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Improved evaluation of the next-next-to-leading order QCD corrections
to e* e~ annihilation into hadrons
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The next-next-to-leading order QCD correctionsetbe™ annihilation into hadrons are considered. The
stability of the predictions with respect to change of the renormalization scheme is discussed in detail for the
case of five, four, and three active quark flavors. The analysis is based on the recently proposed condition for
selecting renormalization schemes according to the degree of cancellation that they introduce in the expression
for the scheme-invariant combination of the expansion coefficients. It is demonstrated that the scheme depen-
dence ambiguity in the predictions obtained with the conventional expansion is substantial, particularly at
lower energies. It is shown, however, that the stability of the predictions is greatly improved when QCD
corrections are evaluated in a more precise way, by utilizing the contour integral representation and calculating
numerically the contour integrdlS0556-282196)04123-9

PACS numbd(s): 12.38.Cy, 13.60.Hb

[. INTRODUCTION continuation of the expression for the hadronic vacuum po-
larization function from spacelike to timelike momenta
In a series of recent papgis—5] a method has been pre- [32,33. Such corrections constitute a dominant contribution
sented for a systematic analysis of the renormalizationn the NNLO. Using the improved expression we perform
scheme (RS ambiguities in the next-next-to-leading similar analysis as in the case of the conventional expansion.
(NNLO) perturbative QCD predictions. It was emphasized inWe find that the predictions obtained by numerical evalua-
[1-3] that in addition to giving predictions in some preferredtion of the contour integral show extremely good stability
renormalization scheme one should also investigate the stavith respect to change of the RS. The results reported here
bility of the predictions when the parameters determining thehave been announced [i] and briefly described if5].
scheme are changed in some acceptable range. The method
discussed if1-3] involves a specific condition that allows . Se+e- AND THE PROBLEM OF RENORMALIZATION
one to eliminate from the analysis the renormalization SCHEME AMBIGUITY
schemes that give rise to unnaturally large expansion coeffi-
cients. The condition on the acceptable schemes is based onAway from the thresholds, neglecting the effects of the
the existence in NNLO of the RS-invariant combination of quark masses and the electroweak corrections, the formula
the expansion coefficients, which is characteristic for thefor Re+e- may be written in the form
considered physical quantity. The method bf 3] has been
applied to the QCD corrections to the Bjorken sum rule for ey — 2 ~
the polarized structure functiofi8] and to the QCD correc- Reve-(9) 32 QilL+ dere-(S)], @
tions to the total hadronic width of thelepton[1,2,4.
In this work we apply this method to the QCD correction where Q; denotes the electric charge of the quark with the
t0 Rg+e- ratio: flavor f and g+ is the QCD correction. The renormaliza-
tion group improved NNLO expression faf.+.- has the
oo(€7 e~ —hadrons form

Rete = o€ e —u )’ @

_ _ _ o 8% (s)=a(s)[1+ra(s)+r,a%(s)], 3)
which received considerable attention in recent yE&«L27).
We show that a straightforward application of the conditionwherea(u?) =g?(1?)/(472) is the coupling constant, satis-
proposed in[1-3] to the conventional perturbative expres- fying the renormalization group equation
sion for the QCD effects in thR.+- ratio exhibits a rather
strong RS dependence, even at high energies. Looking for da ) )
improvement and motivated by the analysis of the correc- Fan —ba“(1+cjat+cra’). 4
tions to ther decay[1,2,28,29,4 we calculate the QCD
correction to theRq+.- ratio by using the contour integral Tp,
Li?;%?ﬁ;;?;'ﬂﬁiﬂé%v ;; Svee\rlggilarﬁr':g ;neor(é%rr‘;oggnl{gigf?: e!"nodified minimal subtractionMS) renormalization scheme,

so-calledw? corrections, which appear as a result of analytic"ez" using theMS renormalization conventiofi34] with
u°=s. In the MS scheme we havi85,7,§

e perturbative result foﬁfj)e_ is usually expressed in the
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TABLE I. Numerical values of the expansion coefficientdor interest in the RS dependence ?)  came from the fact
(2) . . = . . . . I e

Ogie-, Obtained with theMS renormalization convention and that this erroneous correction was very lajgeseems that
u=s, for various numbers of quark flavors. The magnitude of theqe of the most interesting propositions is to choose the

flavor singlet contributiom$"%is separately indicated. The values of scheme according to the so-called principle of minimal sen-
the RS invarianp§ are calculated according to E®). The numeri- sitivity (PMS) [39].

cal values of the coefficienty in the renormalization group equa-

. . However, as was emphasized[i-3], in addition to cal-
tion are included for completeness.

culating the predictions in some preferred renormalization
WS R scheme, it is also important to investigate the stability of the
C2

sing

n¢ rg"_s rg"_S r; C1 P2 inti i iati i
predictions with respect to reasonable variations in the
2 1.75512 -9.14055 -0.08264 1.98276 5.77598 -9.92498Scheme parameters. By calculating the variation in the pre-
3 1.63982 -10.28394 0.00000 1.77778 4.47106 -11.41713lictions over some set af priori acceptable schemes one
4 152453 -11.68560 -0.16527 1.54000 3.04764 -13.3099Pbtains a quantitative estimate of reliability of the optimized
5 140923 -12.80463 -0.03756 1.26087 1.47479 -15.0926Rredictions. A systematic method for analyzing the stability
6 129394 -14.27207 -0.24791 0.92857 -0.29018 -17.4380@f predictions with respect to change of the renormalization

scheme has been presentefllin3]. This method is based on
the existence of the RS-invariant combination of the expan-
sion coefficient§38,39,41:

r¥S=18.242 692-4.215 84T, +0.086 2077
i _ _ _ .2
+r§|ng_(b77/2)2/3, (6) p2=Catry—Cily—r7, 9

sing WS which appears to be a natural RS independent characteriza-
where ther,™ term inr;> represents the so-called flavor tign of the magnitude of the NNLO correctiofWWe adopt

singlet contribution, here the definition of the RS invariant used 88,41], which
s 265 & differs by a constant from the definition of Steven$88]:
rsingzﬂ(__ _53) @) p>®'=p,—c?/4. The arguments in favor of Eq9) have

2 Q7 1216 977/ been given if3].) The numerical values of this invariant in

. _ _ . _ _ the case ob,+.-, for different values ofi¢, are collected in
which arises from the light-by-light scattering-type diagramstaple I.
(£3=1.202 056 903)(It should be noted that the first calcu-  Thep, invariant may be used to eliminate from the analy-
lation of the NNLO correctiori6] was erroneous. The cor- sjs the unnatural renormalization schemes. This is done by

rected result was published [ifl]. An independent evaluation introducing a functionr, defined on the space of the expan-
was reported ini7].) For the coefficients in the renormaliza- sjon coefficients:

tion group equation we haveb=(33—-2n)/6, c,

=(153—-19n¢)/(66—4n;) and[36] 05(F1,72,C0) =|Co| +|ro| +Cafra| +r2, (10)
— 77 139-15 09%+ 325? which measures the degree of cancellation in the expression
MS . . . e
C = 28833— 2n;) . 8 for p,. An unnatural renormalization scheme, which artifi-

cially introduces large expansion coefficients, would be im-

For convenience we collect in Table | the numerical valuednediately distinguished by a value of, which would be
of the expansion coefficients for various valuesnef large compared tgp,|. The functiono, defines classes of

In addition to theMS scheme other choices of the RS areequivalence of thg perturbative approximants: If one h_as any
l5)_reference for using a perturbative expression obtained in

Some optimal scheme, one should also take into account pre-
gictions obtained in the schemes which imply the same, or
smaller, cancellations in the expression fgr, i.e., which

ave the same, or smaller, value®f. In particular, for the

traction schemeg37]. A change in the RS modifies the val-
ues of the expansion coefficients — the relevant formula
have been collected for example [i]. (The coefficientsh

andc,; are RS independent in the class of mass and gau MS scheme we have,~2|p,| [3]. Therefore it appears

independent schemgsThe change in the expansion coeffi- ) . .
cients compensates for the finite renormalization of the coufEhat the set of schemes which generate approximants satisfy-

pling constant. Of course, in the given order of perturbatiod"Y 02$2|p2| is a m"’.“ma' set _t_hat has to be.ta_ken in.to
expansion this compensation may be only approximate, sfccount in the analysis of stability of the predptlons with
that there is some numerical difference in the perturbativéeSpeCt to (}hange of the RS. More generally, itis useful to
predictions in various schemes. This diﬁ;erence is formally ofUS€ @ condition on the allowed schemes in the form
expression  but numericaly the cifierence may be signif- 7alra 12,0 <llpl -
cant for comparison of theoretical predictions with the ex-wherel=1 is some constant, which determines how strong
perimental data. There has been a lively discussion how tegncellations in the expression foy we want to allow.

avoid this problem, both in the general c488-41] (for a In this work we analyze the RS dependence of the NNLO
summary of early contributions s¢42]) and in the particu- predictions fors.+.-, using systematically conditiofl1).
lar case ofSe+e- [11-20. (Some of the early papefdl-  As in previous paper§l—3], we use ther; andc, coeffi-

15] contain a discussion af?,- with the erroneous value of cients as the two independent parameters characterizing the
the NNLO correction reported ifi6]. Much of the initial  freedom of choice of the approximants in the NNLO. To
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obtain the numerical value of the running coupling constant
we use the implicit equation, which results from integrating
the renormalization group equatio@) with appropriate
boundary conditior34]:

10
b S s
Eln | =TI1 —r1+fI>(a Cy), (12
AM_S 0

where

1 -10
+— +clln(cla)+0( ). (13

d(a,cy)= clln<2C

The explicit form of®(a,c,) is given for example irf43]. -20
The appearance dfys andr!\{'S in expression(12) is a result

of taking into account the so-called Celmaster-Gonsalves re-
lation [37] between the lambda parameters in different
schemes. This relation is valid to all orders of perturbation
expansion.

The region of the scheme parameters satisfying (Ed). ry
has a simple analytic description. In the case<0 and
|pal>2c3(1+1)/(1—1)? let us define FIG. 1. The contour plot 06 __ as a function of the param-
min_ etersr, andc,, with n;=5, for \/_/A(S)—YS. The region of scheme
r —Vlpal(1+1)/2, (14 parameters satisfying conditiofil) has been also indicated for
| =2 (the smaller regionand forl=3.
r=[—c,++ci+2(1+1)|p,|1/2, (15
mm . ESTIMATE OF THE RS AMBIGUITIES
—[pal(1+1)/2, (16) IN THE CONVENTIONAL EXPANSION FOR &t o-
cl= | p,|(1—-1)/2, (17) Let us first consider the case of five active quark flavors,
which is most important for experimental determination of
an_ Cyr” min_, clax, (18) Aws. The same corrections give also a dominant QCD con-

tribution to the hadronic width of th&° boson. Fom;=5
Forc,>0 the region of allowed parameters is bounded fromwe havepz— —15.09262. In Fig. 1 we show the contour

above by the line joining the pointsrT™,0), (rI™,ci" plot of 5 _ as a function of the parametearg andc,, for
(03, (r™ca™®), (r0). Forc,<0 the region of aI- \/_/A(,j’%— 75. We have indicated the region of parameters
lowed parameters is bounded from below by the lines satisfying conditior(11) with | =2. For comparison, we also
_ indicate the region corresponding lte- 3. The PMS predic-
Co(rp)=ri+cg" for ri"<r;=0, (19 tion is represented in Fig. 1 by a saddle point at

r,=—0.408 ancc,= — 23.154. We see that the PMS param-

Co(ry)=ri+cyry+ch™ for O<r;<r  (20) eters are close to the approximate solution of the PMS equa-
tions[44]:
In the casep,<0 and
3
|pal <2c2(1+1)/(1—1)2 (21) ri"e=0@™9), cM=2p,+0(@™9), (29

we should use instead and the PMS point lies indeed on the boundary of lthe

m'“ —|pal(1=1)/(2¢y), (22 region, as expected. Compari.ng the valug§ga)fe_ optained
for the scheme parameters in the2 region we find for
ciMt= (yMin)2 4 i, 23  Vs/IALL=75, that the minimal value is attained for

r{=—4.76, 02—1 55 and the maximal value is attained for

For c,>0 the region of allowed parameters is then bounded ,=3.52,c,=7.55. For thd =3 region we obtain the mini-
from above by the line joining the pomtsrT‘n 0), mal value forr;=—5.49, ¢c,=8.17, and the maximal value
(0.5, (r®™ co™, (r®0). Forc,<0 the region of al- for r;=3.98, c,=15.09. In both cases the maximal and
lowed parameters is bounded from below by the line joiningminimal values are attained at the boundary of the allowed
the points ("",0) and ¢",ci"), and the curves defined in region. Let us note, that the commonly ugd8 scheme lies
the prewous case. within the =2 region.

For p,>c3/4 the region of the scheme parameters satis- Performing similar contour plots in the range
fying Eq. (11) has been described [8]. 40< s/ AL <200 we find that the scheme parameters, for
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FIG. 2. The maximal and minimal values 6f?, in the|=2 1
(dash-dotted lineand | =3 (dashed ling allowed regions, with
n;=5, as a function OK/E/A%. The PMS prediction is also shown, FIG. 3. The contour plot 05(92397 as a function of the param-
and the experimental constraint 5 (ys=31.6 GeV) etersr; andc,, with nj=4, for \/EIA%= 30. The region of scheme
=0.05270.0050[45] is indicated for comparison. parameters satisfying conditiqd1) with | =2 has been also indi-

cated.

Wh'_Ch 52;23e* reaches ex_tremal values in the 2,3 allowed  fnction of \/E/A%. It is evident that forJE/A% smaller
regions, are practically independent of ttis/ A (2. than 20, which is the range relevant for fitting the experimen-
In Fig. 2 we show how the maximal and minimal valuestal data, this variation becomes very largdote that analy-

of 5'(33)9_ in the | =2,3 allowed regions depend QJ‘E/A%. sis of experimental data from several experiments ¢i4é$
We also show the PMS prediction and the experimental condein-(1/s=9 GeV)=0.073+0.024.)

straint 62 (y/s=31.6 GeV)=0.0527-0.0050 [45]. We Finally, forn=3 we havep; = —11.417 13. In Fig. 5 we
find that with increasing/E/A% the scheme dependence is
decreasing, as expected, although it remains substantial even

for high energies. Let us take for exampl&/A%= 162, 0.08
corresponding ta\%zo.l% GeV — which is the value

preferred by the Particle Data Groupd6] — and 0.075
Js=31.6. In this case the scheme variation&éi)e, over

the |=2 region is 5% of the PMS prediction, and for the

| =3 region 8%, compared with 9% and 16%, respectively,
for \/s/A{>J=75. However, when we decreass/A >} be-

low 75 the scheme dependence increases rapidly, and it be-
comes very large already qu/A%z 30. The scheme de-
pendence appears to be quite large in the range of values of 0.06

0.065

6e”e‘

5(6236, relevant for fitting the experimental data. For example,
the line representing the minimal values on the2 region 0.055

does not reach the central experimental value, which trans-
lates into a very large theoretical uncertainty in the fitted
value of Ays.

Forn;=4 we havep§= —13.309 91. In Fig. 3 we show
the contour plot oféfﬁ)e, as a function of the parameters Vs/AG
r, andc,, for \/EIA%z 30. Similarly as in then;=5 case
we find that the PMS prediction is well represented by the
approximate solutior24). The variation over thé=2 re- scheme parameters are changed ovel+h2 region, withn;=4, as

gion is approximately 11% of the PMS prediction. In Fig. 4 ¢ ,nction of JSIAEL . The upper curve corresponds to—3.10
we show the variation in the predictions féf)e* when the and ¢,=6.65, the lower curve corresponds tg=—4.32 and

scheme parameters are changed overl th2 region, as a c¢,=0. For comparison the PMS prediction is shown.

0.05

FIG. 4. The variation in the predictions fo?fj)e, when the
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Let us summarize our analysis of the predictions for
Je+c- Obtained from the conventional expansion. We found
that changing the renormalization scheme within a class of
schemes which, according to our conditidd), appear to be
as good as the PMS scheme, we obtain rather large variation
in the predictions. In some cases we may even speak about
instability of the predictions with respect to change of the
renormalization scheme. This is in contrast with the state-
ment in[16], that the conventional expansion fég+.- is
highly reliable. The conclusion found [16] is based on the
observation, that fobe+.- the MS prediction is very close to
the PMS prediction. The fact that théS prediction is very
close to the PMS prediction is of course true — for example
in the scale of Fig. 2 théM'S and PMS curves would be
difficult to distinguish. Similar situation occurs for other val-
ues ofns. It is clear however, that there is no theoretical or
phenomenological motivation to use thtS-PMS difference
as a measure of reliability of the perturbation expansion for
any physical quantity. The fact that tiMS prediction for
Je+c- is close to the PMS prediction is simply a coincidence,
without deeper significance for such problems as reliability
of the predictions and good or bad convergence of the per-
turbation expansion.

It is interesting to note that for very low energies the PMS
show the contour plot 05’(3238_ as a function of the param- predictions display the infrared fi>§ed poi_nt type of behavior
etersr, andc,, for \/§/A%=9. The variation of the predic- [18]. However, this type of behavior, which in fact does not

tions over thd =2 region is approximately 28% of the PMS manifest itself in they=3 predictions unti's/ Ag~2.5, is

value. In Fig. 6 we show the variation in the predictions foraccompanled by a rapidly increasing RS depencjen_ce. It
) seems therefore unreasonable to put too much faith in the
1) when the scheme parameters are changed over t

etem T . 3) S prediction when even a very small change of the
|=2 region, as a function of's/Agzd. We observe that the scheme parameters dramatically modifies the result. These
variation in the predictions starts to increase rapidly forremarks apply as well to the case=2.

\/EIA% smaller than 9.

FIG. 5. Same as in Fig. 3 but fo,=3 and ys/A{2=09.

IV. ANALYSIS OF THE @2 TERMS IN 8y+e-

The strong RS dependence described above is somewhat
surprising. It may seem understandable that the perturbation
expansion is not reliable in the energy range appropriate for
example for then;=3 regime. However, one would expect
that \/EIA% of order 75 is large enough for the perturbation
series to be very well behaved. The origin of the strong
scheme dependence may be traced back to the fact that the
NNLO correction is relatively large, which is reflected by
large value of the RS invarianty. However, a major con-
tribution to the NNLO correction comes from the term which
appears in the process of analytic continuation of perturba-
tive expression from spacelike to timelike momenta. To see
clearly the significance of such contributions, and to show
R how one may treat them in an improved way, it is convenient

0.06 ,/>/'/ to use the so-called Adler functidd7],
v
4 6 8 10 12 d
YN D(g%) =~ 127°¢° g5 T1(q"), (29

FIG. 6. The variation in the predictions fcﬁg)e, when the
scheme parameters are changed ovel#h2 region, withn;=3, as
a function of \/EIA%. The upper curve corresponds tg=2.71
and c,=5.71, the lower curve corresponds tg=-3.21 and
c,=0. For comparison the PMS curve is shown. I#*(q)=(—g*"9*+q“q")I1(g?), (26)

wherell(g?) is the transverse part of quark electromagnetic
current correlatofI#”(q):
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HMV(q)=iJ d*x €9(0|T[J#(x)J*(0)"]|0). (27

Neglecting the quark mass effects and electroweak correc-

tions we may write
D(a%)=3 2 Qf[1+do(~a?)], (28)

where 6p(—q?) denotes the QCD correction. The Adler
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TABLE II. Numerical values of the RS-invariapl character-
istic for the QCD correction to the Adler function.

n

D
f P2

9.28877
5.23783
0.96903
-3.00693
-7.36281

ook N

function is RS invariant in the formal sense; i.e., it may be

considered to be a physical quantity, despite the fact that

cannot be directly measured in the experiment. In particularq2

5p(—0q?) is renormalization group invariant, in contrast to

@nalyticity of the Adler function. A convenient choice is
—sexp(—i#) with 6[—,]. For this choice of the
contour we obtain the following simple relation between

11(q%), which does not even satisfy a homogenous renormalde+e-(S) @nd ép(—g?):

ization group equatiof48]. The Adler function is directly
calculable in the perturbation expansion for spacelike mo
menta. To express the,+.- ratio by the Adler function one
inverts the relation25):

q2

do
Ja

D(o)

11(g?) - T1(q3)=— : (29

1272

1 T
Oe+e-(8)= EJ_ de[aD(_o')Lr:fsexp(fio)]v (32

The conventional expression fég+.-(S) may be recovered
from this formula by inserting under the contour integral an
expansion ofsp(—q?) in terms ofa(s):

s (—g?)=a(s)(1+[F,—(b/2)In(—g¥s)]a(s)

Wherqu is some reference spacelike momentum, and one

utilizes the relation:

Rete-(S)=12m ImlIl(s+ie)= 6i—7T[H(S+ ie)—Il(s—ie)].
(30

In this way one obtainR.+.-(S) as a contour integral in the

complex momentum plane, with the Adler function under the

integral[30,31]:

1

27Ti C

D(o)

’
g

Re+e—(S)= (31

where the contourC runs clockwise fromo=s—ie to
o=0 below the real positive axis, around=0, and to
o=s+ie above the real positive axis. The integration con-

+{f,—(c;+27)(b/2)In(—qg?/s)

+(b/2)?[In(—-g?/s)]?a¥(s)), (33

wheref; denote the coefficients for expansion &f(—q?)
in terms ofa(—q?). Evaluating the trivial contour integrals
involving powers of In¢-o/s), we obtain expressiof8) with

7l
This impliesp5=p5 — (b#/2)?/3. In Table Il we list the val-
ues ofp? for various values ofi;.

Numerically the contribution of ther? term is very
large for example for n;=5 we have
pR—po=—12.085 70.

Contributions proportional tar? appear also in higher

1

3

b

. (39

ry=rq, r,=r,

tour may be of course arbitrarily deformed in the domain oforders. We hav§25]

. . 5 b2 3
re=fs— {1t gC| 5| (39
N A n 2 bm\? 1/bw\*
[4=0y— 2r2—l—§clr1+ §C1+C2 7 +§ 7 . (36)
The result forrs may be found if22]
.1 21 S ¢ . 7 \[bm\? .77 \[bm\*
r5=r5—§ 10r;+ Eclr2+4clr1+ Eclc2+802r1+ 503 > +§ 5r,+ 1—2c1 - - (37)
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(The difference between andr; in higher orders was stud-

ied in [25,26,33.) Note that them? corrections tof 3 and 0.056
r, are fully determined by the NNLO expression for

Sp(—q?). Taking into account that we have the following
expressions for the higher-order RS-invariant combinations  0.054
of the expansion coefficienf¢1]:

p3=Cg+2r3—4r,r;—2r1p,—ric,+2r3, (39) 0.052
im
O
P4:C4+3r4_6r3r1—4r§—3r1p3—4r‘1‘—(r2+2ri)p2 2 0 05
+12r r24cy(rz—3ryry+r3). (39)
0.048
We obtain
R_p 2 bar)? 0.046
P3=P3 3015 (40

R o Ll , [bm\? 2 [bw\?
pa=ps—3(8pp +7C)| 5| + 72| 5] - (41
FIG. 7. 52236, as a function of ,, for several values of,, for
n¢=>5 andys/A(L=75, obtained with the conventional NNLO ex-

2 . . B
The 7* terms are quite sizable numerically. For example fOrpression. For comparison also the NLO predictions are indicated.

n{=5 we have

p5—p5=—76.1924, pi-p=211.025. (42 V. IMPROVED EVALUATION OF gt o-

It is evident that the terms arising from the analytic continu-_ !N this section we perform an analysis similar to that in
ation would make a significant contribution to the RS invari- S€C. Ill, using now the improved predictions f8g: -, ob-
ants in any order of the perturbation expansion. talned_by_ evaluat_lng numerically the contour integral in Eq.
Returning to the evaluation af.+.-(s), we note that the (32). Slr_nllarly as m_the case of the conventional perturbation
procedure used to obtain the conventional result treats th@xpansion, we begin W'(tg the;=5 case. To show, how the
g2 dependence of, in the complex energy plane in a rather improved evaluation o - affects its RS dependence, we
prude way. A straightforwar.d way to improve thi; ev_aluationcompare the plots 05(62367 as a function of ;, for several
is to use under the.contour integral the renormahzatl_on 9rouRajues ofc,, with \/EIA%= 75. obtained with the conven-
improved expression fowp(— o), analytically continued i, NNLO expression(Fig. 7) and with the numerical
from the real negative to the whole complex energy plane o\ 4jyation of the contour integréFig. 8. We see that the
cut along the real positive axis. In other words, one shoulgy e ictions obtained by the numerical evaluation of the con-
take into account the renormalization group evolution Ofi, ¢ integral have much smaller RS dependence. In Fig. 8 we
a(—o) in the complex energy plane, avoiding the expansion, 56 150 indicated the predictions obtained with the conven-
of a(— o) in terms ofa(s). In this way one makes maximal 44 expansion supplemented by t@a%) and O(a®)
use of the _renormallzat|on group invariance property of therms given by Eq(35) and Eq.(36). We see that this type
Adler function. Of course the integral may be now done only gjmple improvement of the conventional expansion repro-
numerically, and the resulting expression &-¢-(S) SN0 gyces quite well the results obtained from exact contour in-
longer a polynomial ima(s), despite the fact that only the (oqrq| except for large negativg . [Inclusion of only the
NNLO expression for the Adler function is used. Itis easy_too(a4) term does not give good approximation. Inclusion of
convince onself that the procedure outlined above is equivay,q 0(a®) correction given by Eq(37), which is of course

lent to the resummation — to all orders — of thé terms only partially known at present, slightly improves the ap-
that contain powers db, c,, and/orc,. (The summation of proximation for positiver; .]

(2)

+

. . 2 . .
Egg]l)eadmg terms proportional td€/2)° was discussed in In Fig. 9 we show the contour plot 08%.  obtained

The improved approach based on the contour integral ha&om the expressml(BZ? for \/S/A{z=75. In Fig. 9 we also.
been implemented with success in the case of the QCD coghow the relevant regions of the scheme parameters satisfy-
rections to ther lepton decay[28,29,4, where a similar N9 condition(11) with I =2,3. These regions are calculated
problem of strong renormalization scheme dependence a@sSsumingo,=p?, because the basic object in the improved
pears. It was found that using the contour integral represergpproach i9?). Forn;=5 we havep? = —3.006 93, which
tation and evaluating the contour integral numerically onds much smaller in absolute value tha. Consequently, the
obtains considerable improvement in the stability of predic+egion of the allowed scheme parameters is much smaller
tions with respect to change of H39,4]. It is therefore of than in the analysis of the conventional NNLO approximant.
great interest to see whether one may improve in this way th&he improved predictions fof.+.- have a saddle point type
predictions fordg-+e-- of behavior as a function of, andc,, where the saddle
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TABLE Ill. Numerical values of the optimized predictions for
0.056 Se+e-, Obtained from the contour integral expressi(@2) for
: ni=5. The PMS parameters are well approximated rQy= 0,
¢,=1.505 (NNLO) andr;=—0.59 (NLO).
0.054
5 t,NNLO t,NLO
VEA) o o
0 052 25 0.06799 0.06888
. ' 50 0.05753 0.05811
+$ 75 0.05275 0.05320
“ o.0s 100 0.04981 0.05019
200 0.04389 0.04415
500 0.03791 0.03809
0.048
0.046 constani. It is interesting that the PMS point for the im-

proved expression lies very close to the point=0 and
czzl.5p2= —4.51, which corresponds to the approximate
value of the PMS parameters &2 is optimized for space-
like momenta. Let us note that thdS scheme lies outside

ni=5 and\/EIA%= 75, obtained with the numerical evaluation of tEe |.=2 reglé)n in this ﬁa.se' HOW?Ver’ttM:ﬁ p_redlctlondlrILMS
the contour integral. For comparison also the NLO predictions aré ec:_mPrO‘_’e a;]pproac IS very (zjose o the |mprov_e |
indicated, and the predictions obtained from the conventional exPrediction: we have 0.052 79 and 0.052 75, respectively.

pansion supplemented by ti@(a*) and O(a®) corrections given The variation of the _pr(_edictions over t_hecz region is
by Eq.(35) and Eq.(36). 0.3% of the PMS prediction, and variation over the3

region is 0.5% of the PMS prediction. Even if we take varia-

. o . tion over the region corresponding te- 10 we obtain only
point represents the PMS prediction. However, the location 5oy change in the predictions. We see that the improved

of the saddle point is completely different than in the case Obrediction for 8.+, shows wonderful stability with respect
conventional expansioiiThe location of the saddle point for to change of the RS. From Fig. 7 and Fig. 8 it is also clear

the improved expression is no longer a solution of the set of,4t the difference between NNLO and NLO PMS predic-
the PMS equations given if89], because the improved ap- iqng is much smaller in the case of the improved predic-

roximant(32) is not a polynomial in the running coupling .. 5 :
P (32) poly 9 PN tion — 0.9% of the NNLO result foK/E/A%= 75 —thanin

the case of the conventional expansion — 4.7% of the
NNLO result. We conclude, therefore, that the theoretical
ambiguities involved in the evaluation d‘jﬁe, are in fact
very small, provided that the analytic continuation effects are
treated with appropriate care. For completeness, we give in
Table 11l the NNLO and NLO PMS predictions in the im-
proved approach for several vaIues\&/A%.

In the case oh;=5 predictions it is interesting how the
improved evaluation affects the fit to experimental data. Us-
ing the experimental constraindS_(\s=31.6 GeV)
=0.05270.0050[45] and the improved PMS prediction we
find A%=0.419t 0.194 GeV, which is equivalent in the
three-loop approximation toa¥>(M32)=0.1319+0.0100.
For comparison, using the conventional expansion in the
MS scheme we obtain the central value of
ALL=0.399 GeV[a¥S(M2)=0.1304, while with the PMS
prescription in the conventional expansion we get
ALL=0.410 GeV[a¥S(M2)=0.1314. We see therefore
that improvement in the evaluation 6@9_ has small effect
on the fitted values of tha > parameter.

For ni=4 we havep5=0.969 03, i.e., the effect ofr?

FIG. 9. Contour plot of5(2+)e, obtained from the improved ex- corrections is even larger than in thg=5 case. The
pression fon;=5 and\/EIA%: 75. The regions of scheme param- Ny=4 case is in all respects similar to the="5 case, except
eters satisfying conditioi11) with |=2 (the smaller regionand  for the fact that the reduction in RS dependence seems to be
I=3 have been indicated, assumipg=p5 . even stronger. In Fig. 10 and Fig. 11 we compare the plots of

FIG. 8. 52236, as a function of ;, for several values of,, for
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0.065

0.0625

()

+ 0.0575

Se

0.055

0.0525

FIG. 10. Same as in Fig. 7, but for =4 and/s/A{"=30.

A FIG. 12. Same as in Fig. 9, but for,=4 and \/s/A{#=30.

=5\ @ Only thel =2 region has been indicated
VJs/AL)=30, obtained with the conventional NNLO expres- OnY thel=2 region has been indicated.
sion (Fig. 10 and with the numerical evaluation of the con-

tour integral(Fig. 11. In Fig. 11 we also show the predic- 0,060 25 in theMS scheme and 0.059 75 in the NNLO PMS.
tions obtained = with the cosnvent|ona! expansion|n Taple IV we give numerical values of the improved pre-
supplemented by th®(a™) andO(a’) terms given by EQ.  ictigns in the PMS scheme, for several values/efA (7).

gi%sa:; iIrEnq.S\E/% t[r:gcéusfgxi?;;{gﬁ(g ) ;gr\:\?:gzg\(sze We find that in the improved approach the NNLO PMS pre-
P bp 1 Mg, dictions are very close to NLO PMS predictions. We see

contour plot of the improved prediction faf.+.- obtained . L

4)_ L . L . therefore that also fon;=4 the theoretical uncertainties in
for \/ElAm— 30. It is interesting that variation of the predic- . -
) S the improved predictions fof.+.- are very small.
tions over thd =2 region is extremely small, of the order of . ; -

. ; - Finally let us consider the case nf=3. We have then

0.03% of the PMS prediction. The improved prediction for D_5 23783, In Fig. 13 and Fig. 14 we compare the plots
Vs/A{)=30 in theMS scheme is 0.059 02, quite close to sz ) P 9 o g vl P 'hp
the improved PMS result 0.059 07. The differences with the® 59’23?)‘ asa un_ctlon 9 1, for severa_va ues of,, wit
results obtained in the conventional approach again are nofS/A4=9, obtained with the conventional NNLO expres-
very big — using the conventional expansion we havesion (Fig.13 and with the numerical evaluation of the con-
tour integral(Fig. 14). Again, we find dramatic reduction in
the RS dependence, despite rather low energy. It is interest-
ing that in then;=3 case the addition ofr? corrections
e,="25 given by Eq.(35 and Eq.(36) does not result in the im-

§ provement of the conventional predictions. In Fig. 15 we
0.06251 & 71 show the contour plot 05(6236, obtained from the improved
Y

expression fon/§/A%= 9. Similarly as for other numbers of
flavors we obtain in the improved approach a very small
variation in the predictions when parameters are changed

8 _ as a function ofr,, for several values o€,, with

0.065

Ve
yd \ TABLE IV. Same as in Table Il, but fon;=4. The PMS pa-
0.055 rameter in NLO is approximately,= —0.71.
NLO
4 pt, NNLO pt, NLO
0.0525 NN s N s N
10 0.08108 0.08093
0.05 20 0.06574 0.06565
-4 -2 0 2 4 30 0.05907 0.05900
r 40 0.05508 0.05503
50 0.05233 0.05228

FIG. 11. Same as in Fig. 8, but for=4 and/s/A{"=30.
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0.085

0.08

6e“e’

0.075

0.065

FIG. 13. Same as in Fig. 7, but for=3 and\/_/A(s)— .

over thel =2 region of parameters appropriate &) — FIG. 15. Same as in Fig. 9, but fo;=3 ands/A{=9. Only
the variation is of the order of 0.8% of the PMS prediction ¢! =2 region has been indicated.

0.077 56.(We have verified that this situation persists down

to \/_/A(3)—4) The improved prediction in th®IS scheme  lem of existence of the fixed point in the improved approach
is 0.077 19. For comparison, in the conventional approachvould be discussed in a separate wpR].

we obtain 0.080 97 in the NNLO PMS and 0.082 44 in the
NNLO MS scheme. In Table V we give numerical values of
the improved predictions in the PMS scheme, for several
values of \/EIA%. With this result we conclude, that the =~ Summarizing, we have analyzed the RS dependence of
n{=3 NNLO expression fois,+.-, obtained by evaluating the conventional NNLO expression fdi+.- using a sys-

the contour integra(32) numerically, has very small theo- tematic method described ii1-3]. We found rather large
retical uncertainty, even for rather small values ofvariation in the predictions. We have also investigated an

VI. SUMMARY AND CONCLUSIONS

JSIAEL. This situation is similar to that found for the QCD improved way of calculating?, -, which relies on a con-
corrections to ther decay[29,4). tour integral representation for this quantity and a numerical

The behavior Of5(2) at very low energies and the prob- evaluation of the contour integral. We found that the stability
of 5(2) - with respect to change of the RS is greatly im-
proved when the contour integral approach is used. Also, in
the improved approach the difference between optimized
NNLO and NLO predictions was found to be much smaller
than in the case of the conventional expansion. We conclude
therefore that the theoretical uncertainties in the NNLO QCD
predictions ford.+.- are very small, even at low energies,
provided that larger? terms, arising from analytic continu-

0.085

0.08 ation, are treated with due care. We observed that the opti-
o mized predictions fob,+.-, obtained in the contour integral
@ approach, lie in general below the predictions from the opti-
0.075} _ -~ \::\\_;%\: .......
- TR TABLE V. Same as in Table Il, but fan;=3. The PMS param-
\ o~ eter in NLO is approximately,= —0.81.
0.07 NLO
\/E/A% (sopt NNLO 5ggté7NLO
5 0.09624 0.09421
0.065 7 0.08475 0.08312
= 0 ! 2 } 9 0.07756 0.07619
1 11 0.07255 0.07136
13 0.06879 0.06774

FIG. 14. Same as in Fig. 8, but for=3 ands/A{=9
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mized conventional expansion However, fak=5 the The authors of50] do not discuss the choice of the range of
change in the fit ofz\ to the experimental result came out scheme parameters used in their analy3|s In their investiga-
to be small. tion of the conventional expansion fd}’Z they use a
Note addedAfter this paper was completed, a related smaller range of parameters than the one used above for
work was brought to our attentiof60], in which the RS n;=5. In particular, the PMS parameters are outside the
dependence of the QCD corrections to the total hadroni¢ange considered if50]. In the analysis of improved predic-
width of theZ boson is discussed. [®0] it is observed, that tions for Fhad the authors of{50] limit themselves to the
by using the contour integral to resum the Iang%contrlbu— discussion of the renormalization scale dependence, fixing
tions one reduces the scale dependence of the QCD predithe 8 function to theMS value. There is also a technical
tions. This result is in agreement with our observations, sinceifference that authors ¢60] use approximate analytic ex-
the dominant contribution td"}*% comes from expression pression for the running coupling constant to integrate along
identical todq+.-. Let us note that the result reported 850]  the contour in the complex energy plane, whereas we use
was anticipated already if3]. However, the approach exact numerical solution of the two- or three-loop renormal-
adopted in[50] differs from our approach in several ways. ization group equation.
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