite-order part of the resummed cross section is

1
ot (9, m?)| per= f dz

1-4(1+n)+4VT+ 7y

(1)y2
At

1
1+ ag(l)ln2<ﬁ>

1-z

2 1
+§g(1>bz|n3(ﬁ) ]‘Ti'j(n,z,mz)-
(106

To determineg'V), one can use the correspondifq«)
expression for the cross section from Re], or derive an
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asymptotic formula near thresholdy{-0) for the O(«a) A\ 1 exp—by /g2 1-exp(—by /gt /2]
piece of the integration, Eq106), and compare with the 1—22(5) DIS.
corresponding explicit expression of RgL]. The former is (115

simpler for the present purposes. In Sec. IV B, we derive the
asymptotic threshold formula to demonstrate universality is\We observe that the nonperturbative regime is suppressed

sues. The result is mainly by A/m to the first power, with a correction that
@O _ depends on the color factors of the partonic production pro-
Iws=2Cij, Cqg=Cr, Cgg=Cha, (107 cess. Fom=175 GeV,
the same as in the Drell-Yan case. Our Efp6), including Alm=10"3, (116

the O(a?) term, is identical to that of Ref3].
Similarly, in the DIS factorization scheme, using Egs.Becauseb, is positive 0,=2), the nonperturbative regime
(67) and(64), we derive is an increasing function of the color factors. If the partonic
cross sections had no color factor enhancemegife=1,
El2l(x,a) = ag™Wx?2+ a’g Vb ,x3/2. (1089  Egs.(114 and (115 would be in close agreement with the
perturbative regime of the exponent in moment space

Hence the cross section @(«?) becomes nsm/A, Eq. (54), with the direct substitution fhi-1—z.
" For example, fog=1
1 g
[2] _ Lgc 2l = I
(7,M%)| pert L4<1+7,>+4md2[1 a—-In (1_2) 1-z=2x103 MS
N 9(1) i 1 and
Py 1-z "
1-z=1.5X10 DIS, (117
1 1
+59 (Db,In’ (1—> ]U.,(ﬂ z,m?). in good agreement with E4116). In reality,g")=8/3 in the

aq channel, therefore
(109 o
i i i i 1-z=2x10"2 MS
By comparison with the correspondir@(«a) piece of Ref.
[3], we obtain and

g55=2C;; =g, (110 1-7z=8%1072 DIS. (118

again in agreement with the Drell-Yan case. As before, EqFor thegg channelg®®=6, and we find

(109), including theO(«?) term, is identical to that of Ref. o

[3]. 1-z=1%x10"1 MS
We close this subsection with simplified analytical ex-

pressions for the perturbative regime of the cross section, E@nd

(97). For this purpose, we may use the convergent expres-

-7 — 2
sions, Eqs(65) and(68). In theMS factorization scheme, we 1-z=5%10 “DIS. (119

obtain These regions are narrower than the estimate based on the
g® perturbative properties of the exponent only, especially for
Pi(Xy,a)=~— = —In(1—-2abyx,) <1, (111  thegg channel. The soft-gluon region is probed more deeply
2

in the DIS scheme than in thdS scheme, closer td/m.

and. in the DIS scheme, We discuss these properties numerically in Sec. V.

(1) (1) B. Nonuniversal subleading logarithms

g g
P10 @)=~ b_ln(1 Zab2X2)+ In(l abyxy) <1. In this subsection, we address universality of the logarith-

(112 mic structures in the threshold region more explicitly. It is
sufficient to examine the issue in thdS scheme. For com-
To obtain transparent analytical expressions, we SPeC'a“ZGIeteness and to compare with the analytical results of Ref.
here to the one-loop approximation [1], we derive the near-threshold asymptotic properties of the
1 O(a) term of Eq.(106). We demonstrate that if we were to
2ab,=In"*(mM/A). (113 keep the subleading logarithm in the Drell-Yan exponent,
Egs.(53) and(55), the resulting term in th®(a) expansion
of Eq. (89) would not be the same as the one obtained in the
1 exp— b, /gD) explicit next-to-leading order calculation of R¢L]. This is
(A) 2 MsS (114 a demonstration of the consistency requirements of the series

m of truncations that resulted in Eq®%3), (64), and(103).

We obtain

1-z=
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In the MS scheme, Eq(53), the full O(a) Drell-Yan order. Substituting from Eq55) we have

exponent is
P El(x, @)= a(gVx%+ 29V yx + kx), (121

El(x, )= agV(s, x2+s; X+ 12
(@)= g (8 X" 81X+ Sp.), (120 wherey is the Euler-Mascheroni constant. The kernel of the
where the coefficients are found in E(5). Suppose we hard part, containing subleading logarithmic structures, is
allow an undetermined linear termxx, that would repre- given generally by Eq(89). To account for subleading loga-
sent the deviation of this exponent from the Drell-Yan form.rithms with full accuracy in the Drell-Yan case, we must
We discard the constant term in this exercise, because it doésepQ, andQ,, Egs.(95) and(96). Expanding tdO(«) and
not contribute logarithmic terms to the cross section at firstsubstituting into Eq(88), we obtain

1
1-z

The piece of the Drell-Yan expression linear in the logarithm has dropped out. In other words, the exact evaluation of the cross
section of Eq(122) with the Drell-Yan resummation expression gives the same answer as the truncated expressl@).Eq.
This is something well known in the Drell-Yan case and is expressed by absence of the fgpadtiothe MS scheme, Eq.
(46).

The integral representation of the partonic cross section does not contain the subleading logarithms of the Drell-Yan case.
This is not true for its asymptotic evaluation near threshold, as we shall see below, owing to the form of the Born cross section.
We focus on theyq channel only. From Eqg20) and(122), we obtain

+xln oii(n,2,mP). (122

1 1
ol (m,m?) = af dz g(l)mz(ﬁ

1-4(1+ ) +4/TF 7

oy m2)=§w3a3ffl d41-(1-2)7]| V[I-(1—2)7P—4r+ 27
aan 9" " shiaaeprary 1-(1-2)7—47
1 1
Dn2| —/—— P
X[ g'*¥In (1_2 +kIn 1_2”, (123

where r=m?/s. Introducing the variablegs=[1—(1—z)7]>*—4r and[1] 8?=1—4r, we derive

o= gel [ oo (1- g2 1921 gt - 11 VTTE
9s 0 1_:8

4
1——,82[1_\/1_(’82_)()])

+klIn .
(124
The threshold is exhibited 88— 0. Expanding
1-V1-(B*=x)=(B*~x)/2, (125
and using
(9 k
Ky — [i _ €
In X_ilino(af) X€, (126
we find
4 133 J 2 232 € 1_B2
031(;2§a§ﬁ{g(1>(£> (1—,32 B(3/2,1+e)+2—ﬁ23(1/2,1+e)
+ 28"\ marzar o+ T2 Bzt 12
K%l——ﬂ2(76)2B2(’6)' (127)

After computing the derivatives, we obtain
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4 232 _
ol ol 53{ [ (%)( (3/21)+—€—B(1/2D

2B
282 1- 87
+2In 1_—)(8(3/2 DLW (1)~ W(5/2]+ 5z B2, D[ V(1) = ¥ (32)]
+B(32,D([W (1)~ W(5/2) 2+ (1)— W' (5/2)) + ‘ﬂ‘j B(1/2,)([W(1) qf(3/2)12+x1f'(1)—x1r'(3/2))]
2,82 _,82 _182
+x |n(1_—ﬁz)(5(3/2 D+ gz BU2.D |+ BV (1)~ W (512)]+ 5 B2, D[V (1)~ qf(s/z)]]

(128

Discarding the nonlogarithmic pieces and using the relats)=— v, ¥(3/2)= —y—In4+1, we observe that all the
coefficients of the logarithms can be rational. Introdudibhp =47, we end with

3B
0 4q= ms 5 19"In*(85%) ~[29'Y ~ x]In(8%)}. (129
Our Eq.(129 may be compared with the result of Rgt] in the MS scheme, denotedgfglq)
al s Bp[8 41
altig= mz §|n2(8,82)— gln(8ﬁz) : (130

We conclude that, for the leading logarithm,

gP=8/3=2C, (131
the same value found in EGLO7). However, for the next-to-leading linear logarithm,
29V =16/3+41/6. (132

A nonzero value fok would be required. This exercise shows that universality between the Drell-Yan cadepaaduction
is restricted to the leading logarithms only, as must be the resummation of these structures. The subleading logarithms in the
full exponent of Eq.(53) are uncertain.

The analysis of this subsection justifies our truncated expressions, and it motivates several equivalent ways to define a
guantitative measure of the overall theoretical uncertainty. The most straightforward is to vary the renormalization-
factorization(hard scale within a reasonable range and to use the variation of the cross section as a measure of the non-
universal subleading structures. It is important to recall, however, that truncation of the resummation of leading logarithms at
a givenhigher orderproduces subleading logarithms at that order, asxpe?) terms in Eqs(106) and (109 show. We will
assume that these particular subleading logarithms are approximately universal because they come from the evolution prop-
erties of the resummed universal leading logarithms of lower orders. This is true fotSherell-Yan cross section at two
loops[16]. L

To summarize, the resummation exponent in the perturbative regime M3hfactorization scheme is

N[t(p)]+1 bp*lzp N[t(p)]+1 bp*lzp
Ea(p),mu,N(u)=2C;j 2 a’(w) XPHiin(mip) X af(w) X? (133
p=1 p(p+1) p=1
In the DIS factorization scheme, it is
N[t()]+1 o100 N[t(u)]+1 by 120
E(x, N[t =2C;; P XPT—In(m/ P XP
el NI D=2Cy| 2 a’(w) gy (Mp) 2 @)=
N[2t(x)]+1 byt N[2t()]+1 o1
—2C;1 X af(p) XPHloin(mip) X af(p) ——xP (134
p=1 ( +1) =
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The upper integer in the two sums iSN[t(w)] The upper limit of integrationzg(w,m/ ), is provided by
=[t(u)—3/2], and t(n)=112a(u)b,]. The perturbative Eq.(135. For physical but relatively large values gf the
resummed cross section in the corresponding scheme is olmwer limit of integration may become negative, unlike the
tained from the general expression, Eg9), within the re-  Drell-Yan process in which €z<1. In this situation, far
gion defined by Eq(97). This restriction can be incorporated away from threshold, resummation of initial-state gluon ra-
if we definez, through diation is irrelevant, and we do not perform resummation
outside the range €z<1. Finding the roots of the lower
limit of integration in Eq.(137) we see that this equation is

In ),a(M),m/M,N[t(M)]}Zl- unconstrained for

Py

1—=2z5(p,m/ )
(139 n<(1+2)2/4—1=0.457 106 8. (139

Imposing the constraint that only leading logarithms are regquation (138 defines the region in phase space in which
summed, we arrive at oyrerturbativeresummed cross sec- threshold effects are important. Above this valuerpfEq.

tion (137 should be constrained so that it includegy the phase
space where gluon radiation is produced near threshold.
Zo(p,m/ ) In order to achieve the best accuracy available we wish to
oRP o m?, u?) = dz . . o X )
ij AN B — include in our predictions as much as is known theoretically.
1-4(1+n)+4J1+9y

The exact next-to-leading ordéone-loop cross section is
known[1,2], but the full two-loop calculation does not exist.
(136) Thus the best we can do at present is to include the full
content of the one-loop partonic cross section along with our
resummation of the leading logarithms to all orders. In so
doing, we include both nonuniversal one-loop subleading

found in Eqs.(20) and (22). logarithms and constants. This procedure is in common with

We use the f_ormulas above to calcula}te our predlCt'oni)revious resummations of this proc¢8$and the Drell-Yan
for the perturbative resummed cross section. The rest of thﬁrocess[lZ] Our “final” resummed partonic cross section

phase space.in E¢L36), fromz=2z, to the threshold=1,is ., therefore be writtefs]

nonperturbative, and we declare ignorance about the cross

section in that region(n Sec. VI we engage in some specu- Gﬂ,ert( n,m2, u?)= UiFJ?,pert( 7,m2, u2) — Ui<j0+ I 7,2, 12) | R per

lations on nonperturbative physic$\ measure of the domi-

nance of the universal logarithmic structures and their re- +ol7 D (n,m?, u?). (139

summation in the perturbative regime in our approach is

provided by the change in the cross section when thdhe second term is the part of the partonic cross section up

renormalization-factorization scale is varied within a reasont0 one loop that is included in the resummation, while the

able range around the “central” valye=m. This variation last term is the exact one-loop cross secfib2].

measures the importance of subleading logarithmic struc- For numerical purposes it is best to convert the “im-

tures that are nonuniversal and nonresummable in this agroper” integrations induced in E4137) by the form of the

proach. We use variation with as a working hypothesis for Born cross sectionss/;(7,z,m?) [see Eqs(20) and(22)], to

the bulk of the perturbative uncertainty]. integrations without a numericébut analytically integrable
singularity. This is achieved by the transformation

X eEz r“(#)ym/MvN[t(/L)Do-i’j (1,2, m2)_

The derivatives of the Born cross sectioaﬁ,(n,z,mz), are

V. THE RESUMMED CROSS SECTION \/ At
, . . . x=\/1- —F—=. 140
In this section we present analytical and numerical results [1-7(1—2)] (140

for the resummed cross sections. Section V A is devoted to o ) ] . .
the partonic cross sections as functions of the variagle N addition, it is easier to parametrize the perturbative regime
while in Sec. VB we present the physical cross sectiongo Py the moment variabley:

obtained after convolution of the partonic cross sections with

parton densities. We furnish details on the technicalities in- 1 =Ny, Ne=€", (141)
volved, both kinematical and numerical. In Sec. VC we 1-z,

make comparisons with the predictions of Laenen, Smith, . i .

and van Neervef3,4], denoted LSWN. wherexg is the first root of the equation

Pl(XO(lu’!m//u’)va(M)!m/IuiN[t(lu“)])z1- (142)

Taking into account the constraint op Eq. (138), we can
write the various pieces of E139 as

A. Partonic cross sections

The resummed partonic cross section has the form

Zo(p,m/ )

R, per 2 2 _f U(r,ng)

ai M-, uc)= dz R 0

4 F(ﬂ ) 1-4(1+ p)+4TF 7 O'ij'pen(ﬁ,mz,ﬂz):J ) der(Y(x)’a(M)'m/”'N[t(M)])Uij(X),
T

x @E(xz ,a(ﬂ)vm/M,N[t(#)])Ui’j (7,2,m?). (143

(137  where
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471

T [1—rIng(p,m/ ) ]?
(144

S S Iy P
(1+\2)? @z @9

N

U[TvnO(luvm/lu)]E \/1

P‘(n,m,m/,u.)

n

L(m)=0

and

(146

Nl
y(x)=In o207

The second term in Eq139 is obtained from Eq(143 by
expanding the exponential up ©(«). The exponents for
the two factorization schemes are found in E(¢33 and
(134, while the transformed functions;; (x) are

5 %) 32 . 273’2( 1+x2 (147
OggtX)= 5 7ma"— | 77— 2573 /
a9 3 s | (1-x%)° o 70 20 30 a0 50 80 70 80 90 100
(a) n, m=175 GeV
and
o~ 2
- 1 ™1 4 12r 3
Ugg(X)zz’ﬁsaz?mi —(§X2+5T+ 1_X2)X2 3 /
£
< /
a8 2 X = /
+| 2x —§x +3mx°+2—-37|xIn Tx & s // S
8 4 | / s S
+ —§x4—4x2+ TX2+§—3’T) . (148 [ e ey

In Fig. 6 we show the perturbative boundamy(.,m/w),
obtained from Egqs(141) and(142), as a function of the hard
scaleu, for m=175 GeV. The scalg is an artifact of per-
turbation theory, angk variation is associated with trunca-
tion of the perturbative expansion. In a resummation such as
ours, all significant perturbative knowledge of threshold ef-
fects is exhaustedall large perturbative threshold correc-
tions are included and the perturbative regime we calculate . : ,‘
should also be insensitive to artifacts suchuasTherefore, 0 : L
one expects the perturbative boundary to be independentof ¢ 2+ & 8 0 iz 14 6 18 20
the hard scalex and to depend only on the physical scale n, m=175 GeV
characterizing the thresholan. We observe that the full

Drell-Yan exponent produces a functid?, that is almost FIG. 6. Ha_rd-scale dependence of the pert_urbativg regime:
exactly hard-scale invariant, establishing that our resummd® The function Py(n) vs n as a parametric family for
tion conforms to this intuition. On the other hand, the trun-#=100,150,200,250,300 GeV for the Drell-Yan exponésulid

cation to universal logarithmic structures that we use for ouPunc? and the leading-logarithm exponefufashed bunch, decreas-
predictions shows some scale dependence. ing) for the qq channel.(b) Same as ina) for the gg channel.

In Fig. 7 we show the resummed partonic cross sections
oﬂe”as a function ofp, for w=m andm=175 GeV, for both
production channels in théS factorization scheme. We note that the size of th@©(ag) term exceeds that of the
choose a logarithmic scale in to expand the threshold re- O(aﬁ) term for »=0.1, and the ratio grows ag decreases.
gion. We also show the lowest-order and next-to-leadingThis behavior is contrary to the notion underlying perturba-
order counterparts. The three curves differ substantially iion theory, that successive terms in the perturbation series
the partonic threshold region<1, with the final resummed should be smaller, and is cited in our Introduction as the
curve exceeding the other two. Above=1, our resummed motivation for resummation at smat.
cross sections are essentially identical to the next-to-leading- It is useful to translate our definition of the perturbative
order cross sections, as is to be expected since the neaegime directly into a statement about the perturbative region
threshold enhancements that concern us in this paper are niat . Our perturbative resummation probes the threshold
relevant at large;. In both theqq and thegg channels, we down to the point
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of our decision to restrict resummation to the perturbative

o domain. The difference reflects the larger color factor in the
g gg case.

32 We return to possible nonperturbative contributions in
= Sec. VI.

®

B. The physical cross sections

We useS to denote the square of the hadronic center-of-
mass energy. Once the partonic cross sections are calculated,
the physical cross section for each production channel is ob-
tained through the factorization theorem

) 4m? [ (g4am?)—1
i (Sm)=—5- . dn

4m? )
?(1+ ), M

Uij(’?!mzwu’z)-

Xq')ij

6 R I R ! el el (150)

g
107 1072 107! 1

10 . . . . .
n, m=175 GeV The parton flux is a convolution of parton distributions

E

2 tdx 2 2
Qijly,u]= y7fi/h1(X,M )i, (Y1, p%). (151

We use CTEQ3 parton distributiofi$5] in the appropriate
factorization scheme. The total physical cross section is ob-
tained after incoherent addition of the contributions from the
qq andgg production channels. We ignore the small contri-
bution from theqg channel.

A quantity of phenomenological interest is the differential
cross section

a(n) (ub, 99 )

doj (SSm?,7) 4m?  [4m?
. a7 =5 %ii| 5 (1+ ), 1| o (,m?, ).

(152

The differential distribution is a RG-invariant quantity, and it
is perhaps measurable. Its integral overis, of course, the
. total cross section. In Fig. 8 we plot these distributions for
- SR RUT SR the two production channels fon=175 GeV,/S=1.8 TeV
®) 10 10 10 ! - =175 GeV and w=m. Convolution with the parton flux enhances the
relative importance of the region of smajl. We observe
FIG. 7. The partonic cross sectiong ) as a function ofy: (a that, at the energy of the Tevatron, resummation is signifi-

Born (dotted, next-to-leading ordefdasheg, and resumme(solid) Can'[8er the?ql ?hal;mekl ap?hless Sol for tfgig:. Chatmnell; Fig- iol
partonic cross sections for tlgg channel(b) Same as iffa) for the ~ U'€ © IS USEIUI Tor back-ol-ihe-envelope eslimates of possibie

gg channel. contributions from the nonperturbative regime, discussed in
Sec. VL. o
1 We show the totatt-production cross section for various
7= n0=o—, (149  energies in Fig. 9, and in Table | we provide numerical val-
2ng ues. The central value of our predictions is obtained with the

choiceu/m=1, and the lower and upper limits are our esti-

wheren, is calculated from Eqg141) and(142). Below this  mate of the perturbative uncertainty. These upper and lower
value, perturbation theory, resummed or otherwise, is not tvalues are the maximum and minimum of the cross section
be trusted. For our central predictions we choose to accen the range of the hard scaldme {0.5,2. For the range of
the exact next-to-leading-order results throughout the phagep-quark mass shown, the minimum occurs@dm=2,
space, but the nonperturbative region is a source of nonpewhile the maximum occurs at/m=0.7, as is also shown in
turbative uncertainty, subject to model building. it&=175  Fig. 9b). Our prediction of Fig. ) is in good agreement
GeV, our resummed cross sections become identical to theith the published dat§l17]. The u variation of our re-
next-to-leading-order cross sections belgw 0.008 for the  summed cross section, shown in Figo9is smaller than that

gq channel and;=0.05 for thegg channel, a consequence of the next-to-leading-order cross section, as expected for an
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only leading-logarithmic threshold contributions are included
in successive orders ir. We take the universal leading-
logarithmic contributions ab(«) above the Born level from
the full next-to-leading order calculations tf production
and the leading-logarithmic contributions@¢a?) from cal-
culations of the Drell-Yan cross section. For this exercise
only, we set aside our perturbative constraint, @85), and
instead we integrate over the entire threshold region
0<z< 1. We present the resulting finite order physical cross
sections in theMS scheme in Fig. 10(For the Born cross
section, we integrate over al) We observe that the cross
section o(°"1) obtained from the leading-logarithm terms,
only, throughO(«a) is in remarkable agreement with the
cross section obtained from our full next-to-leading-order
calculation fortt production. Moreover, our predicted re-
summed cross section lies part way betweéh™ V) and the
cross sectionr(®*172) obtained from the leading-logarithm
terms, only, througlD(a?). At m= 175 GeV, the increase
of o(®" 1) over the Born result is a 22% effect, and the fur-
n, m=175GeV ther increase 06(°"1*2) over o(°*1) is another 14% effect.
We conclude that the roughly 9% increase of our final re-
summed cross section above the next-to-leading order cross
section is quite reasonable. It would be surprising if it were
much less.

As remarked earlier in the paper, our resummation in-
cludes only the universal logarithmic structures. It is reason-
able to inquire whether and by how much the predicted cross
section would change if subleading logarithmic structures are
included. One good representation of the possible effect of
subleading structures is the full Drell-Yan exponent itself,
Eq. (86). As shown in Fig. 4, this exponent is larger than our
leading exponent, but the corresponding perturbative regime,
calculated through Eq.135), is smaller. To obtain a cross
section that includes the Drell-Yan subleading logarithms we
use EQqs(88)—(90) with the sum ovelQ;’s replaced by the
full first term, Q. It is shown as the dashed line in Fig. 11
for the qq channel. We see that the curves differ little from
each other, and that the Drell-Yan resummation prediction is
within our uncertainty band. This example substantiates our

da(n)/dn_(pb. qq)

N
o

25 [

E

tn

da(n)/dn (pb, 99)

-

0.5

0 g e e s belief thatu variation is an adequate measure of perturbative

() 7, m=175 GeV uncertainty and that it includes the effect of nonresummable,
nonuniversal logarithms.

FIG. 8. Differential cross sectioda/d as a function ofy in A second source of uncertainty, that is partly phenomeno-

the MS factorization scheme. The physical cross sections are thiogical, partly perturbative, and partly correlated with non-
areas under the curve$q) qq_channe|: Born(dotted, next-to- universal Iogarithms, is associated with the use of different
leading orderdashed and resummedsolid). The nonperturbative ~parton distributions. The parton set we use is a next-to-
regime is the area frory=0 to the point iny at which the solid leading-order determination of the quark and gluon densities.
and dashed curves intersedi) Same as ina) for thegg channel.  Since we use resummed partonic cross sections, it is argu-
ably true that we should also use parton densities based on
all-orders resummatiofOwing to a computer compiler er- resummed expressions for deep-inelastic lepton scattering
ror, the variation withu of the next-to-leading-order results cross sections and other processes used in the determination
in the first paper of Ref[5] is incorrect. Our overall re- of the densities. However, no such densities exist. It is com-
summed predictions are essentially unchanged. The depemon practice phenomenologically to repeat calculations with
dence onu shown in Fig. @b) is the correct variation. different sets of parton and to estimate thereby a second
Our resummed cross sections #= 1.8 TeV are about source of uncertainty. Except for the fact that different data
9% above their next-to-leading-order counterparts computedets are used, or are emphasized differently, in different de-
with the same parton distributions. To gain numerical insighterminations of parton densities, and that the fitting programs
into the magnitude of this increase, we may examine thaliffer, we opine that the practice of adding in quadrature, or
growth of the cross section in the dominayg channel that otherwise, uncertainties associated with variation and
would be expected in a series of fixed-order calculations ithose associated with different parton sets involves signifi-
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FIG. 9. Inclusive cross section for top-quark production in KN® schemeia) At the Tevatron, fopp—ttX at /S=1.8 TeV. The
extremum dashed lines are our band of uncertainty, and the solid line between them is our central-value prediction. We also reproduce the
published data of the CDF and DO Collaboratiofiy. Hard-scale dependence of the resumrtgadid) and next-to-leading-ordddashed
cross sections afS=1.8 TeV form=175 GeV.(c) Same as ira), but for the upgraded TevatrogS=2.0 TeV.(d) Central values of the

resummed cross sectigrolid) for ppett_x at the CERN LHC energies of 10 and 14 TeV and the corresponding next-to-leading-order
predictions(dashedl

cant double counting. Much of the difference among modern t(m— - _ 0.10

parton sets reduces to a difference\irwhich largely affects o'{(m=175 GeVy/S=2 TeV) 7.56 5 pb. (153

a(u). Thus, this difference is correlated with tphevariation

we consider above, and should not be treated as an indepen-

dent error. Over the range/me{0.5,2, the band of varia- At m=175 GeV, the value of the cross section &=2

tion of the strong coupling strengtirs is a generous TeV is about 37% greater than that #b=1.8 TeV.

+10% atm = 175 GeV. Turning topp scattering at the energies of the Large Had-
In Fig. 9(c) we present our predictions for an upgradedron Collider (LHC) at CERN, we note a few significant dif-

Tevatron operating afS=2 TeV. Our cross section is larger ferences frompp scattering at the energy of the Fermilab

than the next-to-leading order one by about 9%. We predicTevatron. The dominance of theeg production channel at
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TABLE I. The totaltt production cross section 5= 1.8 TeV  count for half or more of this increase. This source of differ-
and its perturbative uncertainty. The theoretical error band, normalence should be kept in mind when comparisons are made
ized with respect to the central value, represents an almost constayiith next-to-leading-order calculations and various previous
uncertainty of 9-10%. results.

— — — It is important to stress that the theoretical uncertainties
m(GeV) ol (min; pb  oll, (central; pb  oll,(max;pb  are estimated in quite different ways in the two methods. We
use the standard variation, whereas LSvN obtain their un-

150 11.76 12.72 12.90 certainty primarily from variations of their undetermined IR
155 9.87 10.68 10.83 cutoffs. From a theoretical point of view, a study of the
160 8.33 9.01 9.14 variation of the cross section with the hard-scalés impor-
165 7.06 7.63 7.73 tant because it deals with stability of the calculation under
170 6.00 6.48 6.57 variation of a perturbative, but not directly determinable
175 5.10 5.52 5.59 renormalization-factorization scale. This statement applies as
180 4.36 4.71 4.78 well to the LSVN calculation, above and beyond the choice
185 3.73 4.04 4.09 of their IR cutoff. The role of the IR cutoff is to measure
190 3.20 3.46 3.51 ignorance of nonperturbative effects in the LSvN approach.
195 2.75 2.98 3.02 One of the advantages of a resummation calculation should
200 2.37 2.57 2.60 be diminished dependence of the cross sectionuoress
205 2.04 2.21 2.24 variation than is present in fixed-order calculations.
210 1.77 1.91 1.94 It is also instructive to compare the numerical values of
215 1.53 1.65 1.68 our perturbative boundaryzg(m,u/m), with the corre-
220 1.32 1.43 1.45 sponding cut inp produced by LSVN's IR cutoffu,. In the
225 1.15 1.24 1.26 MS scheme, their cut ig3]
230 0.99 1.08 1.10 1 3
235 0.86 0.94 0.96 _ | Mo
240 0.75 0.81 0.83 seo. 1) 2( ) ' (159
245 0.65 0.71 0.72 . -
250 057 0.62 0.63 and in the DIS scheme it is
1 2

i - n(uo,u)=—(@) : (156)

the Tevatron is replaced lyg dominance at the LHC. Ow- 2\ p

ing to the much larger value ofS, the near-threshold region . .
in the subenergy variable is relatively less important, reduc%:/:rlrlee;rg;n\svﬁ%,garargr[t)l:(r)t\)/ﬁi?/g 'Sozizles (Ilmancirlri; and are
ing the significance of initial-state soft-gluon radiation. P P anyim, p/m).

C . . In the paragraphs to follow, we compajge variation,
Lastly, physics in the region of large partonic subenergy : .
J/s, where straightforward next-to-leading-order QCD is alsoscheme dependegcg, arl;d thz mfluer:jce of tr,‘e dlffe_rence be-
inadequaté18], may become more significant fer produc- - cen OUr perturbative boundary an LSVN's CRUESJt"n n
tion at LHC eher ies than the effects of initial-state radia—T":lbles Il and Ill, we reproduce numbers from and
9 show the corresponding values we calculate. The comparison

tion. The.a'p.proach of our paper 1S limited to the resUMmayy hade am=100 GeV in Table Il because it is at this value
tion of initial-state gluon radiation only. We present

estimates in Fig. @) of the cross section for LHC energies °f the top mass that they provide results in M8 scheme

of 10 and 14 TeV. We obtain for both theqq andgg channels. .
Tables Il and Il show that our resummed cross sections

satisfy the test of stability under variation of the hard scale

©. The resummed results show less variation than the next-

to-leading-order cross section. On the other hand, this is not
C. Comparisons with other calculations true of the resummation of Rdf3]. This distinction is linked

In earlier sections we comment on differences betweeft© the absence of undetermined IR cutoffs in our method and

our formalism and that of Laenen, Smith, and van Neerverh€ specific RG-invariant exponent we use. Both of these
(LSVN) [3,4]. Here we compare aspects of our numericaldifferences contribute to the instability apparent mthe results
predictions. The comparison most relevant to experiment i€f Ref.[3]. The LSVN results show less variation within

that of our Table | and the corresponding table in Réf.  the DIS scheme than in thB!S scheme, the reason they
Our central values are 10-14 % largéhe difference in- provide their final predictions in the DIS scheme. As shown
creases with magsand our estimated theoretical uncertainty in Table llI, the variation withu of their qq cross section in

is 9—10 % compared with their 28—20 ¢decreasing with the DIS scheme is about 21%. For comparison, the next-to-
mas$. The two predictions have overlapping uncertaintiesleading-order cross section shows a variation of 9% and our
and are, in this sense, in agreement. In commenting on difesummed cross section a variation of 6%.

ferences, we remark that our Born cross section is about Our perturbative boundaryy,(u), is fairly insensitive to
3-5% larger than LSvN’s Born cross section. The differ-u variation. In theMS scheme, it changes by about 30%
ence arises from the different parton distributions used in tharound its central valu€or u=m) while u itself changes
two calculations, including differences ik which alone ac- by 50—-100 % from the central value. In the DIS scheme the

o (M=175 GeV,yS=14 TeV)=760pb. (154
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TABLE II. Physical cross sections in pb fon=100 GeV at

JS=1.8 TeV. The LSVN predictions are shown for various choicesDIS versusMS scheme.

of their IR cutoff ug. Our perturbative boundary, and LSvN'’s
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TABLE IV. Physical cross sections in pb for tlggg channel:

phase-space cup(uo,u) are also shown. Absences in the LSVYN m (GeV) o4¢(DIS; M_S) pu/m=05  u/m=1 ulm=2
entries denote extremely large numbers.

100 NLO 52.3;54.6 52.4;55.0 48.9;51.3
7qg(m=100 GeV;MS)  w/m=05 pu/m=1  pu/m=2 pet 53.9;56.8 55.5;59.4 52.8;57.2

125 NLO 21.1;21.9 21.0;21.8 19.5;20.1
Bom 64.3 48.4 37.3 pert 21.9;22.9 22.3;23.7 21.1;22.6
NLO 54.6 550 °13 450 NLO 9.42,9.68 9.31;953 857;8.73
Tqq. 56.9 594 572 per 9.76; 10.16 9.92; 10.42 9.31; 9.87
LSVN(po=0.1m) 52.6 88.9 - 175 NLO 4.46; 454 4.39; 443 4.01: 4.02
LSVN(uo=0.2m) 42.5 66.4 1105 per 463,478 4.69; 487 4.37:4.58
70(1) 0.007 0.011 0.014 200 NLO 2.20;2.21 2.15;2.14 1.96;1.93
7(o=0.1m, 1) 0.004 0.0005  0.000063 pert 220 234  2.30:2.37 2.14:2.21
7(o=0.2m, 1) 0.032 0.004 0.0005 ag
0go(M=100 GeV;MS) ~ u/m=05 u/m=1  p/m=2 _

We may contrast the modest changes of gyfuw) with the
Born 36.4 23.8 16.1 fact that the IR boundary of LSvN varies by 3 orders of
NLO 44.5 40.5 34.0 magnitude in theMS scheme. This large change is partly
oy 44.8 41.6 35.0 responsible for the unstable behavior of LSvVN’s cross sec-
LSVN(uo=0.2m) 34.3 88.7 - tion with . In the DIS scheme, the IR boundary varies by an
LSVN(uo=0.3m) 28.1 42.4 820.0 order of magnitude fopy=0.1m (the value used for their
M) 0.036 0.063 0.1 central value prediction in Ref4]), and atu/m=1 it is
7(o=0.2m, 1) 0.032 0.004 0.0005 twice as large as oup,. The fact that these quantities are of
7(o=0.3m, 1) 0.108 0.0135 0.0017 the same order of magnitude makes LSvN'’s and our final

_ predictions for thegq cross section comparable. Since the
o((M=100 GeViMs)  w/m=0.5  p/m=1 " p/m=2 qqg channel is dominant, our final predictions for the total
Born 100.7 72.2 53.4 tt cross section at the Tevatron are also equal within uncer-
NLO 99.1 95.5 g7.4  tainties. , ,
:)%I 101.7 101.0 92.2 Sc_hemebdependhen(ie is an extra §o_urc:a o_ffftheoretlcafl un-

LSVN(zo={0.2,0.3m) 706 108.8 9305 certainty, but it should produce minimal differences for

physical cross sections. The results in Tables Il and Il show
that this is not true of the LSVN cross sections. We provide
our main predictions in th#1S factorization schemgs]. To

changes inyo(x) are even smaller, ranging from 16 to 28 %. check for possible scheme-dependent uncertainty, we per-
The mild changes imo(4) accord with our earlier physical o our resummation for the dominagg channel in both
expectation that the boundary is characteristic of the partigchemes. The cross sections presented in Table IV show that
cle’s mass, not of the perturbative artifget If a complete  gcheme dependence s insignificant in our approach, result-
resummation were possible, as in the Drell-Yan case showmg in a difference of about 4% for the cross section.
in Fig. 6, our boundary,, would be a function of mass only. In a very recent papd.9] doubts are expressed about the
numerical importance of resummation for top-quark produc-
TABLE lIl. Physical cross sections in pb and perturbative tion at Fermilab Tevatron energies, and criticisms are leveled
boundaries am=150 GeV and\/S=1.8 TeV. The corresponding at our formalism and that of Reff3]. We consider the criti-
LSvN predictions are also shown. cisms unfounded. The analysis presented in our current paper
substantiates the work we presented in RB8f. As demon-

0gqtm=150 GeV; DIS)  wu/m=05 u/m=1 w/m=2 strated in Sec. lll, our perturbative resummation exponent,
NLO 9.42 931 857 e.g., Eg.(63), contains.no factorially growing.terms in its
pert 9.76 9.92 0.31 expansion. The a_naIyS|s. we present of our Figs. 1-5 sh_ows
qq that the perturbative region in which we apply resummation
LSVN(1o=0.1m) 79 10.0 9.7 remains far removed from the part of phase space in which
70(#) 0.0017 0.0024 0.0028  ranormalon poles or nonperturbative residual uncertainty
7(po=0.1m, 1) 0.02 0.005  0.00125  ¢ould be influential. Upon expansion in terms of the QCD
744(M=150 GeV;MS) w/m=05 w/m=1 u/m=2 coupling strength, fixed at the scale of the top-quark mass,
our formalism produces the universal leading-logarithmic
NLO 2.51 2.22 1.81 structures that are found at next-to-leading or@ere-loop
oby’ 2.53 2.30 1.89 in top-quark production and at two loops in the Drell-Yan
LSVN(uo=0.2m) 1.76 4.38 - process. This is an all-orders expansion, but it is convergent
) 0.033 0.055 0.083 because its coefficients do not have factorial growth, and the
7(1o=0.2m, ) 0.032 0.004 0.0005 momentum scale of these structures is restricted to our cal-

culable perturbative regime. Our approach is consistent with,
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near the threshold. Since even the gluon parton distributions
are not altogether well established, our estimates may be
viewed as rough physical understanding expressed quantita-
tively.

An examination of Fig. 8 indicates that the nonperturba-
tive regime is very small, especially for tlug channel. We
focus on this channel first, where the support of the nonper-

N turbative interval isp,=0.008. We recall that the area under
7 the next-to-leading-order curve is already included in our
N resummed cross section. Concentrating on the solid curve,

)

w

%(m)_(pb, q9
()

we assume that the threshold behavior in the non-
5 N perturbative regime is a finite continuation of the solid curve

N to »=0. Reasonable guesses include a continuation of the
solid curve as a constant from its peak value down to
n=0, or, at most, as a smooth function having the same
slope as the solid curve just above the peak. In the former
scenario we get an extra contribution

pip— tt

804q=5%0.008=0.04 pb. (157)

140 150 160 170 180 190 200 210

m (GeV) In the latter case we add a further

FIG. 10. Physical cross sections in thg channel in theMS 1
scheme. The solid lines denote the finite-order partial sums of the 5’aqa: 5(15— 10) < 0.008=0.02 pb. (158
universal leading-logarithmic contributions from the expliGi«)
and O(a?) calculations for thett and Drell-Yan cross sections,
respectively, integrated throughout phase space. Lower sdftf,  The total is
middle solid,a®*; upper solid,o®*1*2. The dashed curve rep-
resents the exact next-to-leading-order calculationtfgroduction, Ao g=0.06 pb. (159
in excellent agreement with-°*Y. The dotted curve is our re- a9

d prediction. . . . .
summed prediction Since the perturbative cross section ra&=175 GeV is

. . . Per_ 4.87, the extra contribution amounts to an increase of
and makes maximum use of, the perturbative properties ofad '

. o . about 1-1.5 %.
QCD and established finite-order calculations for the rel ¢ For thegg-channel displayed in Fig.(B), 70~0.05, and

evant processes. With respect to the numerical importance o
resummation, we remark that the enhancement of the crodé® find
section produced by resummation in our calculation is a
modest 10% above the next-to-leading-order result, at a top
mass of 175 GeV andS= 1.8 TeV. That the increase cannot

be much less than 10% is suggested simply by an examina-

tion of the leading-logarithmic contributions at the two-loop Gjyen thatggzﬂzo_% pb, this correction is a 4% effect. We

level, described in Fig. 10. The suppression of the effects ofstimate that the total nonperturbative correction cannot be
resummation arises from the retention in REf9] of nu-  0re than

merically significant nonuniversal subleading logarithmic
terms. As we emphasize in this paper, in a consistent treat- T 0
ment one should retain only the universal logarithmic terms Ao =0.020 ey (161)

in momentum space and restrict the phase space integration

to the region in which the unknown subleading terms wouldCorrespondingly, we can expect a maximum cross section of
not be significant regardless. We judge that the approach afbout 5.7 pb am=175 GeV.

Ref.[19] is incorrect. As shown first by LSvIN3], it is not
necessary to transform to moment space or to resum in order
to obtain an increase of the cross section in the neighborhood

of 10%. There are two main aspects of this paper, one of a more
theoretical nature and the other phenomenological. First, we
describe in all generality features pérturbativeresumma-
tion that occur in a variety of hard scattering processes while
focusing on the specific process wfproduction. This pro-

In this section we hazard some estimates of the nonpeess has the advantage of being physically very interesting in
turbative contributions. This discussion is based on educatedQCD in that it probes our understanding of the theory when
guesses founded mainly on our intuition of what a physicaimultiple physical scales are involved. It is characterized by
threshold is as well as on the behavior of parton distributiong@n unquestionably large physical scame, and apartonic

1
Aogg=5(2-1)x0.05=0.025pb. (160

VIl. DISCUSSION AND CONCLUSIONS

VI. ESTIMATES OF NON-PERTURBATIVE
CONTRIBUTIONS



3112 EDMOND L. BERGER AND HARRY CONTOPANAGOS 54

variable » that, in turn, is the ratio of two large scales. Itis _ 4
an ideal process in which one may examine the systematicsg
of partonic interactions in more detail than previously pos- <
sible. In this process, we encounter difficulties that have &
challenged the applicability of PQCD for a long time, nota- ¢
bly IR renormalons and large color factors, as well as the™§
systematics of universality and invariance under changes of® s L
the hard scale. In dealing wittt production, we treat all
these issues in aoncrete phenomenologically significant
way.

Second, the paper is concerned with predictions for the
totaltt cross section and the practical application of the theo-
retical resolutions developed in the first part. At the same
time, comparisons are made with next-to-leading-order cross
sections and with earlier resummation calculations, and ex-
tensive discussions are presented of theoretical limitations
and uncertainties.

Our theoretical analysis shows that perturbative resumma-
tion without a model for nonperturbative behavior is both
possibleand advantageous. In perturbative resummation, the 2,668 150175 o0 Te oo Tos 00
perturbative region of phase space is separated cleanly from m (GeV)
the region of nonperturbative behavior. The former is the
region where large threshold corrections exponentiate but be- i, 11. physical cross sections for thg channel in thevis

have in a way that iperturbatively stableThe asymptotic  scheme: Leading-logarithm resummed cross sectiongufar=1

behavior of the QCD perturbative series, including large(solid) and u/m=2 (dotted and the Drell-Yan resummed version
multiplicative color factors, is flat, and excursions around théfor u/m=1 (dashed

optimum number of perturbative terms does not create nu-

merical instabilities or intolerable RG-dependence. Infrareqn[l/(l_ 2)]. This statement of perturbative power counting
renormalons are far away from the stability plateau and, evegy the essence of perturbation theory. Imposing its validity in

though their presence is essential for defining this platéayne two-scale parameter space, we determine the perturbative
they are of no numerical consequence in the perturbatlv?egime:

regime. Large color factors, which are multiplicative, en-
hance the IR renormalon effects and contribute significantly
to limiting the perturbative regime.

As expected in a process with two physical scales, the
constraint that ensures good perturbative behavior is a func- ) . ]
tion of several parameters. Making the customary assumpTh'S constraint restricts several sources of nonperturbative
tion that the renormalization scale is identified with the fac-behavior, namely: IR renormalona(u), x, and color fac-
torization scale(we denote this single scale by), and tors. Some of them are channel mdt_apendent while others
denoting the variable that probes the partonic threshold biepend on the nature of the interacting partons. The con-
7, We may summarize the essence of our perturbative resun§iraint serves to identify the only unknown in the problem,

Jd
5E(X,a(,u),m/,u,N(,u))$l. (163

mation procedure as follows. i.e., the momentum range iin which perturbative resum-
The threshold logarithmic corrections are exponentiatednation is justified.
in an exponent We calculate
E=E(X,a(w),m/u,N(w)), (162 o (M=175 GeVys=1.8 TeV)=5.522% pb.( ,
16

where x=1In[1/(1—-2)]. If the total center-of-mass energy L

JSis not far above thresholdj=S/4m?—1=(1-z)/2. The ~ Our total tt-production cross section a= 175 GeV and
number of perturbative termbl(x) depends on the hard S=1.8 TeV is 10 — 14 % greater than that of earlier calcu-
scale only, as long as IR renormalons are far away. The crodations. Part of the increase comes from the more recent par-
section is insensitive to fine-tuning of this number, as long agon distributions we use. Our resummed cross sections are
we remain in a specific well-defined perturbative region ofabout 9% above the next-to-leading-order cross sections
X. In this paper, we determine this region in momentumcomputed with the same parton distributions. The
space by demanding that the cross section confornpete  renormalization-factorization scale dependence of our cross
turbative power counting. The cross section is a series mulsection is fairly flat, resulting in a 9 — 10 % theoretical un-
tiplying the exponentiated effects of the threshold and whoseertainty. This variation is smaller than the corresponding
successive terms are given by functions of the successivdependence of the next-to-leading-order cross section, and it
derivatives 9“E/k! 9x¥. Perturbative power counting means is much smaller than the corresponding dependence of the
that higher derivatives are suppressed relative to lower onesgsummed cross section of RgB]. There are other pertur-
because they contribute subleading logarithmic structures ihative uncertainties, such as dependence on parton distribu-
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tions and factorization scheme. Each of these sources affegrturbative QCD. The data may also guide the modeling of
our cross section minimally, at level of 4% or less. Thesethe nonperturbative phase of the theory and provide a
variations are not independent, so we opt not to add them iglimpse of phenomena beyond the standard model.
estimating the theoretical uncertainty. For example, different The methodology described in this paper can be applied
parton distributions are associated with different values ofn several closely related situations. The production of bot-
A and therefore ofs. This uncertainty is correlated with tom quarks in hadron reactions at energies typical of the
uncertainty inas from other measurementand with the  Fermilab fixed-target program or the HERA-B facility
standardu variation that we use. Additional back-of-the- should be sensitive to the same type of threshold enhance-
envelope modeling of nonperturbative behavior does not inments. Other reactions include the production of hadronic
crease our cross section more than 2%. However, we do n@dts with very large values of transverse momentum, the pro-
claim to address the issue of possible nonperturbative eryction of pairs of heavy particles predicted in supersymme-
hancements other than at the level of a conservative educat@§ models, or the production of very massive lepton pairs in

guess. _ _ - Tevatron collider experiments. We hope to address these top-
Our theoretical analysis and the stability of our cross secics in the near future.

tions underw variation provide confidence that our perturba-

tive resummation procedure yields an accurate calculation of

the inclusive top-quark cross sec_tion at Tevatron e_nergies ACKNOWLEDGMENTS
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