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Static Einstein-Maxwell solutions in 2+1 dimensions
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We obtain the Einstein-Maxwell equations f2+1)-dimensional static space-time, which are invariant
under the transformatiogy=iq,, g,=iqq, @=1. It is shown that the magnetic solution obtained with the help
of the procedure used by Cataldo and Salgado can be obtained from the static BTZ solution using an appro-
priate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied
and their corresponding solutions fou&§0556-282(96)04814-X]

PACS numbd(s): 04.20.Jb

It is well known that in(2+1)-dimensional space-time the kQ? [r. , 2w re\ ]t -
metric around a point mass is given by dSz:ﬁIn T)dt T kP |n(7) dri—rede, (3
2 wherer. andQ are constants and the electric field is given
ds?=dt?>— I=KkM72m) —r2d¢?. (1) by E,=Q/r. This space-time has a horizonratr, and is

the analogue to the Reissner-Nordsirgolution in 3+1
dimensions. Recently Bados, Teitelboim, and Zanelli
This space-time is analogous to the Schwarzschild metri¢BTZ) found the static electrically charged solutioh=(0)
around a point mass i3l dimensions. The metrid) cor-  [4], which is the 2-1 Kottler analoguéd5,6]:
responds to a flat space-timi¢]. Another situation in 2-1 A s o2
dimensions is to consider the cosmological constantin ds’=h(r)dt?~h~*(r)dr’—r?d¢?, 4
this case, outside sources, th(? exterior gravitational fields arehere h(r)=—M+12/12— 1Q2Inr (—w<t<co, 0<r<o,
spaces of constant curvature: de Sitter spaceAfor0 and d 0= b=2). The constant is related to the cosmologi-
anti—de Sitter space fok <0 [2]. an $<2m). DR . 9
NP N cal constant\ by A=—17<. In order that the horizon exists,
The 2+1 local electromagnetic field is given lgycutting - ) .
out” one of the spatial dimensions one must havev >Q. If A=0, we obtain the solution Eq.
(3). The BTZ solution, however, does not completely de-
scribe the coupling between the gravitational and electro-
F=1F,,dx@NAdxP=E;dx*\dx°+ E,dx*/A\dx°+Bdxt magnetic fields in 21 dimensions because the magnetic
> case must be considered separately.
AT 2 In this work we find the exact Einstein-Maxwell solutions
which give a complete description of the static superposi-

Thus the electromagnetic tensor has only three independefns of a perfect fluid and an electric or a magnetic field.
componentg1,3], two for the vector electric field and one The solutions are obtained with the help of the procedure

for the scalar magnetic fieldl§( to be a vector needs the used in Ref[7], where the four-dimensional case was stud-
missing dimension ied for a neutral perfect fluid filling a spherically symmetric

On the other hand, since the tensor of Levi-Civitaa ~ SPace-time. ; . . I
three-dimensional space has the foempg With £g1,=1 In 2+1 dimensions, the metric for an arbitrary static cir-

the dual of Eq(2) is a vector given by F,= ke ., JF°¢ (Iatin cularly symmetric space-time can be written in the form

indices are assumed to take on the values 0).ITt2refore, d2=e2(Ngt2— e2B(Nqr2— e27Nd 42, (5)

the source free Maxwell equations i2+1)-dimensional

gravity lack invariance under dual transformation. ThisThe general form of the electromagnetic field tensor which
means that, for a given Einstein-Maxwell space-time withoutshares the static circularly symmetric space-time is given by

sources, it is not possible to transform an electric field into &==E dr/A\dt+Bdr/\dd. The electromagnetic field tensor
magnetic field and vice versa. So that for the self-consistenh terms of a four-potential,

problem we must solve the Einstein-Maxwell equations for

an electric or for a magnetic fields separately. A=A, (r)dx, (6)
The presence of electromagnetic fields can curve the

space outside sources. Also, the curvature is present whéh given by F=dA=3F,,dx*/\dx", where the functions

the space-time is filled with a perfect fluid. The above pictureAa(r) can be freely specified. SodA=F=qoAdr

is confirmed by the following electrovacuum static solution,/\dt+g,A;dr/\dé whereA, andA, are arbitrary functions

found by Gott, Simon, and Alpeft]: of the r coordinate, the differentiation with respect ttais
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denoted by the prime and the constant coefficieptsand
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Now we must consider the Maxwell's equations. The con-

g, are introduced for switching off the electric and/or mag-travariant density components of E§) are

netic fields. This implies that thecomponent of the electric

field is given bygoAg and of the magnetic field bg,A;.

To write the Einstein’s equations we will use the tetrad

2

2q,l2 2q,!
JogFab= ety fa{aafh%é{a%] -

formalism and Cartan structure equations. A convenient or-

thonormal basis for the metri®) is

00=edt, ¢V=efdr, #?@=edo. (7)

To construct Einstein-Maxwell fields, we must consider the

It is clear that the source-free Maxwell's equations are satis-
fied if

e"‘+f3_7=A6, e atht =A),

(16)

Maxwell's equations and the stress-energy tensor of the ele¢yere the constants of integration, without any loss of gen-

tromagnetic field which, with respect to E) in Gaussian
units, is defined by1]

9(a)(b) o L (c)
Tam="g FooF " s—FacFi ®

In 2+1 dimensions the trace of EQ.(8) is

T=(1/87)F4,F2°. To get its components we must compute

F(ayb) - In the coordinate basis
I:ab: %qOA(,)é\{aé\E)]_" %QZA55{a5g] (9)
. . _ 1 1 o2
or in the basi«7) F(a)(n)= ol eS[adp) + U2l md1a 05 » Where
le=3Ae @ F (10)
and
Im=3Ae P77, (11

Thus from Eq.(8) we get

2 2
q q
Tg’;(b)g(a)® oo = ( 7:|§+ ?2 | rzn) 90 @

2 2

Yo 2 az 2

—| =12+ =12 gV oY
( & oM

2 2

Yo 2 qz 2

— =12+ =2 (2) (2)
(77 e M grwd

B 20092

lol (09 62+ 02 6?),
v

erality, have been made equal to 1. So the Einstein-Maxwell
equations are given by Eq&l2)—(15) and Eq.(16). To ob-
tain the Einstein-Maxwell solutions it is useful to notice that
Eq. (15 says to us that either the electric or the magnetic
field must be zero.

It is easy to check that under the transformation

(17

the Einstein-Maxwell equations are invariant. This means
that if we have the magnetic solution, then one can obtain the
electric analogue by making the formal transformatit).

In other words, if the Einstein-Maxwell solution is given in
the form of Eq.(5), then we obtain an analogous metric
making

Jo=id2, 02=iqo,

a=7y

Now, we will find a general magnetic solutidim analyti-
cal form). So we must consider E¢l5). That means that in
this case either the electric or the magnetic field must be
zero, so that in the considered equations we mustgetD
(or Ap=0). This implies that, in order to solve the self-
consistent equations, it is not necessarily to consider the first
condition of Eq.(16). Subtracting Eqs(13) and (14) and
using the second condition of Eq(16), we obtain
e?*=pe%2("N whereA, is an arbitrary function of, and
C andD are constants of integration. On the other hand the

combination of Eqs(13) and(14) leads us to the equation

’ ’ ’ K
(e P17 =—2AADe M+ o—qzA; (19

From the tetra7) and using Cartan exterior forms calculus Which yields with the help of Eq(16) the following expres-
the following nontrivial components of the Einstein’s equa-Sion for the functiore=”:

tions with the cosmological constant are obtained:

2,2 2,2
_ L r Kol K5l
ey By =y =At =, (12)
2,2 2,2
KkQgl KkQ5l
_a/,y/e—Z,B:A_;’_&_ 2 m, (13)
T T
212 2,2
kQqpl POH|
e*ZB(arBr_au_QIZ):A_%_M, (14)
2k(od2
p lel =0 (15

K 4AD
_q A2_

2y _
e =
7C 2 C?

e“A2+F,

(20

whereF is a new constant of integration. From E@6) we
obtain e?’=DA}2e®*2¢" 27, Introducing a new coordinate
T defined byr=A,(r), we have
ds?=DeCTdt?—DeCTe 27dF 2—e?7d¢?, (21
where nowe?”= kq2r/wC—4ADeCT/C2+F. In this coor-
dinate gauge the magnetic field is constant. The solution Eq.

(21) cannot be carried out in the spatial gauge=r? with
the help of the transformation
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~2 KOG 4AD 2k0o0;

=—r——crecr+F, (22)

— lel =0, (30)

v

because the resulting metric does not take an analytical fornand by conditiong16). It is easy to see that Eq&7)—(30)
However it is possible to obtain the metrics for the gaugeare not invariant under transformatiébh8). This means that
g2,=r? in exact form by setting\ =0 or switching off the one must solve the syste27)—(30) for an electric or a
magnetic field §,=0). This means that i§,=0 then, from  magnetic field separateljEq. (30) implies that either the
Eq. (22) one can obtain the BTZ noncharged three-electric or the magnetic field must be zgro

dimensional black hol@4]; and that whemA =0 we obtain First we consider the electric solution: In this case we
the 3+1 magnetic Reissner-Nordsinmocounterpart. In fact, cannot obtain the solution for the general electromagnetic
in this case we obtain metric potential(6) with an arbitrary functiorA, (A,=0). We must
) ) consider some concrete function, such as the four-potential
ds?=e?"dt?—e?" " dr?—r?dé?, (23)  in the form

with a= qulﬂ'. From Eq.(23) it follows that the 21 mag- )

; i ; ——r"dt if n¥-1
netic monopole counterpart is not a black hole, contrasting A.—{n+1l ’ (31)
with the 2+1 electric analogue. If we switch off the mag- 0 )
netic field @=0), one obtains the flat three-dimensional Inrdt if n=-1,
space-time.

Finally, we note that application of transformati@8) on wheren is an .arbltrary constant, and _solve the Einstein-
Eq. (21) leads to maxwell equations. Thus the electric field takes the form

E=qor". In the case of the circularly symmetric metric, one
d2=e2*dt2— DeTe 297 2 DeTdg2.  (24) takese?”=r?, arriving at the following metric$8].
Forn#1,—-1,—3,
where e%*=(—«q3/mC)T—(4AD/C?)eS"+F. In the

i ) co2r2(n+1) Arn+3
gaugeg,,=r* the metric(24) takes on the new form e2a— p2n+1)g—26_ q + +B
47(n—1)(n+1) n+3 '
ds?=e?*dt?’— e 2%dr?—r2d6?, (25)
2
where nowe?*=(—2xq3/m)Inr—Ar>+F. Then the BTZ Kp:wer ér—<n+1>+A,
charged black hole Eq(4) is obtained if A=—1"2, 8m(n—1)r* 2

F=—M, andQ?=4«q3/m. WhenA=0 one gets the elec-
trically charged solutior3). In this case the electromagnetic K= B(n+1) A(n—1) ~+y_ KT
potential is given byA=Inr. This means thatt A=q,/rdr r2*2 " 2(n+3) 8rr?
Adt (or E,=q,/r). If one uses the transformati¢h8), then
dA=—qo/rdr/\d#, so that the electric field is replaced by Forn=-—1,
a magnetic field an@=—qq/r.

Now, in order to obtain the Einstein-Maxwell fields with a
neutral fluid, we must consider the stress-energy tensor of
the perfect fluid, which is given by

2

2
K

e?t=g 2h=— K e+ Arz B,
iy

kp=—ku=A+A.

Too =1+ P)U U by~ PYia)b) » (26)
. Forn=1,
whereu andp are the mass-energy density and pressure of
the fluid, respectivelyl , is its timelike four-velocity. If K>
we take the four velocity= 6©), then Eq.(26) becomes e2“=r4e‘2f3=8—ﬂr4lnr+Ar4+ B,
PF PF PF PF :
magnetic potential(6) and a neutral perfect fluid, the Kq? oA
Einstein-Maxwell equations with cosmological constant are Kp= 5 (3+4Inr)+ — +A,
now given by 1671 r
2|2 2,2 2
KkQgl kg5l 3kq 2B
e By B~y —y )= A+ ——+ — "t kp, Kp=—7e—7+ 5 A
167r r
(27)
Forn= -3,
212 2,2
KkQgl xqsl
—a’y’e_25=A+£—£—Kp, (28) K02
m m e2d=r 4 2P= 7+ Alnr +B,
327r
2|2 2)2
kOole O35
=2B( A R M 12— A _ _ 2
e Pla'B' —a"—a'")=A T, kP K(Q ér2+A

(29) P= 162t 2
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kg%  Ar? , the static Einstein-Maxwell fields in421 dimensions and
Kp=—g-2~ 5 (1+Inr)—2Br°—A. obtained new exact solutions with circular symmetry. All of

them were found in the presence of the cosmological con-
Fromn= — 1 we see that iR= — A then we obtain the21  StantA. It is noteworthy that the 21 magnetic Reissner-
Kottler solution analogue(4). We remark that when Nordstran analogue is not a black hole in contrast with the
B=q=0 and the fluid obeys a-law equation, i.e.. and 2+1 electric Reissner-Nordstro analogue, where a black
p are related by an equation of the fopr=(y—1)u where  hole is present. It is shown that the magnetic solution ob-
y is a constantwhich, for physical reasons satisfies the in- tained with the help of the procedure used[if], can be

equality 1<y<2), the constanty may be expressed as Obtained from the static electrically charged BTZ metric us-
y=2(n+1)/(n—1), where the Ilimits of n are Ing transformatior(18). In this case the radial parameter sat-

—ow=<n=<-—23. In this case isfies O<r<o.

Superpositions of a perfect fluid and an electric or a mag-
netic field are separately studied and their corresponding so-
lutions found.

Shortly after we completed this work Bagios informed
Recently, Guses[9] obtained a class of metrics of Einstein us of the existence of Ref10] where a magnetic solution
theory with perfect fluid sources in+2l dimensions. How- (HW solution was also obtained by a different procedure.
ever this class of solutions was found for the particular casélowever, this solution uses a gauge which lacks a parameter.

B n—-1 B A(n—1)
K=K 3PT 2(n+3)

r-(n+td), (32

u=const andp= const. This could be seen by introducing the new coordinated
Finally, we present the circularly symmetric magnetictaking a negative cosmological constamk=—1"2)
case fA\,=0) which takes the form T=In[(r¥1>—M)/D]C,

Then Eq.(21) with this new coordinate becomes
ds?=De(dt?—r 2A%2dr?) —r2d6?,

where the mass-energy density is given b r2 r2 -1
9 yis g y d32=<|—2—M)dt2—r2(|—2—M) e 27dr2—e?7d6?,

e Ch Cr+AZ N
2A, A AP Am :

=D wheree?”=r2+ (kq3l*/4)In(r2/1>—M)+F. In this gauge

then the lacking parameter s

and the pressure by ) . .
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