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Improved evaluation of the next-next-to-leading order QCD corrections
to e1e2 annihilation into hadrons

Piotr A. Ra̧czka* and Andrzej Szymacha
Institute of Theoretical Physics, Department of Physics, Warsaw University, ul. Hoz˙a 69, PL-00-681 Warsaw, Poland
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The next-next-to-leading order QCD corrections toe1e2 annihilation into hadrons are considered. The
stability of the predictions with respect to change of the renormalization scheme is discussed in detail for t
case of five, four, and three active quark flavors. The analysis is based on the recently proposed condition
selecting renormalization schemes according to the degree of cancellation that they introduce in the express
for the scheme-invariant combination of the expansion coefficients. It is demonstrated that the scheme dep
dence ambiguity in the predictions obtained with the conventional expansion is substantial, particularly
lower energies. It is shown, however, that the stability of the predictions is greatly improved when QCD
corrections are evaluated in a more precise way, by utilizing the contour integral representation and calculat
numerically the contour integral.@S0556-2821~96!04123-9#

PACS number~s!: 12.38.Cy, 13.60.Hb
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I. INTRODUCTION

In a series of recent papers@1–5# a method has been pre
sented for a systematic analysis of the renormalizat
scheme ~RS! ambiguities in the next-next-to-leadin
~NNLO! perturbative QCD predictions. It was emphasized
@1–3# that in addition to giving predictions in some preferre
renormalization scheme one should also investigate the
bility of the predictions when the parameters determining
scheme are changed in some acceptable range. The me
discussed in@1–3# involves a specific condition that allow
one to eliminate from the analysis the renormalizati
schemes that give rise to unnaturally large expansion co
cients. The condition on the acceptable schemes is base
the existence in NNLO of the RS-invariant combination
the expansion coefficients, which is characteristic for t
considered physical quantity. The method of@1–3# has been
applied to the QCD corrections to the Bjorken sum rule
the polarized structure functions@3# and to the QCD correc-
tions to the total hadronic width of thet lepton @1,2,4#.

In this work we apply this method to the QCD correctio
to Re1e2 ratio:

Re1e25
s tot~e

1e2→hadrons!

s tot~e
1e2→m1m2!

, ~1!

which received considerable attention in recent years@6–27#.
We show that a straightforward application of the conditi
proposed in@1–3# to the conventional perturbative expre
sion for the QCD effects in theRe1e2 ratio exhibits a rather
strong RS dependence, even at high energies. Looking
improvement and motivated by the analysis of the corr
tions to thet decay @1,2,28,29,4#, we calculate the QCD
correction to theRe1e2 ratio by using the contour integra
representation@30,31# and evaluating the contour integra
numerically. In this way we resum to all orders some of t
so-calledp2 corrections, which appear as a result of analy
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continuation of the expression for the hadronic vacuum p
larization function from spacelike to timelike moment
@32,33#. Such corrections constitute a dominant contributio
in the NNLO. Using the improved expression we perform
similar analysis as in the case of the conventional expansi
We find that the predictions obtained by numerical evalu
tion of the contour integral show extremely good stabilit
with respect to change of the RS. The results reported h
have been announced in@3# and briefly described in@5#.

II. de1e2 AND THE PROBLEM OF RENORMALIZATION
SCHEME AMBIGUITY

Away from the thresholds, neglecting the effects of th
quark masses and the electroweak corrections, the form
for Re1e2 may be written in the form

Re1e2~s!53(
f
Qf
2@11de1e2~s!#, ~2!

whereQf denotes the electric charge of the quark with th
flavor f andde1e2 is the QCD correction. The renormaliza
tion group improved NNLO expression forde1e2 has the
form

de1e2
~2!

~s!5a~s!@11r 1a~s!1r 2a
2~s!#, ~3!

wherea(m2)5g2(m2)/(4p2) is the coupling constant, satis-
fying the renormalization group equation

m
da

dm
52ba2~11c1a1c2a

2!. ~4!

The perturbative result forde1e2
(2) is usually expressed in the

modified minimal subtraction (MS) renormalization scheme,
i.e., using theMS renormalization convention@34# with
m25s. In theMS scheme we have@35,7,8#

r 1
MS51.985 70720.115 295nf , ~5!
3073 © 1996 The American Physical Society
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r 2
MS518.242 69224.215 847nf 10.086 207nf

2

1r 2
sing2~bp/2!2/3, ~6!

where ther 2
sing term in r 2

MS represents the so-called flavo
singlet contribution,

r 2
sing5

~( fQf !
2

( fQf
2 S 552162

5

9
z3D , ~7!

which arises from the light-by-light scattering-type diagram
(z351.202 056 903).~It should be noted that the first calcu
lation of the NNLO correction@6# was erroneous. The cor-
rected result was published in@8#. An independent evaluation
was reported in@7#.! For the coefficients in the renormaliza
tion group equation we haveb5(3322nf)/6, c1
5(153219nf)/(6624nf) and @36#

c2
MS5

77 139215 099nf1325nf
2

288~3322nf !
. ~8!

For convenience we collect in Table I the numerical valu
of the expansion coefficients for various values ofnf .

In addition to theMS scheme other choices of the RS ar
of course possible, such as for example the momentum s
traction schemes@37#. A change in the RS modifies the val
ues of the expansion coefficients — the relevant formul
have been collected for example in@1#. ~The coefficientsb
and c1 are RS independent in the class of mass and gau
independent schemes.! The change in the expansion coeffi
cients compensates for the finite renormalization of the co
pling constant. Of course, in the given order of perturbatio
expansion this compensation may be only approximate,
that there is some numerical difference in the perturbati
predictions in various schemes. This difference is formally
higher order in the coupling — it isO(a4) for the NNLO
expression — but numerically the difference may be signi
cant for comparison of theoretical predictions with the e
perimental data. There has been a lively discussion how
avoid this problem, both in the general case@38–41# ~for a
summary of early contributions see@42#! and in the particu-
lar case ofde1e2 @11–20#. ~Some of the early papers@11–
15# contain a discussion ofde1e2

(2) with the erroneous value of
the NNLO correction reported in@6#. Much of the initial

TABLE I. Numerical values of the expansion coefficientsr i for
de1e2
(2) , obtained with theMS renormalization convention and

m25s, for various numbers of quark flavors. The magnitude of th
flavor singlet contributionr 2

sing is separately indicated. The values o
the RS invariantr2

R are calculated according to Eq.~9!. The numeri-
cal values of the coefficientsci in the renormalization group equa-
tion are included for completeness.

nf r 1
MS r 2

MS r 2
sing c1 c2

MS r2
R

2 1.75512 -9.14055 -0.08264 1.98276 5.77598 -9.9249
3 1.63982 -10.28394 0.00000 1.77778 4.47106 -11.417
4 1.52453 -11.68560 -0.16527 1.54000 3.04764 -13.309
5 1.40923 -12.80463 -0.03756 1.26087 1.47479 -15.092
6 1.29394 -14.27207 -0.24791 0.92857 -0.29018 -17.438
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interest in the RS dependence ofde1e2
(2) came from the fact

that this erroneous correction was very large.! It seems that
one of the most interesting propositions is to choose t
scheme according to the so-called principle of minimal se
sitivity ~PMS! @39#.

However, as was emphasized in@1–3#, in addition to cal-
culating the predictions in some preferred renormalizatio
scheme, it is also important to investigate the stability of th
predictions with respect to reasonable variations in t
scheme parameters. By calculating the variation in the p
dictions over some set ofa priori acceptable schemes one
obtains a quantitative estimate of reliability of the optimize
predictions. A systematic method for analyzing the stabili
of predictions with respect to change of the renormalizatio
scheme has been presented in@1–3#. This method is based on
the existence of the RS-invariant combination of the expa
sion coefficients@38,39,41#:

r25c21r 22c1r 12r 1
2 , ~9!

which appears to be a natural RS independent character
tion of the magnitude of the NNLO correction.~We adopt
here the definition of the RS invariant used in@38,41#, which
differs by a constant from the definition of Stevenson@39#:
r2
Stev5r22c1

2/4. The arguments in favor of Eq.~9! have
been given in@3#.! The numerical values of this invariant in
the case ofde1e2, for different values ofnf , are collected in
Table I.

Ther2 invariant may be used to eliminate from the analy
sis the unnatural renormalization schemes. This is done
introducing a functions2 defined on the space of the expan
sion coefficients:

s2~r 1 ,r 2 ,c2!5uc2u1ur 2u1c1ur 1u1r 1
2 , ~10!

which measures the degree of cancellation in the express
for r2 . An unnatural renormalization scheme, which artifi
cially introduces large expansion coefficients, would be im
mediately distinguished by a value ofs2 which would be
large compared tour2u. The functions2 defines classes of
equivalence of the perturbative approximants. If one has a
preference for using a perturbative expression obtained
some optimal scheme, one should also take into account p
dictions obtained in the schemes which imply the same,
smaller, cancellations in the expression forr2 , i.e., which
have the same, or smaller, value ofs2 . In particular, for the
PMS scheme we haves2'2ur2u @3#. Therefore it appears
that the set of schemes which generate approximants sati
ing s2<2ur2u is a minimal set that has to be taken into
account in the analysis of stability of the predictions wit
respect to change of the RS. More generally, it is useful
use a condition on the allowed schemes in the form

s2~r 1 ,r 2 ,c2!< l ur2u, ~11!

where l>1 is some constant, which determines how stron
cancellations in the expression forr2 we want to allow.

In this work we analyze the RS dependence of the NNL
predictions forde1e2, using systematically condition~11!.
As in previous papers@1–3#, we use ther 1 and c2 coeffi-
cients as the two independent parameters characterizing
freedom of choice of the approximants in the NNLO. T

e
f

8
13
91
62
03



s,
f
n-

r

rs

t
-
ua-

r

d
ed

or
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obtain the numerical value of the running coupling const
we use the implicit equation, which results from integrati
the renormalization group equation~4! with appropriate
boundary condition@34#:

b

2
lnS s

LMS
2 D 5r 1

MS2r 11F~a,c2!, ~12!

where

F~a,c2!5c1lnS b

2c1
D1

1

a
1c1ln~c1a!1O~a!. ~13!

The explicit form ofF(a,c2) is given for example in@43#.
The appearance ofLMS andr 1

MS in expression~12! is a result
of taking into account the so-called Celmaster-Gonsalves
lation @37# between the lambda parameters in differe
schemes. This relation is valid to all orders of perturbati
expansion.

The region of the scheme parameters satisfying Eq.~11!
has a simple analytic description. In the caser2,0 and
ur2u.2c1

2( l11)/(l21)2 let us define

r 1
min52Aur2u~ l11!/2, ~14!

r 1
max5@2c11Ac1212~ l11!ur2u#/2, ~15!

c2
min52ur2u~ l11!/2, ~16!

c2
max5ur2u~ l21!/2, ~17!

c2
int5c1r 1

min1c2
max. ~18!

For c2.0 the region of allowed parameters is bounded fro
above by the line joining the points (r 1

min,0), (r 1
min,c2

int),
(0,c2

max), (r 1
max,c2

max), (r 1
max,0). Forc2,0 the region of al-

lowed parameters is bounded from below by the lines

c2~r 1!5r 1
21c2

min for r 1
min<r 1<0, ~19!

c2~r 1!5r 1
21c1r 11c2

min for 0<r 1<r 1
max. ~20!

In the caser2,0 and

ur2u,2c1
2~ l11!/~ l21!2 ~21!

we should use instead

r 1
min52ur2u~ l21!/~2c1!, ~22!

c2
int5~r 1

min!21c2
min. ~23!

For c2.0 the region of allowed parameters is then bound
from above by the line joining the points (r 1

min,0),
(0,c2

max), (r 1
max,c2

max), (r 1
max,0). Forc2,0 the region of al-

lowed parameters is bounded from below by the line joini
the points (r 1

min,0) and (r 1
min,c2

int), and the curves defined in
the previous case.

For r2.c1
2/4 the region of the scheme parameters sa

fying Eq. ~11! has been described in@3#.
ant
ng

re-
nt
on

m

ed

ng

tis-

III. ESTIMATE OF THE RS AMBIGUITIES
IN THE CONVENTIONAL EXPANSION FOR de1e2

Let us first consider the case of five active quark flavor
which is most important for experimental determination o
LMS. The same corrections give also a dominant QCD co
tribution to the hadronic width of theZ0 boson. Fornf55
we haver2

R5215.092 62. In Fig. 1 we show the contou
plot of de1e2

(2) as a function of the parametersr 1 andc2 , for
As/LMS

(5)
575. We have indicated the region of paramete

satisfying condition~11! with l52. For comparison, we also
indicate the region corresponding tol53. The PMS predic-
tion is represented in Fig. 1 by a saddle point a
r 1520.408 andc25223.154. We see that the PMS param
eters are close to the approximate solution of the PMS eq
tions @44#:

r 1
PMS50~aPMS!, c2

PMS5
3

2
r210~aPMS!, ~24!

and the PMS point lies indeed on the boundary of thel52
region, as expected. Comparing the values ofde1e2

(2) obtained
for the scheme parameters in thel52 region we find for
As/LMS

(5)
575, that the minimal value is attained for

r 1524.76, c251.55 and the maximal value is attained fo
r 153.52, c257.55. For thel53 region we obtain the mini-
mal value forr 1525.49, c258.17, and the maximal value
for r 153.98, c2515.09. In both cases the maximal an
minimal values are attained at the boundary of the allow
region. Let us note, that the commonly usedMS scheme lies
within the l52 region.

Performing similar contour plots in the range
40,As/LMS

(5)
,200 we find that the scheme parameters, f

FIG. 1. The contour plot ofde1e2
(2) as a function of the param-

etersr 1 andc2 , with nf55, forAs/LMS
(5)

575. The region of scheme
parameters satisfying condition~11! has been also indicated for
l52 ~the smaller region! and for l53.
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which de1e2
(2) reaches extremal values in thel52,3 allowed

regions, are practically independent of theAs/LMS
(5) .

In Fig. 2 we show how the maximal and minimal value
of de1e2

(2) in the l52,3 allowed regions depend onAs/LMS
(5) .

We also show the PMS prediction and the experimental co
straint de1e2

expt (As531.6 GeV)50.052760.0050 @45#. We

find that with increasingAs/LMS
(5) the scheme dependence i

decreasing, as expected, although it remains substantial e
for high energies. Let us take for exampleAs/LMS

(5)
5162,

corresponding toLMS
(5)

50.195 GeV — which is the value
preferred by the Particle Data Group@46# — and
As531.6. In this case the scheme variation ofde1e2

(2) over
the l52 region is 5% of the PMS prediction, and for the
l53 region 8%, compared with 9% and 16%, respectivel
for As/LMS

(5)
575. However, when we decreaseAs/LMS

(5) be-
low 75 the scheme dependence increases rapidly, and it
comes very large already forAs/LMS

(5)
530. The scheme de-

pendence appears to be quite large in the range of values
de1e2
(2) relevant for fitting the experimental data. For exampl
the line representing the minimal values on thel52 region
does not reach the central experimental value, which tran
lates into a very large theoretical uncertainty in the fitte
value ofLMS.

For nf54 we haver2
R5213.309 91. In Fig. 3 we show

the contour plot ofde1e2
(2) as a function of the parameters

r 1 andc2 , for As/LMS
(4)

530. Similarly as in thenf55 case
we find that the PMS prediction is well represented by th
approximate solution~24!. The variation over thel52 re-
gion is approximately 11% of the PMS prediction. In Fig.
we show the variation in the predictions forde1e2

(2) when the
scheme parameters are changed over thel52 region, as a

FIG. 2. The maximal and minimal values ofde1e2
(2) in the l52

~dash-dotted line! and l53 ~dashed line! allowed regions, with
nf55, as a function ofAs/LMS

(5) . The PMS prediction is also shown,
and the experimental constraint de1e2

expt (As531.6 GeV)
50.052760.0050@45# is indicated for comparison.
s
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function of As/LMS
(4) . It is evident that forAs/LMS

(4) smaller
than 20, which is the range relevant for fitting the experime
tal data, this variation becomes very large.~Note that analy-
sis of experimental data from several experiments gives@45#
de1e2
expt (As59 GeV)50.07360.024.)
Finally, for nf53 we haver2

R5211.417 13. In Fig. 5 we

FIG. 3. The contour plot ofde1e2
(2) as a function of the param-

etersr 1 andc2 , with nf54, forAs/LMS
(4)

530. The region of scheme
parameters satisfying condition~11! with l52 has been also indi-
cated.

FIG. 4. The variation in the predictions forde1e2
(2) when the

scheme parameters are changed over thel52 region, withnf54, as
a function ofAs/LMS

(4) . The upper curve corresponds tor 153.10
and c256.65, the lower curve corresponds tor 1524.32 and
c250. For comparison the PMS prediction is shown.
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show the contour plot ofde1e2
(2) as a function of the param-

etersr 1 andc2 , for As/LMS
(3)

59. The variation of the predic-
tions over thel52 region is approximately 28% of the PMS
value. In Fig. 6 we show the variation in the predictions fo
de1e2
(2) when the scheme parameters are changed over

l52 region, as a function ofAs/LMS
(3) . We observe that the

variation in the predictions starts to increase rapidly f
As/LMS

(3) smaller than 9.

FIG. 5. Same as in Fig. 3 but fornf53 andAs/LMS
(3)

59.

FIG. 6. The variation in the predictions forde1e2
(2) when the

scheme parameters are changed over thel52 region, withnf53, as
a function ofAs/LMS

(3) . The upper curve corresponds tor 152.71
and c255.71, the lower curve corresponds tor 1523.21 and
c250. For comparison the PMS curve is shown.
r
the

or

Let us summarize our analysis of the predictions fo
de1e2 obtained from the conventional expansion. We found
that changing the renormalization scheme within a class o
schemes which, according to our condition~11!, appear to be
as good as the PMS scheme, we obtain rather large variati
in the predictions. In some cases we may even speak abo
instability of the predictions with respect to change of the
renormalization scheme. This is in contrast with the state
ment in @16#, that the conventional expansion forde1e2 is
highly reliable. The conclusion found in@16# is based on the
observation, that forde1e2 theMS prediction is very close to
the PMS prediction. The fact that theMS prediction is very
close to the PMS prediction is of course true — for exampl
in the scale of Fig. 2 theMS and PMS curves would be
difficult to distinguish. Similar situation occurs for other val-
ues ofnf . It is clear however, that there is no theoretical or
phenomenological motivation to use theMS-PMS difference
as a measure of reliability of the perturbation expansion fo
any physical quantity. The fact that theMS prediction for
de1e2 is close to the PMS prediction is simply a coincidence
without deeper significance for such problems as reliabilit
of the predictions and good or bad convergence of the pe
turbation expansion.

It is interesting to note that for very low energies the PMS
predictions display the infrared fixed point type of behavio
@18#. However, this type of behavior, which in fact does no
manifest itself in thenf53 predictions untilAs/LMS

(3)'2.5, is
accompanied by a rapidly increasing RS dependence.
seems therefore unreasonable to put too much faith in th
PMS prediction when even a very small change of th
scheme parameters dramatically modifies the result. The
remarks apply as well to the casenf52.

IV. ANALYSIS OF THE p2 TERMS IN de1e2

The strong RS dependence described above is somew
surprising. It may seem understandable that the perturbati
expansion is not reliable in the energy range appropriate f
example for thenf53 regime. However, one would expect
thatAs/LMS

(5) of order 75 is large enough for the perturbation
series to be very well behaved. The origin of the stron
scheme dependence may be traced back to the fact that
NNLO correction is relatively large, which is reflected by
large value of the RS invariantr2

R. However, a major con-
tribution to the NNLO correction comes from the term which
appears in the process of analytic continuation of perturb
tive expression from spacelike to timelike momenta. To se
clearly the significance of such contributions, and to show
how one may treat them in an improved way, it is convenien
to use the so-called Adler function@47#,

D~q2!5212p2q2
d

dq2
P~q2!, ~25!

whereP(q2) is the transverse part of quark electromagneti
current correlatorPmn(q):

Pmn~q!5~2gmnq21qmqn!P~q2!, ~26!
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Pmn~q!5 i E d4x eiqx^0uT@Jm~x!Jn~0!†#u0&. ~27!

Neglecting the quark mass effects and electroweak corr
tions we may write

D~q2!53(
f
Qf
2@11dD~2q2!#, ~28!

where dD(2q2) denotes the QCD correction. The Adle
function is RS invariant in the formal sense; i.e., it may b
considered to be a physical quantity, despite the fact tha
cannot be directly measured in the experiment. In particul
dD(2q2) is renormalization group invariant, in contrast to
P(q2), which does not even satisfy a homogenous renorm
ization group equation@48#. The Adler function is directly
calculable in the perturbation expansion for spacelike m
menta. To express theRe1e2 ratio by the Adler function one
inverts the relation~25!:

P~q2!2P~q0
2!52

1

12p2E
q0
2

q2

ds
D~s!

s
, ~29!

whereq0
2 is some reference spacelike momentum, and o

utilizes the relation:

Re1e2~s!512p ImP~s1 i e!5
6p

i
@P~s1 i e!2P~s2 i e!#.

~30!

In this way one obtainsRe1e2(s) as a contour integral in the
complex momentum plane, with the Adler function under th
integral @30,31#:

Re1e2~s!52
1

2p i ECds
D~s!

s
, ~31!

where the contourC runs clockwise froms5s2 i e to
s50 below the real positive axis, arounds50, and to
s5s1 i e above the real positive axis. The integration con
tour may be of course arbitrarily deformed in the domain o
ec-
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f

analyticity of the Adler function. A convenient choice is
q252sexp(2iu) with uP@2p,p#. For this choice of the
contour we obtain the following simple relation betwee
de1e2(s) anddD(2q2):

de1e2~s!5
1

2pE2p

p

du@dD~2s!us52s exp~2 iu!#, ~32!

The conventional expression forde1e2(s) may be recovered
from this formula by inserting under the contour integral a
expansion ofdD(2q2) in terms ofa(s):

dD
~2!~2q2!5a~s!„11@ r̂ 12~b/2!ln~2q2/s!#a~s!

1$ r̂ 22~c112 r̂ 1!~b/2!ln~2q2/s!

1~b/2!2@ ln~2q2/s!#2%a2~s!…, ~33!

where r̂ i denote the coefficients for expansion ofdD(2q2)
in terms ofa(2q2). Evaluating the trivial contour integrals
involving powers of ln(2s/s), we obtain expression~3! with

r 15 r̂ 1 , r 25 r̂ 22
1

3 S bp

2 D 2. ~34!

This impliesr2
R5r2

D2(bp/2)2/3. In Table II we list the val-
ues ofr2

D for various values ofnf .
Numerically the contribution of thep2 term is very

large — for example for nf55 we have
r2
R2r2

D5212.085 70.
Contributions proportional top2 appear also in higher

orders. We have@25#

TABLE II. Numerical values of the RS-invariantr2
D character-

istic for the QCD correction to the Adler function.

nf r2
D

2 9.28877
3 5.23783
4 0.96903
5 -3.00693
6 -7.36281
r 35 r̂ 32S r̂ 11 5

6
c1D S bp

2 D 2, ~35!

r 45 r̂ 42S 2r̂ 21 7

3
c1r̂ 11

1

2
c1
21c2D S bp

2 D 21 1

5 S bp

2 D 4. ~36!

The result forr 5 may be found in@22#

r 55 r̂ 52
1

3 S 10r̂ 31 27

2
c1r̂ 214c1

2r̂ 11
7

2
c1c218c2r̂ 11

7

2
c3D S bp

2 D 21 1

5 S 5r̂ 11 77

12
c1D S bp

2 D 4. ~37!
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~The difference betweenr i and r̂ i in higher orders was stud-
ied in @25,26,33#.! Note that thep2 corrections tor̂ 3 and
r̂ 4 are fully determined by the NNLO expression fo
dD(2q2). Taking into account that we have the followin
expressions for the higher-order RS-invariant combinatio
of the expansion coefficients@41#:

r35c312r 324r 2r 122r 1r22r 1
2c112r 1

3 , ~38!

r45c413r 426r 3r 124r 2
223r 1r324r 1

42~r 212r 1
2!r2

111r 2r 1
21c1~r 323r 2r 11r 1

3!. ~39!

We obtain

r3
R5r3

D2
5

3
c1S bp

2 D 2, ~40!

r4
R5r4

D2
1

3
~8r2

D17c1
2!S bp

2 D 21 2

45S bp

2 D 4. ~41!

Thep2 terms are quite sizable numerically. For example f
nf55 we have

r3
R2r3

D5276.1924, r4
R2r4

D5211.025. ~42!

It is evident that the terms arising from the analytic contin
ation would make a significant contribution to the RS invar
ants in any order of the perturbation expansion.

Returning to the evaluation ofde1e2(s), we note that the
procedure used to obtain the conventional result treats
q2 dependence ofdD in the complex energy plane in a rathe
crude way. A straightforward way to improve this evaluatio
is to use under the contour integral the renormalization gro
improved expression fordD(2s), analytically continued
from the real negatives to the whole complex energy plane
cut along the real positive axis. In other words, one shou
take into account the renormalization group evolution
a(2s) in the complex energy plane, avoiding the expansi
of a(2s) in terms ofa(s). In this way one makes maxima
use of the renormalization group invariance property of t
Adler function. Of course the integral may be now done on
numerically, and the resulting expression forde1e2(s) is no
longer a polynomial ina(s), despite the fact that only the
NNLO expression for the Adler function is used. It is easy
convince onself that the procedure outlined above is equi
lent to the resummation — to all orders — of thep2 terms
that contain powers ofb, c1 , and/orc2 . ~The summation of
the leading terms proportional to (bp/2)2 was discussed in
@33#.!

The improved approach based on the contour integral
been implemented with success in the case of the QCD c
rections to thet lepton decay@28,29,4#, where a similar
problem of strong renormalization scheme dependence
pears. It was found that using the contour integral repres
tation and evaluating the contour integral numerically o
obtains considerable improvement in the stability of pred
tions with respect to change of RS@29,4#. It is therefore of
great interest to see whether one may improve in this way
predictions forde1e2.
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V. IMPROVED EVALUATION OF de1e2

In this section we perform an analysis similar to that i
Sec. III, using now the improved predictions forde1e2, ob-
tained by evaluating numerically the contour integral in Eq
~32!. Similarly as in the case of the conventional perturbatio
expansion, we begin with thenf55 case. To show, how the
improved evaluation ofde1e2

(2) affects its RS dependence, we

compare the plots ofde1e2
(2) as a function ofr 1 , for several

values ofc2 , with As/LMS
(5)

575, obtained with the conven-
tional NNLO expression~Fig. 7! and with the numerical
evaluation of the contour integral~Fig. 8!. We see that the
predictions obtained by the numerical evaluation of the co
tour integral have much smaller RS dependence. In Fig. 8
have also indicated the predictions obtained with the conve
tional expansion supplemented by theO(a4) and O(a5)
terms given by Eq.~35! and Eq.~36!. We see that this type
of simple improvement of the conventional expansion repr
duces quite well the results obtained from exact contour i
tegral, except for large negativer 1 . @Inclusion of only the
O(a4) term does not give good approximation. Inclusion o
theO(a6) correction given by Eq.~37!, which is of course
only partially known at present, slightly improves the ap
proximation for positiver 1 .#

In Fig. 9 we show the contour plot ofde1e2
(2) obtained

from the expression~32! for As/LMS
(5)

575. In Fig. 9 we also
show the relevant regions of the scheme parameters satis
ing condition~11! with l52,3. These regions are calculated
assumingr25r2

D , because the basic object in the improve
approach isdD

(2) . Fornf55 we haver2
D523.006 93, which

is much smaller in absolute value thanrR. Consequently, the
region of the allowed scheme parameters is much smal
than in the analysis of the conventional NNLO approximan
The improved predictions forde1e2 have a saddle point type
of behavior as a function ofr 1 and c2 , where the saddle

FIG. 7. de1e2
(2) as a function ofr 1 , for several values ofc2 , for

nf55 andAs/LMS
(5)

575, obtained with the conventional NNLO ex-
pression. For comparison also the NLO predictions are indicated
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point represents the PMS prediction. However, the locati
of the saddle point is completely different than in the case
conventional expansion.~The location of the saddle point for
the improved expression is no longer a solution of the set
the PMS equations given in@39#, because the improved ap
proximant~32! is not a polynomial in the running coupling

FIG. 8. de1e2
(2) as a function ofr 1 , for several values ofc2 , for

nf55 andAs/LMS
(5)

575, obtained with the numerical evaluation o
the contour integral. For comparison also the NLO predictions a
indicated, and the predictions obtained from the conventional
pansion supplemented by theO(a4) andO(a5) corrections given
by Eq. ~35! and Eq.~36!.

FIG. 9. Contour plot ofde1e2
(2) obtained from the improved ex-

pression fornf55 andAs/LMS
(5)

575. The regions of scheme param
eters satisfying condition~11! with l52 ~the smaller region! and
l53 have been indicated, assumingr25r2

D .
on
of

of

constant.! It is interesting that the PMS point for the im-
proved expression lies very close to the pointr 150 and
c251.5r2

D524.51, which corresponds to the approximate
value of the PMS parameters ifdD

(2) is optimized for space-
like momenta. Let us note that theMS scheme lies outside
the l52 region in this case. However, theMS prediction in
the improved approach is very close to the improved PM
prediction: we have 0.052 79 and 0.052 75, respectively.

The variation of the predictions over thel52 region is
0.3% of the PMS prediction, and variation over thel53
region is 0.5% of the PMS prediction. Even if we take varia
tion over the region corresponding tol510 we obtain only
2.5% change in the predictions. We see that the improve
prediction forde1e2 shows wonderful stability with respect
to change of the RS. From Fig. 7 and Fig. 8 it is also clea
that the difference between NNLO and NLO PMS predic
tions is much smaller in the case of the improved predic
tion — 0.9% of the NNLO result forAs/LMS

(5)
575 — than in

the case of the conventional expansion — 4.7% of th
NNLO result. We conclude, therefore, that the theoretica
ambiguities involved in the evaluation ofde1e2

(2) are in fact
very small, provided that the analytic continuation effects ar
treated with appropriate care. For completeness, we give
Table III the NNLO and NLO PMS predictions in the im-
proved approach for several values ofAs/LMS

(5) .
In the case ofnf55 predictions it is interesting how the

improved evaluation affects the fit to experimental data. Us
ing the experimental constraintde1e2

expt (As531.6 GeV)
50.052760.0050@45# and the improved PMS prediction we
find LMS

(5)
50.41960.194 GeV, which is equivalent in the

three-loop approximation toas
MS(MZ

2)50.131960.0100.
For comparison, using the conventional expansion in th
MS scheme we obtain the central value of
LMS
(5)

50.399 GeV@as
MS(MZ

2)50.1308#, while with the PMS
prescription in the conventional expansion we ge
LMS
(5)

50.410 GeV @as
MS(MZ

2)50.1314#. We see therefore

that improvement in the evaluation ofde1e2
(2) has small effect

on the fitted values of theLMS
(5) parameter.

For nf54 we haver2
D50.969 03, i.e., the effect ofp2

corrections is even larger than in thenf55 case. The
nf54 case is in all respects similar to thenf55 case, except
for the fact that the reduction in RS dependence seems to
even stronger. In Fig. 10 and Fig. 11 we compare the plots

f
re
x-

-

TABLE III. Numerical values of the optimized predictions for
de1e2, obtained from the contour integral expression~32! for
nf55. The PMS parameters are well approximated byr 150,
c251.5r2

D ~NNLO! and r 1520.59 ~NLO!.

As/LMS
(5) de1e2

opt,NNLO de1e2
opt,NLO

25 0.06799 0.06888
50 0.05753 0.05811
75 0.05275 0.05320
100 0.04981 0.05019
200 0.04389 0.04415
500 0.03791 0.03809
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de1e2
(2) as a function ofr 1 , for several values ofc2 , with

As/LMS
(4)

530, obtained with the conventional NNLO expres
sion ~Fig. 10! and with the numerical evaluation of the con
tour integral~Fig. 11!. In Fig. 11 we also show the predic
tions obtained with the conventional expansio
supplemented by theO(a4) andO(a5) terms given by Eq.
~35! and Eq.~36!. @Inclusion of theO(a6) correction~37!
does not improve the approximation.# In Fig. 12 we show the
contour plot of the improved prediction forde1e2 obtained
for As/LMS

(4)
530. It is interesting that variation of the predic

tions over thel52 region is extremely small, of the order o
0.03% of the PMS prediction. The improved prediction fo
As/LMS

(4)
530 in theMS scheme is 0.059 02, quite close t

the improved PMS result 0.059 07. The differences with t
results obtained in the conventional approach again are
very big — using the conventional expansion we ha

FIG. 11. Same as in Fig. 8, but fornf54 andAs/LMS
(4)

530.

FIG. 10. Same as in Fig. 7, but fornf54 andAs/LMS
(4)

530.
-
-
-
n

-
f
r
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ve

0.060 25 in theMS scheme and 0.059 75 in the NNLO PMS
In Table IV we give numerical values of the improved pre
dictions in the PMS scheme, for several values ofAs/LMS

(4) .
We find that in the improved approach the NNLO PMS pre
dictions are very close to NLO PMS predictions. We se
therefore that also fornf54 the theoretical uncertainties in
the improved predictions forde1e2 are very small.

Finally let us consider the case ofnf53. We have then
r2
D55.237 83. In Fig. 13 and Fig. 14 we compare the plo

of de1e2
(2) as a function ofr 1 , for several values ofc2 , with

As/LMS
(3)

59, obtained with the conventional NNLO expres
sion ~Fig.13! and with the numerical evaluation of the con
tour integral~Fig. 14!. Again, we find dramatic reduction in
the RS dependence, despite rather low energy. It is intere
ing that in thenf53 case the addition ofp2 corrections
given by Eq.~35! and Eq.~36! does not result in the im-
provement of the conventional predictions. In Fig. 15 w
show the contour plot ofde1e2

(2) obtained from the improved

expression forAs/LMS
(3)

59. Similarly as for other numbers of
flavors we obtain in the improved approach a very sma
variation in the predictions when parameters are chang

TABLE IV. Same as in Table II, but fornf54. The PMS pa-
rameter in NLO is approximatelyr 1520.71.

As/LMS
(4) de1e2

opt, NNLO de1e2
opt, NLO

10 0.08108 0.08093
20 0.06574 0.06565
30 0.05907 0.05900
40 0.05508 0.05503
50 0.05233 0.05228

FIG. 12. Same as in Fig. 9, but fornf54 andAs/LMS
(4)

530.
Only the l52 region has been indicated.
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over the l52 region of parameters appropriate fordD
(2) —

the variation is of the order of 0.8% of the PMS predictio
0.077 56.~We have verified that this situation persists dow
to As/LMS

(3)
54.) The improved prediction in theMS scheme

is 0.077 19. For comparison, in the conventional approa
we obtain 0.080 97 in the NNLO PMS and 0.082 44 in th
NNLO MS scheme. In Table V we give numerical values
the improved predictions in the PMS scheme, for seve
values ofAs/LMS

(3) . With this result we conclude, that the
nf53 NNLO expression forde1e2, obtained by evaluating
the contour integral~32! numerically, has very small theo-
retical uncertainty, even for rather small values
As/LMS

(3) . This situation is similar to that found for the QCD
corrections to thet decay@29,4#.

The behavior ofde1e2
(2) at very low energies and the prob

FIG. 13. Same as in Fig. 7, but fornf53 andAs/LMS
(3)

59.

FIG. 14. Same as in Fig. 8, but fornf53 andAs/LMS
(3)

59.
n
n

ch
e
of
ral

of

-

lem of existence of the fixed point in the improved approac
would be discussed in a separate work@49#.

VI. SUMMARY AND CONCLUSIONS

Summarizing, we have analyzed the RS dependence
the conventional NNLO expression forde1e2 using a sys-
tematic method described in@1–3#. We found rather large
variation in the predictions. We have also investigated a
improved way of calculatingde1e2

(2) , which relies on a con-
tour integral representation for this quantity and a numeric
evaluation of the contour integral. We found that the stabilit
of de1e2

(2) with respect to change of the RS is greatly im
proved when the contour integral approach is used. Also,
the improved approach the difference between optimiz
NNLO and NLO predictions was found to be much smalle
than in the case of the conventional expansion. We conclu
therefore that the theoretical uncertainties in the NNLO QC
predictions forde1e2 are very small, even at low energies
provided that largep2 terms, arising from analytic continu-
ation, are treated with due care. We observed that the op
mized predictions forde1e2, obtained in the contour integral
approach, lie in general below the predictions from the op

FIG. 15. Same as in Fig. 9, but fornf53 andAs/LMS
(3)

59. Only
the l52 region has been indicated.

TABLE V. Same as in Table II, but fornf53. The PMS param-
eter in NLO is approximatelyr 1520.81.

As/LMS
(3) de1e2

opt, NNLO de1e2
opt, NLO

5 0.09624 0.09421
7 0.08475 0.08312
9 0.07756 0.07619
11 0.07255 0.07136
13 0.06879 0.06774
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mized conventional expansion. However, fornf55 the
change in the fit ofLMS

(5) to the experimental result came o
to be small.

Note added.After this paper was completed, a relate
work was brought to our attention@50#, in which the RS
dependence of the QCD corrections to the total hadro
width of theZ boson is discussed. In@50# it is observed, that
by using the contour integral to resum the largep2 contribu-
tions one reduces the scale dependence of the QCD pr
tions. This result is in agreement with our observations, si
the dominant contribution toGZ

had comes from expression
identical tode1e2. Let us note that the result reported in@50#
was anticipated already in@3#. However, the approach
adopted in@50# differs from our approach in several way
ut

d

nic

edic-
nce

s.

The authors of@50# do not discuss the choice of the range o
scheme parameters used in their analysis. In their investig
tion of the conventional expansion forGZ

had they use a
smaller range of parameters than the one used above
nf55. In particular, the PMS parameters are outside th
range considered in@50#. In the analysis of improved predic-
tions for GZ

had the authors of@50# limit themselves to the
discussion of the renormalization scale dependence, fixi
the b function to theMS value. There is also a technica
difference that authors of@50# use approximate analytic ex-
pression for the running coupling constant to integrate alo
the contour in the complex energy plane, whereas we u
exact numerical solution of the two- or three-loop renorma
ization group equation.
-
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