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Static Einstein-Maxwell solutions in 211 dimensions
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We obtain the Einstein-Maxwell equations for~211!-dimensional static space-time, which are invariant
under the transformationq05 iq2 , q25 iq0 , a
g. It is shown that the magnetic solution obtained with the help
of the procedure used by Cataldo and Salgado can be obtained from the static BTZ solution using an appro-
priate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied
and their corresponding solutions found.@S0556-2821~96!04814-X#

PACS number~s!: 04.20.Jb
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It is well known that in~211!-dimensional space-time the
metric around a point mass is given by

ds25dt22
dr2

~12kM/2p!2
2r 2df2. ~1!

This space-time is analogous to the Schwarzschild met
around a point mass in 311 dimensions. The metric~1! cor-
responds to a flat space-time@1#. Another situation in 211
dimensions is to consider the cosmological constantL. In
this case, outside sources, the exterior gravitational fields
spaces of constant curvature: de Sitter space forL.0 and
anti–de Sitter space forL,0 @2#.

The 211 local electromagnetic field is given by~‘‘cutting
out’’ one of the spatial dimensions!

F5 1
2Fabdx

a`dxb5E1dx
1`dx01E2dx

2`dx01Bdx1

`dx2. ~2!

Thus the electromagnetic tensor has only three independ
components@1,3#, two for the vector electric field and one
for the scalar magnetic field (BW to be a vector needs the
missing dimension!.

On the other hand, since the tensor of Levi-Civita´ in a
three-dimensional space has the form«@abc# with «01251,
the dual of Eq.~2! is a vector given by *Fa5

1
2«abcF

bc ~latin
indices are assumed to take on the values 0, 1, 2!. Therefore,
the source free Maxwell equations in~211!-dimensional
gravity lack invariance under dual transformation. Thi
means that, for a given Einstein-Maxwell space-time witho
sources, it is not possible to transform an electric field into
magnetic field and vice versa. So that for the self-consiste
problem we must solve the Einstein-Maxwell equations fo
an electric or for a magnetic fields separately.

The presence of electromagnetic fields can curve t
space outside sources. Also, the curvature is present w
the space-time is filled with a perfect fluid. The above pictu
is confirmed by the following electrovacuum static solution
found by Gott, Simon, and Alpert@1#:
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ds25
kQ2

2p
lnS r cr Ddt22 2p

kQ2 F lnS r cr D G21

dr22r 2df, ~3!

wherer c andQ are constants and the electric field is give
by Er5Q/r . This space-time has a horizon atr5r c and is
the analogue to the Reissner-Nordstro¨m solution in 311
dimensions. Recently Ban˜ados, Teitelboim, and Zanelli
~BTZ! found the static electrically charged solution (J50)
@4#, which is the 211 Kottler analogue@5,6#:

ds25h~r !dt22h21~r !dr22r 2df2, ~4!

where h(r )52M1r 2/ l 22 1
2Q

2lnr (2`,t,`, 0,r,`,
and 0<f<2p). The constantl is related to the cosmologi-
cal constantL byL52 l22. In order that the horizon exists,
one must haveM.0. If L50, we obtain the solution Eq.
~3!. The BTZ solution, however, does not completely de
scribe the coupling between the gravitational and electr
magnetic fields in 211 dimensions because the magnet
case must be considered separately.

In this work we find the exact Einstein-Maxwell solution
which give a complete description of the static superpo
tions of a perfect fluid and an electric or a magnetic fiel
The solutions are obtained with the help of the procedu
used in Ref.@7#, where the four-dimensional case was stud
ied for a neutral perfect fluid filling a spherically symmetri
space-time.

In 211 dimensions, the metric for an arbitrary static cir
cularly symmetric space-time can be written in the form

ds25e2a~r !dt22e2b~r !dr22e2g~r !du2. ~5!

The general form of the electromagnetic field tensor whic
shares the static circularly symmetric space-time is given
F5Erdr`dt1Bdr`du. The electromagnetic field tensor
in terms of a four-potential,

A5Aa~r !dxa, ~6!

is given by F5dA5 1
2Fabdx

a`dxb, where the functions
Aa(r ) can be freely specified. SodA5F5q0A08dr
`dt1q2A28dr`du whereA0 andA2 are arbitrary functions
of the r coordinate, the differentiation with respect tor is
2971 © 1996 The American Physical Society
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denoted by the prime and the constant coefficientsq0 and
q2 are introduced for switching off the electric and/or mag
netic fields. This implies that ther component of the electric
field is given byq0A08 and of the magnetic field byq2A28 .

To write the Einstein’s equations we will use the tetra
formalism and Cartan structure equations. A convenient o
thonormal basis for the metric~5! is

u~0!5eadt, u~1!5ebdr, u~2!5egdu. ~7!

To construct Einstein-Maxwell fields, we must consider th
Maxwell’s equations and the stress-energy tensor of the el
tromagnetic field which, with respect to Eq.~7! in Gaussian
units, is defined by@1#

T~a!~b!5
g~a!~b!

8p
F ~c!~d!F

~c!~d!2
1

2p
F ~a!~c!F ~b!

~c! . ~8!

In 211 dimensions the trace of Eq. ~8! is
T5(1/8p)FabF

ab. To get its components we must comput
F (a)(b) . In the coordinate basis

Fab5
1
2q0A08d [a

r db]
t 1 1

2q2A28d [a
r db]

u ~9!

or in the basis~7! F (a)(b)5q0I ed@a
1 db]

0 1q2I md@a
1 db]

2 , where

I e5
1
2A08e

2a2b ~10!

and

I m5 1
2A28e

2b2g. ~11!

Thus from Eq.~8! we get

T~a!~b!
em u~a!

^ u~b!5S q02p
I e
21

q2
2

p
I m
2 D u~0!

^ u~0!

2S 2
q0
2

p
I e
21

q2
2

p
I m
2 D u~1!

^ u~1!

2S q02p
I e
21

q2
2

p
I m
2 D u~2!

^ u~2!

2
2q0q2

p
I eI m~u~0!

^ u~2!1u~2!
^ u~0!!.

From the tetra~7! and using Cartan exterior forms calculu
the following nontrivial components of the Einstein’s equa
tions with the cosmological constant are obtained:

e22b~g8b82g92g82!5L1
kq0

2I e
2

p
1

kq2
2I m

2

p
, ~12!

2a8g8e22 b5L1
kq0

2I e
2

p
2

kq2
2I m

2

p
, ~13!

e22b~a8b82a92a82!5L2
kq0

2I e
2

p
2

kq2
2I m

2

p
, ~14!

2kq0q2
p

I eI m50. ~15!
-
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Now we must consider the Maxwell’s equations. The con-
travariant density components of Eq.~9! are

A2gFab5ea1b1gS 2q0I e2A08
d r

@ad t
b]1

2q2I m
2

A28
d r

@adu
b] D .

It is clear that the source-free Maxwell’s equations are satis-
fied if

ea1b2g5A08 , e2a1b1g5A28 , ~16!

where the constants of integration, without any loss of gen-
erality, have been made equal to 1. So the Einstein-Maxwell
equations are given by Eqs.~12!–~15! and Eq.~16!. To ob-
tain the Einstein-Maxwell solutions it is useful to notice that
Eq. ~15! says to us that either the electric or the magnetic
field must be zero.

It is easy to check that under the transformation

q05 iq2 , q25 iq0 , a
g ~17!

the Einstein-Maxwell equations are invariant. This means
that if we have the magnetic solution, then one can obtain the
electric analogue by making the formal transformation~17!.
In other words, if the Einstein-Maxwell solution is given in
the form of Eq. ~5!, then we obtain an analogous metric
making

dt5 idu, du5 idt, q05 iq2 , q25 iq0 . ~18!

Now, we will find a general magnetic solution~in analyti-
cal form!. So we must consider Eq.~15!. That means that in
this case either the electric or the magnetic field must be
zero, so that in the considered equations we must setq050
~or A050). This implies that, in order to solve the self-
consistent equations, it is not necessarily to consider the first
condition of Eq.~16!. Subtracting Eqs.~13! and ~14! and
using the second condition of Eq.~16!, we obtain
e2a5DeCA2(r ), whereA2 is an arbitrary function ofr , and
C andD are constants of integration. On the other hand the
combination of Eqs.~13! and ~14! leads us to the equation

~a8ea2b1g!8522LA2
8DeCA1

k

2p
q2
2A28 ~19!

which yields with the help of Eq.~16! the following expres-
sion for the functione2g:

e2g5
k

pC
q2
2A22

4LD

C2 eCA21F, ~20!

whereF is a new constant of integration. From Eq.~16! we
obtain e2b5DA28

2eCA2e22g. Introducing a new coordinate
r̃ defined byr̃5A2(r ), we have

ds25DeC r̃ dt22DeC r̃ e22gdr̃ 22e2gdu2, ~21!

where nowe2g5kq2
2r̃ /pC24LDeC r̃ /C21F. In this coor-

dinate gauge the magnetic field is constant. The solution Eq.
~21! cannot be carried out in the spatial gaugeg225r 2 with
the help of the transformation
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r̃ 25
kq2

2

pC
r2

4LD

C2 eCr1F, ~22!

because the resulting metric does not take an analytical fo
However it is possible to obtain the metrics for the gau
g225r 2 in exact form by settingL50 or switching off the
magnetic field (q250). This means that ifq250 then, from
Eq. ~22! one can obtain the BTZ noncharged thre
dimensional black hole@4#; and that whenL50 we obtain
the 311 magnetic Reissner-Nordstro¨m counterpart. In fact,
in this case we obtain metric

ds25ear
2
dt22ear

2
dr22r 2du2, ~23!

with a5kq2
2/p. From Eq.~23! it follows that the 211 mag-

netic monopole counterpart is not a black hole, contrast
with the 211 electric analogue. If we switch off the mag
netic field (a50), one obtains the flat three-dimension
space-time.

Finally, we note that application of transformation~18! on
Eq. ~21! leads to

ds25e2adt22DeC r̃ e22adr̃ 22DeC r̃ du2. ~24!

where e2a5(2kq2
2/pC) r̃2(4LD/C2)eC r̃1F. In the

gaugeg225r 2 the metric~24! takes on the new form

ds25e2adt22e22adr22r 2du2, ~25!

where nowe2a5(22kq2
2/p)lnr2Lr21F. Then the BTZ

charged black hole Eq.~4! is obtained if L52 l22,
F52M , andQ254kq2

2/p. WhenL50 one gets the elec-
trically charged solution~3!. In this case the electromagneti
potential is given byA5 lnr. This means thatdA5q2 /rdr
`dt ~or Er5q2 /r ). If one uses the transformation~18!, then
dA52q0 /rdr`du, so that the electric field is replaced b
a magnetic field andB52q0 /r .

Now, in order to obtain the Einstein-Maxwell fields with
neutral fluid, we must consider the stress-energy tensor
the perfect fluid, which is given by

T~a!~b!
PF 5~m1p!U ~a!U ~b!2pg~a!~b! , ~26!

wherem andp are the mass-energy density and pressure
the fluid, respectively.U (a) is its timelike four-velocity. If
we take the four velocityU5u (0), then Eq.~26! becomes
T(0)(0)
PF 5m, T(1)(1)

PF 5T(2)(2)
PF 5T(3)(3)

PF 5p. With the electro-
magnetic potential~6! and a neutral perfect fluid, the
Einstein-Maxwell equations with cosmological constant a
now given by

e22b~g8b82g92g82!5L1
kq0

2I e
2

p
1

kq2
2I m

2

p
1km,

~27!

2a8g8e22 b5L1
kq0

2I e
2

p
2

kq2
2I m

2

p
2kp, ~28!

e22b~a8b82a92a82!5L2
kq0

2I e
2

p
2

kq2
2I m

2

p
2kp,

~29!
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2kq0q2
p

I eI m50, ~30!

and by conditions~16!. It is easy to see that Eqs.~27!–~30!
are not invariant under transformation~18!. This means that
one must solve the system~27!–~30! for an electric or a
magnetic field separately@Eq. ~30! implies that either the
electric or the magnetic field must be zero#.

First we consider the electric solution: In this case we
cannot obtain the solution for the general electromagneti
potential~6! with an arbitrary functionA0 (A250). We must
consider some concrete function, such as the four-potentia
in the form

A05H 1

n11
r n11dt if nÞ21,

lnrdt if n521,

~31!

where n is an arbitrary constant, and solve the Einstein-
maxwell equations. Thus the electric field takes the form
E5q0r

n. In the case of the circularly symmetric metric, one
takese2g5r 2, arriving at the following metrics@8#.

For nÞ1,21,23,

e2a5r 2~n11!e22b5
kq2r 2~n11!

4p~n21!~n11!
1
Arn13

n13
1B,

kp5
kq2~n11!

8p~n21!r 2
1
A

2
r2~n11!1L,

km5
B~n11!

r 2~n12! 1
A~n21!

2~n13!
r2~n11!2

kq2

8pr 2
2L.

For n521,

e2a5e22b52
kq2

4p
lnr1Ar21B,

kp52km5A1L.

For n51,

e2a5r 4e22b5
kq2

8p
r 4lnr1Ar41B,

kp5
kq2

16pr 2
~314lnr !1

2A

r 2
1L,

km52
3kq2

16pr 2
1
2B

r 6
2L.

For n523,

e2a5r24e22b5
kq2

32pr 4
1Alnr1B,

kp5
kq2

16pr 2
1
A

2
r 21L,
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km52
kq2

8pr 2
2
Ar2

2
~11 lnr !22Br22L.

Fromn521 we see that ifA52L then we obtain the 211
Kottler solution analogue~4!. We remark that when
B5q50 and the fluid obeys ag-law equation, i.e.,m and
p are related by an equation of the formp5(g21)m where
g is a constant~which, for physical reasons satisfies the i
equality 1<g<2), the constantg may be expressed a
g52(n11)/(n21), where the limits of n are
2`<n<23. In this case

km5k
n21

n13
p5

A~n21!

2~n13!
r2~n11!. ~32!

Recently, Gu¨rses@9# obtained a class of metrics of Einste
theory with perfect fluid sources in 211 dimensions. How-
ever this class of solutions was found for the particular c
m5const andp5const.

Finally, we present the circularly symmetric magne
case (A050) which takes the form

ds25DeCA2~r !~dt22r22A28
2dr2!2r 2du2,

where the mass-energy density is given by

km5
e2CA2

D S Cr2A28
1

A29

A28
3 2

1

A28
2 2

kq2
2

4p D 2L,

and the pressure by

kp5
e2CA2

D S Cr2A28
2

kq2
2

4p D 1L.

Before we finish this paper we would like to make a fe
comments about our most important results. We have stu
-

n

se

ic

w
ied

the static Einstein-Maxwell fields in 211 dimensions and
obtained new exact solutions with circular symmetry. All of
them were found in the presence of the cosmological con
stantL. It is noteworthy that the 211 magnetic Reissner-
Nordström analogue is not a black hole in contrast with the
211 electric Reissner-Nordstro¨m analogue, where a black
hole is present. It is shown that the magnetic solution ob
tained with the help of the procedure used in@7#, can be
obtained from the static electrically charged BTZ metric us
ing transformation~18!. In this case the radial parameter sat-
isfies 0,r,`.

Superpositions of a perfect fluid and an electric or a mag
netic field are separately studied and their corresponding s
lutions found.

Shortly after we completed this work Ban˜ados informed
us of the existence of Ref.@10# where a magnetic solution
~HW solution! was also obtained by a different procedure
However, this solution uses a gauge which lacks a paramet
This could be seen by introducing the new coordinate~and
taking a negative cosmological constantL52 l22)
r̃ 5 ln@(r2/l22M)/D#1/C.
Then Eq.~21! with this new coordinate becomes

ds25S r 2l 22M Ddt22r 2S r 2l 22M D 21

e22gdr22e2gdu2,

wheree2g5r 21(kq2
2l 4/4p)ln(r 2/ l 22M )1F. In this gauge

then the lacking parameter isF.
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