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Remark on marginally stable bound states in type II string theory
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The spectrum of elementary string states in type II string theory contains ultrashort multiplets that ar
marginally stable.U-duality transformation converts these states into bound states at the threshold o
p-branes carrying Ramond-Ramond charges, and wrapped aroundp-cycles of a torus. We propose a test for the
existence of these marginally stable bound states. Using the recent results of Polchinski and Witten, we arg
that the spectrum of the bound states ofp-branes is in agreement with the prediction ofU duality.
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The spectrum of type IIA or IIB string theory compacti
fied on a torus contains single particle states in the ultrash
~256-dimensional! multiplet. These states are characterize
by the following two properties:~1! the left- and the right-
moving charges carried by these states are equal in ma
tude, and~2! both, the left- and the right-moving oscillator
are in their ground state. All such states come with unit m
tiplicity, i.e., for a given set of charge quantum numbe
satisfying the property~1! above, there is only one ultrashor
multiplet. Some of these states are marginally stable, i.e., i
energetically possible for these states to decay into two
more single particle states at rest@1#. This happens if the
electric charge vector, represented by an element of
charge lattice, is an integral multiple of another vector in t
lattice. Examples of such states are~1! the ground state of a
string wrappedm times around one of the cycles on th
torus, ~2! the Kaluza-Klein modes of the massless states
the 10-dimensional theory carryingm units of momentum
along one of the compact directions, etc.

Consider now the type II theory compactified on
p-dimensional torusTp. We shall choosep to be odd for the
type IIB theory and even for the type IIA theory, for reason
that will become clear soon. In this case we can conside
supersymmetric soliton solution of the theory that corr
sponds to ap-brane carrying Ramond-Ramond~RR! charge
@2# ~which exists in the IIA theory for evenp and in the IIB
theory for oddp) wrappedm times around thep-cycle of the
torus. For definiteness we shall choosexm for
(102p)<m<9 to be the compact directions. If we denot
byAm1•••mp11

(p11) the (p11)-form gauge field arising in the RR

sector, then thep-brane described above is charged under t
(102p)-dimensional gauge fieldA(102p)•••89m̄

(p11) wherexm̄ de-
notes one of the noncompact directions@0<m̄<(92p)#. In
fact, this solution carriesm units ofA(102p)•••89m̄

(p11) charge. We
shall denote byQ(p11) the charge associated with the fiel
A(102p)•••89m̄
(p11) , normalized so thatQ(p11) is always an inte-

ger. The question that we shall be interested in is ‘‘Are the
any ultrashort multiplets in the sectorQ(p11)5m; and if so,
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how many of them are present for a given value ofm?’’
A prediction for the degeneracy of these states is given by

the generalU-duality conjecture of Hull and Townsend@3#.
It can be easily seen that by combining theT-duality trans-
formations~which sometimes convert a type IIB theory to a
type IIA theory and vice versa! with the SL~2,Z) symmetry
of the ten-dimensional type IIB theory, we can transform the
field A(102p)•••89m̄

(p11) to B9m̄ , whereBmn denotes the rank two
antisymmetric tensor field arising in the Neveu-Schwarz–
Neveu-Schwarz~NS-NS! sector.1 SinceB9m̄ couples to the
winding number of the fundamental string in the 9th direc-
tion, we see that the duality transformation discussed above
transforms a state ofQ(p11)5m to a state of the fundamental
string windingm times around the 9th direction. Since we
already know that a fundamental string windingm times
aroundx9 has in its spectrum an ultrashort multiplet, there
must also be an ultrashort multiplet withQ(p11)5m if U
duality is a valid symmetry of string theory. In future we
shall refer to ultrashort multiplets as Bogomol’ni-Prasad-
Sommerfield~BPS! states.

The BPS states withQ(p11)5m can be thought of as
representing bound states ofm elementaryp-branes, each
wrapped only once around thep-cycle. Studying the exist-
ence of these bound states is made difficult by the fact that
they have zero binding energy. In other words there is no
energy barrier against pulling them p-branes away from
each other. A related problem is that since these states have
exactly the same energy asm BPS states—each with
Q(p11)51—at rest, it is difficult to separate this single par-
ticle state from the continuum.2 For these reasons we shall
adopt an indirect approach for studying the existence of these
bound states.

e-
d-

1Consider, for example, the duality transformation that inverts the
radii of the (p21) circles labeled by coordinatesx102p, . . . ,x8.
This would convertA(102p)•••89m̄

(p11) to B9m̄8 whereBmn8 [Amn
(2) is the

rank two antisymmetric tensor field in the IIB theory arising in the
RR sector. With the help of the conjectured SL~2,Z) symmetry
transformation in the ten-dimensional type IIB string theory, we can
convertB9m̄8 to B9m̄ .
2However, inN52 supersymmetric gauge theories this difficulty

has been circumvented, and one does find such marginally stable
bound states, as predicted by duality@4#.
2964 © 1996 The American Physical Society
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Suppose an ultrashort multiplet carryingQ(p11)5m does
exist in the (102p)-dimensional theory obtained by com
pactifying the type II theory onTp. Let us now compactify
one more direction~which we shall take to be the direction
x1 for definiteness! on a circle of radiusR. Then the original
ultrashort multiplet will give rise to an infinite number o
ultrashort multiplets in this (92p)-dimensional theory, one
for each value of the internal momentum along thex1 direc-
tion. Let us denote byP1 the internal momentum alongx1,
normalized so that it is always an integer, and focus on
state withP15n, wheren is any arbitrary integer. If we
choosen in such a way thatn andm are relatively prime,
then the ultrashort multiplet in the (Q(p11)5m,P15n) sec-
tor becomesabsolutely stable, even though the original ul-
trashort multiplet in the (102p)-dimensional theory was
only marginally stable. Thus one of the consequences of
existence of marginally stable ultrashort multiplets
(102p)-dimensional theory, carryingQ(p11) chargem, is
that in the (92p)-dimensional theory there must exist abso
lutely stable ultrashort multiplets with Q(p11)5m, and
P15n, for every integer n for which(m,n) are relatively
prime.The existence of the latter states will be much eas
to verify. In fact, these states can be mapped to the wind
modes of the (m,n) string discussed in Refs.@5,6# via
T-duality transformation. Consider for example th
T-duality transformation that inverts the radii of all th
p11 circles labeled byx1,x(102p), . . . ,x9. This transforms
G1m to B1m and A(102p)•••9m̄

(p11) to B1m̄8 [A1m̄
(2) . Thus the

(Q(p11)5m,P15n) state is mapped to an (m,n) string
wrapped around thex1 direction. The existence of (m,n)
strings for relatively primem,n has already been shown in
Ref. @6#; this then guarantees the existence
(Q(p11)5m,P15n) states. We shall now see explicitly how
it works.

It has recently been shown by Polchinski@7# that there is
an exact conformal field theory description of ap-brane car-
rying RR charges. This is given by a Dirichlet brane,
p-dimensional hypersurface such that open strings sat
Dirichlet boundary conditions for coordinates transverse
the hypersurface, and Neumann boundary condition for
ordinates tangential to the hypersurface. Let us apply this
the case of a staticp-brane wrapped once around ap-torus
labeled by the coordinatesxm for (102p)<m<9, situated at
the pointxm5am for 1<m<(92p). The open strings then
satisfy the boundary condition:

]sX
m50 for ~102p!<m<9,

Xm5am for 1<m<~92p!,

]sX
050 , ~1!

where s denotes the coordinate along the length of th
string. If we further compactify the coordinatex1 along a
circle of radiusR, then the open string boundary conditio
on X1 will be modified to

X15a1mod2pR. ~2!

The generalization to the case of multiplep-branes is
straightforward. If$ai

m̄% @1< i<m, 1<m̄<(92p)# denote
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the coordinates of them p-branes, then we havem2 different
sectors of open string states, with each end being allowed
lie on any of them p-branes.

We want to study if the quantization of the classical so
lution representing this multi-p-brane solution gives rise to a
BPS state carryingn units of momentum in thex1 direction.
For this it will be convenient to map this problem to anothe
problem by aT-duality transformation that inverts the radius
R in thex1 direction. This has several effects:~1! it converts
a type IIB theory to a type IIA theory and vice versa,~2! it
converts the Dirichlet boundary condition on the coordinat
X1 to Neumann boundary condition@8#, ~3! it converts the
quantum number representing momentum alongx1 to wind-
ing number, and ~4! it converts A(102p)•••9m̄

(p11) to
A1(102p)•••9m̄
(p12) , and henceQ(p11) to Q(p12). Thus if we de-

note by ym the space-time coordinates in the transforme
theory, then the new conformal field theory is described b
the open string boundary conditions

]sY
m50 for ~102p!<m<9,

]sY
050 ,

]sY
150 ,

Ym5ai
m for 2<m<~92p!, ~3!

where 1< i<m. y1 is a compact coordinate with radius
R21, whereasym for (102p)<m<9 are compact coordi-
nates labelling the original torusTp. The rest of theym are
noncompact.3 This conformal field theory representsm
(p11)-branes, each wrapped around thep11 torusTp11

labeled by the coordinatesy1, and ym for (102p)<m<9.
We want to look for BPS states of this system which carr
n units of winding number along they1 direction. For this
we need to know the dynamics of collective coordinates o
this system. This has been given recently in a paper by W
ten @6# where he shows that the low energy dynamics of th
system is described by a supersymmetric U(m) gauge theory
in (p12) dimensions, obtained by dimensional reduction o
theN51 supersymmetricU(m) gauge theory in ten dimen-
sions. The base manifold here isR3Tp11 whereR is labeled
by the time coordinatey0, andTp11 by the coordinatesy1

and ym @(102p)<m<9#. Furthermore a state carryingn
units of winding along they1 direction corresponds to a state
in this U(m) gauge theory characterized byn units of U~1!
electric flux along they1 direction.@This in turn implies that
there is also SU(m) electric flux along they1 direction in the
representation corresponding to the antisymmetric product
n fundamental representations.#

Since we are interested in only the BPS states of the sy
tem, and in only those states that do not carry any quantu
numbers representing momentum and winding in the dire
tions ym for (102p)<m<9, we can ignore fluctuations in
the fields that depend nontrivially on any of these direction

3Note that the parameters$ai
1% have disappeared from Eq.~3!, but

they will reappear as components of the gauge field along they1

direction when we take into account the collective coordinates
this solution.
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In other words, for our purposewe can consider dimensiona
reduction of the (p12)-dimensional theory to a two-
dimensional theory labeled by the coordinates y0 and y1.
This corresponds toN58 supersymmetric U(m) gauge
theory in 111 dimensions, and is precisely the theory th
has been analyzed in Ref.@6#.4 Following @6# we see that the
problem of proving the existence of the required bound st
reduces to the problem of proving the existence of a sup
symmetric ground state in theN58 supersymmetric
SU(m) gauge theory in two dimensions, in the sector th
carries an electric flux along the space directiony1 ~which in
this case is compact! in the representation corresponding
antisymmetric product ofn fundamental representations o
SU(m). It has already been argued in Ref.@6# that such
states do exist for every pair of integers (m,n) which are
relatively prime. This in turn establishes the existence of
p-brane bound states in the (92p)-dimensional string
theory, carryingm units of Q(p11) charge, andn units of
momentum along thex1 direction, for every pair of relatively
prime integers (m,n).

As has been argued before, this is a necessary cond
for the existence of a marginally stablep-brane bound state
in (102p) dimensions, carryingm units ofQ(p11) charge.
One might ask if it is possible to see these bound states
working directly in the (102p)-dimensional theory. In this
case, there is no need to compactify thex1 coordinate, and
we can work directly with the Dirichletp-brane described in
Eq. ~1!. The low energy dynamics ofm such p-branes is
given, according to Ref.@6#, by a supersymmetric U(m)
gauge theory inp11 dimensions, obtained by dimension
reduction of theN51 supersymmetric U(m) gauge theory in
911 dimensions. The base space of th
(p11)-dimensional theory isTp3R, labeled by the space
coordinatesxm for (102p)<m<9, and the time coordinate
x0. As in Ref. @6#, the U(1) part of the U(m) theory is
responsible for describing the overall center of mass mot
of the state, as well as for producing the 256-fold degener
that is appropriate for an ultrashort multiplet. Thus the no
trivial information comes from the SU(m) part of the theory,
and the problem of counting the number of ultrashort m
tiplets reduces to the problem of counting the number
supersymmetric ground states of the supersymme
SU(m) gauge theory onTp3R.

In this case since we are interested in states which c
only the chargeQ(p11), and no other winding or momenta i

4Although it seems that the theory we have obtained this way
independent ofp, there is, in fact, a subtle dependence onp. The
theory has eight matrix valued scalar fields in the adjoint repres
tation of U(m). p of these fields come from the internal comp
nents of the gauge fields in the (p12)-dimensional theory. It was
shown in Ref.@9# that some of the directions in the field spac
~corresponding to the internal components of the gauge fields! need
to be periodically identified. This introduces a dependence of
theory onp. Since we are interested only in the question of exi
ence of supersymmetric ground states in the theory, and since
supersymmetric ground states of the theory found in Ref.@6# are
well localized in the field space, we expect that the extra perio
identification in the field space will not destroy the supersymme
ground states found in@6#.
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any of the internal directions, the sector of the supersymme
ric gauge theory that we need to analyze does not carry a
background SU(m) electric field. As a result, for studying
supersymmetric ground states of the theory we can igno
fluctuations in the fields that depend on any of thep compact
coordinates and consider dimensional reduction of the theo
to 011 dimensions. Thus the problem under consideratio
reduces to a supersymmetric quantum mechanics probl
obtained by dimensionally reducing theN51 supersymmet-
ric Yang-Mills theory from 911 dimensions to 011 dimen-
sion. The number of normalizable supersymmetric groun
states of this system will be in one to one corresponden
with the number of ultra-short multiplets in the type II theory
on Tp carryingQ(p11) chargem. SinceU duality predicts
that the latter number is one, we arrive at the following con
clusion: The quantum mechanical system, obtained by d
mensional reduction of the N51 super-Yang-Mills theory
with gauge groupSU(m) from 911 dimensions to011 di-
mensions, should have a unique normalizable supersymm
ric ground state.

Explicit verification of this prediction is made compli-
cated by the fact that there is no energy barrier that preven
a zero energy state from spreading out to infinity. As a resu
even if a normalizable super-symmetric ground state exis
it will only decay according to a power law, and not expo
nentially for large separation. Note again that a subtle depe
dence onp arises from the fact that for nonzerop some of
the directions in the space of scalar fields need to be perio
cally identified.

For p50, the marginally stable states that we are lookin
for correspond to point like states in ten-dimensional typ
IIA string theory, carryingm units ofAm[Am

(1) charge@6#.
The existence of these states is essential for establishing t
the strong coupling limit of the type IIA theory in ten dimen-
sions is described by the 11-dimensional supergravity theo
compactified on a circle of large radius@10#.

It was argued in Ref.@6# that there are no supersymmetric
bound states of Dirichletp-branes for oddp.1. This argu-
ment was based on the absence of supersymmetric grou
states with mass gap in the appropriate (p11)-dimensional
supersymmetric field theory. This, however, does not ru
out the existence of bound states ofp-branes when the direc-
tions tangential to thep-brane are compactified. Thus the
results of this paper are not in contradiction with those o
Ref. @6#. In particular, note that the bound states under co
sideration are only marginally stable, i.e., they are energe
cally indistinguishible from the end point of the continuum
Thus the existence of these bound states certainly do n
imply the existence of a mass gap in the theory in the lim
where the size of the compact dimensions approach infinit

It should be possible to carry out a similar analysis fo
more general compactification of the type II theory, onK3
surfaces or on Calabi-Yau threefolds. The expected dege
eracy of ultrashort multiplets for compactification of the type
IIA/IIB theory on K3 surfaces may be worked out in some
cases using the string-string duality conjecture@3# and/or the
SL~2,Z! symmetry of the ten-dimensional type IIB theory.
For example, if we consider a two-brane wrappedm times
around a two cycle ofK3 that does not self-intersect, then
the BPS states in this sector will be mapped to the BPS sta
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in the heterotic string theory withQW L
25QW R

2 (NL51). In this
case we expect 24~16-dimensional! BPS supermultiplets for
every integerm. For two branes wrapped around two cycle
which self-intersect, the answer will be more complicate
For compactification on Calabi-Yau threefolds, one can g
information about the expected degeneracy of the short m
s
d.
et
ul-

tiplets by either requiring consistent resolution of the co
fold singularity@11# or by using string-string duality conjec
ture @12#. It will be interesting to see if one can explicitly
verify some of these predictions.
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@1# A. Dabholkar and J. Harvey, Phys. Rev. Lett.63, 478 ~1989!.
@2# G. Horowitz and A. Strominger, Nucl. Phys.B360, 197

~1991!.
@3# C. Hull and P. Townsend, Nucl. Phys.B438, 109 ~1995!.
@4# S. Sethi, M. Stern, and E. Zaslow, Nucl. Phys.B457, 484

~1995!; J. Gauntlett and J. Harvey, Nucl. Phys.B463, 287
~1996!.

@5# J. Schwarz, Phys. Lett. B360, 13 ~1995!; 364, 252~E! ~1995!;
Report No. hep-th/9509148~unpublished!; Phys. Lett. B367,
97 ~1996!.

@6# E. Witten, Nucl. Phys.B460, 335 ~1996!.
@7# J. Polchinski, Phys. Rev. Lett.75, 4724~1995!.
@8# J. Dai, R. Leigh, and J. Polchinski, Mod. Phys. Lett. A4, 2073

~1989!; R. Leigh, ibid. 4, 2767~1989!; P. Horava, Nucl. Phys.
B327, 461 ~1989!; Phys. Lett. B321, 251 ~1989!; M. Green,
ibid. 329, 435 ~1994!; J. Polchinski, Phys. Rev. D50, 6041
~1994!.

@9# E. Witten, Nucl. Phys.B202, 253 ~1982!.
@10# E. Witten, Nucl. Phys.B443, 85 ~1995!; P. Townsend, Phys.

Lett. B 350, 184 ~1995!.
@11# A. Strominger, Nucl. Phys.B451, 96 ~1995!.
@12# S. Kachru and C. Vafa, Nucl. Phys.B450, 69 ~1995!.


