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Wilson renormalization group study of inverse symmetry breaking
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For a large class of field theories there exist portions of parameter space for which the loop expansion
predicts increased symmetry breaking at high temperature. Even though this behavior would clearly have far
reaching implications for cosmology such theories have not been fully investigated in the literature. This is at
least partially due to the counterintuitive nature of the result, which has led to speculations that it is merely an
artifact of perturbation theory. To address this issue we study the simplest model displaying high temperature
symmetry breaking using a Wilson renormalization group approach. We find that although the critical tem-
perature is not reliably estimated by the loop expansion the total volume of parameter space which leads to the
inverse phase structure is not significantly different from the perturbative prediction. We also investigate the
temperature dependence of the coupling constants and find that they run approximately according to their
one-loopgB functions at high temperature. Thus, in particular, the quartic coupling’dheory is shown to
increase with temperature, in contrast with the behavior obtained in some previous studies.
[S0556-282(196)03016-0

PACS numbes): 11.30.Qc, 03.76xk, 11.10.Hi, 11.10.Wx

[. INTRODUCTION restoration or multiple high temperature phase transitions
have many attractive phenomenological features. A partial
Intuitively, one expects symmetries that are spontanelist of applications includes the stronGP problem and
ously broken atT=0 to be restored at high temperature. grand unified theory(GUT) scale baryogenesif4], the
Examples of this behavior in condensed matter systemmonopole probleni5,6], baryogenesis and dark mat{éf],
abound, and it was suggested many years [dddhat the and inflation[8].
same thing might happen in relativistic field theories. This In this paper we will not discuss any particular physical
idea was quickly backed up by calculatidris3], which es-  application of models that exhibit an inverse phase structure.
sentially showed that for a general gauge theory with scalarsstead, we will focus on the phenomenon itself, specifically
and fermions the quadratic part of the effective potentialon the validity of the one-loop calculation that predicts it in
goes like some combination of coupling constants timeshe first place. There are several reasons for doing this, per-
T2. For theories with simple scalar sectors this combinatiorhaps the most important being that there seems to be a wide-
of couplings is quite generally positive definite, in which spread suspicion that symmetry nonrestoration is merely an
case the minimum of the effective potential lies at the originartifact of perturbation theory and not a true physical effect.
of field space for sufficiently high temperatures. At the samaéwhile this is partially due to the counterintuitive nature of
time it was also pointed oy2], however, that for certain the phenomenon, there is some quantitative evidence to back
models the coefficient of thE? term may be negative. In this up this claim. For example, a popular theory whose effective
case symmetries are not restored at high temperature, and jotential predicts an inverse phase structure in the one-loop
fact theories which are symmetric &0 may be broken for approximation is the @{) X O(N) model[2]. However, sub-
large T. While such theories are not totally generic, they aresequent calculations based on laNjexpansions and Gauss-
by no means contrived: All that is necessary is a sufficientlyian effective potential techniques seemed to show that the
complicated scalar sectétwo multiplets will often suffice  symmetry is in fact restored at high temperat[@¢ While
and some constraints on the relative sizes of the couplings ithe validity of these results is not clear to us, the fact that
the theory. The latter are usually weak enough so that théhey incorporate some nonperturbative physics clearly raises
allowed values for the couplings occupy a sizable portion othe possibility that the conclusions drawn from the loop ex-
parameter space. To be more precise, a necessary conditipansion are erroneous.
for high temperature symmetry breaking is the existence of There are additional reasons to be concerned about the
negative scalar couplings in the Lagrangian. Such couplingsalidity of the perturbative calculation of the effective poten-
however, are automatically allowed in any model with attial. For example, consider the case were the theory is sym-
least two scalar multiplets and, consequently, in almost alinetric at T=0, in which case perturbation theory predicts
extensions of the standard model. The effect of these couhat the symmetry will be broken at high temperature. It is
plings on the phase structure of a theory depends on theell known that the loop expansion breaks down in the vi-
details of the model and must be studied on a case-by-casinity of the phase transition due to severe infrared diver-
basis. gences. Now we expect these infrared effects to strongly
It was quickly realized that theories with symmetry non-renormalize the coupling constants in the theory, which is
important because the existence of the symmetry-breaking
transition depends on a certain relationship between these
“Electronic address: roost@hepth.cornell.edu couplings. It is clearly not inconceivable that the renormal-
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ization will destroy this relationship and circumvent the tran- 0.(q,A)=1 for g>A+e
sition all together. Even in the case where one starts in the
broken phase the situation is not entirely clear cut. For whileand
the loop expansion predicts that this symmetry will remain
broken at arbitrarily high temperature, it fails to include the 0.(9,A)~0 for q<A-—e.
effect of the temperature on the coupling constants. Again it
is possible that the effective coupling constants appropriat&or later use we note that the sharp cutoff limit is given by
at high temperature do not obey the inequalities required t¢he Heaviside function:
keep the symmetry broken. )

In light of all this it would be nice to study theories which lim 6.(q,A)=06(q—A). ©)
naively admit an inverse phase structure using techniques 0
B o st gl et of he et tem in e xponentl of 1 o
(or weakly first order phase transitions an@) unambigu- suppress the  propagation of long wavelength modes

yr P 9 g°<A?) while leaving the ultraviolet modes unaffected. In
ously take into account the effects of temperature on th o :
. . act it is obvious from Eq(1) that

parameters in the theory. Fortunately such a technique has
become gvajlable in recent years. It is base_d on an exact lim W,[3]=W[J], (4)
renormalization grougRG) equation for the Wilsonian ef- A0
fective action, which has the nice feature that it admits rela-
tively simple approximations that nonetheless capture a goothe usual generating functional of connected Green’s func-
deal of the nonperturbative physit&lsing this tool we will  tions. The flow equation fow, is obtained by differentiat-
study aZ,x7, symmetric scalar field theory, the simplest ing Eq. (1):
model that exhibits an inverse phase structure in the one-loop
approximation. As explained above, our goal will be to testoWw,[J]  1{ éW, A L SW, AT 5PW,
the validity of the perturbative calculation and to establish if — A = 75| "537 " oA~ &3 oA 8Js3 )|
high temperature symmetry breaking is in fact possible. )

The paper is organized as follows. In Sec. Il we present a
brief derivation of the exact RG equation for the effective Now define a scale-dependent Legendre effective action
action and discuss the approximate version that we willvia
solve. To illustrate the techniques involved, Sec. Il treats the
high temperature phase transition of simgié theory. In FA[¢]:—%(p'AX1~(p—WA[J]+J'(p, (6)
Sec. IV we then focus on inverse symmetry breaking in the
Z,X 7, model. Section V discusses the high temperature bewhere
havior of coupling constants and its relation to phase transi-
tions. Our results are summarized in Sec. VI. oW,

LI

Il. FLOW EQUATION

] o In terms ofl", , Eq. (5) becomes
For completeness we present a brief derivation of the ex-

act renormalization group equation. For details the reader is T [ @] 1[1 A, ST\ 71
referred to the literaturf10—-19. We work inD Euclidean A~ U ar (?_A( Am) } (7)
dimensions and for simplicity consider a single real scalar A

field ¢. For a theory with actior§ ¢] a scale-dependent |1 js clear from Eq.(4) and(6) that

partition function is defined aglots represent contractions in

function spacg imTA[e]=T[¢], (8)

A—0

exp(WA[J])=Nf Deexp{—3¢-Ax =Sy [e]+d-0h e generating functional of one particle irreducilieP])

(1)  diagrams. In the opposite limit —o, A * diverges, so that
in Eq. (1) the “classical” approximation t&W,[J] becomes
exact. Thus

0{a.A) 1 Wy[J]= = e*]-5¢* ALt o* +3-0%,  (9)
Ax= )

A0 A g) oF where

is a free massless propagator times the ratio of two smooth S(Se]+ oAt )
(everywhere positivecutoff functionsd, . This function has J= PIT 2928 °9 _
the properties op o

where A, is an ultraviolet cutoffN is a J-independent nor-
malization factor, and

This says simply that a4 —«, W, becomes the Legendre
See Sec. Il for details and references. transform of S+3¢-A ' ¢. But from Eq. (6) T'y+3
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<p-AX1- ¢ is the Legendre transform &%, , and sinceS+
%zp-AKl- ¢ is always convex in the limif\ — o, we obtain

lim T'x[e]=H ¢]. (10)
A—

We also have the approximate relation
Ty Le]=Sy [¢], (1D

which follows from Eq.(10) provided the UV cutoffA is
sufficiently large compared to all mass scale§j\n0 . From

Egs. (8) and (10) we see thaf, interpolates between the
classical action at\, and the effective action ak=0. In
fact, I', has an interpretation as a Wilsonian quantum effec
tive action obtained by integrating out purely quantum
modes with momentg> A [10].

Equation (7) is exact, but much too complicated to be
solved exactly. Its usefulness therefore hinges on the exis
ence of sensible approximation schemes. We begin by wri

ing
Iy= f d°X[U (@) +3ZA() (3" ¢)?
+Y (e, (0%9)?) (" ¢)*]. (12

Plugging this into Eq(7), settinge equal to a constant, and
neglecting thep dependence f , , we arrive at an approxi-
mate evolution equation for the effective potential:

dU(e)
aN

1
2

d®q 96.(q,A)
ﬁ—A{Ge(q,A)

(2m)°

+02(a,M)[Zy—1+ U (@)/a?]} 7 (13
(primes denote differentiation with respect#d. Taking the
sharp cutoff limit (3) and dropping an infinite field-
independent term we finally obt&in
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nents[13—17. They thus capture a large amount of the rel-
evant physics. It is also possible to show that Etj) is
simply the first term in a systematic expansion of the exact
result[18], which provides some theoretical justification for
its remarkable success. Finally, it is interesting to note that if
one fixesU,=U, andZ,=1 on the right-hand sideRHS
of Eq. (14), and then integrates, the result is simply the well-
known one-loop effective potential. We emphasize, however,
that there are no loop corrections to EG4): The use of
U, on the RHS corresponds to a resummation of an infinite
subset of diagrams, to all orders in the loop expansion.

In this paper we will study the phase structure of four-
dimensional field theories at finite temperature. We will
work with the sharp cutoff equatiofi4), which, for the pur-

pose at hand, has at least two advantages over its smooth
cutoff counterpart: The flow equations are simpler, and there
is no dependence on the particular choice of cutoff function.
Hsing the sharp cutoff will also allow us to compare the two
approaches since finite temperature phase transitions have
een studied using a smooth cutoff[itb,16.

Specializing now toD=4 and setting Z,=1, we are
faced with the task of including finite temperature effects.
We begin by writing Eq(14) as

U (o) 1
aA :_EJ

The imaginary time formalism instructs us to replace

d4q 2 "
2m) S(A—q)In[g°+Uj(e)].
(15

d‘q °° d3q
J G T2, J 2

and
9?=0gi+q’— wpta?

wherew,=2mnT. This yields

()  Kp A(e)
= AP Nz (19 MaleT) K o (A}
(?—A:_?ZWT Ag ? In[A +UA(QD,T)],
whereKp=Sp_,/(27)P, and Sy is the surface area of a (16
unit D-sphere.
This is the equation we will study in the present paper, buwvhere
before proceeding a few remarks are in order. First note that
Egs.(13) and(14) have been obtained from the exact result A\ [HA2ET] A oA
(7) by a truncation of the operator basis. While this is an 9 7)= nzo 2 el B Ul Ry 17

uncontrolled approximation, the resulting equations have
been successfully applied to the study of phase transitions i
two, three, and four dimensions, at zero and finite temper
ture, including the determination of accurate critical exp

And [x] is the greatest integesx. We note thatg(x) is
&ontinuous and piecewise differentiatiiee Fig. L
0" tis easy to see that

2Taking the sharp cutoff limit requires some care. We use the (18

relation[10]

so that Eq.(16) reduces to
30{q,A)

AN

[here,f(6,.,A) must be continuous at =q in dependence on its
second argument

1
f(9e(q,A),A)H—5(A—q)f dtf(t,q) ase—0
0

3A reasonable approximation for the theories at hand, since the
anomalous dimensions are known to be sr&dl,17.
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from Eq. (22) has the additional unpleasant feature that it
does not reduce to the zero temperature equdfidghin the
limit T—0 [20].

351

30T

25t lll. Ag* THEORY

In this section we will discuss briefly the finite tempera-
ture phase transition for a simp& symmetric scalar field
theory. This model has already been analyzed using the Wil-
son RG approachl5,20, and it is included here mainly to
illustrate the method. It is worth noting, however, that the
previous treatments differ from ours in the details of the
implementation: Referendéd5] uses a smooth cutoff, and in
[20] a sharp cutoff is used only for the three-momentum, as
discussed in the last paragraph of the previous section.

2071

0 5 10 15 20 25 30

X Consider then &, symmetric theory with Lagrangian
FIG. 1. The functiorg(x). L= %c?lu(p&“(p—V(p), (23
U, (@, T=0) Ky . where p=1¢?. Our RG equation for the effective potential
— A 7/\3'”[/\2"‘ Ui(e)] (19 (16) becomes
2
in the limit T— 0. Comparison with Eq(14) shows that this Valp.T) - AT g(é) Inl A2+ M
is indeed the correct zero temperature equation. It is also 2 2m S\ T ap
instructive to look at the opposite limitT>A. Using 2U,(p,T)
g(x) =x/27 for x<27 we obtain +2p —(22—} (24
p
M =_ &TAZIn[AZJr U%(@)] for T>A. We wish to solve Eq(24) subject to the boundary conditibn

IA 2 UAO(p,T)=V(p). This is still rather difficult, and to make

progress we expand, in a Taylor series about its mini-
On comparing with Eq(14) we see that this is simplyf mum. This Iea!ds to an _infinite set of coupled nonline_ar ordi-
times the zero temperature flow equation for a threena@y differential equations, which may be approximately
dimensional theory. Hence we already see evidence for disolved by truncation. , _ o
mensional reduction at high temperature. Let us stgrt with th(=T ;ymmetnc regime, where the mini-

For later use we record here the analogue of £€@) for ~Mum ofU, is at the origin. We parametridg, in terms of

theories involving multiple scalar fields. The generalizationitS Successive derivatives:
is entirely straight forward, the result being

(20

m?(A, T)=U{(p=0.T), (25)
U (e, T K A a*U
Mo —3277T2Ag(—> Inde{Aer 7o) 1
A 2 T Ipidp; )\Zn(A,T)EmUS\”)(p=O,T) for n=2, (26)
whereg(A/T) is given by Eq.(17) as before. where UX"E&”UA/ap“. Evolution equations for these pa-

Before concluding this section we point out that thererameters are easily derived by differentiating E2¢) with
exists in the literature an alternative method of includingrespect top. The first three equations obtained in this way
finite temperature effects in the sharp cutoff c4&6]. It are
amounts to replacing by |g| in the § function of Eq.(15).

The result is dmZZ_Ang(é 64 @7
dA 2w O\ T)ATrm?
Ux(e,T) < "
—on = 2 Mof+AZ+UL(e D] (22 dv,  AT2 (A)] 15%g 18X,
T A~ 27 A7) (A @9

The sum over Matsubara frequencies may now be done ana-

lytically, and the resulting equation involves no dependencedhs  AT? [A|[ 28hg  90\eh4 N 72)\,°
onn, in contrast with Eq(16). However, by cutting off only ~ dA 27 9\ T /| AZ+m2 (A°+m?)?  (A%+m?)3|

the three-momenta and summing overraine is neglecting (29
the effect of integrating out the Matsubara modes with

w,>A on the effective potential. As noted following Eq.

(14), it is precisely this kind of feedback that leads to the “See Eq.(11). Note that consistency requires that we keep
incorporation of higher loop effects. The equation derivedT<A, at all times.
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>©< 25 | po(T=0) ——

po(T=2) -
(@) (b) Lo g— |
FIG. 2. Contributions to the running of,. 15 m3(T=4) — ]

Several remarks are in order at this point. First, note that
the above expressions have an obvious interpretation in 1
terms of one-loop Feynman diagrams. For example ().
says that the four-point function receives contributions from g
the diagrams in Fig. 2. Figurga@ corresponds to the second
term in square brackets of E28), which involves 2 four-
point couplings and 2 “propagators,” while Fig(l® corre-
sponds to the first term in square brackets, involving the
six-point coupling and 1 “propagator.” The other flow equa-
Fions can be given sjmilar interpretations. We also see how FIG. 3. The evolution ofp, at various temperatures. For
'”tegra““g ,OUt the h'gh, frequency mo‘?'es generate_s new IOI'>TC, the running of the mass term in the symmetric regime is
cal interactions: Even if one starts with ¢ potential at also shown.

Ay, higher order terms are created as the cutoff is lowered.

Finally note that the equations describe naturally how par- i, AT2 A\[150g+24pohg (6 A4t 12 pohg)?
o]

ticles with mass larger than “decouple,” in the sense that —= = — p - > >

0.001 0.01 0.1 1 10

their effect on the running parameters becomes very small.
Now let us derive the flow equations in the broken re- dpo
gime, where the minimum of the potential is at some +3)\6M, (35
po>0. Here we parametrizd , in terms of the location of
its minimum and consecutive derivatives at that point. The

flow equation forpg(A,T) is obtained from the condition %: _ A_Tz é)[28h8+40 Pol 10
dA 27 AT | T AZ 4 pon,
&(Po T)=0. (30) _ (15A6+24pohg) (6N g+12pohe)
(A%+4 pohy)?
Taking theA derivative of Eq(30) we obtain(primes denote (6Xq+12pohg)° +AN dpo (36)
derivatives with respect tp) 3(A%+4pohy)* 8dA -
ou’ d We begin our study of the high temperature phase transition
IZA L yn 2Po =0, (32) by computing the effective potential in the simplest possible
IA A dA approximation. This amounts to parametrizidg in terms
of its first two derivatives only; i.e., we set,=0 for
so that n=6. Our strategy is then as follows. We define the theory
by specifying “renormalized” zero temperature parameters
dpo U, 1 at A=T=0. We may choose the zero temperature theory to
—— == (32 be in the symmetric regime by pickir’rg,z— m?(0,0)>0 or
dA JA U

in the broken regime by pickingo,=py(0,0)>0. Depend-
ing on the chosen phase, we then use either &7%,28) or

(all U, derivatives are evaluated pg, of course. The other  (34),(35) to numerically integrate up i to someA>m,
parameters are defined as in E26): or \po,. This “integrating up” is done af =0, and it serves
merely to provide us with the “bare” parameters that define
the actionSAO. We note that ifm? or p, go to zero at some

intermediate\, then we continue the integration with the set
of equations appropriate to the new phase, taking the values

for n=2. The flow equations for these parameters are obOf the parameters at as initial conditions.

tained by differentiating Eq24) with respect tg and evalu- With the parameters ak, in hand we are now ready to
ating the result ap,. The first three are study the effects of finite temperature. This is done by fixing

T#0 in the evolution equations and running down from
Ay to A=0. Repeating this for different values ®fallows
2 0
%: A_Tg(é)[m i (34) one to determine the temperature dependence of the renor-
dA 27 S\ T/| A“+4pohs |20y malized parameters. Figures 3 and 4 show the evolution in

1
A2n(AT)= U (po. T) (33
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0.12 . . ; : 0.12 . . | |
po(TY10 —
0.1 1 0.1 AgflT) -~ ]
0.08 1 008 b N N, |
006 | ] 0.06 |
004 1 T — 0.04 _
Ay(T=2)
0.02 | Ay (T=2.91) = | 0.02 |
Ay (T=4) e
0 B ' ' : 0 - . .
0.001 0.01 0.1 1 10 100 0 2 4 6 8 10
A T
FIG. 4. The evolution oh, at various temperatures. FIG. 5. The temperature dependence of the renormalized param-
eters.

A of the parameters at various temperatures. The initial con-
ditions are such that the zero temperature theory is in théhat the error in the naive value at. is of orderi,T, [2].
broken phase. From Fig. 3 we see thatis quadratically The above results may also be compared With], where

renormalized for largeA and approaches a constant asfinite temperaturep* theory was treated using a smooth cut-
A—0. As the temperature is increased, the asymptotic valugff flow equation.

of po decreases, until af; we have po(A,T)—0 as Before going on to theories involving multiple scalar
A—0. AboveT, po goes to zero for finite\, and we con-  fields a discussion of the validity of our approximation
tinue the evolution in the symmetric regime. method is in order. We will not comment on the initial step

Figure 4 shows the corresponding behaviorof At of obtaining Eq(14) from Eq.(7) by discarding the momen-
T=0 we observe the expected logarithmic evolution. Abovetum dependence; for this we refer the reader to the literature
and belowT., where all modes are massive, the running of{10,21,18. What we do want to address is the effect of trun-
A, is effectively stopped wher\ becomes much smaller cating the infinite set of coupled differential equations. In-
than the relevant mass scale. &t, however,A, runs to  stead of discussing the formal aspects of the problsee,
zero. This is, in fact, expected, because at the critical temfor example,[11,18), we will focus on a simple practical
perature the theory is scale invariant and the phase transitiagst: If the truncation is to be sensible at all, then the effect of
is second order. As a consequence the parameters run daeluding additional terms must be, in some sense, “small.”
cording to their canonical dimension, which is one kgrat To see if this is the case we derived flow equations analo-
small A since to the long wavelength modes the theory lookgyous to Eqs(27)—(29) and (34)—(36) up to and including
effectively three dimensional at high temperatuie.s the  \,,. Solving this set of seven coupled equations requires a
fact that the Wilson RG approach correctly takes into acchange in tactics. Recall that before we were able to specify
count the strong renormalization of the coupling in the vicin-the renormalized{ =0) parameters and then integrate up to
ity of the phase transition that allows one to accurately deobtain the “bare” parameters at,. This is no longer pos-
scribe the physics in this region, including critical exponentssible, because the newly included couplings-\,, corre-
[14,15,17. This is to be contrasted with the loop expansion,spond to irrelevant operators. This means that their values in
where higher order terms go like,T/M to some power, the infrared are fixed in terms of the values of the relevant
with M the appropriate infrared cutoff. Sinc&4—0 at  parametersn? and \,, and consequently they may not be
T., the expansion necessarily breaks down near the phastosen independent[22].
transition. To isolate the effect of including the additional terms we

Figure 5 shows the temperature dependence of theéherefore proceed as follows. Start At and setAg—\q4
“renormalized” (i.e., A=0) parameters. The critical tem- arbitrarily to zero” Then fine-tungg(A ) and,(Ag) until
perature is given by’ﬁ/pm~8.60, whereas naive one-loop flowing to the infrared producepy, =po(A=0)=1 and
perturbation theory predicfﬁﬁ/pmzs [2,3]. In light of the A4, =N4(A=0)=0.1. At this point we know we are dealing
fact that the loop expansion breaks down near the phase tramith the same theory as before, and we may now switch on
sition this good agreement may seem surprising, but it is irthe temperature and finfl,. This procedure was carried out
fact expected: Since perturbation theory is valid both farfor several different values of,, the results being summa-
above and far belothe critical temperature, one can show

7Any other “natural” value would do just as well, where “natu-
5This is explained in more detail in the Appendix. ral” means~1 divided by enough powers df, to get the dimen-
8As long as there are no Goldstone modes. sion right.
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TABLE I. T%/p,, for various approximation methods. for the potential to be bounded from below. If one calculates
the finite temperature effective potential for this theory to
Ny one loop and then expands the result about the origin, one
0.01 0.1 1.0 finds that the quadratic part at high temperature is
One-loop pert. theory 8 8 8 1 T2
Wilson RG up to, 8.29 8.60 10.37 VT‘fggfg m*+ 1—2(37\¢—>\¢X)) @?
Wilson RG up to\ 4 8.28 8.55 9.69
1, T? )
+§ o +1—2(3)\X—)\¢,X) X< (40

rized in Table I. We see that at least for moderate couplings
the effect of including parameters beyakglis small. Thisis |t is easy to see that this form allows a myriad of different
in accordance with the expectation that as long as the effegymmetry-breaking patterns. Depending on the relative size
tive potential is not too steep the first two terms in the Taylorof the couplings and the signs of? and x.?, one can have
expansion should accurately describe its shape around tRgmmetry breaking, restoration, or nonrestoration at high
minimum. temperature. Although less obvious, there are even more ex-
otic possibilities: For example, one can have a symmetry
IV. INVERSE SYMMETRY BREAKING broken or restored only for an intermediate range of tempera-

The simplest model that exhibits an | hase struc "eSL22)
€ Simpiest model that exnibils an INverse phase Stuc- ) ot g now analyze this model using the Wilson RG for-

ture is aZZX.ZZ symmetric scalar field theory described by malism developed in the previous section. Because of the
the Lagrangian 7,X 7, invariance, the Lagrangian may be written as

1 2,1 2__
£=2(0,0)+ 200,00~ Viex), 37 £=3(0,0)+3(0,00*V(p,0), (4D
where where
A A A p=1¢? (42
Vigx)= 3 m*e?+ 3 w2x*+ ZF o+ X = o). ’
38) and
=12
Note that, if the\’s are all positive, we require (=" (43
We proceed as in the previous section. The RG equ#fibn
Noh > NGy (39 for this model is
U, U, 9%U
A2+ +2 2 1/2+1/2
Wap &) Ko (A)In N T T »
o 2°mUAgT sy U , Uy Uy
2pVN— AP 42—
Ipdl a a

The potentiall , is again parametrized by its first two de- The other two parameters used to describe the potential de-
rivatives at the minimum, but this time we must distinguishpend on the location of the minimum. If it is at the origin, we
four cases: The minimum may lie at the origin, on eithersimply define

axis, or between the axes. In all four cases the couplings are

defined vi
efined via U ,(0.0T)
m(A,T)=————, (48)
C152U,(T) p
min U ,(0,0,T)
WA T)= (49
A (A T)= 2 FUAD (46)
X 1 - E a 2 ) 1
¢ min If the minimum is atp, on thep axis, we use
1 92U A(T) JU
=———_— A(Po,O,T)
Mex(AT)==5 apal | - @0 pA(A,T)= o (50
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and pq to parametrized , . The flow equation fop, is de- U (po.Lo)
rived as in Eqs(30)—(32). Similarly, if the minimum is on T:O (52
the ¢ axis,
AU (0,4o, T and
mZ(A,T)E—A( fo.T) (51)
dp
U (po,<o) _

and{, are used. The final possibility is that the minimum lies
between the axes. In this case we parametrize in terms of its 9

location in field space,dy,{o). The flow equations for these

coordinates are obtained by taking tofalderivatives of the This vyields two simultaneous algebraic equations for
two expressions dpo/dA andd{y,/dA, which may be solved to give

0. (53

dpo 1 Ny (91p) (U TIN) | (0 1) F N ox (9 IE) (AU TIN) (40 .20

<=3 2 : (54)
dA ~ 2 Noh = A2,

déo 1 M (919D (AU IN) (g .0 Nox (9 Ip) (AU N TIN5y )
dA 2 NNy =Ny '

(55

As before, the right-hand sides of the evolution equationg€q. (40) it is clear that according to the one-loop result this
are expressed in terms of our parameters by differentiatingappenSif, say,\,,>3\, . The critical temperature is pre-
Eq. (44) with respect to the fields, evaluating the result at thedicted to be
appropriate minimum, and then dropping all terms with three

or more derivatives. For example, the flow equations for the T_E 12 61
symmetric regimdi.e., minimum at the originhare m? N, — 3\, (6D
a2 AT2 (A 6 on independent of , and u2.
— = _g<_) e — | (56) The flow equations are solved as in the previous section.
dA 2w S\ TJ[A+m* A%+ pu Renormalized parameters are chose atA =0 in such a

way that the vacuum is symmetric. The equations are then
integrated to somé ; much larger than all physical masses.
_ 5 Since the minimum moves away from the origin during this
A2+ pu?  A2+m?) (57) process, it was necessary to develop an algorithm that auto-
matically switches to the correct set of equations depending
) _ on the location of the minimum. Once the parameters at
dn, AT? [A 18 )\i 2 )\iX A, are known the temperature is switched on and the equa-
GA - 27 9T (AZ+m?)2 + (AZ+ pu?)2 (58 tions are integrated back down 1o=0, yielding the renor-
) ’ malized finite temperature values for the masses, vacuum
expectation values, and couplings.
dy, AT2 [A\[ 18A% 272, Figures 6 and 7 show the behavior of the renormalized
9A - 2n g (AZ+ u2)2 + (AZ+m?)?2 (59 parame_ters for a typlca_l case. The parameters are chosen so
) : that naivelyli.e., according to Eq40)] the Z, symmetry of
the ¢ field is broken at high temperature. From Fig. 6 we see
that this picture is confirmed by our RG approach. As the

du?  AT? (A) BN, 2Ny |

dA T 2@ O\ T

T

2
d)“PX: AT g(é)[ 62)“9)‘@;2 62)\)()“‘2)(2 temperature increasererz(T) decreases and eventually hits
dA 27 SLT/[(AT+mT) (AT u%) zero atT,~49. Both u2(T) and po,(T) are proportional to
g )\2 T2 at high temperature. Figure 7 shows the corresponding
- “XZ . (60)  behavior of the couplings. As in the“ case discussed in the
(AT+mI) (AT u?) previous section, there is dramatic renormalization in the vi-

cinity of the phase transitioh.
There are similar, albeit more complicated, sets of equations
for the other three positions of the minimum.
We begin our numerical study of the model by investigat- ®equation(39) then requires that, >\
ing the phenomenon of inverse symmetry breaking. By thisnetry cannot be broken at high
we mean choosing the parameters so that the vacuum is sym2The behavior of the couplings ne®y is discussed in more detail
metric at T=0 but asymmetric at high temperature. Fromin the Appendix.

¢y » @nd so the other sym-
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FIG. 8. Comparing the critical temperature obtained from one-
loop perturbation theory with that obtained by integrating the RG

FIG. 6. The renormalized masses gyl as a function of tem- X 5
equations. X,,=0.003,\|=0.1, ur=1)

perature.

Fiqure 8 com th ical val fthe critical t however, is also present in the simpié case, and as was
gure © compares the numerical value ot the critical leM-, .,y in sec. I, there the two methods agree quite well. It

perature with the naive prediction, E@J), for several val- alone therefore cannot account for the difference in critical

ule'lf (;f éui:égstig%uglr'ggé. EI;’.EQ fotr (';hffe relat|ve|fy sml?ll Clou'temperatures. In fact, the dominant reason for the discrep-
piing Igniicant difierences for all value ncy is most easily seen in E6). The “propagator” in

r
of \,,. The best agreement occurs for large values o he second term i82+ «2, and u? is a rapidly increasing

Ngy» but even here the difference is about 1§%ote that  fynction of temperature. Hence at highthe second term is

Eq. (39) requires that, <0.0173. Numerically the system syppressed compared to the first, which significantly dimin-

becomes unstable slightly later, &, ~0.018] As \,, de- ishes the effect of the cross coupling, , and consequently

creases, the deviation between the naive prediction and thgisesT,.

numerical result increases rapidly. M$X=O.0105, the dif- We have just seen that the temperature dependence of

ference is more than a factor of 2. Fbj;X=0.01, perturba- w2 plays an important role in determining,. Since the

tion theory predictsT,/m,~109. The numerical solution leading correction t@.? is proportional ta\, , we may there-

shows that there is no phase transition at all for these valudere suspect that the critical temperature also depends on the

of the parameters, and thet’(T) is in fact an increasing value of this coupling, even though the one-loop re&h

function of T at high temperature. predicts that it does not. The question is settled by Fig. 9,
That the RG calculation gives a significantly higher criti- which shows the dependence ©f on \,. The effect is

cal temperature than perturbation theory is due to a combiclearly quite large and increases rapidly as the coupling in-

nation of two factors. First of all, the renormalized couplingscreases. Note that,>0.0521 is required for the potential to

decrease with temperature, which raises. This effect, be bounded from below.

0.1 T T T T 150 T T T T T T
0.09 1 . 140 [ One-Loop Prediction -~ ]
0.08 Fee j’ _ 130 | Flow Equations |
007 | ] 120 + ]
006 -ecoeccccc. . A 110 |
_____________________________________________ @
0.05 | £ 100 |
0.04 | '- . _ % |
200(T) o |
0.03 k;(T)
0.02 5;L"’VX(T) __________ ] 70 |
0.01 | 1 60 | |
0 L L 1 1 50 1 1 1 1 L 1
0 20 40 60 80 100 0 0.1 02 03 04 05 06 07 08
r
T Ay

FIG. 7. The renormalized couplings as a function of tempera- FIG. 9. The dependence of the critical temperature)\c}(n
ture. (A, =0.003,\}, =0.0125,u7=1.)
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TABLE Il. T./m, for various approximation methods and cou-
plings (u?~1 in all cases “Up to dim. n” means that operators of 0.100 ' ; '
dimension higher than were discarded in the flow equations.

0.098 [
A= 2.78<107°  1x10°%?  1x10°* 0.096 |
A= 1.00x10* 3x10' 3x10°®
X 5 5 4 0.004 |
)‘:p)(: 1.25x10 5X10 5x10
c
% 0092 |
One-loop pert. theory 53.7 24.5 245 <
RG up to dim. 4 ops. 67.9 33.6 257 0.090 [
RG up to dim. 8 ops. 67.9 335 257

0.088

0.086

Figures 8 and 9 indicate that the critical temperatures ob- 0,084 ) , ) )
tained from the RG approach are gon5|stently h|gher_ than 100 1x101  1x102  1x103  1x104  1x105
those obtained from the loop expansion, and that certain sets T/m,
of couplings do not produce a phase transition at all even
though\ ,, >3\ ¢. This may lead one to the conclusion that ~ FIG. 10. Temperature dependence of the quartic coupling con-
the region of parameter space which yields an inverse phasgant. Note the logarithmic scale on the temperature axis.
structure is significantly smaller than that predicted by the(As=0.1)
one-loop result. We emphasize that this is not the case. The
reason is again the presence of the “propagators” in the flow
equations. As explained above, for the case at hand these The high temperature behavior of the quartic coupling
factors reduce the significance of thg, term, which raises has been the subject of controversy for some time. Several
T. and suppresses the phase transition. But at the same timagthors have found decreasing withT [24], others find\
the suppression of ,, tends to stabilize the system, which approaching a constant ds—o [25], and still others find
means that there is additional parameter space beyond tfiat\ is increasing at high temperatur26].
limit (39) for which transitions occur. The net effect is thena  In order to shed some light on the issue we integrated the
small shift of the inverse-breaking region rather than a majoRG equations discussed in Sec. IIl for a wide range of tem-
reduction. peratures. The results are shown in Fig. 10. We see that the

To make sure that the numerical results do not depen§oupling constant rapidly decreases at first, but eventually
significantly on the order of truncation of the evolution equa-turns around. Frorii ~40 onwards the dependence is clearly
tions it is necessary to study the effect of including higherapproximately logarithmic. We note that at least qualitatively
dimensional operators. To this end we enlarged our systefifiis behavior agrees with that obtained #7].
of equations to include the Coup]ings Corresponding to op- In the literature one frequently encounters the notion that
erators of dimension less than or equal to 8, e, ¢2y*,  the effect of high temperature on coupling constants may be
%8, etc. This results in a system of 16 coupled first orderfncorporated by “running” the couplings according to their
nonlinear differential equations. As discussed at the end opPne-loopg functions using the temperature as the s¢28}.

Sec. lII, the addition of irrelevant operators causes the comln our case this amounts to assuming

plication that one can no longer simply choose the renormal- ™ 9
ized parameters. Instead, one must fine-tune the bare param- A T \2 (62)
eters atA ; to achieve the desired values for the masses and dt — 87274

relevant couplings in the infrared. Aside from this nuisance

the solution of the equations proceeds as before. The resulféheret=In(T/To), so that

are summarized in Table Il, which shows that the effect of

the added terms is very small. Ny (T)= 2)“”(T0) _ (63)

We conclude that discarding operators of mass dimension ' 1—(9/8m) A4 (To)IN(T/To)
higher than 4 is a valid approximation for the purpose at o ] ]
hand. Table Il also shows that for very small values of thel ne justification for this procedure is usually based on rather
couplings the numerical result is in reasonable agreemerf2gue arguments concerning the average momentum transfer
with the one-loop prediction, at least)f,, is safely larger during collisions of particles in the heat bath be@{T), so
than 3\,. For the couplings in column 2 the two methods that a coupling constant at that scale ought to be appropriate.

differ by almost 40%, while the discrepancy is down to 50, While this is certainly not unreasonable it is hardly a con-
for the values in column 3. vincing argument, and as noted above a more detailed analy-

sis has produced many other types of behavior. To see how

well Eq. (62) describes the high temperature evolution we

have plotted Eq(63) together with the numerical integration

in Fig. 11. The one-loop result is normalized so that the two
In this section we discuss the temperature dependence ofethods agree &t/m,=100. It is clear from the figure that

the coupling constants in the highlimit. We begin with the the high temperature dependence Xof (T) is described

simplest case, that of a single scalar field. quite well by the one-loogB function. After runningT over

A. Ao* theory

V. COUPLING CONSTANTS AT HIGH TEMPERATURE
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increasing function of. Thus, for moderate values @f the

0.092 - ' coupling runs faster at higher temperature, which explains
0001 | One-Loop 3 Function - | the initial decrease it 4, (T).

Wilson RG —— We end this section with a few remarks. First of all, we
have checked that the high temperature behavior of the cou-
pling is not altered by the inclusion of higher dimensional
operators in the flow equations. In fact, the effect of these
operators decreases rapidly as one gets further away from the
critical theory. Second, we point out that the authof 2],
using an “improved” loop expansion approach, has found
the high temperature evolution of the coupling to be similar
to ours, i.e., approximately as predicted by the one-Igop
function with some temperature-dependent correction. Fi-
, , nally, note that the calculations in this section were done for
0.085 i : . :
1x102 1x103 1x104 1x105 a theory that is symmetric 8t=0. This choice has no effect
T/m on the high temperature behavior of the coupling, for at very
high T the theory does not care whether or not there was a
phase transition at much lower temperattfr&or the tem-
perature dependence of the coupling constant in an initially
broken theory at moderate valuesTofsee Sec. .

0.090

0.089

hy(T)

0.088

0.087 |

0.086 [

r

FIG. 11. The high temperature evolution ®f,(T) obtained
from the RG compared to the behavior obtained by udires the
scale in the usual one-logp function. The initial condition for the
one-loop integration is chosen so that the two methods agree at
T=100. (\,,=0.1) B. 7,% 7, model

three orders of magnitude the results differ by about 1.5%. It W& will now study the high temperature behavior of the
is also clear, however, that the difference becomes significarfoUpling constants of the, X Z, model discussed in Sec. IV.

if one runs over many orders of magnitude, for example, tol here are two possible phases_, at high temperature: Either the
the GUT scale. In addition we see that using the one-loogh€0ry is completely symmetric, or one of the two symme-
equation is only reasonable if one knows the correct “initial ri€S is broken. We have checked that in both cases for ge-
condition” at high temperature, in our casg, (T)~0.085 at  Neric values_of the zero temperature parameters the evo!ut|on
T/m,=100. Starting the evolution using Eq63) with of the .couplmgs at h|gh'tempe.rature is approximately given
A4 (T=1)=0.1 is obviously not satisfactory, and obtaining bY their one-loopa functions, viz.,

the proper initial condition requires an analysis such as the

one presented in this paper. %: iz[g)\2+)\2 ], (64)
It is worthwhile noting that the general features of the dt 8w £

high temperature behavior of the coupling can be understood

by simply looking at its RG equation, obtained in Sec. lll. d\n, 1 —

For\g=0 andA>T and|m|, Eq. (28) reduces to Eq(62). di = 82O, (69

Thus the evolution for very larga is simply given by the

one-loopB function. Now forT>m, the propagator in Eq. dx 1

(28) contains a large thermal mass, which means that the ex ——5[3(\,+ )\X))\‘PX_L”\Z ] (66)

running effectively stops forA<\\,T. The evolution for dt 8w o

A<T is thus strongly suppressed, and all that remains is the

one-loop-like running for largé plus some threshold effect Wheret=In(T/Tg). The reason for this behavior is essentially
for A~T. At a higher temperature the thermal mass is largerthe same as in the* case discussed above, except that the
causing the running of, to freeze out at largen. The  situation is complicated by the presence of multiple mass
contribution from the threshold region is approximately thescales. An example of the evolution of the couplings is
same as before, and so the net effect of increaSifppm ~ shown in Fig. 12, which also presents the running according
T, to T, is essentially equivalent to integrating the one-loopt0 the one-loop3 functions for comparison. We see that at
B function between the two temperatures. This explains théeast over the limited temperature range presented the two
correspondence in Fig. 11. The slope of the numerical curvéethods agree reasonably well. Note that the renormalized
is slightly steeper because the quantum corrections to theouplings in Fig. 12 are chosen so that the theory is symmet-
mass go like— \,A2, which reduces the denominator in Eq. ric at T=0 but broken at high temperature. The transition to

(28) and makes\, flow somewhat faster for largd than  the broken phase occurs B¢~ 50. _ . _
predicted by Eq(62). We conclude this section by discussing an interesting phe-

Having just explained why,, (T) should increase with Nnomenon related to the evolution of the couplings. Consider
temperature we find ourselves having to account for the inichoosing renormalized couplings which satisfy
tial decrease seen in Fig. 10. This decrease occurs for values
of the temperature low enough so that the suppression of the N>N =N, (67)
evolution due to the thermal mass is not yet important. In-
stead the running is dominated by the range T, where the
prefactor on the RHS of Eq28), AT?g(A/T), is a rapidly 10This was also checked numerically.
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FIG. 12. The high temperature evolution of the couplings. FIG. 13. The temperature dependence of two combinations of
“RG” refers to the Wilson RG approach of this paper while “1- parameters in the Wilson RG approagtf(T) is rapidly increasing
loop” refers to the numerical solution of Eq€4)—(66). The initial long after the couplings satisfy the naive inequality which predicts
conditions for the one-loop integration are chosen so that the twsymmetry breaking. r(1r2=;L,2=1, )\[P=0.1, A;(:lx 1073, )\;X
approaches agree &t=500. (m?=u?=1, \,=0.1, A =0.003, =2.99x10"%)

AL, =0.016)

It is clear from the figure that the coefficient of tié term

in u?(T) is not proportional to 8! —\,, as predicted by
Eq. (40). In addition we see that even long after the pertur-

From Eqs(64)—(66) it is clear that according to the one-loop
B functions the couplings will flow in such a way that even-

tually A, (t)>3\,(t). For suitable initial values this occurs bative coefficient has turned negatiye,’*,(T) is still a rapidly

when all couplings are still small, so that the loop expansioq . : -

- . ncreasing function of temperature. The phase transition pre-
ought to be valid. This means that the symmetry of the ) : o
theory should be given by Eq40), and we see that the dicted by the one-loop result is absent. This is not to say, of

running of the couplings can alter the symmetry of the theor gourse, that a phase transition may not take place at much
- 2 2 - . .
at high temperature. This effect can be exploited for mode igher temperature. After ajki(T)/T* is decreasing, and if

building, in that it provides a “natural” way of having phase his continues the symmetry will indeed by broken at very

transitions at very high temperature. For example, one Calg:\rge'!'. A.S stat.ed apove,_numencal errors prevent us from
investigating this region directly.

have symmetry restoration set in above the GUT scale with- Finally, we point out that for the initial conditions of Fig
out having to fine-tune the couplings to one part in°10 : : ) LY
" ving ine-tu uping part | V\;L3, )\;(T) doesnot run according to its one-loopg function

Similarly, one can construct models that are broken at lo : .
temperature, get restored at sofie=O(m/\), and then over the temperature range considered. In fni;(,T) is de-
' | reasing very slowly even at=10. This shows that while

get rebroken at a much higher temperature. For a practicéﬂ ) X . : :
application of this kind of effect to the stror@P problem generically the high temperature behavior of the couplings is

and the baryon asymmetry, sg&. given by their one-loogB functions(Fig. 12, this need not

The above discussion was based on the assumption thB€ SO- The “anomalous’ behavior of|(T) for the case at
the couplings evolve at high temperature according to theif@nd is due to the presence of two vastéy different mass
one-loop B functions. We have already stated that this isSCales at high temperature. Whef(T) anduf(T) differ by
approximately true, and we therefore expect that the evoluseveral orders of magnitude, some terms in the flow equa-
tion may indeed reverse the inequalith 3>\, at high tions “decouple” much earll_er than others. Under these cir-
temperature. We wish to investigate the question if this recumstances our approach is not expected to reproduce the
ally leads to symmetry breaking, as predicted by Ef). one-loop result as the latter is blind to the presence of mass
Unfortunately the errors inherent in the numerical solution ofscales.
our evolution equations do not allow us to vary the tempera-
ture over the 15 or so orders of magnitude necessary to

achieve a significant change in the couplings. We therefore VI. CONCLUSIONS

focus on the situation where one starts with, less than, In this work we investigated the high temperature phase
but very close to, B, , so that even a moderate change instructure of a simple two scalar theory by solving approxi-
T can alter their relationship. mately a nonperturbative RG equation for the effective po-

Bearing in mind the above restrictions we choosetential. The solution consisted of assuming a polynomial ex-
A,=0.1,\[=1x10"3 and X} ,=2.99<10°°. If one nu-  pression for the potential and then numerically integrating
merically integrates Eq$64)—(66) using these couplings as the resulting coupled flow equations for the coefficients. Our
initial conditions att=0, the one-loop calculatio®0) pre-  main result was obtained in Sec. IV: According to our non-
dicts a symmetry-breaking phase transitionTat450. The perturbative method inverse symmetry breakiagd sym-
results of the Wilson RG integration are presented in Fig. 13metry nonrestorationdoes exist. In addition, we found that
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the phenomenon takes place roughly for those values of theass[Eq. (40)] predicts a symmetry-breaking phase transi-
couplings that satisfy the inequalities obtained from perturtion at T~450. In contrast, Fig. 13 shows that the relevant
bation theory. The total volume of parameter space thathermal mass is a rapidly increasing function of temperature
yields high temperature symmetry breaking is only slightlyeven atT=10". It is possible that the symmetry will be bro-
reduced compared to the one-loop prediction. ken at much higheil, but if this happens, it will be at a
We also saw that the critical temperature obtained fronfemperature many orders of magnitude larger than that pre-
perturbation theory does not agree particularly well with ourdicted by perturbation theory. _
numerical results, even for reasonably small couplings Finally we would like to comment on the generality of our
(<0.1). The reason for this is that the negative cross Cc)u(;oncl_usmns. All of our numerical results_; were obtained for
pling between the fields which drives the symmetry breakingne SimpleZ,xX Z, model. However, the differences between
must by somewhat larger than the value predicted by th&uUr RG approach and the standard qne—loop treatment arise
loop expansion. This leads to a situation where the perturbd€cause our method correctly takes into account the decou-
tive estimate for the critical temperature becomes totally unPling of massive particles from the theory as the infrared
reliable as the cross coupling gets close to the boundary ré:_utoff is lowered. This fgature is intrinsic to the method and
gion. If one stays far away from the boundary, thelndepender_]t (_)f the p_ar'glcular model studied, WhICh leads us
perturbative and numerical results approach each other & €xpect similar deviations from the perturbative results for
within 15%, which is about what one would expect. We alsoother models.
demonstrated that the critical temperature depends signifi-
cantly on the value of the quartic coupling of the unbroken
field, in contrast to what is predicted by the one-loop calcu- ACKNOWLEDGMENTS
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pling was shown to increase at very high temperature, but

not before being significantly reduced during an intermediate

regime: For very largel the evolution was shown.to be APPENDIX: CRITICAL BEHAVIOR
approximately given by the one-logp function of ordinary
perturbation theory. The main emphasis of this work does not rely on the

For the Z,X 7, theory we focused on the effect of the details of the phas&ansitionswe have studied. Rather, we
running couplings on the symmetry of the theory. It washave been interested in establishing éixéstenceof symme-
shown that generically the couplings evolve according tdry breaking phase transitions, and in showing that the bro-
their one-loop3 functions at high temperature. However, we ken symmetry state can persist at arbitrarily high tempera-
also demonstrated that it it correct to draw conclusions ture. In this context it is only of tangential interest as to what
about the symmetry of the theory based on the perturbativeritical exponents characterize the transition or even whether
formula for the thermal mass and the running of the coudt is first or second order. In fact, we could have studied the
plings. Naively this idea can be used to produce “natural” persistence of the broken state by starting in an asymmetric
very high temperature phase transitions induced by the evatacuum atT=0, in which case there would have been no
lution of the couplings. Our RG approach shows that thisphase transition at alf: Similarly, the evolution of param-
fails for at least three reasons. First of all, even for generigters at very high temperature does not depend on the de-
initial conditions, the couplings evolve according to theirtailed dynamics of a phase transition that has taken place at
one-loop functions only at very higif, and they are sig- much lowerT. The nature of the phase transition is impor-
nificantly renormalized by the time they reach this region.tant, however, in understanding the behavior of the renor-
Because the couplings evolve very slowly after the initialmalized parameters nedy,, shown in Figs. 5-7. For this
decrease it is important to have these “initial values” in reason we include here a brief discussion of the phase tran-
order to start the high temperature running. Using the zersitions studied in Secs. Ill and IV. Detailed applications of
temperature parameters would not suffice to get an order diVilson-type RG equations to critical phenomena can be
magnitude estimate of. even if the rest of the reasoning found in[11,13-17.
was correct. Second, any attempt to cause high temperature We begin with the well known case ofe? theory. In
symmetry breaking induced by the running of the couplingsorder to study the character of a transition it is helpful to cast
requires that one of the quartic couplings be significantlythe flow equations into scale invariant form by using the
larger than the others. This introduces two widely differentproper dimensionless couplings. To achieve this consider the
mass scalegthe two thermal massgswith the result that theory at high temperature. Onde<2#T all nonzero Mat-
some of the couplings do not evolve according to their onesubara modes have been integrated out and we are left with
loop B functions even at very large. Last, and most impor- an effective three dimensional theory for the zero misie
tant, we showed that even when the couplings have evolveBq. (20)]. The coupling in this theory, which has dimension
to satisfy the naive inequality that predicts symmetry break-l, is\,T. The appropriate dimensionless mass and coupling
ing, it does not happen. parameters of the effective theory are, hence,

The above remarks are best illustrated by the example
discussed in Sec. V. For the renormalized parameters chosen
there the one-loop evolution of the couplingBsgs. (64)— HAs long as the couplings obey the correct inequalities; see the
(66)] combined with the perturbative formula for the thermal discussion above Eq61).
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AT)— m?(A,T) AL dK(P_Z 1[3h, h,
WA=y (AD T P e L
and
dx, 1| 3h, ey
AT TR T F o T L
h(A,T)= 4T (A2)
dh, 1 [ ong h2,
Rewriting Egs.(27) and (28) in terms ofx andh and using dt ¢ 27%[(1+«,)? * (1+x,)2] (A9)
t=In(Ay/A) we obtain the desired form
dh 1] on? h2
d 3h —Z=h - X+ X1 (A10
d—f=2ﬁm, (A3) dt % 27°[(1+k,)? (1+k,)? (AL0)
dh 9h2 dh‘PX =h - i 3h<Ph<PX 3hXh<PX
£ (Ad) dt 9 27°(1+k,)? (1+k,)?
dt 27°(1+ k)
4hZ,
(here we have truncated by setting=0 for n=6, as be- B (1+k,)(1+k,)] (A1)

fore). Equations(A3) and (A4) have two fixed points: the

Gaussian(trivial) fixed point atk, =h,=0 and the Wilson At this point one could easily determine the fixed points of
fixed point(WFP) at x,=—1/7 andh,=87?/49. Lineariz- the above system, investigate their stability, etc., but this is
ing around the fixed points one finds that the former is com-outside the scope of the present article. Rather, we note that
pletely unstable in the IRt{), while the latter is a saddle since they field remains massive during the transitions stud-
point. Hence in order for a flow to end up at the WFP oneied in Sec. IV, it decouples in the IR, in the sense that
needs to fine-tune one linear combination of UV couplingsx,— o like 1/A%2 asA—0. For smallA we are therefore left
which in our case amounts to choosifige T.. Consequently  with the reduced system

k— k, andh—h, ast—x at the critical temperature, which

means that the transition is second order and that dx 1 3h
—2 =2k, = (A12)
dt ¢ 27 14k,
mZ(To)= lim m?(A,To)~ lim A%k, =0,  (A5)
A—0 A—0 2
dh, H 1 9hg AL3
AR, T 2R T ay)? (A13)
Nar(Teo)= lim Ng4(A,T)~ lim =0. (AB)
A—0 A—0O TC 2
dh, 1 he
i . ) o —-=h,— 5% —", (A14)
This explains the behavior observed in Figs. 3-5 riear dt 27 (1+ k)
We point out that the above conclusions are independent
of the parametrization used for the the flow equations, as dh 1 3h.h
they should be. For example, consider starting with the flow d—fx =h LS (A15)

X 221+ )2
equations in the broken phase, E(34) and (35). The ap- 2m” (1+ k)

propriate dimensionless parameters of the effective threerpg system has the same two fixed points we found in the
dimensional theory are now= po(A, T)/AT (recall that the Mo* case above, namely, the trivial one and the WFP at
field has dimension one-half in three dimensjorend |, "_ _1/7 1 =8+249 and h.=h =0. What has

1 @ ’ X (24 :

~ . @
h=N4(A,T)T/A. In terms of these variables Eq84) and  changed is the stability of these points. While the Gaussian
(35) take a scale-invariant form similar to EgeA3) and

fixed point is still completely unstable, the WFP now has
(A4). One again finds two fixed points, the Gaussian athree unstable directions instead of just one. Thus it seems
k,=3/47%, h,=0 and the WFP ak,=1/47% h,=2x2.  that fine-tuningonelinear combination of UV couplingéy

The former is again completely unstable and the latter iadjustingT) is not sufficient for a flow to end up at the WFP.
again a saddle point, and so our above conclusions remaifhis, combined with the absence of other sufficiently stable
valid. fixed points, seems to indicate that the system does not un-

We now turn to the two-scalar theory of Sec. IV. Just asdergo second order phase transitions.
above we consider the effective three-dimensional high tem- Given the above analysis one may well ask why the order

perature theory and rewrite the flow equati@b6)—(60) in
terms of the dimensionless variableg,=m?(A,T)/A?,
KX=,u2(A,T)/A2, he=N (A T)T/A, h =\ (A,T)T/A,

andh,, =\, (A, T)T/A. This results in the following set of

scale invariant equations:

parameter and the couplings seem to vanish continuously
near the critical temperature, as shown in Figs. 6 and 7. The
reason is thak, andh, flow to the WFP despite the insta-
bility in the other two directions in coupling space. This
happens because the sector of the theory completely de-
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couples from the sector(but not vice verspg as can be seen We conclude with a few comments. First, we have veri-
from Egs.(A12)—(A15). In fact, Egs.(A12) and (A13) are fied numerically that close td. the RG trajectories of the
exactly the same as the equations for the simgfecase, full theory do get attracted to the WFP in thesubspace.
Egs. (A3) and (A4). Consequently all the reasoning for that This shows that the WFP is the relevant one for our phase

case goes through and it suffices to tune one pararttéter transitions. Second, we point out that the delzqoupli.ng of the
temperaturgin order to flow to the fixed poir2 For our ¢ sector from they sector at the phase transition will occur

quartic truncation the transition is thus predicted to be secEVeN if the evolution equations are not truncated at quartic

ond order andn?(T,) and\'(T,) flow as in Eqs(AS5) and o_rder in the fl_elds as was done_ above. The reason for this is

(AG) as A0 rThec behavi%r f)ih andh. at fhe phase simple: Any diagram that contributes to the running of some
-y ex X

. 4 ¢ : coupling M\ (corresponding to an operatet”") is either
transition can be found by plugging the fixed point values,, . - ;
k,=—1/7 and h¢:8772/49 into Eqs. (A14) and (A15). built from vertices that have ng legs or else necessarily

. o . ontains closegy loops. The former are the same vertices
These equations are then easily integrated, with the resuEtr

esent inp” theory, and the latter will be highly suppressed
hgy~exp(2/3) andh,~c,expt) —c,exp(4/3), wherec, and i, the |R whenk, = u? A?—c. The critical behavior of our
c, are positive constants. FoA—0 we thus obtain

13 13 ! two scalar theory near the inverse phase transitions under
Noy(A,Te)~ A7 and\ (A, Tc)~cy—Co /AT This behav-  consideration is thus equivalent to that of themodel for

ior is observed in Fig. 7. The fact that, does not go nega- any polynomial truncation of the effective potential. Finally,
tive in the figure is simply due to the temperature resolutiora comment regarding the behavior)of at T,. While it may
used. FofT very closé® to T, one indeed finda;(T)<O. seem odd that this coupling goes to minus infinity as the
cutoff is lowered, this does not mean that the theory is un-
bounded. It must be remembered that without our truncation
2t is actually not quite that simple. The fact that the WFP is ahigher order terms would be present and that the four-
saddle point in the> subspace indicates that one needs to fine-tunglimensional couplings do not have a simple physical inter-
only one linear combination of couplings to flow to it. The impor- pretation in the critical theory. To illustrate this point con-
tant question is then for what values of the parameters adjusting thgider theZ, model and the couplingg corresponding to the
temperature enables one to achieve a correct linear combinatioeperatore®. At high temperature the dimensionless effective
This is the question we have studied in detail in Sec. IV, with thethree-dimensional coupling relevant for the investigation of
conclusion that the allowed parameter values are roughly those préixed points ishg=T3A \g. The fixed point value ohg turns
dicted by perturbation theory. In this appendix we argue onlyithat out to be negativgé14], which means thakg(A,T;)— —
it is possible to produce a symmetry-breaking phase transition basA —0. In fact it is clear that alk , with n=8 will diverge
varying T, then this transition is second order and the critical be-at T;. The point is that the physics near the phase transition
havior is equivalent to that of thé, model. is parametrized by the critical exponents of the effective

BFor the parameters used in the figure this requiresthree-dimensional theory and not by the four-dimensional

[T-T|/Te~107".

couplings.
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