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Perturbative resummed series for top quark production in hadron reactions
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Our calculation of the total cross section for inclusive production oft t̄ pairs in hadron collisions is presented
The principal ingredient of the calculation is resummation of the universal leading-logarithm effects of g
radiation to all orders in the quantum chromodynamics coupling strength, restricted to the region of p
space that is demonstrably perturbative. We derive the perturbative regime of the resummed series, s
from the principal-value resummation approach, and we isolate the perturbative domain in both moment
and, upon inversion of the corresponding Mellin transform, in momentum space. We show that our per
tive result does not depend on the manner nonperturbative or infrared effects are handled in principal
resummation. We treat both the quark-antiquark and gluon-gluon production channels consistently
MS factorization scheme. We compare our method and results with other resummation methods that rely
choice of infrared cutoffs. We derive the renormalization or factorization scale dependence of ou
summed cross section, and we discuss factorization scheme dependence and remaining theoretical un
ties, including estimates of possible nonperturbative contributions. We include the full content of the e
next-to-leading order calculation in obtaining our final results. We present predictions of the physical
section as a function of top quark mass in proton-antiproton reactions at center-of-mass energies of 1
2.0 TeV. We also provide the differential cross section as a function of the parton-parton suben
@S0556-2821~96!01415-4#
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I. INTRODUCTION

In hadron interactions at collider energies, the main p
duction mechanisms for inclusive top-quark–top-antiqua
(t t̄) production, as modeled in perturbative quantum ch
modynamics~PQCD!, involve parton-parton collisions. The
perturbative series begins at second orderO(as

2) in the
strong coupling strengthas . At this order, the parton sub
processes are

i1 j→t1 t̄, ~1!

where the initial partonsi , j are either a quark-antiquar
(qq̄) or a gluon pair (gg). In higher orders, gluons are rad
ated in these two production channels, and there are a
tional production channels, such asqg→t t̄q. The gluonic
radiative corrections to the lowest-order channels cre
large enhancements of the partonic cross sections nea
top pair production threshold@1,2#. The magnitude of the
O(as

3) corrections implies that fixed-order perturbatio
theory will not necessarily provide reliable quantitative pr
dictions for (t t̄) pair production at Fermilab Tevatron ene
gies. A resummation of the effects of gluon radiation to
orders in perturbation theory is called for in order to impro
the reliability of the theory. This was the main motivation f
the published resummation calculations oft t̄ production
@3–5#.

In a prior paper, we presented a brief exposition of o
method of resummation and its application tot t̄ production
@5#. Our guiding principle is the all-orders resummation
the universal leading-logarithm effects of initial-state rad
tion, restricted to the region of phase space which is ma
festly perturbative. Our purpose in this paper is to expan
upon our earlier theoretical and phenomenological disc
546/54~5!/3085~29!/$10.00
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sion. We provide a detailed exposition of our approach, hig
light the similarities and differences with Refs.@3,4#, and
show that our predictions are independent of the particu
regularization of the infrared and nonperturbative regio
imposed by principal-value resummation~PVR!. We present
predictions of the inclusive top-quark production cross s
tion as a function of top-quark mass in proton-antiprot
reactions at center-of-mass energiesAS51.8 and 2.0 TeV,
and in proton-proton reactions at the energies of the CE
Large Hadron Collider~LHC!. We demonstrate that the
renormalization or factorization scale dependence of our
summed cross sections is very modest. At the end, we sp
late on modeling the unknown dynamics of the nonpertur
tive region and its possible contribution to the cross secti

In ‘‘infrared safe’’ processes, such as the total cross s
tion for e1e2 annihilation to hadrons, there is only on
physical scale that characterizes the perturbative cross
tion, namely the total energy of the electroweak initial sta
In hadron-hadron scattering, according to the factorizat
theorem of PQCD, the cross sections for the partonic subp
cesses are the main object of theoretical calculations. In m
hard-scattering processes, however, partonic cross sec
are not free of singularities. Initial-state hadronic interactio
require that a nontrivial ‘‘mass factorization’’ be performe
in order to absorb a singular part of these cross sections
a redefinition of the long-distance parton distribution fun
tions in a universal, process-independent way. Once m
factorization is performed, the object of theoretical interes
the short-distance part of the partonic cross sections~the
‘‘hard part’’!. The hard part usually depends on more th
one momentum scale, typically because of gluon radiati
The hard part is calculated as a series in the strong coup
strength of PQCD, and the domain of applicability of th
series is a function ofall pertinent momentum scales. I
3085 © 1996 The American Physical Society
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determining the region of applicability of this series, o
encounters difficulties including, but not limited to, infrare
renormalons@6#. Most discussions~not necessarily in agree
ment! on the range of validity of PQCD have focused o
momentum-scaling properties of Green’s functions@7,8#, but
color factor constants are an equally important aspect of
series and should be taken seriously into account. Both
contribute to the breakdown of PQCD. Although the form
have a more ‘‘dynamical’’ appearance because they dep
on momentum, both create difficulties that are combinato
in nature. Infrared renormalons create factorial growth as
ciated with massless vacuum polarization diagrams,
large constants enhance the strength of the partonic inte
tions according to their corresponding fields in color spa
Among the many virtues of Ref.@3# is the demonstration tha
large multiplicative color factors are indeed extremely im
portant in realistic situations. Their effects transcend st
dard operator-product-expansion~OPE! arguments to the ef-
fect that nonperturbative effects are suppressed by at l
L2/m2 or approaches that are usually formal and model
pendent@8#. We treat this problem in detail in the prese
paper from the realistic viewpoint of applying resummati
to a specific reaction of significant phenomenological imp
tance. From an operator point of view, however, this is
issue that deserves further investigation, to be addressed
future publication@9#.

Top-quark production, Eq.~1!, embodies all the issue
mentioned above. An instructive illustration can be found
the O(as

3) calculation of the partonic hard part, or loose
speaking, the ‘‘partonic cross section’’ for heavy flavor pr
duction @1#. Figures 12 and 13 of the first paper in Ref.@1#
show that theO(as

3) hard part is much larger than th
leading-orderO(as

2) hard partin specific regions of partonic
subenergy. Analogous results are shown here in Fig. 7, to
discussed in Sec. V. Not all of the range of the parto
subenergy can be considered part of the perturbative dom
despite the factthat, at finite orders, the resulting radiativ
corrections are integrable throughout that phase space
yield finite inclusive predictions. Dominance of the highe
order contributions in theqq̄ andgg channels near threshold
and in thegg channel at large values of the subenergy, fee
back ~albeit not as enhanced! to the physical cross section
obtained after convolution with parton densities. In this p
per, we limit our attention to processes in which the ne
threshold region is the most important influence. At Fermi
Tevatron collider energies, the next-to-leading-order
hancement of the top-quark cross section is approxima
25% relative to the leading-order value. For comparison, a
scale specified by the massm of the top quark,
as(m).10%. Top-quark production at the Tevatron is o
that involvesmultipleQCD scales.

Dominance of the next-to-leading-order contributions
top-quark production near threshold in theqq̄ andgg chan-
nels is mentioned earlier in this Introduction as a prima
motivation for theoretical study of resummation of the e
fects of gluon radiation to all orders. One method of resu
mation was implemented fort t̄ pair production some time
ago @3,4#. In most resummation methods, the threshold c
rections are exponentiated into a function of the QCD ru
ning coupling strength,as , evaluated at a variable momen
tum scale which is a measure of the radiated momentum
e
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recover the inclusive cross section, one then integrates o
the available radiation phase space down to the parto
threshold. An inherent ambiguity and limitation of th
method of Ref.@3# is the introduction of undetermined infra
red~IR! cutoffs. The need for these cutoffs arises because
kinematically allowed region meets the Landau pole of t
QCD running coupling. More generally, the exponentiati
of logarithmic corrections results in essential singularitie
whether expressible as singularities of the running coupl
or not, while a finite-order expansion in terms ofas at a fixed
hard scale exhibits a polynomial~and hence integrable! de-
pendence on the logarithms. Since the IR cutoff depende
is exponentiated in Ref.@3#, the sensitivity of their predicted
cross sections to the value of the cutoffs is very significa
numerically, especially when multiplicative color factors a
large, as in thegg production channel.

An advantage of our resummation approach@5# is that it
does not require arbitrary IR cutoffs. We use the princip
value resummation~PVR! technique@10# to bypass the Lan-
dau poles and associated renormalon singularities, and
obtain a mathematically unambiguous expression for the
summation exponent in moment space. The PVR proced
allows us to identify theperturbativeproperties of the re-
summation exponent and to separate these from thenonper-
turbativebehavior of the exponent. The perturbative prop
ties are obtained through a short-distance asympt
approximation valid in a specific region of moment spac
The separation is in turn used to derive a perturbative reg
for the hard part itself in moment space, which is more
stricted due to large color factors and exponentiation. T
inversion of the Mellin transform@11# provides the hard part
directly in momentum space, and we obtain a resummed
turbative expression for the partonic cross section, alo
with the corresponding determination of the perturbative
gime in momentum space. This new method should be c
trasted with the resummation approach of Ref.@3# where
explicit use of IR cutoffs makes a perturbative separat
impossible.

It may be argued that adoption of the PVR technique
the adoption of a model and that the IR cutoff dependence
Ref. @3# is merely concealed. We argue that this is not t
case precisely because we apply our method only in a w
defined perturbative region. To the extent that PVR is
model, it is a model only for the nonperturbative region th
we do not include. The main physical issue on which w
focus is not the finiteness PVR regularization impos
Rather, it is how this finitenesshelps us to probethe asymp-
totic properties of the perturbative cross section. Therein
part of the usefulness of PVR, even though it is possible t
the regularization it imposes throughout phase space, inc
ing the nonperturbative regime, may be physically sign
cant. For example, PVR applied to the Drell-Yan process
fixed target energies is in excellent agreement with exp
ment @12#. We will discard the cross section in the nonpe
turbative region as model dependent, notwithstanding its
niteness in PVR.

The perturbative regime should be independent of inf
red regulators, including the principal-value regulator. T
demonstrate this independence, we show in detail in this
per how one may obtain the same expressions as ours fo
perturbative resummed cross section, independently of
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regularization. To do so, we must make two physically pla
sible assertions about the perturbative behavior of the resu
mation exponent in moment space, assertions that are na
ingredients of the PVR exponent.

Our resummation includes theleading large threshold
logarithmic contributions to all orders in perturbation theor
These contributions are interpreted to be universal, char
teristic of the initial states that produce the hard scatterin
They are common with other hard-scattering processes,
tably massive lepton-pair (l l̄ ) production, the Drell-Yan pro-
cess. A completeO(as

2) calculation is available for the
Drell-Yan process, meaning that the logarithmic structure
known explicitly in that case to one order in perturbatio
theory higher than fort t̄ production. Final-state effects
which differentiate among hard-scattering processes, prod
subleading logarithmic structures that are not universal a
should not be included in a universal resummation approa
It is possible, and even probable, that resummation of s
leading large logarithms from final-state and interference
fects can be accomplished, but such a resummation will
process dependent. For the application we have in mind,
numerical effects will be subleading in nature. We consid
the resummation of final-state logarithms beyond the sco
of this work.

An outline of this paper is as follows. In Sec. II we
present the kinematics of the inclusive cross section for to
quark production and the form of its resummed version. W
include a general discussion on counting powers of log
rithms for the hard part at finite orders and for its resumm
version. In Sec. III we present the perturbative properties
the PVR resummation exponentE in moment space, in both
the modified minimal subtraction (MS) and deep-inelastic-
scattering ~DIS! factorization schemes, as well as it
renormalization-group~RG! invariance properties. We con
sider a formally identical exponent but without regulariza
tion, and we examine its factorial growth in moment space
order to compare the resulting perturbative asymptotic a
proximation at fixed momentswith the one resulting from
PVR. The two perturbative approximations are in agreem
with each other, but the one without the PVR prescriptio
does not directly constrain the moment variable since it d
rives from an unregularized expression that exists only f
mally. We offer additional physically motivated criteria on
could use in this latter approach to constrain the mome
variable, and we show that the resulting constraints are si
lar to those imposed by PVR. Using a heuristic argument,
describe how one may estimate the perturbative regime
the exponentiated hard part itself in moment space.

In Sec. IV we discuss the universality of the thresho
logarithmic corrections in comparison with massive lepto
pair (l l̄ ) production, using threshold asymptotics and the r
sults of the completeO(as

2) calculation of heavy quark pro-
duction@1,2#. We examine the detailed structure of the har
scattering function in the gluon radiation phase spa
~momentum space! and the corresponding determination o
the perturbative regime in that space. The hard-scatter
function is proportional to exp(E), which resums the thresh-
old corrections directly. The inversion of the Mellin trans
form produces a hard part in momentum space that inclu
a series of subleading structures deriving fromE @11#. It is
u-
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this latter expression that is best suited for the determinat
of the perturbative regime in momentum space. The two d
terminations of the perturbative regime for the cross secti
in moment and momentum space are in good agreement w
each other. We conclude that the resummed perturbative p
tonic cross section derived from the PVR approach is ind
pendent of the PVR regularization and is valid in a wel
established perturbative regime. It is derived basically fro
simultaneous minimization of the factorial growth of IR
renormalonsand color factor combinatorics in the exponen
tiated hard part.

In Sec. V we discuss the numerical properties and ph
nomenological behavior of the resummed partonic a
physical cross sections, for both theqq̄ andgg production
channels, in theMS and DIS factorization schemes. Predic
tions are presented in the form of both figures and tables
the inclusive cross section for top-quark production as
function of top mass in proton-antiproton collisions a
AS51.8 and 2.0 TeV. We display the factorization
renormalization scale dependence of the physical cross s
tions and provide extensive comparisons with the corr
sponding quantities of Ref.@3#. We address the issue o
perturbative theoretical uncertainties in both our approa
and that of Refs.@3,4#. In Sec. VI we present estimates o
nonperturbative uncertainties based on physically motiva
assumptions about the behavior of the cross section in t
regime. We summarize our conclusions in Sec. VII.

II. PRODUCTION KINEMATICS AND RESUMMATION

In this section we begin with expressions for the parton
and physical cross sections in finite orders of QCD perturb
tion theory and the associated kinematics oft t̄ production.
Subsequently, we present a resummed expression for the
tonic cross section in PVR, based on universality of the lea
ing threshold corrections with those in massive lepton-p
( l l̄ ) production. In this paper, we use uppercaseS to denote
the square of the total energy in the hadron-hadron syst
and lowercases for the square of the energy in the partoni
system.

A. Next-to-leading-order cross section and kinematics

We start with the next-to-leading-order one-particle inclu
sive partonic differential cross section in the DIS factoriz
tion scheme. We use the notationa(m)[as(m)/p, where
m is the common renormalization-factorization hard scale
the problem. A perturbative quantityR is expanded as
R@ i #5( j50

i a jR( j ), whereR( j ) is the ordera j radiative cor-
rection to R, above the leading order. Unless otherwise
specified,a[a(m5m) wherem is the mass of the top
quark. Following the notation of Ref.@3# for the subprocess

i ~k1!1 j ~k2!→t~p1!1 t̄~p2!1g~k!, ~2!

and defining the partonic invariants

s5~k11k2!
2, t15~k22p2!

22m2,

u15~k12p2!
22m2, s45s1t11u1 , ~3!

we express the partonic differential cross section as
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m2s2
d2s i j

~1!

dt1du1
~s,t1 ,u1!52Ci j D̄1~s4 ;D!s i j

B~s,t1 ,u1!1R.

~4!

In Eq. ~4!, s i j
B(s,t1 ,u1) is the lowest-order Born cross se

tion, expressed in terms of three-particle final-state variab
and the remainderR stands for terms that do not conta
leading logarithmic corrections near threshold. The quan
Ci j is the color factor for thei j production channel, and

D̄1~s4 ,m
2;D![

m2

s4
lnS s4m2DQ~s42D!1m2d~s4!

1

2
ln2S D

m2D ,
~5!

whereD is understood in the distribution sense:

lim
D→0

E
0

y

d~s4 /m
2!f~s4 /m

2!D̄1~s4 ,m
2;D!. ~6!
c-
les,
in
tity

In Eq. ~3!, s4 is a measure of the inelasticity of the radiati
process, and it is proportional to the gluon momentumk.
One can show thats452k•p1 and hence, for soft gluons
s4→0. The distributionD̄1 can be shown to be a ‘‘plus’
distribution. Indeed, defines4 /m

2[12z and

D1~z![S ln~12z!

12z D
1

. ~7!

Then, for any smooth functionf,

E
12y

1

dzf~12z!D1~z![E
12y

1

dz@f~12z!2f~0!#
ln~12z!

12z

2f~0!E
0

12y

dz
ln~12z!

12z
. ~8!

The right-hand side can be written as
t
y

arithmic
section

itial-state
iversal

s, we
E
12y

12e

dzf~12z!
ln~12z!

12z
2f~0!E

12y

12e

dz
ln~12z!

12z
1 (

k51

`
f~k!~0!

k! E
12e

1

dz~12z!k21ln~12z!2f~0!E
0

12y

dz
ln~12z!

12z
.

~9!

The series tends to zero ase→0, and the result is

E
12y

1

dzf~12z!D1~z!5E
12y

12e

dzf~12z!
ln~12z!

12z
1f~0!

1

2
ln2e5E

e

yds4
s4

f~s4 /m
2!lnS s4m2D1f~0!

1

2
ln2e. ~10!

This is the result obtained also from Eqs.~5! and ~6! with the identificatione[D/m2. Hence we have proved the identity
D̄1(s4 ,m

2;D)5D1(z), with s4 /m
2[12z. The identifications4 /m

2[12z is suggestive of the similarity of the presen
reaction,t t̄ production, with the Drell-Yan process@10,12# wherez5Q2/s is the fraction of the squared invariant energ
carried by the dilepton pair. The threshold is atz→1, as it is in our case as well. We usez rather thans4 in this paper to stress
the similarity between these two reactions.

We can write the differential cross section, including the Born term, as

m2s2
d2s i j

@1#

dt1du1
~s,t1 ,u1!5H d~12z!1a2Ci j S ln~12z!

12z D
1

J s i j
B~s,t1 ,u1!. ~11!

If we compare the above expression and the corresponding one for the Drell-Yan process, we may verify that the log
structure is identical through next-to-leading order. It is important to note here that the exact calculation of the cross
for t t̄ production, including the remainder termR in Eq. ~4!, contains subleading terms, such as@1/(12z)#1 , as well as
constants. These structures are not common to the Drell-Yan reaction, and they cannot be resummed as part of in
radiation only. As in Ref.@3#, we disregard these subleading structures in our resummation. We demonstrate the nonun
character of these subleading corrections in Sec. IV.

Following Ref.@3# we integrate Eq.~11! over the whole partonic phase space. Using the appropriate kinematic bound
obtain

s i j
@1#~h,m2!5E

124~11h!14A11h

1

dzH d~12z!1a2Ci j S ln~12z!

12z D
1

J s̄ i j
B~h,z,m2!, ~12!

where

s̄ i j
B~h,z,m2![

A~s/m2211z!224s/m2

2s2 E
21

1

d cosus i j
B~s,t1 ,u1!. ~13!

The kinematic transformations
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t152
1

2
m2@s/m2211z2A~s/m2211z!224s/m2cosu#,

u152
1

2
m2@s/m2211z1A~s/m2211z!224s/m2cosu#,

s54m2~11h! ~14!

are used to obtain Eqs.~12! and~13!. The lower limit of integration in Eq.~12! is derived from the kinematics of Eqs.~2! and
~3!, namelys4<s22mAs.

As in the Drell-Yan case, one may eliminate thed function and plus distribution in Eq.~12! by integrating by parts. Using
the identity

E
z

1

dx@ f ~x!#152E
0

z

dx f~x!, ~15!

and the kinematic constraint

s̄ i j
B~h,z5124~11h!14A11h!,m2)50, ~16!

we arrive at the following expressions for the cross sections. In the DIS factorization scheme,

s i j
@1#~h,m2!5E

124~11h!14A11h

1

dz$11aCi j ln
2~12z!%s i j8 ~h,z,m2!, ~17!

and, in theMS scheme,

s i j
@1#~h,m2!5E

124~11h!14A11h

1

dz$11a2Ci j ln
2~12z!%s i j8 ~h,z,m2!, ~18!

s i j8 ~h,z,m2![
d

dz
s̄ i j
B~h,z,m2!. ~19!

The explicit expression for the derivative of the Born cross section in theqq̄ channel is

sq q̄8 ~h,z,m2!5
2

3
CFp3a2

t

s
x~z!H Ax2~z!24t1

2t

Ax2~z!24t
J , ~20!

where

x~z![12~12z!t, ~21!

t[m2/s5@4(11h)#21, andCF54/3. In thegg channel,

sgg8 ~h,z,m2!5
3

16
p3a2CF

t

sFCFH 2S 12
4t

x2~z! D
3/2

1S 12
4t

x2~z!
1

24t2

x4~z! D lny~z!1S 21
4t

x2~z!
2

32t2

x4~z! D 1

A12
4t

x2~z!
J

1CAH 2S x2~z!1
52

3 DA12
4t

x2~z!
2

4t2

x2~z!
lny~z!2S 4t

3
2

4t2

3x2~z! D 1

A12
4t

x2~z!
J G , ~22!
rs
s.
b-
c-
he
whereCA53 and

y~z![

11A12 @4t/x2~z!#

12A12 @4t/x2~z!#
. ~23!
B. Resummation and power counting

The large logarithms near threshold, both at finite orde
and in resummation, play a major role in our consideration
In this section, we provide a general description that esta
lishes the notion of leading and subleading logarithmic stru
tures and the way we use this terminology. Generalizing t
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notation of Eqs.~17! and ~18!, we write the partonic cross
section resulting from a finite-order perturbative calculat
as

s@k#~h,m2!5E
124~11h!14A11h

1

dzH@k#~z,a!s i j8 ~h,z,m2!.

~24!

Here

H @k#~z,a!5 (
m50

k

am(
l50

2m

c~ l ,m!xz
l ,

with xz[ lnS 1

12zD , ~25!

andc( l ,m) are calculable numerical coefficients. In this re
resentation, the classification of the logarithmic structure
obvious. Leading logarithms are the monomials proportio
to c(2m,m), first subleading logarithms the monomials pr
portional toc(2m21,m), etc. Since we are concerned wi
threshold enhancements,z→1 or, equivalently,xz→1`,
the nomenclature is related directly to the numerical imp
tance of the corresponding logarithmic structures in the cr
section.

At finite orders, the logarithmic structures are integra
near threshold, and their contributions to the cross sec
are finite, provided the Born cross sections are also in
grable~as is indeed the case!. For purposes of demonstratio
let us assume that the Born cross section behaves
(12z)n, 21,n. Using

xz
l 5 lnl S 1

12zD5~21! l lim
e→0

S ]

]e D l~12z!e, ~26!

and denotingL(h)[124(11h)14A11h, we find

H ~ l ,m!~h,a![amc~ l ,m!E
L~h!

1

dz~12z!nxz
l

5amc~ l ,m!~21! l lim
e→0

S ]

]e D lE
L~h!

1

dz~12z!n1e

5amc~ l ,m!~21! l lim
e→0

S ]

]e D l S L~h!11n1e

11n1e D
5H0~h!K ~ l ,m!~h,a!, ~27!

where

H0~h!5
1

n11
@12L~h!#n11 ~28!

is the ‘‘Born’’ cross section, and

K ~ l ,m!~h,a!5amc~ l ,m!
l !

~11n! l

3(
j50

l

~21! j~11n! j lnj@12L~h!# ~29!
ion
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is the ‘‘K factor’’ due to thec( l ,m) radiative correction in
Eq. ~25!. Near threshold,

lim
h→0

L~h!.122h. ~30!

While both H0(h) and H ( l ,m)(h,a) vanish ash→0, the
functionK ( l ,m)(h,a) diverges as thel th power of the loga-
rithm. Relative to the lowest-order term, its contribution can
be arbitrarily large inh space for a sufficiently high power
l , despite the perturbative suppressionam. The logarithmic
terms will have a significant effect on the physical cross
section, obtained as the integral overh of Eq. ~27! convo-
luted with the parton distributions, especially if the hadronic
center-of-mass energy is such that the support of this int
gration emphasizes the threshold region. Under such circum
stances we may viewh as a second important physical pa-
rameter, in addition tom, that is probed phenomenologically.
The two-scale nature of the problem is evident in that w
have one hard scalem and a ratioh5(s/4m2)21 whose
important physical domain is near 0. The perturbative QCD
series is required to have reliable behavior inbothvariables,
m andh.

The objective of resummation is to derive formulas, base
on the properties of QCD as a field theory, that provide
summation of the various classes of monomials in Eq.~25!.
In typical resummation methods, the partial sums of the har
part, Eq.~25!, are replaced with a resummed hard function
that contains the numerically important pieces of the partia
sums, to all orders in PQCD. Most resummations of thresh
old effects result in exponentiation of the large logarithmic
contributions. A generic resummation may result in an ex
pression such as

H~z,a!.eE~xz ,a!. ~31!

The principal content of resummation resides in the expone
E(xz ,a), which is typically a function of the QCD running
coupling strength, integrated through intermediate momen
tum scales. The particular form of this function is fairly pro-
cess independent and follows from general field-theoretic
arguments@13#. For the present, we concentrate on powe
counting, ignoring complications specific to particular re-
summation methods. A large part of the remainder of th
paper is devoted to the complications.

Under specific conditions that we analyze in detail later
the resummation exponent can be cast into a perturbati
form similar to that of Eq.~25!:

E~xz ,a!5 (
m51

N

am(
l50

m11

e~ l ,m!xz
l . ~32!

The precise power structure above follows from first prin
ciples. For a resummation method to be realistic in practice
the exponentE(xz ,a) should be calculable in a finite num-
ber of steps. One consequence is that the exponent is n
calculable with arbitrary precision, implying, in turn, a level
of uncertainty in some of the coefficientse( l ,m), for specific
ranges ofl ,m. The only consistent treatment of this limita-
tion is to calculate the exponent in enough detail that th
uncalculable coefficients in Eq.~32! accompany logarithmic
structuresxz

l that are numerically insignificant in the range
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where the representation Eq.~32! makes sense in the firs
place. As demonstrated explicitly in the Drell-Yan proce
@11#, and as will become apparent below, use of the two-lo
QCD running coupling strength is necessary in the calcu
tion. Roughly speaking, the representation Eq.~32! is valid
whenaxz,1. This inequality determines the limit of calcu
lational accuracy of the exponent. The upshot is that
coefficientse( l ,m), lP$0,m21%, m>3 are undetermined.

Because the exponent is the central object in resum
tion, most of the approximations are effected on that qu
tity. By way of definition we say that we resumleading
logarithmswhen all $e(m11,m)% are determined, andnon-
leading logarithmswhen all $e(m,m)% are determined in
addition. Resummation of leading and nonleading logarith
has been done in detail for the Drell-Yan process@12#. It is
important to note, however, that our definition is not iden
cal to the obvious definition that exists at finite orders. T
latter is contained in the former. In the next few paragrap
we establish the relationship between the power countin
logarithms in resummation and the obvious finite-order d
nition at the beginning of this section.

Leading-logarithm resummation includesall leading loga-
rithms at finite orders. Indeed, suppose we have perform
leading-logarithm resummation. Then

E~xz ,a!. (
m51

N

ame~m11,m!xz
m11 , ~33!

and the kernel of the hard part is

H~z,a!5 )
m51

N

eame~m11,m!xz
m11

. ~34!

To compare with finite-order PQCD, we must make
Taylor expansion of Eq.~34! in a. It is clear that all leading-
logarithm coefficients in Eq.~25!, c(2m,m), are obtained
from the set$e(m11,m)% of Eq. ~34! and, more specifically
from e(2,1) itself. Consider for example the Taylor expa
sion of the two first terms of the product of Eq.~34!:

(
k150

` ak1xz
2k1ek1~2,1!

k1!
(
k250

` a2k2xz
3k2ek2~3,2!

k2!
. ~35!

The general monomial of this product is

ak112k2xz
2k113k2ek1~2,1!ek2~3,2!

k1!k2!
, ~36!

and the only terms that fit the set described byc(2m,m)
are k1PN, k250. Therefore,c(2m,m)5em(2,1)/m!, and
leading-logarithm resummation includes all finite-order lea
ing logarithms, along with a specification of the values
these terms beyond the order in perturbation theory at wh
they may have been computed explicitly. It should be
marked that it includesmore. The product of Eq.~34! gen-
erates upon expansion subleading logarithms in finite-o
PQCD. For example,k1PN, k251 in Eq. ~36! are of the
first-subleading kindc(2m21,m) of Eq. ~25!. These are not
a closed set, i.e., they account only partially for all the s
leading logarithms resulting from a finite-order calculatio
t
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For example, to account for all$c(2m21,m)%, a nonleading
exponent in Eq.~32! would have to be calculated, i.e., all
coefficients$e(m,m)% in Eq. ~32! would in addition have to
be specified. Upon expansion, such a resummation of fini
order first subleading logarithms would produce a series

H~z,a!5 (
m50

`

am(
l5m

2m

h~ l ,m!xz
l , ~37!

where each coefficienth( l ,m) is a product of$e( l ,m)% ’s.
We remark that Eq.~37! does not determine uniquely all

finite-order coefficients$c( l>m,m)%, for all values of m,
but it leaves a subset undetermined. To illustrate this poi
consider the leading uncertainty in the resummation exp
nent. Since the one-loop running coupling constant produc
all $e(m11,m)% and part of$e(m,m)%, mPN, and the two-
loop running coupling constant produces the remainin
pieces of$e(m>2,m)%, the leading uncertainty in the expo-
nent isda3xz

2 in realistic resummations. This is the lowes
order ina, highest order inxz undetermined monomial that
comes from expanding the three-loop running couplin
strength in the exponent.

A product of the form

(
k150

` ak1xz
2k1ek1~2,1!

k1!
(
k250

` a3k2xz
2k2dk2

k2!
~38!

would then be present in the resummed hard kernel. T
general monomial is

ak113k2xz
2~k11k2!ek1~2,1!dk2

k1!k2!
. ~39!

We wish to investigate the degree to which the second ser
in Eq. ~38! maximally changes the coefficients$h( l ,m)% of
Eq. ~37!. Setting 2(k11k2)52(k113k2)2n, we see that we
obtaink25n/4. Hence the minimumn54, and the minimum
k251. Maximum uncertainty arises in the coefficients

h~2m24,m!. ~40!

The coefficients$h( l>m,m)% are affectedfor high enough
m. For example at minimum power ofa, m54, the ‘‘diag-
onal’’ coefficienth(4,4) is affected, atm55 the coefficients
h(6,5),h(5,5) are affected, etc. However, the leading, first
second-, and third-subleading logarithms, as defined
finite-order power counting, are unaffected for any order
These finite-order logarithmic structures are then resumm
to all orders, by a resummation of leading and nonleadin
logarithms. It is unlikely that the affected structures are sig
nificant numerically in such a resummation, once we restri
ourselves to the perturbative regime inxz .

We complete this section by returning to the reaction o
interest,t t̄ production. At this point, we invoke universality
with the Drell-Yan case. Because the finite-order leadin
logarithms are identical in thet t̄ and l l̄ cases, we can resum
them in t t̄ production with the same function we use in th
Drell-Yan case. According to Ref.@11#, the structure of the
kernel of the resummed hard part in the Drell-Yan case is
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I ~z,a!5d~12z!2S eE~xz ,a!

12z (
j50

`

Qj~xz ,a!D
1

. ~41!

For simplicity, we drop the channel indicesi j ;
xz[ ln@1/(12z)#. We defer to Secs. III and IV an explana
tion of the various functions in this equation. One can the
fore write the resummed partonic cross section as

s i j ~h,m2!5E
124~11h!14A11h

1

dzI~z,a!s i j
B~h,z,m2!. ~42!

After integration to get rid of thed function and plus distri-
butions, we find

s i j ~h,m2!5E
124~11h!14A11h

1

dzH~z,a!s i j8 ~h,z,m2!.

~43!

The kernel of the hard part is

H~z,a!511E
0

ln@1/~12z!#

dxeE~x,a!(
j50

`

Qj~x,a!. ~44!

The kernel in Eq.~44! depends solely on the resummatio
exponentE(x,a), either explicitly, or through the functions
Qj which depend exclusively onE. This exponent, in turn,
depends on the factorization scheme, i.e., for the proc
under consideration, on Eqs.~17! and ~18!. It is to this ex-
ponent that we turn our attention in the next section.

III. THE RESUMMATION EXPONENT

Invoking universality with the Drell-Yan case, we ca
express the exponent fort t̄ production using the results of
Ref. @13#. By the same token,because of the restrictionson
that universality we may keep only the pieces of the exp
nent that are universal in the two cases, i.e., the pieces
reproduce upon expansion the leading logarithmic structu
attributable to initial-state radiation, exemplified in Eq.~17!.
The details of the inversion of the Mellin transform, ex
pressed in Eq.~44!, may be found in Refs.@11,12# and are
analyzed further in Sec. IV.

In this section, we present the exponentE(x,a) of Eq.
~44! in moment space, where the momentn5exp(x). For the
Drell-Yan process, the exponent in moment space in
PVR approach may be written in either the DIS or theMS
factorization scheme@10,14#. In the DIS scheme,

E~x,a!52E
P
dz

zn2121

12z H E
~12z!2

~12z! dl

l
g1@a~lm!#

1g2$a@~12z!m#%J , ~45!

and, in theMS case,

E~x,a!52E
P
dz

zn2121

12z E
~12z!2

1 dl

l
g1@a~lm!#. ~46!
-
re-
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ess
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HereP is a principal-value contour@10#; g1 andg2 are func-
tions of the QCD running coupling strengtha(lm). It is
important to note that Eqs.~45! and ~46! include in general
all large logarithmic structures in the Drell-Yan case. Thi
exponent is renormalization-group invariant, by constructio
The logarithmic structures generated by this exponent a
recovered upon expanding the functionsgi as perturbative
series with respect to the running coupling strength and r
expanding the running coupling strengths in terms of th
hard-scale coupling strengtha(m) @10#. As we argued in the
general discussion of Sec. II B, and as shown explicitly
@10#, a series of truncations can include all large thresho
corrections.

The only necessary ingredients are the two-loop runnin
coupling strength and a few terms in the expansions of t
gi ’s. In general,g1 generates all the leading threshold cor
rections and some nonleading ones, andg2 completes the
resummation of numerically important nonleading one
Since we base our resummation on universality, which
valid for leading logarithms only, we disregardg2 for most
of the rest of this paper, and we use the notationg[g1. We
apply the consistency requirement of resumming leadin
logarithms only by performing the appropriate truncation
and neglecting subleading structures whenever they appe
We describe these structures quantitatively in this sectio
We discuss the renormalization-group~RG! properties of re-
summation in Sec. III D. The process of resumming leadin
logarithms only, and the associated truncations, result in
approximation of the renormalization-group-invariant expo
nent of Eq. ~45! by an exponent that isapproximately
renormalization-group invariant. By varying the
factorization-renormalization scalem within a logical range
about its central valuem5m, we obtain a variation of the
resulting resummed cross section that serves as a quantita
measure of the effects of logarithmic structures that are n
resummable in thet t̄ process. Variation withm is the bulkof
the theoretical uncertainty.

A. Truncation and perturbative representation
of the exponent

Using the truncations

g@a~lm!#5(
j51

`

a j~lm!g~ j !.a~lm!g~1!, ~47!

along with

a~lm!5
a

11ab2lnl
, a[a~m!, ~48!

we write the PVR exponent in theMS scheme as

E~x,a!.2ag~1!E
P
dz

zn2121

12z E
~12z!2

1 dl

l

1

11ab2lnl
.

~49!

This integral can be evaluated exactly@10#. The result is

E~x,a!52
g~1!

b2

1

t (m51

`
~12n!m
m!m2 E~mt!, ~50!

where
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t[
1

2ab2
, ~12n!m5

G~12n1m!

G~12n!
,

E~y!5ye2yEi~y!, ~51!

and the exponential integral is defined by the principal val

Ei~y![PE
2`

y

dxex/x. ~52!

Equation~49! or, equivalently, Eq.~50! has a perturbative
asymptotic representation@10#

E~x,a!.E„x,a,N~ t !…5g~1! (
r51

N~ t !11

ar (
j50

r11

sj ,rx
j . ~53!

This representation is valid in the moment-space interval

1,x[ lnn,t. ~54!

The coefficients are

sj ,r52b2
r21~21!r1 j2rcr112 j~r21!!/ j !, ~55!

and the constantsck are obtained from the expansion
G(11z)5(k50

` ckz
k, whereG is the Euler gamma function.

The number of perturbative termsN(t) in Eq. ~53! is ob-
tained by optimizing the asymptotic approximation

uE~x,a!2E„x,a,N~ t !…u5minimum. ~56!

Using Eqs.~50!, ~53!, and~55!, we rewrite Eq.~56! as

U (
m51

n
~12n!m
m!m2 E~mt!2 (

r50

N~ t !
~21!rr!

tr (
j50

r12
~21! j21cr122 j

j !
xjU

5 minimum. ~57!

Equation~57! denotes an approximation between two fun
tions of the momentn, and it determines the optimum num
ber of perturbative termsN as a function of the paramete
t. Indeed, as shown numerically below, within the interval
Eq. ~54!, the optimization of Eq.~57! has a solution that
depends ont only, N5N(t). It also can be shown@12# that in
the complementary interval

t,x[ lnn,`, ~58!

the approximation Eq.~55! breaks down for any integerN
that is a function oft only. For very largen within the
interval of Eq.~58! the asymptotic approximation

E~x,a!.2
g~1!

b2
H tS xt 21D lnS xt 21D2xJ ~59!

holds, and it is clearly a nonperturbative one.
Throughout this paper, we use the two-loop formula f

the fixed coupling strength

a~m![
as~m!

p
5

1

b2ln~m2/L2!
2
b3
b2
3

ln@ ln~m2/L2!#

ln2~m2/L2!
, ~60!

with
e

-

f

r

b25~11CA22nf !/12,

b35@34CA
22~10CA16CF!nf #/48, ~61!

and number of flavorsnf55. We setL50.158 GeV~the
CTEQ3M value@15#!.

In Fig. 1 we illustrate the validity of the asymptotic ap
proximation for a value oft corresponding tom5175 GeV.
In Fig. 1~a! we show howN(t) is determined from Eq.~57!

FIG. 1. Optimum number of perturbative terms in the expone
~a! Normalized principal-value exponents~solid! and their pertur-
bative approximations~dashed! as a function ofN, for fixed mass
and for four parametric moment values~from the bottom, at
n510,20,30,40). Optimization occurs atN@ t(m5175 GeV!#56 for
all four moments.~b! The functionN@ t(m)# ~solid! and its simple
analytic approximation@ t(m)23/2# ~dashed!.
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for a fixed t and selected parametric values ofn. The plot
shows that optimization works perfectly, and it demonstra
the typical breakdown of the asymptotic approximation
N increases beyondN(t). This rise is the exponential rise o
the infrared renormalons, ther! growth in the second term
of Eq. ~57!. As long asn is in the interval of Eq.~54!, all the
members of the family inn are optimized at the same
N(t), showing that the optimum number of perturbativ
terms is a function oft only. In Fig. 1~b! we plot the function
N(t) for a range oft relevant tot t̄ production. An excellent
numerical approximation is provided by the fit

N~ t !.@ t23/2#, ~62!

where the integer part is defined as the closest integer fr
either direction.@It is amusing that this fit suggests a lowe
limit for the hard scalem. A perturbative series is an im-
provement in accuracy ifN(t)>1 which, from the above fit,
implies t23/2>0.5. Using for simplicity a one-loop fit of
a(m) andL, we deduce that the hard scalem/L>e2.8,
well within our expectations.#

Equations~54! and ~57! suggest a perturbative behavio
for the exponent in moment spaceindependently ofthe color
factors which reside ing(1). In particular, the range of valid-
ity of the perturbative expression for the exponent,x/t,1, is
obtained bydirect comparisonwith the exact principal-value
definition, as shown in Fig. 2.@Equations~58! and ~59! are
also suggestive, but they constitute an asymptotic limit, va
for x larger thant.# This range of validity has the conse
quence that terms in the exponent of the formaklnkn are of
order unity, and terms with fewer powers of logarithm
aklnk2mn, are negligible. This explains why resummation
completed in a finite number of steps in the Drell-Yan pr
cess, as discussed earlier. The same is true here, but, in
dition, we discard monomialsaklnkn in the exponent because
of the restricted universality between thet t̄ andl l̄ processes.

The exponent we use in the rest of the paper is the tru
cation

E~x,a,N!5g~1! (
r51

N~ t !11

arsrx
r11, ~63!
tes
as
f

e

om
r

r

lid
-

s,
is
o-
ad-

n-

with the coefficients

sr[sr11,r5b2
r212r/r~r11!. ~64!

We note in passing that the leading-logarithm truncation
the exponent, Eqs.~63! and ~64!, forms a convergent series,

E~x,a,N!.
g~1!

b2
xH 11S 1

2ab2x
21D ln~122ab2x!J ,

~65!

as long asx,1/(2ab2)[t. This, of course, is not true for
the exponent of Eq.~53! that contains the full subleading
logarithmic structures in the Drell-Yan process. We use th
convergent version of the exponent Eq.~65! in special cases
to arrive at simplified expressions for the perturbative regim
in momentum space.

There are equivalent expressions appropriate for the D
factorization scheme. Equation~49! becomes

FIG. 2. The normalized principal-value exponent~solid! and its
perturbative approximation~dashed! vs the moment,n.
E~x,a!.2ag~1!E
P
dz

zn2121

12z E
~12z!2

12z dl

l

1

11ab2lnl
52

g~1!

b2
H 1t (m51

`
~12n!m
m!m2 E~mt!2

1

2t (m51

`
~12n!m
m!m2 E~2mt!J . ~66!
The perturbative approximation, subject to the truncation
quirements discussed previously, is

E~x,a,N!5g~1! (
r51

N~ t !11

arsrx
r112g~1! (

r51

N~2t !11 S a

2 D r

srx
r11,

~67!

or, in convergent form,
re-
E~x,a,N!.

g~1!

b2
xH S 1

2ab2x
21D ln~122ab2x!

2S 1

ab2x
21D ln~12ab2x!J . ~68!

The convergent exponents, Eqs.~65! and~68!, suggest the
perturbative interval of Eq.~54!, independently of PVR. On
the other hand, beyond the end pointx51/(2ab2) these con-
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vergent expressions are ill defined because the leading te
has a branch-point singularity.

B. Regularization-independence of the perturbative exponent

It is valuable to stress that we can derive the perturbati
expressions, Eqs.~53!, ~54!, ~55!, and~62!, without the PVR
prescription, although with less certitude. The analysis
this subsection is presented in order to show that our fin
perturbative results do not depend on the specific mann
that the infrared region is regularized in the PVR approac

We begin with theunregularizedform of Eq. ~49!, i.e.,
with the integration overx done on the real axis:

E0~x,a!52ag~1!E
0

1

dx
xn2121

12x E
~12x!2

1 dl

l

1

11ab2lnl
.

~69!

We expand the inner integrand as a Taylor series arounda.
As we will see, part of the problem now transforms int
ignorance of the asymptotic properties of this expansio
Writing

E
~12x!2

1 dl

l

1

11ab2lnl
52(

r51

~21!r

rtr21 ln
r~12x!, ~70!

we deduce

E0~x,a!522ag~1! (
r51

~21!r

rtr21 E
0

1dy

y
@~12y!n2121# lnry.

~71!

The upper limit of the summation in Eq.~71! is left undeter-
mined, because, as is made evident below, the series re
sented is only formal, i.e., not convergent. Lack of conve
gence is associated with the Landau pole exhibited by t
original integral, Eq.~69!. Using the identity

lnry5 lim
h→0

S ]

]h D r

yh, ~72!

and the Stirling approximation for the beta function
B(n,h),

lim
h→0

S ]

]h D rSB~n,h!2
1

h D5r!(
j50

r11
~21! j

j !
cr112 j ln

rn, ~73!

we find

E0~x,a!5g~1! (
r51

ar (
j50

r11

sj ,rx
j , x[ lnn, ~74!

with the coefficients of Eq.~55!. This expression for
E0(x,a) is the same as Eq.~53!, the only and major differ-
ence being that we do not know the asymptotic properties
this series in the full range of momentsn. The added infor-
mation is precisely what is furnished by PVR, as we sa
earlier. Both the functionN(t) and the range of validity of
the perturbative expression, 1,x[ lnn,t, are provided by
the principal-value prescription.

To be more explicit, we examine Eq.~74! in some detail.
Because the coefficientssj ,r grow factorially, the series does
rm

ve

of
al
er
h.

o
n.

pre-
r-
he

of

w

not represent a convergent infinite series for a fixedt and
n. The factorial growth is precisely the infrared renormalo
induced by the existence of the Landau-pole singularity
the original integral. Without this factorial, as in the trun
cated expression, Eq.~63!, the resulting infinite series is con-
vergent for a fixedn, but it diverges nevertheless at the
thresholdn→` due to the powers of the logarithm. Since
E is the exponent of the cross section, the resulting sing
larities in the cross section would be essential singularitie
In fact, in Eqs.~53! and ~55! there is a tradeoff between
factorial growth and powers of logarithms: greater factoria
growth is accompanied by fewer powers of moment log
rithms ~and hence of momentum logarithms in the cross se
tion!.

We conclude that the nature of the series in Eq.~74! is
asymptotic, and we rewrite Eq.~74! as

E0~x,a!.E~x,a,N!5g~1! (
r51

N

ar (
j50

r11

sj ,rx
j , x[ lnn.

~75!

Because the original integral is unregulated, the properti
and range of validity of this asymptotic series are not obv
ous. In PVR, regularization is incorporated, and, since the
are no undetermined extra scales, such as the introduction
IR cutoffs, the asymptotic properties are determinable full
as shown in Sec. III A.

For a fixedt andn, one may use the monotonicity behav
ior of the corresponding partial sums to try to determine a
upper limit for the number of terms in Eq.~75!. This proce-
dure is illustrated in Fig. 3~a! for m5175 GeV. We note that
beyond a certain range ofN, the exponent increases factori-
ally, a demonstration of both the asymptotic nature of th
series and of the effect of the IR renormalons. A range
optimumN can be determined where the growth of the su
reaches a plateau, before the factorial growth sets in at la
N. The exponent is fairly flat in this region so the indeterm
nacy of the optimumN is insignificant numerically. The pla-
teau is centered aroundNopt.6 to 7 for a wide range of
moments, in agreement with the results of the previous su
section. One can make these statements quantitative by
fining the slope

S~x,a,N![
]E~x,a,N!

]N
5E~x,a,N11!2E~x,a,N!.

~76!

For a range ofn where there is a plateau, the optimumN can
be determined by the equation

Nopt:S~x,a,N!ux,a5fixed5minimum. ~77!

In Fig. 3~b!, we observe that the optimization of the pertur
bative exponent with this method gives the same results
the principal-value method: i.e.,

Nopt21.N~ t !5@ t23/2#. ~78!

A second issue is whether one could determine the sa
range of validity, Eq.~54!, of the representation Eq.~75!
without PVR. This is possible if we impose thesupplemen-
tary requirement that this representation results in a value
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N opt that dependsonly on the hard scale m, and not on the
momentn. In Fig. 3~b! we showNopt, the minimum of the
slopeS(n,N) for various values ofn at m5175 GeV. We
observe thatNopt is constant in approximately the same rang
of n as in Eq.~54!. Whenn is increased beyond that range
the correspondingNopt becomes a function ofn. As n is
increased, the plateau created by the corresponding value
the exponent starts shrinking, and the renormalons move

FIG. 3. The normalized perturbative exponent without regu
tors. ~a! Partial sums vs the numberN of terms as a parametric
family in n: The solid bunch is fornP$100,1000% ~increasing! in
steps of 100. The dotted bunch is forn52000,3000~increasing!.
The dashed bunch is forn510 000,20 000,30 000~increasing!. ~b!
Slope function vsN for n510,50,100,500,1000,2000~increasing!.
The minimum is attained atN21.N@ t(m5175 GeV)#56, for
n<1000.m/L.
e
,

s of
to

the left of the figure. For values ofn close to the boundary of
Eq. ~54!, the slope in Eq.~76! becomes substantial.

The two requirements, a plateau inE(x,a,N) and a value
of Nopt that depends only on the hard scale, allow one
make statements concerning the perturbative representa
of the exponent that are similar to those the PVR approa
albeit with less certitude. The perturbative representation
the exponent, Eqs.~53!, ~54!, ~55!, and ~62!, is obtained in
straightforward fashion in PVR, but the analysis of this su
section shows that the result is approximately independen
the regularization PVR imposes. The result can be recove
by a study of the factorial growth of the partial sums and th
reasonable physical requirement that the plateau of stab
of the exponent depend on the hard scale of the probl
only.

C. Perturbative regime of the hard part in moment space

We have established a perturbative representation for
exponent in moment space, with or without principal-valu
regularization. The conclusions are similar. The expone
has a perturbative representation in the range

1,x[ lnn,t[
1

2ab2
~79!

independent of the constantg(1), i.e., of the channel-
dependent color factors. This is amaximumrange allowed
for the perturbative cross section in moment space. O
should distinguish, however, between the range in mom
space where the exponent has a perturbative representa
and the range where the cross section itself is perturbat
The distinction arises because the cross section, which
proportional in moment space to theexponential of
E(lnn,a,N), is much more sensitive to variations inn. The
cross section also depends exponentially on the color fact
g(1), which can be much larger than unity, while the pertu
bative representation of the exponent in the regime of E
~79! is independent of the color factors.

We address the question of the perturbative regime
momentum space in Sec. IV, where we present the inve
Mellin transform that provides the cross section. Howeve
one can furnish a heuristic argument in moment space
well. Again, this argument is independent of the regulariz
tion prescription of the original integral representation of th
exponent, once we work with its asymptotic perturbative a
proximation, Eqs.~53! and ~63!.

The idea is to regard the plateau of Fig. 3~a! as a region of
perturbative stabilityin both of the variables it depends on
namelyN andn. Denote the kernel of the hard part in mo
ment space by

Ĩ ~n,a,N!5eE~ lnn,a,N!. ~80!

Then, this kernel is perturbatively stable in an interval ofn
such that variations around the center of the plateauN(t),
which does not depend onn in the perturbative regime, pro-
videO(as) variations forĨ (n,a,N), i.e., numerically negli-
gible contributions that are not enhanced by threshold
fects. This statement is made quantitative by the requirem

a-
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dNĨ „n,a,N~ t !…5eE„lnn,a,N~ t !…dNE„lnn,a,N~ t !…

5eE„lnn,a,N~ t !…S„lnn,a,N~ t !…<as , ~81!

where the slopeS is defined in Eq.~76!. Another way of
reaching the condition of Eq.~81! begins with the order-by-
order perturbative hard part written as

Ĩ @k#~n,a!5 (
m50

k

amsm~n!1 (
m51

k

amrm~n!. ~82!

The first sum in Eq.~82! contains singular functions ofn that
produce large threshold enhancements and must be
summed, while the second sum contains regular function
n, whose numerical effects are ofO(as). The first sum is
replaced by our resummedĨ „n,a,N(t)…, and the condition in
Eq. ~81! is equivalent to a plateau of perturbative stabil
such that variations of the resummed terms around the
teau belong to the second, regular, sum of Eq.~82!:

eE„lnn,a,N~ t !…1dNE„lnn,a,N~ t !…

.eE„lnn,a,N~ t !…1eE„lnn,a,N~ t !…S„n,a,N~ t !…

.eE„lnn,a,N~ t !…1 (
m51

l

amrm8 ~n!, ~83!

so thatdNĨ „n,a,N(t)…5O(as). This is the same criterion a
Eq. ~81!.

The regular sums in Eqs.~82! and~83!, have been calcu
lated only to first order int t̄ production. This is the reaso
re-
of

y
la-

we consider them at most equal toas , rather than assuming
definite numerical coefficients, large or small, unsupporte
by exact calculations. This statement is corroborated by t
exact one-loop calculation of thet t̄ cross section, and by the
one- and two-loop calculations of the Drell-Yan cross se
tion. It is in general assumed in all resummation procedure

D. Renormalization-group properties
of the perturbative exponent

We have studied the exponent under the simplificatio
that the renormalization-factorization scale, the ‘‘har
scale,’’ is fixed atm5m. In this subsection, we discuss the
dependence onm of the resummation exponent in momen
space. We work entirely in theMS scheme. Since RG invari-
ance is one of the ingredients of resummation, we expect th
the full Drell-Yan exponent, containing the full scale depen
dence, is exactly RG invariant. It can be seen by inspecti
that Eq.~46! is scale invariant:

E~x,a!5E„x,a~m!,m/m…

52E
P
dz

zn2121

12z E
~12z!2m2/m2

m2/m2 dl

l
g1@a~lm!#.

~84!

Here we ask to what degree the truncations we impos
starting from Eq.~49!, affect this invariance. We begin with
the explicitlym-dependent equivalent of Eq.~49!, read from
Eq. ~84!. The corresponding expression is@14#
t

E„x,a~m!,m/m….2a~m!g~1!E
P
dz

zn2121

12z E
~12z!2m2/m2

m2/m2 dl

l

1

11a~m!b2lnl
, ~85!

where the dependence onm is both implicit @in a(m)# and explicit. Working along the lines of Sec. III B, we may show tha

E„x,a~m!,m/m….E„x,a~m!,m/m,N~m!…52g~1! (
r51

N~m!11

ar~m!
~21!r2rb2

r21

r (
k51

r
r!

~r2k!!
lnr2k~m/m!(

j50

k11
~21! j

j !
ck112 j x

j .

~86!

We use the approximationN(m).N@ t(m)#. This equation makes clear thatexplicit m-variation ~i.e., k,r) is equivalent to
inclusion of nonleading logarithmsxj , j,r11. In this sense, uncertainty expressed throughm variation overlaps with
uncertainty expressed through inclusion of nonuniversal logarithms. In the triple sum of Eq.~86!, the k5r term is the
numerically dominant term in the exponent. This term represents the implicitm dependence, Eq.~53!. All other ln(m/m) terms
are nonleading inx5 lnn. The linear term in ln(m/m), obtained fork5r21, has a universal lnn substructure. It is the one
containing equal powers ofa(m) and lnn. It comes from the same diagrams as the leading lnn structures atm5m and amounts
to exponentiation of the explicitO(as

3) m variation.
Our m-dependent exponent fort t̄ production can therefore be written

E„x,a~m!,m/m,N~m!…5g~1!H (
r51

N~m!11

ar~m!
b2

r212r

r~r11!
xr112 ln~m/m! (

r51

N~m!11

ar~m!
b2

r212r

r
xrJ . ~87!
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We call attention to the sign structure of Eq.~87!. For a fixed
moment and scalesm decreasing fromm, the implicit growth
of the first sum due to the increase ofa(m) is cancelled by
the minus sign of the explicit dependence of the second su
and vice versa. On the other hand, in the truncation from E
~86! to Eq. ~87!, nonuniversal subleading logarithmic struc
tures are discarded. Therefore we expect only approxim
scale invariance of Eq.~87!.

In Fig. 4 we plot the normalized exponent, in each of th
truncated versions of Eqs.~85!, ~86!, and~87!, versus a wide
variation ofmP$100,300% GeV, and for various perturbative
values of the momentn. We see that both the PV Drell-Yan
exponent, Eq.~85!, and its perturbative Drell-Yan version
Eq. ~86! are straight lines, practically coincident. The unive
sal exponent, Eq.~87!, is a gently increasing function ofm,
and it lies somewhat below the Drell-Yan exponent. Th
increase creates a partial compensation of the explicitm de-
pendence of the Born cross sections, more so than if the
Drell-Yan exponent were used. This difference stands to r
son, since no implicitm dependence exists in the Drell-Yan
process at the Born level. Thesem-dependent properties con
form to the intuition that our resummed cross section shou
show less variation withm than the next-to-leading-order
counterpart. We call attention to Fig. 4~b!, where we show
the effects ofm dependence as a function of the number
terms in the partial sums. For the Drell-Yan exponent, t
addition of perturbative termsup to the optimum number
N@ t(m)# makes the exponent progressively scale invarian

Smooth behavior under scale transformations is no
property of the resummation of Ref.@3#. If an IR cutoff is
used, conventional RG-scale invariance looses much of
meaning since an additional and arbitrary scale is introduc
We return to this issue in Sec. V when we discuss the phy
cal cross section and compare scale variations in our
proach with the corresponding ones of Ref.@3#.
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IV. LEADING AND SUBLEADING LOGARITHMIC
STRUCTURES

In this section we describe the resummed partonic cros
section in momentum space, derive a perturbative approx
mation in a specific region of momentum space, and discu
in general how to include leading logarithmic structures con
sistently in the resummation. We also demonstrate how th
constantg(1) is determined from the one-loop calculation,
and we discuss the issue of universality of the leading loga
rithms. In particular, we demonstrate that retention of sub
leading pieces in the exponent, of a structure similar to th
Drell-Yan case, would not account correctly for the sublead
ing structure at the one-loop level in top quark production
We justify the truncations we use consistently with univer
sality of initial-state radiation.

The general form of the PVR cross section in theMS
scheme is

s i j
PV~h,m2!5E

124~11h!14A11h

1

dzH~z,a!s i j8 ~h,z,m2!,

~88!

where the kernel of the hard part is

H~z,a!511E
0

xz
dxeE~x,a!(

j50

`

Qj~x,a!, ~89!

and

xz[ lnS 1

12zD . ~90!

The functionsQj (x,a) in Eq. ~89! appear during the inver-
sion of the Mellin transformn↔z @11#. They are obtained
from the generating function
Q@P1 ,P2 , . . . ,PN11#[ReH 1

ip (
m1 ,m2 , . . . ,mN1150

` P1
m1P2

m2
•••PN11

mN11

m1!m2! . . .mN11!
lime→0S ]

]e D
m112m21•••~N11!mN11

eipeG~11e!J
~91!
,
e
-

through the identification

Q@P1 ,P2 ,...,PN11#[(
j50

`

Qj . ~92!

This notation is slightly different from that of Ref.@11#. In
particular, in the present notation the real part is extrac
explicitly from the generating function. In Eqs.~91! and
~92!,

Pk5Pk~x,a![
]kE~x,a!

k! ]xk
. ~93!

The functionQj5Qj (x,a) is defined as the set of terms in
Eq. ~89! that contributej more powers ofa than ofx. The
ted

structuresQj resum the j th subleading logarithms in the
physical cross section through the index identity

j5 (
k52

mk~k21! ~94!

that connects Eqs.~91! and ~92!.

A. The leading resummed perturbative cross section
and its range of validity

For best accuracy, in a process like the Drell-Yan process
the expression for the hard part should include enough of th
set ofQj ’s to reproduce the resummable finite-order sublead
ing logarithms up to two loops. On the other hand, owing to
the constrained universality that characterizes thet t̄ cross
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section, we should include only terms that do not create n
universal subleading logarithms. In addition, we must d
cuss the range in momentum space where our perturba
resummation is valid.

We turn first to the issue of the perturbative regime
momentum space. Specification of this region follows fro
general expressions for the inversion of the Mellin transfor
and the meaning of the successive terms in this inversi
once their perturbative approximations are used. The ker
of the hard part is provided in Eq.~89!, and the functions
Q0 andQ1, obtained from Eqs.~91! and ~93!, are

Q05
1

p
sin~pP1!G~11P1! ~95!

and

Q1.2G~11P1!P2cos~pP1!C~11P1!. ~96!

The functionsC[C (0) andC (k) are the usual polygamma
functions. For simplicity we include in the expression fo
Q1 only terms that generate corrections starting atO(a).
According to the general discussion at the beginning of t
section,Q1 contributes one less power ofx than ofa in the
integrand of Eq.~89!, and it is formally subleading relative
to the contribution ofQ0. Nevertheless, from Eqs.~95! and
~96!, we see that this suppression is not true for values ox
such thatP1(x,a).1. When sin(pP1).0, the dominance of
Q0 overQ1 is destroyed. For values ofx such thatP1.1,
Q0 andQ1 are out of phase, with amplitudes that are n
constrained, and the perturbative dominance ofQ0 overQ1
is again vitiated.

We conclude that the perturbative region in momentu
space is defined by the inequality constraint

P1~xz ,a!<1. ~97!

In our discussion in moment space in Sec. III, we saw th
the perturbative approximation for the exponent is valid
the interval 1, lnn<t51/2ab2, i.e., where terms containing
equal powers of lnn anda are at mostO(1). Our Eq.~97!
translates this condition consistently into momentum spa
In Fig. 5 the upper two curves show the range in lnn5x
where the constraint of Eq.~97! is satisfied. The lower three
curves in Fig. 5 pertain to the corresponding constraint
the hard part in moment space, Eq.~81!. We see that the two
criteria are in good agreement: the value of lnn5x at which
Eq. ~97! is satisfied agrees fairly well with the value ofn at
which Eq.~81! is also.

We take up next the issue of universal logarithmic stru
tures in our resummation. Power-counting, discussed gen
cally in Sec. II B, must be altered when applied to the kern
of the integral in Eq.~89! because the extra integration sup
plies one more power of the logarithm. We begin with th
following expression for the kernel of the hard part:

H~z,a!.11E
0

xz
dxeE~x,a!Q0~x,a!, ~98!

and we rewrite
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Q0~x,a!5Q0~x,a!2P1~x,a!1P1~x,a!
[D~x,a!1P1~x,a!. ~99!

Using Eq.~63!, we can express

eE~x,a!5 (
m50

`

am (
l5m11

2m

e~ l ,m!xl , ~100!

FIG. 4. Renormalization-factorization hard-scale dependence
the resummation exponents:~a! Drell-Yan perturbative~solid!, prin-
cipal value~dotted!, and leading-logarithm~dashed! exponents vs
m for fixed mass and parametric moment valuesn510,50,100~in-
creasing!; N5N@ t(m5175GeV)#11. ~b! Parametric families of
partial sumsN51, . . . ,N@ t(m5175 GeV)#11 ~increasing! vs m
for the Drell-Yan~solid! and leading-logarithm~dashed! exponents,
at n550.
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and, from the definitions ofQ0 andP1, we find the expan-
sion

D~x,a!5 (
m52

`

amdmx
m. ~101!

Therefore,

FIG. 5. Evaluation of the perturbative regime:~a! Saturation of
the perturbative constraint in theqq̄ channel as derived in momen
space@S(n), solid; ase

2E(n), dashed~Drell-Yan!; dotted ~leading
logarithms!# and in momentum space@P1(n)<1; dashed, Drell-
Yan; dotted, leading logarithms#; N5N@ t(m5175 GeV!#11. The
upper curves are those in momentum space.~b! Same as in~a! but
for thegg channel.
E
0

xz
dxeE~x,a!D~x,a!

5 (
m50

`

am12(
k50

m

(
l5k11

2k
e~ l ,k!dm122k

31m1 l2k
xz
31m1 l2k .

~102!

For a fixedm, the maximum monomial in powers ofxz is
a21mxz

2m13 . In the notation of Sec. II B, the integral in Eq
~102! contributesat mostto the first-subleading logarithms
c(2m21,m). Since we intend to resum leading logarithm
only, we ignore the contribution from the integral Eq.~102!.
For the same reason, we discard allQj ’s butQ0 in Eq. ~89!.

Our main result for the perturbative resummed parton
cross section, denoted bys i j

pert, is, therefore,

s i j
R,pert~h,m2!5E

124~11h!14A11h

z0
dz

3F11E
0

xz
dxeE~x,a!P1~x,a!Gs i j8 ~h,z,m2!

5E
124~11h!14A11h

z0
dzeE~xz ,a!s i j8 ~h,z,m2!.

~103!

The upper limit of integrationz0[z0(a) is determined from
the equation for the perturbative regime

1

12z0
5ex0, P1~x0 ,a!51. ~104!

The preceding expressions in this subsection are valid
either factorization scheme. The only distinction is the val
of the multiplicative constantg(1) in Eq. ~64!. This constant
can be determined from a comparison of theO(a) expansion
of the resummed partonic cross section with the finite-ord
calculation of Refs.@1,2#.

It is useful for purposes of comparison to expand the cro
section toO(a2). In theMS factorization scheme, using Eqs
~63! and ~64!, we obtain

E@2#~x,a!5ag~1!x212a2g~1!b2x
3/3. ~105!

Substituting Eq.~105! into Eq. ~103!, we find that the corre-
sponding finite-order part of the resummed cross section

s i j
@2#~h,m2!upert5E

124~11h!14A11h

1

dzH 11ag~1!ln2S 1

12zD
1a2F ~g~1!!2

2
ln4S 1

12zD
1
2

3
g~1!b2ln

3S 1

12zD G J s i j8 ~h,z,m2!.

~106!

To determineg(1), one can use the correspondingO(a)
expression for the cross section from Ref.@3#, or derive an

t
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asymptotic formula near threshold (h→0) for the O(a)
piece of the integration, Eq.~106!, and compare with the
corresponding explicit expression of Ref.@1#. The former is
simpler for the present purposes. In Sec. IV B, we derive
asymptotic threshold formula to demonstrate universality
sues. The result is

g MS
~1!

52Ci j , Cq q̄5CF , Cgg5CA , ~107!

the same as in the Drell-Yan case. Our Eq.~106!, including
theO(a2) term, is identical to that of Ref.@3#.

Similarly, in the DIS factorization scheme, using Eq
~67! and ~64!, we derive

E@2#~x,a!5ag~1!x2/21a2g~1!b2x
3/2. ~108!

Hence the cross section toO(a2) becomes

s i j
@2#~h,m2!upert5E

124~11h!14A11h

1

dzH 11a
g~1!

2
ln2S 1

12zD
1a2F12 S g~1!

2 D 2ln4S 1

12zD
1
1

2
g~1!b2ln

3S 1

12zD G J s i j8 ~h,z,m2!.

~109!

By comparison with the correspondingO(a) piece of Ref.
@3#, we obtain

gDIS
~1! 52Ci j5gMS

~1! , ~110!

again in agreement with the Drell-Yan case. As before,
~109!, including theO(a2) term, is identical to that of Ref
@3#.

We close this subsection with simplified analytical e
pressions for the perturbative regime of the cross section,
~97!. For this purpose, we may use the convergent exp
sions, Eqs.~65! and~68!. In theMS factorization scheme, we
obtain

P1~xz ,a!.2
g~1!

b2
ln~122ab2xz!<1, ~111!

and, in the DIS scheme,

P1~xz ,a!.2
g~1!

b2
ln~122ab2xz!1

g~1!

b2
ln~12ab2xz!<1.

~112!

To obtain transparent analytical expressions, we specia
here to the one-loop approximation

2ab25 ln21~m/L!. ~113!

We obtain

12z>S L

mD 12exp~2b2 /g
~1!!

MS, ~114!
the
is-

s.

Eq.
.

x-
Eq.
res-

lize

12z>S L

mD 12 exp~2b2 /g
~1!!/2@12exp~2b2 /g

~1!!/2#

DIS.

~115!

We observe that the nonperturbative regime is suppresse
mainly by L/m to the first power, with a correction that
depends on the color factors of the partonic production pro
cess. Form5175 GeV,

L/m.1023. ~116!

Becauseb2 is positive (b2.2), the nonperturbative regime
is an increasing function of the color factors. If the partonic
cross sections had no color factor enhancements,g(1)<1,
Eqs. ~114! and ~115! would be in close agreement with the
perturbative regime of the exponent in moment spac
n<m/L, Eq. ~54!, with the direct substitution 1/n↔12z.
For example, forg(1)51,

12z>231023 MS

and

12z>1.531023 DIS, ~117!

in good agreement with Eq.~116!. In reality,g(1)58/3 in the
qq̄ channel, therefore

12z>231022 MS

and

12z>831023 DIS. ~118!

For thegg channel,g(1)56, and we find

12z>131021 MS

and

12z>531022 DIS. ~119!

These regions are narrower than the estimate based on t
perturbative properties of the exponent only, especially fo
thegg channel. The soft-gluon region is probed more deeply
in the DIS scheme than in theMS scheme, closer toL/m.
We discuss these properties numerically in Sec. V.

B. Nonuniversal subleading logarithms

In this subsection, we address universality of the logarith
mic structures in the threshold region more explicitly. It is
sufficient to examine the issue in theMS scheme. For com-
pleteness, and to compare with the analytical results of Re
@1#, we derive the near-threshold asymptotic properties of th
O(a) term of Eq.~106!. We demonstrate that if we were to
keep the subleading logarithm in the Drell-Yan exponent
Eqs.~53! and~55!, the resulting term in theO(a) expansion
of Eq. ~89! would not be the same as the one obtained in th
explicit next-to-leading order calculation of Ref.@1#. This is
a demonstration of the consistency requirements of the seri
of truncations that resulted in Eqs.~63!, ~64!, and~103!.
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In the MS scheme, Eq.~53!, the full O(a) Drell-Yan
exponent is

E@1#~x,a!5ag~1!~s2,1x
21s1,1x1s0,1!, ~120!

where the coefficients are found in Eq.~55!. Suppose we
allow an undetermined linear term,akx, that would repre-
sent the deviation of this exponent from the Drell-Yan form
We discard the constant term in this exercise, because it d
not contribute logarithmic terms to the cross section at firs
.
oes
t

order. Substituting from Eq.~55! we have

E@1#~x,a!.a~g~1!x212g~1!gx1kx!, ~121!

whereg is the Euler-Mascheroni constant. The kernel of the
hard part, containing subleading logarithmic structures, i
given generally by Eq.~89!. To account for subleading loga-
rithms with full accuracy in the Drell-Yan case, we must
keepQ0 andQ1, Eqs.~95! and~96!. Expanding toO(a) and
substituting into Eq.~88!, we obtain
cross

case.
ction.
s i j
~1!~h,m2!5aE

124~11h!14A11h

1

dzFg~1!ln2S 1

12zD1k lnS 1

12zD Gs i j8 ~h,z,m2!. ~122!

The piece of the Drell-Yan expression linear in the logarithm has dropped out. In other words, the exact evaluation of the
section of Eq.~122! with the Drell-Yan resummation expression gives the same answer as the truncated expression, Eq.~106!.
This is something well known in the Drell-Yan case and is expressed by absence of the functiong2 in theMS scheme, Eq.
~46!.

The integral representation of the partonic cross section does not contain the subleading logarithms of the Drell-Yan
This is not true for its asymptotic evaluation near threshold, as we shall see below, owing to the form of the Born cross se
We focus on theqq̄ channel only. From Eqs.~20! and ~122!, we obtain

sq q̄
~1!~h,m2!5

8

9
p3a3

t

sE124~11h!14A11h

1

dz@12~12z!t#FA@12~12z!t#224t1
2t

A@12~12z!t#224t
G

3Fg~1!ln2S 1

12zD 1k lnS 1

12zD G , ~123!

wheret[m2/s. Introducing the variablesx5@12(12z)t#224t and @1# b25124t, we derive

sq q̄
~1!5

4

9s
as
3E

0

b2

dx@x1/21~12b2!x21/2/2#Fg~1!ln2S 4

12b2 @12A12~b22x!# D1k lnS 4

12b2 @12A12~b22x!# D G .
~124!

The threshold is exhibited atb→0. Expanding

12A12~b22x!.~b22x!/2, ~125!

and using

lnkx5 lim
e→0

S ]

]e D kxe, ~126!

we find

sq q̄
~1!.

4

9
as
3 b3

m2 H g~1!S ]

]e D 2S 2b2

12b2D e FB~3/2,11e!1
12b2

2b2 B~1/2,11e!G
1k

]

]e S 2b2

12b2D eFB~3/2,11e!1
12b2

2b2 B~1/2,11e!G J . ~127!

After computing the derivatives, we obtain
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sq q̄
~1!.

4

9
as
3 t

m2b3Fg~1!H ln2S 2b2

12b2D SB~3/2,1!1
12b2

2b2 B~1/2,1! D
12lnS 2b2

12b2D SB~3/2,1!@C~1!2C~5/2!#1
12b2

2b2 B~1/2,1!@C~1!2C~3/2!# D
1B~3/2,1!~@C~1!2C~5/2!#21C8~1!2C8~5/2!!1

12b2

2b2 B~1/2,1!~@C~1!2C~3/2!#21C8~1!2C8~3/2!!J
1kH lnS 2b2

12b2D SB~3/2,1!1
12b2

2b2 B~1/2,1! D1B~3/2!@C~1!2C~5/2!#1
12b2

2b2 B~1/2,1!@C~1!2C~3/2!#J G .
~128!

Discarding the nonlogarithmic pieces and using the relationsC(1)52g, C(3/2)52g2 ln411, we observe that all the
coefficients of the logarithms can be rational. Introducing@1# r54t, we end with

sq q̄
~1!.

as
3

m2

br

9
$g~1!ln2~8b2!2@2g~1!2k# ln~8b2!%. ~129!

Our Eq.~129! may be compared with the result of Ref.@1# in theMS scheme, denotedas
3f q q̄

(1) :

as
3f q q̄

~1!.
as
3

m2

br

9 H 83 ln2~8b2!2
41

6
ln~8b2!J . ~130!

We conclude that, for the leading logarithm,

g~1!58/352CF , ~131!

the same value found in Eq.~107!. However, for the next-to-leading linear logarithm,

2g~1!516/3Þ41/6. ~132!

A nonzero value fork would be required. This exercise shows that universality between the Drell-Yan case andt t̄ production
is restricted to the leading logarithms only, as must be the resummation of these structures. The subleading logarith
full exponent of Eq.~53! are uncertain.

The analysis of this subsection justifies our truncated expressions, and it motivates several equivalent ways to
quantitative measure of the overall theoretical uncertainty. The most straightforward is to vary the renormal
factorization~hard! scale within a reasonable range and to use the variation of the cross section as a measure of
universal subleading structures. It is important to recall, however, that truncation of the resummation of leading logar
a givenhigher orderproduces subleading logarithms at that order, as theO(a2) terms in Eqs.~106! and~109! show. We will
assume that these particular subleading logarithms are approximately universal because they come from the evolu
erties of the resummed universal leading logarithms of lower orders. This is true for theMS Drell-Yan cross section at two
loops @16#.

To summarize, the resummation exponent in the perturbative regime in theMS factorization scheme is

E„x,a~m!,m/m,N~m!…52Ci j H (
r51

N@ t~m!#11

ar~m!
b2

r212r

r~r11!
xr112 ln~m/m! (

r51

N@ t~m!#11

ar~m!
b2

r212r

r
xrJ . ~133!

In the DIS factorization scheme, it is

E„x,a~m!,m,N@ t~m!#…52Ci j H (
r51

N@ t~m!#11

ar~m!
b2

r212r

r~r11!
xr112 ln~m/m! (

r51

N@ t~m!#11

ar~m!
b2

r212r

r
xrJ

22Ci j H (
r51

N@2t~m!#11

ar~m!
b2

r21

r~r11!
xr112 ln~m/m! (

r51

N@2t~m!#11

ar~m!
b2

r21

r
xrJ . ~134!
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The upper integer in the two sums isN@ t(m)#
5@ t(m)23/2#, and t(m)[1/@2a(m)b2#. The perturbative
resummed cross section in the corresponding scheme is
tained from the general expression, Eq.~89!, within the re-
gion defined by Eq.~97!. This restriction can be incorporated
if we definez0 through

P1F lnS 1

12z0~m,m/m! D ,a~m!,m/m,N@ t~m!#G51.

~135!

Imposing the constraint that only leading logarithms are r
summed, we arrive at ourperturbativeresummed cross sec
tion

s i j
R,pert~h,m2,m2!5E

124~11h!14A11h

z0~m,m/m!

dz

3eE„xz ,a~m!,m/m,N@ t~m!#…s i j8 ~h,z,m2!.

~136!

The derivatives of the Born cross sections,s i j8 (h,z,m
2), are

found in Eqs.~20! and ~22!.
We use the formulas above to calculate our predictio

for the perturbative resummed cross section. The rest of
phase space in Eq.~136!, from z5z0 to the thresholdz51, is
nonperturbative, and we declare ignorance about the cr
section in that region.~In Sec. VI we engage in some specu
lations on nonperturbative physics.! A measure of the domi-
nance of the universal logarithmic structures and their
summation in the perturbative regime in our approach
provided by the change in the cross section when t
renormalization-factorization scale is varied within a reaso
able range around the ‘‘central’’ valuem5m. This variation
measures the importance of subleading logarithmic str
tures that are nonuniversal and nonresummable in this
proach. We use variation withm as a working hypothesis for
the bulk of the perturbative uncertainty@5#.

V. THE RESUMMED CROSS SECTION

In this section we present analytical and numerical resu
for the resummed cross sections. Section V A is devoted
the partonic cross sections as functions of the variableh,
while in Sec. V B we present the physical cross sectio
obtained after convolution of the partonic cross sections w
parton densities. We furnish details on the technicalities
volved, both kinematical and numerical. In Sec. V C w
make comparisons with the predictions of Laenen, Smi
and van Neerven@3,4#, denoted LSvN.

A. Partonic cross sections

The resummed partonic cross section has the form

s i j
R,pert~h,m2,m2!5E

124~11h!14A11h

z0~m,m/m!

dz

3eE„xz ,a~m!,m/m,N@ t~m!#…s i j8 ~h,z,m2!.

~137!
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The upper limit of integration,z0(m,m/m), is provided by
Eq. ~135!. For physical but relatively large values ofh, the
lower limit of integration may become negative, unlike the
Drell-Yan process in which 0,z,1. In this situation, far
away from threshold, resummation of initial-state gluon ra
diation is irrelevant, and we do not perform resummation
outside the range 0,z,1. Finding the roots of the lower
limit of integration in Eq.~137! we see that this equation is
unconstrained for

h<~11A2!2/42150.457 106 8. ~138!

Equation~138! defines the region in phase space in which
threshold effects are important. Above this value ofh, Eq.
~137! should be constrained so that it includesonly the phase
space where gluon radiation is produced near threshold.

In order to achieve the best accuracy available we wish t
include in our predictions as much as is known theoretically
The exact next-to-leading order~one-loop! cross section is
known @1,2#, but the full two-loop calculation does not exist.
Thus the best we can do at present is to include the fu
content of the one-loop partonic cross section along with ou
resummation of the leading logarithms to all orders. In s
doing, we include both nonuniversal one-loop subleadin
logarithms and constants. This procedure is in common wit
previous resummations of this process@3# and the Drell-Yan
process@12#. Our ‘‘final’’ resummed partonic cross section
can therefore be written@5#

s i j
pert~h,m2,m2!5s i j

R,pert~h,m2,m2!2s i j
~011!~h,m2,m2!uR,pert

1s i j
~011!~h,m2,m2!. ~139!

The second term is the part of the partonic cross section u
to one loop that is included in the resummation, while the
last term is the exact one-loop cross section@1,2#.

For numerical purposes it is best to convert the ‘‘im-
proper’’ integrations induced in Eq.~137! by the form of the
Born cross sections,s i j8 (h,z,m

2) @see Eqs.~20! and~22!#, to
integrations without a numerical~but analytically integrable!
singularity. This is achieved by the transformation

x5A12
4t

@12t~12z!#2
. ~140!

In addition, it is easier to parametrize the perturbative regim
z0 by the moment variablen0:

1

12z0
5n0 , n05ex0, ~141!

wherex0 is the first root of the equation

P1„x0~m,m/m!,a~m!,m/m,N@ t~m!#…51. ~142!

Taking into account the constraint onh, Eq. ~138!, we can
write the various pieces of Eq.~139! as

s i j
R,pert~h,m2,m2!5E

L~t!

U~t,n0!

dxeE„y~x!,a~m!,m/m,N@ t~m!#…s̃ i j ~x!,

~143!

where
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U@t,n0~m,m/m!#[A12
4t

@12t/n0~m,m/m!#2
,

~144!

L~t![QS 1

~11A2!2
2t DA12

4t

~12t!2
, ~145!

and

y~x!5 lnS tA12x2

A12x222At
D . ~146!

The second term in Eq.~139! is obtained from Eq.~143! by
expanding the exponential up toO(a). The exponents for
the two factorization schemes are found in Eqs.~133! and
~134!, while the transformed functionss̃ i j (x) are

s̃q q̄~x!5
32

3
p3a2

t3/2

s S 11x2

~12x2!5/2D , ~147!

and

s̃gg~x!5
1

2
p3a2

t1/2

s

1

~12x2!3/2F2S 43 x215t1
12t

12x2D x2
1S 2x42 8

3
x213tx21223t D xln S 11x

12xD
1S 2

8

3
x424x21tx21

4

3
23t D G . ~148!

In Fig. 6 we show the perturbative boundaryn0(m,m/m),
obtained from Eqs.~141! and~142!, as a function of the hard
scalem, for m5175 GeV. The scalem is an artifact of per-
turbation theory, andm variation is associated with trunca
tion of the perturbative expansion. In a resummation such
ours, all significant perturbative knowledge of threshold e
fects is exhausted~all large perturbative threshold correc
tions are included!, and the perturbative regime we calcula
should also be insensitive to artifacts such asm. Therefore,
one expects the perturbative boundary to be independen
the hard scalem and to depend only on the physical sca
characterizing the threshold,m. We observe that the full
Drell-Yan exponent produces a functionP1 that is almost
exactly hard-scale invariant, establishing that our resumm
tion conforms to this intuition. On the other hand, the tru
cation to universal logarithmic structures that we use for o
predictions shows some scale dependence.

In Fig. 7 we show the resummed partonic cross sectio
s i j
pert as a function ofh, for m5m andm5175 GeV, for both

production channels in theMS factorization scheme. We
choose a logarithmic scale inh to expand the threshold re-
gion. We also show the lowest-order and next-to-leadin
order counterparts. The three curves differ substantially
the partonic threshold regionh,1, with the final resummed
curve exceeding the other two. Aboveh.1, our resummed
cross sections are essentially identical to the next-to-leadi
order cross sections, as is to be expected since the n
threshold enhancements that concern us in this paper are
relevant at largeh. In both theqq̄ and thegg channels, we
-
as
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note that the size of theO(as
3) term exceeds that of the

O(as
2) term forh.0.1, and the ratio grows ash decreases.

This behavior is contrary to the notion underlying perturba-
tion theory, that successive terms in the perturbation series
should be smaller, and is cited in our Introduction as the
motivation for resummation at smallh.

It is useful to translate our definition of the perturbative
regime directly into a statement about the perturbative region
in h. Our perturbative resummation probes the threshold
down to the point

FIG. 6. Hard-scale dependence of the perturbative regime:
~a! The function P1(n) vs n as a parametric family for
m5100,150,200,250,300 GeV for the Drell-Yan exponent~solid
bunch! and the leading-logarithm exponent~dashed bunch, decreas-
ing! for theqq̄ channel.~b! Same as in~a! for thegg channel.
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h>h05
1

2n0
, ~149!

wheren0 is calculated from Eqs.~141! and~142!. Below this
value, perturbation theory, resummed or otherwise, is not
be trusted. For our central predictions we choose to acc
the exact next-to-leading-order results throughout the ph
space, but the nonperturbative region is a source of nonp
turbative uncertainty, subject to model building. Atm5175
GeV, our resummed cross sections become identical to
next-to-leading-order cross sections belowh>0.008 for the
qq̄ channel andh>0.05 for thegg channel, a consequenc

FIG. 7. The partonic cross sectionss(h) as a function ofh: ~a!
Born ~dotted!, next-to-leading order~dashed!, and resummed~solid!
partonic cross sections for theqq̄ channel.~b! Same as in~a! for the
gg channel.
to
ept
ase
er-

the

e

of our decision to restrict resummation to the perturbati
domain. The difference reflects the larger color factor in t
gg case.

We return to possible nonperturbative contributions
Sec. VI.

B. The physical cross sections

We useS to denote the square of the hadronic center-o
mass energy. Once the partonic cross sections are calcula
the physical cross section for each production channel is
tained through the factorization theorem

s i j ~S,m
2!5

4m2

S E
0

~S/4m2!21
dh

3F i j F4m2

S
~11h!,m2Gs i j ~h,m2,m2!.

~150!

The parton flux is a convolution of parton distributions

F i j @y,m
2#5E

y

1dx

x
f i /h1~x,m

2! f j /h2~y/x,m
2!. ~151!

We use CTEQ3 parton distributions@15# in the appropriate
factorization scheme. The total physical cross section is o
tained after incoherent addition of the contributions from th
qq̄ andgg production channels. We ignore the small contr
bution from theqg channel.

A quantity of phenomenological interest is the differentia
cross section

ds i j ~S,m
2,h!

dh
5
4m2

S
F i j F4m2

S
~11h!,m2Gs i j ~h,m2,m2!.

~152!

The differential distribution is a RG-invariant quantity, and
is perhaps measurable. Its integral overh is, of course, the
total cross section. In Fig. 8 we plot these distributions f
the two production channels form5175 GeV,AS51.8 TeV
and m5m. Convolution with the parton flux enhances th
relative importance of the region of smallh. We observe
that, at the energy of the Tevatron, resummation is sign
cant for theqq̄ channel and less so for thegg channel. Fig-
ure 8 is useful for back-of-the-envelope estimates of possi
contributions from the nonperturbative regime, discussed
Sec. VI.

We show the totalt t̄-production cross section for various
energies in Fig. 9, and in Table I we provide numerical va
ues. The central value of our predictions is obtained with t
choicem/m51, and the lower and upper limits are our est
mate of the perturbative uncertainty. These upper and low
values are the maximum and minimum of the cross sect
in the range of the hard scalem/mP$0.5,2%. For the range of
top-quark mass shown, the minimum occurs atm/m52,
while the maximum occurs atm/m.0.7, as is also shown in
Fig. 9~b!. Our prediction of Fig. 9~a! is in good agreement
with the published data@17#. The m variation of our re-
summed cross section, shown in Fig. 9~b! is smaller than that
of the next-to-leading-order cross section, as expected for
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all-orders resummation.@Owing to a computer compiler er-
ror, the variation withm of the next-to-leading-order results
in the first paper of Ref.@5# is incorrect. Our overall re-
summed predictions are essentially unchanged. The dep
dence onm shown in Fig. 9~b! is the correct variation.#

Our resummed cross sections atAS51.8 TeV are about
9% above their next-to-leading-order counterparts compu
with the same parton distributions. To gain numerical insig
into the magnitude of this increase, we may examine t
growth of the cross section in the dominantqq̄ channel that
would be expected in a series of fixed-order calculations

FIG. 8. Differential cross sectionds/dh as a function ofh in
the MS factorization scheme. The physical cross sections are
areas under the curves.~a! qq̄ channel: Born~dotted!, next-to-
leading order~dashed!, and resummed~solid!. The nonperturbative
regime is the area fromh50 to the point inh at which the solid
and dashed curves intersect.~b! Same as in~a! for thegg channel.
en-

ted
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he
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only leading-logarithmic threshold contributions are include
in successive orders ina. We take the universal leading-
logarithmic contributions atO(a) above the Born level from
the full next-to-leading order calculations oft t̄ production
and the leading-logarithmic contributions atO(a2) from cal-
culations of the Drell-Yan cross section. For this exercis
only, we set aside our perturbative constraint, Eq.~135!, and
instead we integrate over the entire threshold regio
0,z,1. We present the resulting finite order physical cros
sections in theMS scheme in Fig. 10.~For the Born cross
section, we integrate over allz.! We observe that the cross
sections (011) obtained from the leading-logarithm terms
only, throughO(a) is in remarkable agreement with the
cross section obtained from our full next-to-leading-orde
calculation for t t̄ production. Moreover, our predicted re-
summed cross section lies part way betweens (011) and the
cross sections (01112) obtained from the leading-logarithm
terms, only, throughO(a2). At m5 175 GeV, the increase
of s (011) over the Born result is a 22% effect, and the fur
ther increase ofs (01112) overs (011) is another 14% effect.
We conclude that the roughly 9% increase of our final re
summed cross section above the next-to-leading order cr
section is quite reasonable. It would be surprising if it wer
much less.

As remarked earlier in the paper, our resummation in
cludes only the universal logarithmic structures. It is reaso
able to inquire whether and by how much the predicted cro
section would change if subleading logarithmic structures a
included. One good representation of the possible effect
subleading structures is the full Drell-Yan exponent itsel
Eq. ~86!. As shown in Fig. 4, this exponent is larger than ou
leading exponent, but the corresponding perturbative regim
calculated through Eq.~135!, is smaller. To obtain a cross
section that includes the Drell-Yan subleading logarithms w
use Eqs.~88!–~90! with the sum overQj ’s replaced by the
full first term,Q0. It is shown as the dashed line in Fig. 11
for the qq̄ channel. We see that the curves differ little from
each other, and that the Drell-Yan resummation prediction
within our uncertainty band. This example substantiates o
belief thatm variation is an adequate measure of perturbativ
uncertainty and that it includes the effect of nonresummab
nonuniversal logarithms.

A second source of uncertainty, that is partly phenomen
logical, partly perturbative, and partly correlated with non
universal logarithms, is associated with the use of differe
parton distributions. The parton set we use is a next-t
leading-order determination of the quark and gluon densitie
Since we use resummed partonic cross sections, it is ar
ably true that we should also use parton densities based
resummed expressions for deep-inelastic lepton scatter
cross sections and other processes used in the determina
of the densities. However, no such densities exist. It is com
mon practice phenomenologically to repeat calculations wi
different sets of parton and to estimate thereby a seco
source of uncertainty. Except for the fact that different da
sets are used, or are emphasized differently, in different d
terminations of parton densities, and that the fitting program
differ, we opine that the practice of adding in quadrature,
otherwise, uncertainties associated withm variation and
those associated with different parton sets involves signi

the
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FIG. 9. Inclusive cross section for top-quark production in theMS scheme:~a! At the Tevatron, forpp̄→t t̄X at AS51.8 TeV. The
extremum dashed lines are our band of uncertainty, and the solid line between them is our central-value prediction. We also repr
published data of the CDF and D0 Collaborations.~b! Hard-scale dependence of the resummed~solid! and next-to-leading-order~dashed!
cross sections atAS51.8 TeV form5175 GeV.~c! Same as in~a!, but for the upgraded Tevatron,AS52.0 TeV.~d! Central values of the
resummed cross section~solid! for pp→t t̄X at the CERN LHC energies of 10 and 14 TeV and the corresponding next-to-leading-
predictions~dashed!.
-

cant double counting. Much of the difference among mode
parton sets reduces to a difference inL which largely affects
a(m). Thus, this difference is correlated with them variation
we consider above, and should not be treated as an indep
dent error. Over the rangem/mP$0.5,2%, the band of varia-
tion of the strong coupling strengthas is a generous
610% atm 5 175 GeV.

In Fig. 9~c! we present our predictions for an upgrade
Tevatron operating atAS52 TeV. Our cross section is larger
than the next-to-leading order one by about 9%. We pred
rn

en-

d

ict

s t t̄ ~m5175 GeV,AS52 TeV!57.5620.55
10.10 pb.

~153!

At m5175 GeV, the value of the cross section atAS52
TeV is about 37% greater than that atAS51.8 TeV.

Turning topp scattering at the energies of the Large Had
ron Collider ~LHC! at CERN, we note a few significant dif-
ferences frompp̄ scattering at the energy of the Fermilab
Tevatron. The dominance of theqq̄ production channel at
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the Tevatron is replaced bygg dominance at the LHC. Ow-
ing to the much larger value ofAS, the near-threshold region
in the subenergy variable is relatively less important, redu
ing the significance of initial-state soft-gluon radiation
Lastly, physics in the region of large partonic subener
As, where straightforward next-to-leading-order QCD is al
inadequate@18#, may become more significant fort t̄ produc-
tion at LHC energies than the effects of initial-state radi
tion. The approach of our paper is limited to the resumm
tion of initial-state gluon radiation only. We presen
estimates in Fig. 9~d! of the cross section for LHC energie
of 10 and 14 TeV. We obtain

s t t̄ ~m5175 GeV,AS514 TeV!5760 pb. ~154!

C. Comparisons with other calculations

In earlier sections we comment on differences betwe
our formalism and that of Laenen, Smith, and van Neerv
~LSvN! @3,4#. Here we compare aspects of our numeric
predictions. The comparison most relevant to experimen
that of our Table I and the corresponding table in Ref.@4#.
Our central values are 10–14 % larger~the difference in-
creases with mass!, and our estimated theoretical uncertain
is 9–10 % compared with their 28–20 %~decreasing with
mass!. The two predictions have overlapping uncertainti
and are, in this sense, in agreement. In commenting on
ferences, we remark that our Born cross section is ab
3–5 % larger than LSvN’s Born cross section. The diffe
ence arises from the different parton distributions used in
two calculations, including differences inL which alone ac-

TABLE I. The totalt t̄ production cross section atAS5 1.8 TeV
and its perturbative uncertainty. The theoretical error band, norm
ized with respect to the central value, represents an almost cons
uncertainty of 9–10%.

m ~GeV! spert
t t̄ ~min; pb! spert

t t̄ ~central; pb! spert
t t̄ ~max; pb!

150 11.76 12.72 12.90
155 9.87 10.68 10.83
160 8.33 9.01 9.14
165 7.06 7.63 7.73
170 6.00 6.48 6.57
175 5.10 5.52 5.59
180 4.36 4.71 4.78
185 3.73 4.04 4.09
190 3.20 3.46 3.51
195 2.75 2.98 3.02
200 2.37 2.57 2.60
205 2.04 2.21 2.24
210 1.77 1.91 1.94
215 1.53 1.65 1.68
220 1.32 1.43 1.45
225 1.15 1.24 1.26
230 0.99 1.08 1.10
235 0.86 0.94 0.96
240 0.75 0.81 0.83
245 0.65 0.71 0.72
250 0.57 0.62 0.63
c-
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count for half or more of this increase. This source of diffe
ence should be kept in mind when comparisons are ma
with next-to-leading-order calculations and various previo
results.

It is important to stress that the theoretical uncertainti
are estimated in quite different ways in the two methods. W
use the standardm variation, whereas LSvN obtain their un
certainty primarily from variations of their undetermined IR
cutoffs. From a theoretical point of view, a study of th
variation of the cross section with the hard-scalem is impor-
tant because it deals with stability of the calculation und
variation of a perturbative, but not directly determinab
renormalization-factorization scale. This statement applies
well to the LSvN calculation, above and beyond the choi
of their IR cutoff. The role of the IR cutoff is to measure
ignorance of nonperturbative effects in the LSvN approac
One of the advantages of a resummation calculation sho
be diminished dependence of the cross section onm, less
variation than is present in fixed-order calculations.

It is also instructive to compare the numerical values
our perturbative boundary,h0(m,m/m), with the corre-
sponding cut inh produced by LSvN’s IR cutoffm0. In the
MS scheme, their cut is@3#

h~m0 ,m!5
1

2 S m0

m D 3, ~155!

and in the DIS scheme it is

h~m0 ,m!5
1

2 S m0

m D 2. ~156!

Values ofh(m0 ,m) are provided in Tables II and III and are
compared with our perturbative boundaryh0(m,m/m).

In the paragraphs to follow, we comparem variation,
scheme dependence, and the influence of the difference
tween our perturbative boundary and LSvN’s cut inh. In
Tables II and III, we reproduce numbers from Ref.@3# and
show the corresponding values we calculate. The compari
is made atm5100 GeV in Table II because it is at this valu
of the top mass that they provide results in theMS scheme
for both theqq̄ andgg channels.

Tables II and III show that our resummed cross sectio
satisfy the test of stability under variation of the hard sca
m. The resummed results show less variation than the ne
to-leading-order cross section. On the other hand, this is
true of the resummation of Ref.@3#. This distinction is linked
to the absence of undetermined IR cutoffs in our method a
the specific RG-invariant exponent we use. Both of the
differences contribute to the instability apparent in the resu
of Ref. @3#. The LSvN results show less variation withm in
the DIS scheme than in theMS scheme, the reason the
provide their final predictions in the DIS scheme. As show
in Table III, the variation withm of their qq̄ cross section in
the DIS scheme is about 21%. For comparison, the next-
leading-order cross section shows a variation of 9% and o
resummed cross section a variation of 6%.

Our perturbative boundary,h0(m), is fairly insensitive to
m variation. In theMS scheme, it changes by about 30%
around its central value~for m5m) while m itself changes
by 50–100 % from the central value. In the DIS scheme t

al-
tant
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changes inh0(m) are even smaller, ranging from 16 to 28 %
The mild changes inh0(m) accord with our earlier physical
expectation that the boundary is characteristic of the par
cle’s mass, not of the perturbative artifactm. If a complete
resummation were possible, as in the Drell-Yan case sho
in Fig. 6, our boundaryh0 would be a function of mass only.

TABLE II. Physical cross sections in pb form5100 GeV at
AS51.8 TeV. The LSvN predictions are shown for various choice
of their IR cutoff m0. Our perturbative boundaryh0 and LSvN’s
phase-space cuth(m0 ,m) are also shown. Absences in the LSvN
entries denote extremely large numbers.

sq q̄(m5100 GeV;MS) m/m50.5 m/m51 m/m52

Born 64.3 48.4 37.3
NLO 54.6 55.0 51.3

sq q̄
pert 56.9 59.4 57.2

LSvN(m050.1m) 52.6 88.9 -
LSvN(m050.2m) 42.5 66.4 110.5
h0(m) 0.007 0.011 0.014
h(m050.1m,m) 0.004 0.0005 0.000063
h(m050.2m,m) 0.032 0.004 0.0005

sgg(m5100 GeV;MS) m/m50.5 m/m51 m/m52

Born 36.4 23.8 16.1
NLO 44.5 40.5 34.0
sgg
pert 44.8 41.6 35.0

LSvN(m050.2m) 34.3 88.7 -
LSvN(m050.3m) 28.1 42.4 820.0
h0(m) 0.036 0.063 0.1
h(m050.2m,m) 0.032 0.004 0.0005
h(m050.3m,m) 0.108 0.0135 0.0017

s t t̄ (m5100 GeV;MS) m/m50.5 m/m51 m/m52

Born 100.7 72.2 53.4
NLO 99.1 95.5 87.4

s
t t̄

pert 101.7 101.0 92.2

LSvN(m05$0.2,0.3%m) 70.6 108.8 930.5

TABLE III. Physical cross sections in pb and perturbativ
boundaries atm5150 GeV andAS51.8 TeV. The corresponding
LSvN predictions are also shown.

sq q̄(m5150 GeV; DIS) m/m50.5 m/m51 m/m52

NLO 9.42 9.31 8.57

sq q̄
pert 9.76 9.92 9.31

LSvN(m050.1m) 7.9 10.0 9.7
h0(m) 0.0017 0.0024 0.0028
h(m050.1m,m) 0.02 0.005 0.00125

sgg(m5150 GeV;MS) m/m50.5 m/m51 m/m52

NLO 2.51 2.22 1.81
sgg
pert 2.53 2.30 1.89

LSvN(m050.2m) 1.76 4.38 -
h0(m) 0.033 0.055 0.083
h(m050.2m,m) 0.032 0.004 0.0005
.

ti-

wn

We may contrast the modest changes of ourh0(m) with the
fact that the IR boundary of LSvN varies by 3 orders of
magnitude in theMS scheme. This large change is partly
responsible for the unstable behavior of LSvN’s cross sec
tion withm. In the DIS scheme, the IR boundary varies by an
order of magnitude form050.1m ~the value used for their
central value prediction in Ref.@4#!, and atm/m51 it is
twice as large as ourh0. The fact that these quantities are of
the same order of magnitude makes LSvN’s and our fina
predictions for theqq̄ cross section comparable. Since the
qq̄ channel is dominant, our final predictions for the tota
t t̄ cross section at the Tevatron are also equal within unce
tainties.

Scheme dependence is an extra source of theoretical u
certainty, but it should produce minimal differences for
physical cross sections. The results in Tables II and III sho
that this is not true of the LSvN cross sections. We provid
our main predictions in theMS factorization scheme@5#. To
check for possible scheme-dependent uncertainty, we pe
form our resummation for the dominantqq̄ channel in both
schemes. The cross sections presented in Table IV show th
scheme dependence is insignificant in our approach, resu
ing in a difference of about 4% for the cross section.

In a very recent paper@19# doubts are expressed about the
numerical importance of resummation for top-quark produc
tion at Fermilab Tevatron energies, and criticisms are levele
at our formalism and that of Ref.@3#. We consider the criti-
cisms unfounded. The analysis presented in our current pap
substantiates the work we presented in Ref.@5#. As demon-
strated in Sec. III, our perturbative resummation exponen
e.g., Eq.~63!, contains no factorially growing terms in its
expansion. The analysis we present of our Figs. 1–5 show
that the perturbative region in which we apply resummatio
remains far removed from the part of phase space in whic
renormalon poles or nonperturbative residual uncertaint
could be influential. Upon expansion in terms of the QCD
coupling strength, fixed at the scale of the top-quark mas
our formalism produces the universal leading-logarithmic
structures that are found at next-to-leading order~one-loop!
in top-quark production and at two loops in the Drell-Yan
process. This is an all-orders expansion, but it is converge
because its coefficients do not have factorial growth, and th
momentum scale of these structures is restricted to our ca
culable perturbative regime. Our approach is consistent wit

s

e

TABLE IV. Physical cross sections in pb for theqq̄ channel:
DIS versusMS scheme.

m ~GeV! sq q̄~DIS; MS) m/m50.5 m/m51 m/m52

100 NLO 52.3; 54.6 52.4; 55.0 48.9; 51.3

sq q̄
pert 53.9; 56.8 55.5; 59.4 52.8; 57.2

125 NLO 21.1; 21.9 21.0; 21.8 19.5; 20.1

sq q̄
pert 21.9; 22.9 22.3; 23.7 21.1; 22.6

150 NLO 9.42; 9.68 9.31; 9.53 8.57; 8.73

sq q̄
pert 9.76; 10.16 9.92; 10.42 9.31; 9.87

175 NLO 4.46; 4.54 4.39; 4.43 4.01; 4.02

sq q̄
pert 4.63; 4.78 4.69; 4.87 4.37; 4.58

200 NLO 2.20; 2.21 2.15; 2.14 1.96; 1.93

sq q̄
pert 2.29; 2.34 2.30; 2.37 2.14; 2.21
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and makes maximum use of, the perturbative properties
QCD and established finite-order calculations for the re
evant processes. With respect to the numerical importanc
resummation, we remark that the enhancement of the cr
section produced by resummation in our calculation is
modest 10% above the next-to-leading-order result, at a
mass of 175 GeV andAS51.8 TeV. That the increase canno
be much less than 10% is suggested simply by an exam
tion of the leading-logarithmic contributions at the two-loo
level, described in Fig. 10. The suppression of the effects
resummation arises from the retention in Ref.@19# of nu-
merically significant nonuniversal subleading logarithm
terms. As we emphasize in this paper, in a consistent tre
ment one should retain only the universal logarithmic term
in momentum space and restrict the phase space integra
to the region in which the unknown subleading terms wou
not be significant regardless. We judge that the approach
Ref. @19# is incorrect. As shown first by LSvN@3#, it is not
necessary to transform to moment space or to resum in or
to obtain an increase of the cross section in the neighborh
of 10%.

VI. ESTIMATES OF NON-PERTURBATIVE
CONTRIBUTIONS

In this section we hazard some estimates of the nonp
turbative contributions. This discussion is based on educa
guesses founded mainly on our intuition of what a physic
threshold is as well as on the behavior of parton distributio

FIG. 10. Physical cross sections in theqq̄ channel in theMS
scheme. The solid lines denote the finite-order partial sums of
universal leading-logarithmic contributions from the explicitO(a)
and O(a2) calculations for thet t̄ and Drell-Yan cross sections,
respectively, integrated throughout phase space. Lower solid,s (0);
middle solid,s (011); upper solid,s (01112). The dashed curve rep-
resents the exact next-to-leading-order calculation fort t̄ production,
in excellent agreement withs (011). The dotted curve is our re-
summed prediction.
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near the threshold. Since even the gluon parton distributio
are not altogether well established, our estimates may
viewed as rough physical understanding expressed quant
tively.

An examination of Fig. 8 indicates that the nonperturba
tive regime is very small, especially for theqq̄ channel. We
focus on this channel first, where the support of the nonpe
turbative interval ish0.0.008. We recall that the area unde
the next-to-leading-order curve is already included in ou
resummed cross section. Concentrating on the solid cur
we assume that the threshold behavior in the no
perturbative regime is a finite continuation of the solid curv
to h50. Reasonable guesses include a continuation of t
solid curve as a constant from its peak value down
h50, or, at most, as a smooth function having the sam
slope as the solid curve just above the peak. In the form
scenario we get an extra contribution

dsq q̄.530.00850.04 pb. ~157!

In the latter case we add a further

d8sq q̄.
1

2
~15210!30.00850.02 pb. ~158!

The total is

Dsq q̄.0.06 pb. ~159!

Since the perturbative cross section atm5175 GeV is
sq q̄
pert54.87, the extra contribution amounts to an increase

about 1–1.5 %.
For thegg-channel displayed in Fig. 8~b!, h0.0.05, and

we find

Dsgg.
1

2
~221!30.0550.025 pb. ~160!

Given thatsgg
pert.0.65 pb, this correction is a 4% effect. We

estimate that the total nonperturbative correction cannot
more than

Ds t t̄ .0.02spert
t t̄ . ~161!

Correspondingly, we can expect a maximum cross section
about 5.7 pb atm5175 GeV.

VII. DISCUSSION AND CONCLUSIONS

There are two main aspects of this paper, one of a mo
theoretical nature and the other phenomenological. First,
describe in all generality features ofperturbativeresumma-
tion that occur in a variety of hard scattering processes wh
focusing on the specific process oft t̄ production. This pro-
cess has the advantage of being physically very interesting
PQCD in that it probes our understanding of the theory whe
multiple physical scales are involved. It is characterized b
an unquestionably large physical scale,m, and apartonic

the
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variableh that, in turn, is the ratio of two large scales. It i
an ideal process in which one may examine the systema
of partonic interactions in more detail than previously po
sible. In this process, we encounter difficulties that ha
challenged the applicability of PQCD for a long time, nota
bly IR renormalons and large color factors, as well as t
systematics of universality and invariance under changes
the hard scale. In dealing witht t̄ production, we treat all
these issues in aconcrete, phenomenologically significant
way.

Second, the paper is concerned with predictions for t
total t t̄ cross section and the practical application of the the
retical resolutions developed in the first part. At the sam
time, comparisons are made with next-to-leading-order cr
sections and with earlier resummation calculations, and
tensive discussions are presented of theoretical limitatio
and uncertainties.

Our theoretical analysis shows that perturbative resumm
tion without a model for nonperturbative behavior is bo
possibleand advantageous. In perturbative resummation,
perturbative region of phase space is separated cleanly f
the region of nonperturbative behavior. The former is t
region where large threshold corrections exponentiate but
have in a way that isperturbatively stable. The asymptotic
behavior of the QCD perturbative series, including larg
multiplicative color factors, is flat, and excursions around t
optimum number of perturbative terms does not create n
merical instabilities or intolerable RG-dependence. Infrar
renormalons are far away from the stability plateau and, ev
though their presence is essential for defining this plate
they are of no numerical consequence in the perturbat
regime. Large color factors, which are multiplicative, en
hance the IR renormalon effects and contribute significan
to limiting the perturbative regime.

As expected in a process with two physical scales, t
constraint that ensures good perturbative behavior is a fu
tion of several parameters. Making the customary assum
tion that the renormalization scale is identified with the fa
torization scale~we denote this single scale bym), and
denoting the variable that probes the partonic threshold
h, we may summarize the essence of our perturbative res
mation procedure as follows.

The threshold logarithmic corrections are exponentiat
in an exponent

E5E„x,a~m!,m/m,N~m!…, ~162!

where x5 ln@1/(12z)#. If the total center-of-mass energy
AS is not far above threshold,h.S/4m221.(12z)/2. The
number of perturbative termsN(m) depends on the hard
scale only, as long as IR renormalons are far away. The cr
section is insensitive to fine-tuning of this number, as long
we remain in a specific well-defined perturbative region
x. In this paper, we determine this region in momentu
space by demanding that the cross section conforms toper-
turbativepower counting. The cross section is a series m
tiplying the exponentiated effects of the threshold and who
successive terms are given by functions of the success
derivatives]kE/k! ]xk. Perturbative power counting mean
that higher derivatives are suppressed relative to lower on
because they contribute subleading logarithmic structures
tics
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ln@1/(12z)#. This statement of perturbative power countin
is the essence of perturbation theory. Imposing its validity
the two-scale parameter space, we determine the perturba
regime:

]

]x
E„x,a~m!,m/m,N~m!…<1. ~163!

This constraint restricts several sources of nonperturbat
behavior, namely: IR renormalons,a(m), x, and color fac-
tors. Some of them are channel independent while oth
depend on the nature of the interacting partons. The c
straint serves to identify the only unknown in the problem
i.e., the momentum range inx in which perturbative resum-
mation is justified.

We calculate

s t t̄ ~m5175 GeV,As51.8 TeV!55.5220.42
10.07 pb.

~164!

Our total t t̄-production cross section atm5 175 GeV and
AS51.8 TeV is 10 – 14 % greater than that of earlier calc
lations. Part of the increase comes from the more recent p
ton distributions we use. Our resummed cross sections
about 9% above the next-to-leading-order cross sectio
computed with the same parton distributions. Th
renormalization-factorization scale dependence of our cro
section is fairly flat, resulting in a 9 – 10 % theoretical un
certainty. This variation is smaller than the correspondi
dependence of the next-to-leading-order cross section, an
is much smaller than the corresponding dependence of
resummed cross section of Ref.@3#. There are other pertur-
bative uncertainties, such as dependence on parton distr

FIG. 11. Physical cross sections for theqq̄ channel in theMS
scheme: Leading-logarithm resummed cross sections form/m51
~solid! andm/m52 ~dotted! and the Drell-Yan resummed version
for m/m51 ~dashed!.
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tions and factorization scheme. Each of these sources aff
our cross section minimally, at level of 4% or less. The
variations are not independent, so we opt not to add them
estimating the theoretical uncertainty. For example, differe
parton distributions are associated with different values
L and therefore ofas . This uncertainty is correlated with
uncertainty inas from other measurements,and with the
standardm variation that we use. Additional back-of-the
envelope modeling of nonperturbative behavior does not
crease our cross section more than 2%. However, we do
claim to address the issue of possible nonperturbative
hancements other than at the level of a conservative educ
guess.

Our theoretical analysis and the stability of our cross se
tions underm variation provide confidence that our perturba
tive resummation procedure yields an accurate calculation
the inclusive top-quark cross section at Tevatron energ
and exhausts present understanding of the perturbative c
tent of the theory. Our prediction agrees with data, within t
large experimental uncertainties. We anticipate the grea
precision of top-quark production data from future Tevatro
collider runs will be instrumental in a fundamental test o
ects
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perturbative QCD. The data may also guide the modeling o
the nonperturbative phase of the theory and provide
glimpse of phenomena beyond the standard model.

The methodology described in this paper can be applie
in several closely related situations. The production of bo
tom quarks in hadron reactions at energies typical of th
Fermilab fixed-target program or the HERA-B facility
should be sensitive to the same type of threshold enhanc
ments. Other reactions include the production of hadron
jets with very large values of transverse momentum, the pro
duction of pairs of heavy particles predicted in supersymme
try models, or the production of very massive lepton pairs i
Tevatron collider experiments. We hope to address these to
ics in the near future.
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