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Wilson renormalization group study of inverse symmetry breaking
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For a large class of field theories there exist portions of parameter space for which the loop expan
predicts increased symmetry breaking at high temperature. Even though this behavior would clearly hav
reaching implications for cosmology such theories have not been fully investigated in the literature. This
least partially due to the counterintuitive nature of the result, which has led to speculations that it is merel
artifact of perturbation theory. To address this issue we study the simplest model displaying high temper
symmetry breaking using a Wilson renormalization group approach. We find that although the critical t
perature is not reliably estimated by the loop expansion the total volume of parameter space which leads
inverse phase structure is not significantly different from the perturbative prediction. We also investigate
temperature dependence of the coupling constants and find that they run approximately according to
one-loopb functions at high temperature. Thus, in particular, the quartic coupling ofw4 theory is shown to
increase with temperature, in contrast with the behavior obtained in some previous stud
@S0556-2821~96!03016-0#
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I. INTRODUCTION

Intuitively, one expects symmetries that are spontan
ously broken atT50 to be restored at high temperature
Examples of this behavior in condensed matter syste
abound, and it was suggested many years ago@1# that the
same thing might happen in relativistic field theories. Th
idea was quickly backed up by calculations@2,3#, which es-
sentially showed that for a general gauge theory with scala
and fermions the quadratic part of the effective potenti
goes like some combination of coupling constants tim
T2. For theories with simple scalar sectors this combinatio
of couplings is quite generally positive definite, in which
case the minimum of the effective potential lies at the orig
of field space for sufficiently high temperatures. At the sam
time it was also pointed out@2#, however, that for certain
models the coefficient of theT2 term may be negative. In this
case symmetries are not restored at high temperature, an
fact theories which are symmetric atT50 may be broken for
largeT. While such theories are not totally generic, they a
by no means contrived: All that is necessary is a sufficient
complicated scalar sector~two multiplets will often suffice!
and some constraints on the relative sizes of the couplings
the theory. The latter are usually weak enough so that t
allowed values for the couplings occupy a sizable portion
parameter space. To be more precise, a necessary cond
for high temperature symmetry breaking is the existence
negative scalar couplings in the Lagrangian. Such couplin
however, are automatically allowed in any model with a
least two scalar multiplets and, consequently, in almost
extensions of the standard model. The effect of these co
plings on the phase structure of a theory depends on
details of the model and must be studied on a case-by-c
basis.

It was quickly realized that theories with symmetry non
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restoration or multiple high temperature phase transition
have many attractive phenomenological features. A parti
list of applications includes the strongCP problem and
grand unified theory~GUT! scale baryogenesis@4#, the
monopole problem@5,6#, baryogenesis and dark matter@7#,
and inflation@8#.

In this paper we will not discuss any particular physica
application of models that exhibit an inverse phase structu
Instead, we will focus on the phenomenon itself, specifical
on the validity of the one-loop calculation that predicts it in
the first place. There are several reasons for doing this, p
haps the most important being that there seems to be a wi
spread suspicion that symmetry nonrestoration is merely
artifact of perturbation theory and not a true physical effec
While this is partially due to the counterintuitive nature o
the phenomenon, there is some quantitative evidence to ba
up this claim. For example, a popular theory whose effectiv
potential predicts an inverse phase structure in the one-lo
approximation is the O(N)3O(N) model@2#. However, sub-
sequent calculations based on largeN expansions and Gauss-
ian effective potential techniques seemed to show that t
symmetry is in fact restored at high temperature@9#. While
the validity of these results is not clear to us, the fact tha
they incorporate some nonperturbative physics clearly rais
the possibility that the conclusions drawn from the loop ex
pansion are erroneous.

There are additional reasons to be concerned about
validity of the perturbative calculation of the effective poten
tial. For example, consider the case were the theory is sy
metric atT50, in which case perturbation theory predicts
that the symmetry will be broken at high temperature. It i
well known that the loop expansion breaks down in the v
cinity of the phase transition due to severe infrared dive
gences. Now we expect these infrared effects to strong
renormalize the coupling constants in the theory, which
important because the existence of the symmetry-breaki
transition depends on a certain relationship between the
couplings. It is clearly not inconceivable that the renorma
2944 © 1996 The American Physical Society
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ization will destroy this relationship and circumvent the tra
sition all together. Even in the case where one starts in
broken phase the situation is not entirely clear cut. For wh
the loop expansion predicts that this symmetry will rema
broken at arbitrarily high temperature, it fails to include t
effect of the temperature on the coupling constants. Agai
is possible that the effective coupling constants appropr
at high temperature do not obey the inequalities required
keep the symmetry broken.

In light of all this it would be nice to study theories whic
naively admit an inverse phase structure using techniq
that ~1! capture enough nonperturbative physics to correc
handle the infrared problems in the vicinity of second ord
~or weakly first order! phase transitions and~2! unambigu-
ously take into account the effects of temperature on
parameters in the theory. Fortunately such a technique
become available in recent years. It is based on an e
renormalization group~RG! equation for the Wilsonian ef-
fective action, which has the nice feature that it admits re
tively simple approximations that nonetheless capture a g
deal of the nonperturbative physics.1 Using this tool we will
study aZ23Z2 symmetric scalar field theory, the simple
model that exhibits an inverse phase structure in the one-l
approximation. As explained above, our goal will be to te
the validity of the perturbative calculation and to establish
high temperature symmetry breaking is in fact possible.

The paper is organized as follows. In Sec. II we presen
brief derivation of the exact RG equation for the effecti
action and discuss the approximate version that we w
solve. To illustrate the techniques involved, Sec. III treats
high temperature phase transition of simplew4 theory. In
Sec. IV we then focus on inverse symmetry breaking in
Z23Z2 model. Section V discusses the high temperature
havior of coupling constants and its relation to phase tran
tions. Our results are summarized in Sec. VI.

II. FLOW EQUATION

For completeness we present a brief derivation of the
act renormalization group equation. For details the reade
referred to the literature@10–12#. We work inD Euclidean
dimensions and for simplicity consider a single real sca
field w. For a theory with actionS@w# a scale-dependen
partition function is defined as~dots represent contractions i
function space!

exp~WL@J# !5NE Dwexp$2 1
2w•DL

21
•w2SL0

@w#1J•w%,

~1!

whereL0 is an ultraviolet cutoff,N is a J-independent nor-
malization factor, and

DL[
ue~q,L!

ue~L,q!

1

q2
~2!

is a free massless propagator times the ratio of two smo
~everywhere positive! cutoff functionsue . This function has
the properties

1See Sec. II for details and references.
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ue~q,L!'1 for q.L1e

and

ue~q,L!'0 for q,L2e.

For later use we note that the sharp cutoff limit is given by
the Heaviside function:

lim
e→ 0

ue~q,L!5u~q2L!. ~3!

The effect of the extra term in the exponential of Eq.~1! is to
suppress the propagation of long wavelength mode
(q2!L2) while leaving the ultraviolet modes unaffected. In
fact it is obvious from Eq.~1! that

lim
L→0

WL@J#5W@J#, ~4!

the usual generating functional of connected Green’s func
tions. The flow equation forWL is obtained by differentiat-
ing Eq. ~1!:

]WL@J#

]L
52

1

2 H dWL

dJ
•

]DL
21

]L
•

dWL

dJ
1trS ]DL

21

]L

d2WL

dJdJ D J .
~5!

Now define a scale-dependent Legendre effective actio
via

GL@f#52 1
2w•DL

21
•w2WL@J#1J•w, ~6!

where

w5
dWL

dJ
.

In terms ofGL , Eq. ~5! becomes

]GL@w#

]L
52

1

2
trF 1DL

]DL

]L S 11DL

d2GL

dwdw D 21G . ~7!

It is clear from Eq.~4! and ~6! that

lim
L→0

GL@w#5G@w#, ~8!

the generating functional of one particle irreducible~1PI!
diagrams. In the opposite limitL→`, DL

21 diverges, so that
in Eq. ~1! the ‘‘classical’’ approximation toWL@J# becomes
exact. Thus

WL@J#→2S@w* #2 1
2w* •DL

21
•w*1J•w* , ~9!

where

J5
d~S@w#1 1

2 w•DL
21
•w!

dw
U

f*
.

This says simply that asL→`, WL becomes the Legendre
transform of S1 1

2w•DL
21
•w. But from Eq. ~6! GL1 1

2



,

th

e

2946 54THOMAS G. ROOS
w•DL
21
•w is the Legendre transform ofWL , and sinceS1

1
2w•DL

21
•w is always convex in the limitL→`, we obtain

lim
L→`

GL@w#5S@w#. ~10!

We also have the approximate relation

GL0
@w#5SL0

@w#, ~11!

which follows from Eq.~10! provided the UV cutoffL0 is
sufficiently large compared to all mass scales inSL0

. From

Eqs. ~8! and ~10! we see thatGL interpolates between the
classical action atL0 and the effective action atL50. In
fact,GL has an interpretation as a Wilsonian quantum eff
tive action obtained by integrating out purely quantu
modes with momentaq.L @10#.

Equation ~7! is exact, but much too complicated to b
solved exactly. Its usefulness therefore hinges on the ex
ence of sensible approximation schemes. We begin by w
ing

GL5E dDx@UL~w!1 1
2ZL~w!~]mw!2

1YL„w,~]mw!2…~]mw!4#. ~12!

Plugging this into Eq.~7!, settingw equal to a constant, and
neglecting thew dependence ofZL , we arrive at an approxi-
mate evolution equation for the effective potential:

]UL~w!

]L
52

1

2E dDq

~2p!D
]ue~q,L!

]L
$ue~q,L!

1ue
2~q,L!@ZL211UL9 ~w!/q2#%21 ~13!

~primes denote differentiation with respect tow). Taking the
sharp cutoff limit ~3! and dropping an infinite field-
independent term we finally obtain2

]UL~w!

]L
52

KD

2
LD21lnFZL1

UL9 ~w!

L2 G , ~14!

whereKD5SD21 /(2p)D, andSD is the surface area of a
unit D-sphere.

This is the equation we will study in the present paper, b
before proceeding a few remarks are in order. First note
Eqs.~13! and ~14! have been obtained from the exact res
~7! by a truncation of the operator basis. While this is
uncontrolled approximation, the resulting equations ha
been successfully applied to the study of phase transition
two, three, and four dimensions, at zero and finite tempe
ture, including the determination of accurate critical exp

2Taking the sharp cutoff limit requires some care. We use
relation @10#

]ue~q,L!

]L
f„ue~q,L!,L…→2d~L2q!E

0

1

dt f~ t,q! as e→0

@here, f (ue ,L) must be continuous atL5q in dependence on its
second argument#.
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nents@13–17#. They thus capture a large amount of the rel-
evant physics. It is also possible to show that Eq.~14! is
simply the first term in a systematic expansion of the exact
result @18#, which provides some theoretical justification for
its remarkable success. Finally, it is interesting to note that if
one fixesUL5UL0

andZL51 on the right-hand side~RHS!

of Eq. ~14!, and then integrates, the result is simply the well-
known one-loop effective potential. We emphasize, however
that there are no loop corrections to Eq.~14!: The use of
UL on the RHS corresponds to a resummation of an infinite
subset of diagrams, to all orders in the loop expansion.

In this paper we will study the phase structure of four-
dimensional field theories at finite temperature. We will
work with the sharp cutoff equation~14!, which, for the pur-
pose at hand, has at least two advantages over its smoo
cutoff counterpart: The flow equations are simpler, and there
is no dependence on the particular choice of cutoff function.
Using the sharp cutoff will also allow us to compare the two
approaches since finite temperature phase transitions hav
been studied using a smooth cutoff in@15,16#.

Specializing now toD54 and setting3 ZL51, we are
faced with the task of including finite temperature effects.
We begin by writing Eq.~14! as

]UL~w!

]L
52

1

2E d4q

~2p!4
d~L2q!ln@q21UL9 ~w!#.

~15!

The imaginary time formalism instructs us to replace

E d4q

~2p!4
→T (

n52`

` E d3q

~2p!3

and

q25q4
21q2→vn

21q2,

wherevn52pnT. This yields

]UL~w,T!

]L
52

K3

2
2pT2LgS L

T D ln@L21UL9 ~w,T!#,

~16!

where

gS L

T D[F (
n50

@L/2pT#

2AS L

2pTD 22n2G2
L

2pT
, ~17!

and @x# is the greatest integer<x. We note thatg(x) is
continuous and piecewise differentiable~see Fig. 1!.

It is easy to see that

g~x!→
x2

8p
as x→`, ~18!

so that Eq.~16! reduces to

the

3A reasonable approximation for the theories at hand, since the
anomalous dimensions are known to be small@14,17#.
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]UL~w,T50!

]L
52

K4

2
L3ln@L21UL9 ~w!# ~19!

in the limit T→0. Comparison with Eq.~14! shows that this
is indeed the correct zero temperature equation. It is a
instructive to look at the opposite limit,T@L. Using
g(x)5x/2p for x,2p we obtain

]UL~w,T!

]L
52

K3

2
TL2ln@L21UL9 ~w!# for T@L.

~20!

On comparing with Eq.~14! we see that this is simplyT
times the zero temperature flow equation for a thre
dimensional theory. Hence we already see evidence for
mensional reduction at high temperature.

For later use we record here the analogue of Eq.~16! for
theories involving multiple scalar fields. The generalizati
is entirely straight forward, the result being

]UL~w,T!

]L
52

K3

2
2pT2LgS L

T D lndetFL21
]2UL~w!

]w i]w j
G ,
~21!

whereg(L/T) is given by Eq.~17! as before.
Before concluding this section we point out that the

exists in the literature an alternative method of includi
finite temperature effects in the sharp cutoff case@19#. It
amounts to replacingq by uqu in the d function of Eq.~15!.
The result is

]UL~w,T!

]L
} (
n52`

`

ln@vn
21L21UL9 ~w,T!#. ~22!

The sum over Matsubara frequencies may now be done
lytically, and the resulting equation involves no dependen
on n, in contrast with Eq.~16!. However, by cutting off only
the three-momenta and summing over alln one is neglecting
the effect of integrating out the Matsubara modes w
vn.L on the effective potential. As noted following Eq
~14!, it is precisely this kind of feedback that leads to th
incorporation of higher loop effects. The equation deriv

FIG. 1. The functiong(x).
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from Eq. ~22! has the additional unpleasant feature that i
does not reduce to the zero temperature equation~14! in the
limit T→0 @20#.

III. lw4 THEORY

In this section we will discuss briefly the finite tempera-
ture phase transition for a simpleZ2 symmetric scalar field
theory. This model has already been analyzed using the W
son RG approach@15,20#, and it is included here mainly to
illustrate the method. It is worth noting, however, that the
previous treatments differ from ours in the details of the
implementation: Reference@15# uses a smooth cutoff, and in
@20# a sharp cutoff is used only for the three-momentum, a
discussed in the last paragraph of the previous section.

Consider then aZ2 symmetric theory with Lagrangian

L5 1
2 ]mw]mw2V~r!, ~23!

wherer[ 1
2w

2. Our RG equation for the effective potential
~16! becomes

]UL~r,T!

]L
52

LT2

2p
gS L

T D lnFL21
]UL~r,T!

]r

12r
]2UL~r,T!

]r2 G . ~24!

We wish to solve Eq.~24! subject to the boundary condition4

UL0
(r,T)5V(r). This is still rather difficult, and to make

progress we expandUL in a Taylor series about its mini-
mum. This leads to an infinite set of coupled nonlinear ordi
nary differential equations, which may be approximately
solved by truncation.

Let us start with the symmetric regime, where the mini
mum ofUL is at the origin. We parametrizeUL in terms of
its successive derivatives:

m2~L,T![UL
~1!~r50,T!, ~25!

l2n~L,T![
1

n!
UL

~n!~r50,T! for n>2, ~26!

whereUL
(n)[]nUL /]rn. Evolution equations for these pa-

rameters are easily derived by differentiating Eq.~24! with
respect tor. The first three equations obtained in this way
are

dm2

dL
52

LT2

2p
gS L

T D 6 l4

L21m2 , ~27!

dl4

dL
52

LT2

2p
gS L

T D F 15l6

L21m2 2
18l4

2

~L21m2!2G , ~28!

dl6

dL
52

LT2

2p
gS L

T D F 28l8

L21m2 2
90l6l4

~L21m2!2
1

72l4
3

~L21m2!3G .
~29!

4See Eq. ~11!. Note that consistency requires that we keep
T!L0 at all times.
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Several remarks are in order at this point. First, note th
the above expressions have an obvious interpretation
terms of one-loop Feynman diagrams. For example, Eq.~28!
says that the four-point function receives contributions fro
the diagrams in Fig. 2. Figure 2~a! corresponds to the second
term in square brackets of Eq.~28!, which involves 2 four-
point couplings and 2 ‘‘propagators,’’ while Fig. 2~b! corre-
sponds to the first term in square brackets, involving th
six-point coupling and 1 ‘‘propagator.’’ The other flow equa
tions can be given similar interpretations. We also see ho
integrating out the high frequency modes generates new
cal interactions: Even if one starts with aw4 potential at
L0, higher order terms are created as the cutoff is lowere
Finally note that the equations describe naturally how pa
ticles with mass larger thanL ‘‘decouple,’’ in the sense that
their effect on the running parameters becomes very sma

Now let us derive the flow equations in the broken re
gime, where the minimum of the potential is at som
r0.0. Here we parametrizeUL in terms of the location of
its minimum and consecutive derivatives at that point. Th
flow equation forr0(L,T) is obtained from the condition

]UL

]r
~r0 ,T!50 . ~30!

Taking theL derivative of Eq.~30! we obtain~primes denote
derivatives with respect tor)

]UL8

]L
1UL9

dr0
dL

50 , ~31!

so that

dr0
dL

52
]UL8

]L

1

UL9
~32!

~all UL derivatives are evaluated atr0, of course!. The other
parameters are defined as in Eq.~26!:

l2n~L,T![
1

n!
UL

~n!~r0 ,T! ~33!

for n>2. The flow equations for these parameters are o
tained by differentiating Eq.~24! with respect tor and evalu-
ating the result atr0. The first three are

dr0
dL

5
LT2

2p
gS L

T D F6 l4112r0l6

L214 r0l4
G 1

2l4
, ~34!

FIG. 2. Contributions to the running ofl4.
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dl4

dL
52

LT2

2p
gS L

T D F15l6124r0l8

L214 r0l4
2

~6 l4112r0l6!
2

2 ~L214 r0l4!
2 G

13l6

dr0
dL

, ~35!

dl6

dL
52

LT2

2p
gS L

T D F28l8140r0l10

L214 r0l4

2
~15l6124r0l8!~6 l4112r0l6!

~L214 r0l4!
2

1
~6 l4112r0l6!

3

3 ~L214 r0l4!
3 G14l8

dr0
dL

. ~36!

We begin our study of the high temperature phase transitio
by computing the effective potential in the simplest possibl
approximation. This amounts to parametrizingUL in terms
of its first two derivatives only; i.e., we setln50 for
n>6. Our strategy is then as follows. We define the theor
by specifying ‘‘renormalized’’ zero temperature parameter
atL5T50. We may choose the zero temperature theory t
be in the symmetric regime by pickingmr

2[m2(0,0).0 or
in the broken regime by pickingr0r[r0(0,0).0. Depend-
ing on the chosen phase, we then use either Eqs.~27!,~28! or
~34!,~35! to numerically integrate up inL to someL0@mr

or Ar0r . This ‘‘integrating up’’ is done atT50, and it serves
merely to provide us with the ‘‘bare’’ parameters that define
the actionSL0

. We note that ifm2 or r0 go to zero at some

intermediateL̃, then we continue the integration with the set
of equations appropriate to the new phase, taking the valu
of the parameters atL̃ as initial conditions.

With the parameters atL0 in hand we are now ready to
study the effects of finite temperature. This is done by fixing
TÞ0 in the evolution equations and running down from
L0 to L50. Repeating this for different values ofT allows
one to determine the temperature dependence of the ren
malized parameters. Figures 3 and 4 show the evolution

FIG. 3. The evolution ofr0 at various temperatures. For
T.Tc , the running of the mass term in the symmetric regime is
also shown.
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L of the parameters at various temperatures. The initial c
ditions are such that the zero temperature theory is in
broken phase. From Fig. 3 we see thatr0 is quadratically
renormalized for largeL and approaches a constant
L→0. As the temperature is increased, the asymptotic va
of r0 decreases, until atTc we have r0(L,Tc)→0 as
L→0. AboveTc r0 goes to zero for finiteL, and we con-
tinue the evolution in the symmetric regime.

Figure 4 shows the corresponding behavior ofl4. At
T50 we observe the expected logarithmic evolution. Abo
and belowTc , where all modes are massive, the running
l4 is effectively stopped whenL becomes much smalle
than the relevant mass scale. AtTc , however,l4 runs to
zero. This is, in fact, expected, because at the critical t
perature the theory is scale invariant and the phase trans
is second order. As a consequence the parameters run
cording to their canonical dimension, which is one forl4 at
smallL since to the long wavelength modes the theory loo
effectively three dimensional at high temperature.5 It is the
fact that the Wilson RG approach correctly takes into
count the strong renormalization of the coupling in the vic
ity of the phase transition that allows one to accurately
scribe the physics in this region, including critical expone
@14,15,17#. This is to be contrasted with the loop expansio
where higher order terms go likel4T/M to some power,
with M the appropriate infrared cutoff. SinceM→0 at
Tc , the expansion necessarily breaks down near the p
transition.

Figure 5 shows the temperature dependence of
‘‘renormalized’’ ~i.e., L50) parameters. The critical tem
perature is given byTc

2/r0r'8.60, whereas naive one-loo
perturbation theory predictsTc

2/r0r58 @2,3#. In light of the
fact that the loop expansion breaks down near the phase
sition this good agreement may seem surprising, but it is
fact expected: Since perturbation theory is valid both
above and far below6 the critical temperature, one can sho

5This is explained in more detail in the Appendix.
6As long as there are no Goldstone modes.

FIG. 4. The evolution ofl4 at various temperatures.
on-
the

as
lue

ve
of
r

em-
ition
ac-

ks

ac-
in-
de-
nts
n,

hase

the
-
p

tran-
in
far
w

that the error in the naive value ofTc is of orderl4Tc @2#.
The above results may also be compared with@15#, where
finite temperaturew4 theory was treated using a smooth cut-
off flow equation.

Before going on to theories involving multiple scalar
fields a discussion of the validity of our approximation
method is in order. We will not comment on the initial step
of obtaining Eq.~14! from Eq.~7! by discarding the momen-
tum dependence; for this we refer the reader to the literature
@10,21,18#. What we do want to address is the effect of trun-
cating the infinite set of coupled differential equations. In-
stead of discussing the formal aspects of the problem~see,
for example,@11,18#!, we will focus on a simple practical
test: If the truncation is to be sensible at all, then the effect of
including additional terms must be, in some sense, ‘‘small.’’

To see if this is the case we derived flow equations analo-
gous to Eqs.~27!–~29! and ~34!–~36! up to and including
l14. Solving this set of seven coupled equations requires a
change in tactics. Recall that before we were able to specify
the renormalized (L50) parameters and then integrate up to
obtain the ‘‘bare’’ parameters atL0. This is no longer pos-
sible, because the newly included couplingsl6–l14 corre-
spond to irrelevant operators. This means that their values in
the infrared are fixed in terms of the values of the relevant
parametersm2 and l4, and consequently they may not be
chosen independently@22#.

To isolate the effect of including the additional terms we
therefore proceed as follows. Start atL0 and setl6–l14
arbitrarily to zero.7 Then fine-tuner0(L0) andl4(L0) until
flowing to the infrared producesr0r5r0(L50)51 and
l4r5l4(L50)50.1. At this point we know we are dealing
with the same theory as before, and we may now switch on
the temperature and findTc . This procedure was carried out
for several different values ofl4, the results being summa-

7Any other ‘‘natural’’ value would do just as well, where ‘‘natu-
ral’’ means;1 divided by enough powers ofL0 to get the dimen-
sion right.

FIG. 5. The temperature dependence of the renormalized param
eters.
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rized in Table I. We see that at least for moderate couplin
the effect of including parameters beyondl4 is small. This is
in accordance with the expectation that as long as the ef
tive potential is not too steep the first two terms in the Tay
expansion should accurately describe its shape around
minimum.

IV. INVERSE SYMMETRY BREAKING

The simplest model that exhibits an inverse phase str
ture is aZ23Z2 symmetric scalar field theory described b
the Lagrangian

L5 1
2 ~]mw!21 1

2 ~]mx!22V~w,x!, ~37!

where

V~w,x!5 1
2 m

2w21 1
2 m2x21

lw

4
w41

lx

4
x42

lwx

2
w2x2.

~38!

Note that, if thel ’s are all positive, we require

lwlx.lwx
2 ~39!

TABLE I. Tc
2/r0r for various approximation methods.

l4r

0.01 0.1 1.0

One-loop pert. theory 8 8 8
Wilson RG up tol4 8.29 8.60 10.37
Wilson RG up tol14 8.28 8.55 9.69
gs

ec-
or
the

uc-
y

for the potential to be bounded from below. If one calculates
the finite temperature effective potential for this theory to
one loop and then expands the result about the origin, on
finds that the quadratic part at high temperature is

V1 loop
quad 5

1

2 Sm21
T2

12
~3lw2lwx! Dw2

1
1

2 S m21
T2

12
~3lx2lwx! Dx2. ~40!

It is easy to see that this form allows a myriad of different
symmetry-breaking patterns. Depending on the relative siz
of the couplings and the signs ofm2 andm2, one can have
symmetry breaking, restoration, or nonrestoration at high
temperature. Although less obvious, there are even more e
otic possibilities: For example, one can have a symmetry
broken or restored only for an intermediate range of tempera
tures@23#.

Let us now analyze this model using the Wilson RG for-
malism developed in the previous section. Because of th
Z23Z2 invariance, the Lagrangian may be written as

L5 1
2 ~]mw!21 1

2 ~]mx!22V~r,z!, ~41!

where

r[ 1
2w2 ~42!

and

z[ 1
2x2. ~43!

We proceed as in the previous section. The RG equation~21!
for this model is
]UL~r,z,T!

]L
52

K3

2
2pT2LgS L

T D lndetF L21
]UL

]r
12r

]2UL

]r2
2r1/2z1/2

]2U

]r]z

2r1/2z1/2
]2U

]r]z
L21

]UL

]z
12z

]2UL

]z2
G . ~44!
h
e-
The potentialUL is again parametrized by its first two de-

rivatives at the minimum, but this time we must distinguis
four cases: The minimum may lie at the origin, on eithe
axis, or between the axes. In all four cases the couplings a
defined via

lw~L,T![
1

2

]2UL~T!

]r2 U
min

, ~45!

lx~L,T![
1

2

]2UL~T!

]z2 U
min

, ~46!

lwx~L,T![2
1

2

]2UL~T!

]r]z U
min

. ~47!
r
re

The other two parameters used to describe the potential d
pend on the location of the minimum. If it is at the origin, we
simply define

m2~L,T![
]UL~0,0,T!

]r
, ~48!

m2~L,T![
]UL~0,0,T!

]z
. ~49!

If the minimum is atr0 on ther axis, we use

m2~L,T![
]UL~r0,0,T!

]z
~50!
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andr0 to parametrizeUL . The flow equation forr0 is de-
rived as in Eqs.~30!–~32!. Similarly, if the minimum is on
the z axis,

m2~L,T![
]UL~0,z0 ,T!

]r
~51!

andz0 are used. The final possibility is that the minimum lie
between the axes. In this case we parametrize in terms of
location in field space, (r0 ,z0). The flow equations for these
coordinates are obtained by taking totalL derivatives of the
two expressions
s
its

]UL~r0 ,z0!

]r
50 ~52!

and

]UL~r0 ,z0!

]z
50 . ~53!

This yields two simultaneous algebraic equations fo
dr0 /dL anddz0 /dL, which may be solved to give
dr0
dL

52
1

2

lx~]/]r!~]UL /]L!u~r0 ,z0!1lwx~]/]z!~]UL /]L!u~r0 ,z0!

lwlx2lwx
2 , ~54!

dz0
dL

52
1

2

lw~]/]z!~]UL /]L!u~r0 ,z0!1lwx~]/]r!~]UL /]L!u~r0 ,z0!

lwlx2lwx
2 . ~55!
.

-

-

o

As before, the right-hand sides of the evolution equatio
are expressed in terms of our parameters by differentia
Eq. ~44! with respect to the fields, evaluating the result at
appropriate minimum, and then dropping all terms with th
or more derivatives. For example, the flow equations for
symmetric regime~i.e., minimum at the origin! are

dm2

dL
52

LT2

2p
gS L

T D F 6 lw

L21m2 2
2 lwx

L21m2G , ~56!

dm2

dL
52

LT2

2p
gS L

T D F 6 lx

L21m2 2
2 lwx

L21m2G , ~57!

dlw

dL
5

LT2

2p
gS L

T D F 18lw
2

~L21m2!2
1

2 lwx
2

~L21m2!2
G , ~58!

dlx

dL
5

LT2

2p
gS L

T D F 18lx
2

~L21m2!2
1

2 lwx
2

~L21m2!2
G , ~59!

dlwx

dL
5

LT2

2p
gS L

T D F 6 lwlwx

~L21m2!2
1

6 lxlwx

~L21m2!2

2
8 lwx

2

~L21m2!~L21m2!
G . ~60!

There are similar, albeit more complicated, sets of equat
for the other three positions of the minimum.

We begin our numerical study of the model by investig
ing the phenomenon of inverse symmetry breaking. By t
we mean choosing the parameters so that the vacuum is
metric atT50 but asymmetric at high temperature. Fro
ns
ting
the
ree
the

ions

at-
his
sym-
m

Eq. ~40! it is clear that according to the one-loop result this
happens8 if, say,lwx.3lw . The critical temperature is pre-
dicted to be

Tc
2

m2 5
12

lwx23lw
, ~61!

independent oflx andm2.
The flow equations are solved as in the previous section

Renormalized parameters are chosen atT5L50 in such a
way that the vacuum is symmetric. The equations are then
integrated to someL0 much larger than all physical masses.
Since the minimum moves away from the origin during this
process, it was necessary to develop an algorithm that auto
matically switches to the correct set of equations depending
on the location of the minimum. Once the parameters at
L0 are known the temperature is switched on and the equa
tions are integrated back down toL50, yielding the renor-
malized finite temperature values for the masses, vacuum
expectation values, and couplings.

Figures 6 and 7 show the behavior of the renormalized
parameters for a typical case. The parameters are chosen s
that naively@i.e., according to Eq.~40!# theZ2 symmetry of
thew field is broken at high temperature. From Fig. 6 we see
that this picture is confirmed by our RG approach. As the
temperature increasesmr

2(T) decreases and eventually hits
zero atTc'49. Bothm r

2(T) andr0r(T) are proportional to
T2 at high temperature. Figure 7 shows the corresponding
behavior of the couplings. As in thew4 case discussed in the
previous section, there is dramatic renormalization in the vi-
cinity of the phase transition.9

8Equation~39! then requires thatlx.lwx , and so the other sym-
metry cannot be broken at highT.
9The behavior of the couplings nearTc is discussed in more detail

in the Appendix.
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Figure 8 compares the numerical value of the critical te
perature with the naive prediction, Eq.~61!, for several val-
ues of the cross coupling. Even for the relatively small co
plings chosen there are significant differences for all val
of lwx

r . The best agreement occurs for large values
lwx
r , but even here the difference is about 15%.@Note that

Eq. ~39! requires thatlwx
r ,0.0173. Numerically the system

becomes unstable slightly later, atlwx
r '0.018.# As lwx

r de-
creases, the deviation between the naive prediction and
numerical result increases rapidly. Forlwx

r 50.0105, the dif-
ference is more than a factor of 2. Forlwx

r 50.01, perturba-
tion theory predictsTc /mr'109. The numerical solution
shows that there is no phase transition at all for these va
of the parameters, and thatmr

2(T) is in fact an increasing
function ofT at high temperature.

That the RG calculation gives a significantly higher cri
cal temperature than perturbation theory is due to a com
nation of two factors. First of all, the renormalized couplin
decrease with temperature, which raisesTc . This effect,

FIG. 6. The renormalized masses andr0r as a function of tem-
perature.

FIG. 7. The renormalized couplings as a function of tempe
ture.
m-

u-
ues
of

the

lues

ti-
bi-
gs

however, is also present in the simplew4 case, and as was
shown in Sec. III, there the two methods agree quite well. It
alone therefore cannot account for the difference in critical
temperatures. In fact, the dominant reason for the discrep
ancy is most easily seen in Eq.~56!. The ‘‘propagator’’ in
the second term isL21m2, andm2 is a rapidly increasing
function of temperature. Hence at highT the second term is
suppressed compared to the first, which significantly dimin-
ishes the effect of the cross couplinglwx , and consequently
raisesTc .

We have just seen that the temperature dependence o
m2 plays an important role in determiningTc . Since the
leading correction tom2 is proportional tolx , we may there-
fore suspect that the critical temperature also depends on th
value of this coupling, even though the one-loop result~61!
predicts that it does not. The question is settled by Fig. 9,
which shows the dependence ofTc on lx . The effect is
clearly quite large and increases rapidly as the coupling in-
creases. Note thatlx.0.0521 is required for the potential to
be bounded from below.

ra-

FIG. 8. Comparing the critical temperature obtained from one-
loop perturbation theory with that obtained by integrating the RG
equations. (lw

r 50.003,lx
r 50.1,m r

251.!

FIG. 9. The dependence of the critical temperature onlx
r .

(lw
r 50.003,lwx

r 50.0125,m r
251.)
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Figures 8 and 9 indicate that the critical temperatures o
tained from the RG approach are consistently higher th
those obtained from the loop expansion, and that certain s
of couplings do not produce a phase transition at all ev
thoughlwx.3lw. This may lead one to the conclusion tha
the region of parameter space which yields an inverse ph
structure is significantly smaller than that predicted by t
one-loop result. We emphasize that this is not the case. T
reason is again the presence of the ‘‘propagators’’ in the flo
equations. As explained above, for the case at hand th
factors reduce the significance of thelwx term, which raises
Tc and suppresses the phase transition. But at the same
the suppression oflwx tends to stabilize the system, whic
means that there is additional parameter space beyond
limit ~39! for which transitions occur. The net effect is then
small shift of the inverse-breaking region rather than a ma
reduction.

To make sure that the numerical results do not depe
significantly on the order of truncation of the evolution equ
tions it is necessary to study the effect of including high
dimensional operators. To this end we enlarged our syst
of equations to include the couplings corresponding to o
erators of dimension less than or equal to 8, e.g.,w8, w2x4,
x6, etc. This results in a system of 16 coupled first ord
nonlinear differential equations. As discussed at the end
Sec. III, the addition of irrelevant operators causes the co
plication that one can no longer simply choose the renorm
ized parameters. Instead, one must fine-tune the bare par
eters atL0 to achieve the desired values for the masses a
relevant couplings in the infrared. Aside from this nuisan
the solution of the equations proceeds as before. The res
are summarized in Table II, which shows that the effect
the added terms is very small.

We conclude that discarding operators of mass dimens
higher than 4 is a valid approximation for the purpose
hand. Table II also shows that for very small values of t
couplings the numerical result is in reasonable agreem
with the one-loop prediction, at least iflwx is safely larger
than 3lw . For the couplings in column 2 the two method
differ by almost 40%, while the discrepancy is down to 5
for the values in column 3.

V. COUPLING CONSTANTS AT HIGH TEMPERATURE

In this section we discuss the temperature dependenc
the coupling constants in the highT limit. We begin with the
simplest case, that of a single scalar field.

TABLE II. Tc /mr for various approximation methods and cou
plings (m r

2'1 in all cases!. ‘‘Up to dim. n’’ means that operators of
dimension higher thann were discarded in the flow equations.

lw
r 5 2.7831023 131022 131024

lx
r 5 1.0031021 331021 331023

lwx
r 5 1.2531022 531022 531024

One-loop pert. theory 53.7 24.5 245
RG up to dim. 4 ops. 67.9 33.6 257
RG up to dim. 8 ops. 67.9 33.5 257
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A. lw4 theory

The high temperature behavior of the quartic couplingl
has been the subject of controversy for some time. Several
authors have foundl decreasing withT @24#, others findl
approaching a constant asT→` @25#, and still others find
thatl is increasing at high temperature@26#.

In order to shed some light on the issue we integrated the
RG equations discussed in Sec. III for a wide range of tem-
peratures. The results are shown in Fig. 10. We see that the
coupling constant rapidly decreases at first, but eventually
turns around. FromT'40 onwards the dependence is clearly
approximately logarithmic. We note that at least qualitatively
this behavior agrees with that obtained in@27#.

In the literature one frequently encounters the notion that
the effect of high temperature on coupling constants may be
incorporated by ‘‘running’’ the couplings according to their
one-loopb functions using the temperature as the scale@28#.
In our case this amounts to assuming

dl4r

dt
5

9

8p2l4r
2 , ~62!

wheret5 ln(T/T0), so that

l4r~T!5
l4r~T0!

12~9/8p2!l4r~T0!ln~T/T0!
. ~63!

The justification for this procedure is usually based on rather
vague arguments concerning the average momentum transfer
during collisions of particles in the heat bath beingO(T), so
that a coupling constant at that scale ought to be appropriate.
While this is certainly not unreasonable it is hardly a con-
vincing argument, and as noted above a more detailed analy-
sis has produced many other types of behavior. To see how
well Eq. ~62! describes the high temperature evolution we
have plotted Eq.~63! together with the numerical integration
in Fig. 11. The one-loop result is normalized so that the two
methods agree atT/mr5100. It is clear from the figure that
the high temperature dependence ofl4r(T) is described
quite well by the one-loopb function. After runningT over

FIG. 10. Temperature dependence of the quartic coupling con-
stant. Note the logarithmic scale on the temperature axis.
(l4r50.1)
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three orders of magnitude the results differ by about 1.5%
is also clear, however, that the difference becomes signific
if one runs over many orders of magnitude, for example,
the GUT scale. In addition we see that using the one-lo
equation is only reasonable if one knows the correct ‘‘initi
condition’’ at high temperature, in our casel4r(T)'0.085 at
T/mr5100. Starting the evolution using Eq.~63! with
l4r(T51)50.1 is obviously not satisfactory, and obtainin
the proper initial condition requires an analysis such as
one presented in this paper.

It is worthwhile noting that the general features of th
high temperature behavior of the coupling can be understo
by simply looking at its RG equation, obtained in Sec. II
For l650 andL@T and umu, Eq. ~28! reduces to Eq.~62!.
Thus the evolution for very largeL is simply given by the
one-loopb function. Now forT@mr the propagator in Eq.
~28! contains a large thermal mass, which means that
running effectively stops forL,Al4T. The evolution for
L!T is thus strongly suppressed, and all that remains is
one-loop-like running for largeL plus some threshold effect
for L;T. At a higher temperature the thermal mass is larg
causing the running ofl4 to freeze out at largerL. The
contribution from the threshold region is approximately th
same as before, and so the net effect of increasingT from
T1 to T2 is essentially equivalent to integrating the one-loo
b function between the two temperatures. This explains
correspondence in Fig. 11. The slope of the numerical cu
is slightly steeper because the quantum corrections to
mass go like2l4L

2, which reduces the denominator in Eq
~28! and makesl4 flow somewhat faster for largeL than
predicted by Eq.~62!.

Having just explained whyl4r(T) should increase with
temperature we find ourselves having to account for the i
tial decrease seen in Fig. 10. This decrease occurs for va
of the temperature low enough so that the suppression of
evolution due to the thermal mass is not yet important. I
stead the running is dominated by the rangeL,T, where the
prefactor on the RHS of Eq.~28!, LT2g(L/T), is a rapidly

FIG. 11. The high temperature evolution ofl4r(T) obtained
from the RG compared to the behavior obtained by usingT as the
scale in the usual one-loopb function. The initial condition for the
one-loop integration is chosen so that the two methods agree
T5100. (l4r50.1.!
. It
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increasing function ofT. Thus, for moderate values ofT, the
coupling runs faster at higher temperature, which explain
the initial decrease inl4r(T).

We end this section with a few remarks. First of all, we
have checked that the high temperature behavior of the co
pling is not altered by the inclusion of higher dimensiona
operators in the flow equations. In fact, the effect of thes
operators decreases rapidly as one gets further away from t
critical theory. Second, we point out that the author of@27#,
using an ‘‘improved’’ loop expansion approach, has found
the high temperature evolution of the coupling to be simila
to ours, i.e., approximately as predicted by the one-loopb
function with some temperature-dependent correction. F
nally, note that the calculations in this section were done fo
a theory that is symmetric atT50. This choice has no effect
on the high temperature behavior of the coupling, for at ver
high T the theory does not care whether or not there was
phase transition at much lower temperature.10 For the tem-
perature dependence of the coupling constant in an initiall
broken theory at moderate values ofT, see Sec. III.

B. Z23Z2 model

We will now study the high temperature behavior of the
coupling constants of theZ23Z2 model discussed in Sec. IV.
There are two possible phases at high temperature: Either t
theory is completely symmetric, or one of the two symme
tries is broken. We have checked that in both cases for g
neric values of the zero temperature parameters the evoluti
of the couplings at high temperature is approximately given
by their one-loopb functions, viz.,

dlw

dt
5

1

8p2 @9lw
21lwx

2 #, ~64!

dlx

dt
5

1

8p2 @9lx
21lwx

2 #, ~65!

dlwx

dt
5

1

8p2 @3~lw1lx!lwx24lwx
2 #, ~66!

wheret5 ln(T/T0). The reason for this behavior is essentially
the same as in thew4 case discussed above, except that th
situation is complicated by the presence of multiple mas
scales. An example of the evolution of the couplings is
shown in Fig. 12, which also presents the running accordin
to the one-loopb functions for comparison. We see that at
least over the limited temperature range presented the tw
methods agree reasonably well. Note that the renormalize
couplings in Fig. 12 are chosen so that the theory is symme
ric at T50 but broken at high temperature. The transition to
the broken phase occurs atTc'50.

We conclude this section by discussing an interesting phe
nomenon related to the evolution of the couplings. Conside
choosing renormalized couplings which satisfy

lw@lx*lwx . ~67!

10This was also checked numerically.

at



-

e-
f
ch

is

s

a-
-
he
ss

e
-
-
-
g
r
-

of

s

54 2955WILSON RENORMALIZATION GROUP STUDY OF . . .
From Eqs.~64!–~66! it is clear that according to the one-loop
b functions the couplings will flow in such a way that even
tually lwx(t).3lx(t). For suitable initial values this occurs
when all couplings are still small, so that the loop expansi
ought to be valid. This means that the symmetry of t
theory should be given by Eq.~40!, and we see that the
running of the couplings can alter the symmetry of the theo
at high temperature. This effect can be exploited for mod
building, in that it provides a ‘‘natural’’ way of having phase
transitions at very high temperature. For example, one c
have symmetry restoration set in above the GUT scale wi
out having to fine-tune the couplings to one part in 1016.
Similarly, one can construct models that are broken at lo
temperature, get restored at someTc5O(m/Al), and then
get rebroken at a much higher temperature. For a pract
application of this kind of effect to the strongCP problem
and the baryon asymmetry, see@4#.

The above discussion was based on the assumption
the couplings evolve at high temperature according to th
one-loopb functions. We have already stated that this
approximately true, and we therefore expect that the evo
tion may indeed reverse the inequality 3lx.lwx at high
temperature. We wish to investigate the question if this
ally leads to symmetry breaking, as predicted by Eq.~40!.
Unfortunately the errors inherent in the numerical solution
our evolution equations do not allow us to vary the tempe
ture over the 15 or so orders of magnitude necessary
achieve a significant change in the couplings. We theref
focus on the situation where one starts withlwx less than,
but very close to, 3lx , so that even a moderate change
T can alter their relationship.

Bearing in mind the above restrictions we choos
lw
r 50.1, lx

r 5131023, and lwx
r 52.9931023. If one nu-

merically integrates Eqs.~64!–~66! using these couplings as
initial conditions att50, the one-loop calculation~40! pre-
dicts a symmetry-breaking phase transition atT'450. The
results of the Wilson RG integration are presented in Fig. 1

FIG. 12. The high temperature evolution of the coupling
‘‘RG’’ refers to the Wilson RG approach of this paper while ‘‘1
loop’’ refers to the numerical solution of Eqs.~64!–~66!. The initial
conditions for the one-loop integration are chosen so that the t
approaches agree atT5500. (mr

25m r
251, lw

r 50.1, lx
r 50.003,

lwx
r 50.016.!
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It is clear from the figure that the coefficient of theT2 term
in m r

2(T) is not proportional to 3lx
r 2lwx

r as predicted by
Eq. ~40!. In addition we see that even long after the pertur
bative coefficient has turned negative,m r

2(T) is still a rapidly
increasing function of temperature. The phase transition pr
dicted by the one-loop result is absent. This is not to say, o
course, that a phase transition may not take place at mu
higher temperature. After allm r

2(T)/T2 is decreasing, and if
this continues the symmetry will indeed by broken at very
largeT. As stated above, numerical errors prevent us from
investigating this region directly.

Finally, we point out that for the initial conditions of Fig.
13, lx

r (T) doesnot run according to its one-loopb function
over the temperature range considered. In fact,lx

r (T) is de-
creasing very slowly even atT5105. This shows that while
generically the high temperature behavior of the couplings
given by their one-loopb functions~Fig. 12!, this need not
be so. The ‘‘anomalous’ behavior oflx

r (T) for the case at
hand is due to the presence of two vastly different mas
scales at high temperature. Whenmr

2(T) andm r
2(T) differ by

several orders of magnitude, some terms in the flow equ
tions ‘‘decouple’’ much earlier than others. Under these cir
cumstances our approach is not expected to reproduce t
one-loop result as the latter is blind to the presence of ma
scales.

VI. CONCLUSIONS

In this work we investigated the high temperature phas
structure of a simple two scalar theory by solving approxi
mately a nonperturbative RG equation for the effective po
tential. The solution consisted of assuming a polynomial ex
pression for the potential and then numerically integratin
the resulting coupled flow equations for the coefficients. Ou
main result was obtained in Sec. IV: According to our non
perturbative method inverse symmetry breaking~and sym-
metry nonrestoration! does exist. In addition, we found that

s.
-

wo

FIG. 13. The temperature dependence of two combinations
parameters in the Wilson RG approach.m r

2(T) is rapidly increasing
long after the couplings satisfy the naive inequality which predict
symmetry breaking. (mr

25m r
251, lw

r 50.1, lx
r 5131023, lwx

r

52.9931023.!



t

l

u

e

i
u

v

r
i

t

i-
nt
re

re-

r
r
n
rise
ou-
d
d
us
or

rt

e

o-
ra-
at
er
e
tric
o

de-
at
-
r-

an-
f
be

st
e
the

ith

n
ng

the

2956 54THOMAS G. ROOS
the phenomenon takes place roughly for those values of
couplings that satisfy the inequalities obtained from pertu
bation theory. The total volume of parameter space th
yields high temperature symmetry breaking is only slight
reduced compared to the one-loop prediction.

We also saw that the critical temperature obtained fro
perturbation theory does not agree particularly well with ou
numerical results, even for reasonably small coupling
(,0.1). The reason for this is that the negative cross co
pling between the fields which drives the symmetry breakin
must by somewhat larger than the value predicted by t
loop expansion. This leads to a situation where the perturb
tive estimate for the critical temperature becomes totally u
reliable as the cross coupling gets close to the boundary
gion. If one stays far away from the boundary, th
perturbative and numerical results approach each other
within 15%, which is about what one would expect. We als
demonstrated that the critical temperature depends sign
cantly on the value of the quartic coupling of the unbroke
field, in contrast to what is predicted by the one-loop calc
lation.

In Sec. V we discussed the behavior of the coupling co
stants at high temperature. In thew4 case the quartic cou-
pling was shown to increase at very high temperature, b
not before being significantly reduced during an intermedia
regime. For very largeT the evolution was shown to be
approximately given by the one-loopb function of ordinary
perturbation theory.

For the Z23Z2 theory we focused on the effect of the
running couplings on the symmetry of the theory. It wa
shown that generically the couplings evolve according
their one-loopb functions at high temperature. However, w
also demonstrated that it isnot correct to draw conclusions
about the symmetry of the theory based on the perturbat
formula for the thermal mass and the running of the co
plings. Naively this idea can be used to produce ‘‘natural
very high temperature phase transitions induced by the e
lution of the couplings. Our RG approach shows that th
fails for at least three reasons. First of all, even for gene
initial conditions, the couplings evolve according to the
one-loopb functions only at very highT, and they are sig-
nificantly renormalized by the time they reach this region
Because the couplings evolve very slowly after the initia
decrease it is important to have these ‘‘initial values’’ in
order to start the high temperature running. Using the ze
temperature parameters would not suffice to get an order
magnitude estimate ofTc even if the rest of the reasoning
was correct. Second, any attempt to cause high tempera
symmetry breaking induced by the running of the coupling
requires that one of the quartic couplings be significant
larger than the others. This introduces two widely differen
mass scales~the two thermal masses!, with the result that
some of the couplings do not evolve according to their on
loopb functions even at very largeT. Last, and most impor-
tant, we showed that even when the couplings have evolv
to satisfy the naive inequality that predicts symmetry brea
ing, it does not happen.

The above remarks are best illustrated by the examp
discussed in Sec. V. For the renormalized parameters cho
there the one-loop evolution of the couplings@Eqs. ~64!–
~66!# combined with the perturbative formula for the therma
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mass@Eq. ~40!# predicts a symmetry-breaking phase trans
tion at T'450. In contrast, Fig. 13 shows that the releva
thermal mass is a rapidly increasing function of temperatu
even atT5105. It is possible that the symmetry will be bro-
ken at much higherT, but if this happens, it will be at a
temperature many orders of magnitude larger than that p
dicted by perturbation theory.

Finally we would like to comment on the generality of ou
conclusions. All of our numerical results were obtained fo
the simpleZ23Z2 model. However, the differences betwee
our RG approach and the standard one-loop treatment a
because our method correctly takes into account the dec
pling of massive particles from the theory as the infrare
cutoff is lowered. This feature is intrinsic to the method an
independent of the particular model studied, which leads
to expect similar deviations from the perturbative results f
other models.
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APPENDIX: CRITICAL BEHAVIOR

The main emphasis of this work does not rely on th
details of the phasetransitionswe have studied. Rather, we
have been interested in establishing theexistenceof symme-
try breaking phase transitions, and in showing that the br
ken symmetry state can persist at arbitrarily high tempe
ture. In this context it is only of tangential interest as to wh
critical exponents characterize the transition or even wheth
it is first or second order. In fact, we could have studied th
persistence of the broken state by starting in an asymme
vacuum atT50, in which case there would have been n
phase transition at all.11 Similarly, the evolution of param-
eters at very high temperature does not depend on the
tailed dynamics of a phase transition that has taken place
much lowerT. The nature of the phase transition is impor
tant, however, in understanding the behavior of the reno
malized parameters nearTc , shown in Figs. 5–7. For this
reason we include here a brief discussion of the phase tr
sitions studied in Secs. III and IV. Detailed applications o
Wilson-type RG equations to critical phenomena can
found in @11,13–17#.

We begin with the well known case oflw4 theory. In
order to study the character of a transition it is helpful to ca
the flow equations into scale invariant form by using th
proper dimensionless couplings. To achieve this consider
theory at high temperature. OnceL,2pT all nonzero Mat-
subara modes have been integrated out and we are left w
an effective three dimensional theory for the zero mode@see
Eq. ~20!#. The coupling in this theory, which has dimensio
1, is l4T. The appropriate dimensionless mass and coupli
parameters of the effective theory are, hence,

11As long as the couplings obey the correct inequalities; see
discussion above Eq.~61!.
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k~L,T!5
m2~L,T!

L2 ~A1!

and

h~L,T!5
l4~L,T!T

L
. ~A2!

Rewriting Eqs.~27! and ~28! in terms ofk andh and using
t5 ln(L0 /L) we obtain the desired form

dk

dt
52k1

3h

2p2~11k!
, ~A3!

dh

dt
5h2

9h2

2p2~11k!2
~A4!

~here we have truncated by settingln50 for n>6, as be-
fore!. Equations~A3! and ~A4! have two fixed points: the
Gaussian~trivial! fixed point atk!5h!50 and the Wilson
fixed point ~WFP! at k!521/7 andh!58p2/49. Lineariz-
ing around the fixed points one finds that the former is co
pletely unstable in the IR (t→`), while the latter is a saddle
point. Hence in order for a flow to end up at the WFP on
needs to fine-tune one linear combination of UV coupling
which in our case amounts to choosingT5Tc . Consequently
k→k! andh→h! ast→` at the critical temperature, which
means that the transition is second order and that

mr
2~Tc!5 lim

L→0
m2~L,Tc!; lim

L→0
L2k!50, ~A5!

l4r~Tc!5 lim
L→0

l4~L,Tc!; lim
L→0

Lh!

Tc
50. ~A6!

This explains the behavior observed in Figs. 3–5 nearTc .
We point out that the above conclusions are independ

of the parametrization used for the the flow equations,
they should be. For example, consider starting with the flo
equations in the broken phase, Eqs.~34! and ~35!. The ap-
propriate dimensionless parameters of the effective thr
dimensional theory are nowk̃5r0(L,T)/LT ~recall that the
field has dimension one-half in three dimensions! and
h̃5l4(L,T)T/L. In terms of these variables Eqs.~34! and
~35! take a scale-invariant form similar to Eqs.~A3! and
~A4!. One again finds two fixed points, the Gaussian
k̃ !53/4p2, h̃!50 and the WFP atk̃!51/4p2, h̃!52p2.
The former is again completely unstable and the latter
again a saddle point, and so our above conclusions rem
valid.

We now turn to the two-scalar theory of Sec. IV. Just
above we consider the effective three-dimensional high te
perature theory and rewrite the flow equations~56!–~60! in
terms of the dimensionless variableskw5m2(L,T)/L2,
kx5m2(L,T)/L2, hw5lw(L,T)T/L, hx5lx(L,T)T/L,
andhwx5lwx(L,T)T/L. This results in the following set of
scale invariant equations:
m-

e
s,

ent
as
w

ee-

at

is
ain

as
m-

dkw

dt
52kw1

1

2p2 F 3hw

11kw
2

hwx

11kx
G , ~A7!

dkx

dt
52kx1

1

2p2 F 3hx

11kx
2

hwx

11kw
G , ~A8!

dhw

dt
5hw2

1

2p2 F 9hw
2

~11kw!2
1

hwx
2

~11kx!2
G , ~A9!

dhx

dt
5hx2

1

2p2 F 9hx
2

~11kx!2
1

hwx
2

~11kw!2
G , ~A10!

dhwx

dt
5hwx2

1

2p2 F 3hwhwx

~11kw!2
1

3hxhwx

~11kx!2

2
4hwx

2

~11kw!~11kx!
G . ~A11!

At this point one could easily determine the fixed points of
the above system, investigate their stability, etc., but this is
outside the scope of the present article. Rather, we note th
since thex field remains massive during the transitions stud-
ied in Sec. IV, it decouples in the IR, in the sense that
kx→` like 1/L2 asL→0. For smallL we are therefore left
with the reduced system

dkw

dt
52kw1

1

2p2

3hw

11kw
, ~A12!

dhw

dt
5hw2

1

2p2

9hw
2

~11kw!2
, ~A13!

dhx

dt
5hx2

1

2p2

hwx
2

~11kw!2
, ~A14!

dhwx

dt
5hwx2

1

2p2

3hwhwx

~11kw!2
. ~A15!

This system has the same two fixed points we found in the
lw4 case above, namely, the trivial one and the WFP a
kw521/7, hw58p2/49, and hx5hwx50. What has
changed is the stability of these points. While the Gaussia
fixed point is still completely unstable, the WFP now has
three unstable directions instead of just one. Thus it seem
that fine-tuningone linear combination of UV couplings~by
adjustingT) is not sufficient for a flow to end up at the WFP.
This, combined with the absence of other sufficiently stable
fixed points, seems to indicate that the system does not un
dergo second order phase transitions.

Given the above analysis one may well ask why the orde
parameter and the couplings seem to vanish continuous
near the critical temperature, as shown in Figs. 6 and 7. Th
reason is thatkw andhw flow to the WFP despite the insta-
bility in the other two directions in coupling space. This
happens because thew sector of the theory completely de-
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couples from thex sector~but not vice versa!, as can be seen
from Eqs.~A12!–~A15!. In fact, Eqs.~A12! and ~A13! are
exactly the same as the equations for the simplew4 case,
Eqs.~A3! and ~A4!. Consequently all the reasoning for tha
case goes through and it suffices to tune one parameter~the
temperature! in order to flow to the fixed point.12 For our
quartic truncation the transition is thus predicted to be se
ond order andmr

2(Tc) andlw
r (Tc) flow as in Eqs.~A5! and

~A6! as L→0. The behavior ofhwx and hx at the phase
transition can be found by plugging the fixed point value
kw521/7 and hw58p2/49 into Eqs. ~A14! and ~A15!.
These equations are then easily integrated, with the res
hwx;exp(2t/3) andhx;c1exp(t)2c2exp(4t/3), wherec1 and
c2 are positive constants. ForL→0 we thus obtain
lwx(L,Tc);L1/3 andlx(L,Tc);c12c2 /L

1/3. This behav-
ior is observed in Fig. 7. The fact thatlx does not go nega-
tive in the figure is simply due to the temperature resolutio
used. ForT very close13 to Tc one indeed findslx

r (T),0.

12It is actually not quite that simple. The fact that the WFP is
saddle point in thew subspace indicates that one needs to fine-tu
only one linear combination of couplings to flow to it. The impor
tant question is then for what values of the parameters adjusting
temperature enables one to achieve a correct linear combinat
This is the question we have studied in detail in Sec. IV, with th
conclusion that the allowed parameter values are roughly those p
dicted by perturbation theory. In this appendix we argue only thatif
it is possible to produce a symmetry-breaking phase transition
varying T, then this transition is second order and the critical be
havior is equivalent to that of theZ2 model.
13For the parameters used in the figure this require

uT2Tcu/Tc;1027.
t

c-

s

ult

n

We conclude with a few comments. First, we have veri-
fied numerically that close toTc the RG trajectories of the
full theory do get attracted to the WFP in thew subspace.
This shows that the WFP is the relevant one for our phase
transitions. Second, we point out that the decoupling of the
w sector from thex sector at the phase transition will occur
even if the evolution equations are not truncated at quartic
order in the fields as was done above. The reason for this is
simple: Any diagram that contributes to the running of some
coupling lw

(n) ~corresponding to an operatorwn) is either
built from vertices that have nox legs or else necessarily
contains closedx loops. The former are the same vertices
present inw4 theory, and the latter will be highly suppressed
in the IR whenkx5m2/L2→`. The critical behavior of our
two scalar theory near the inverse phase transitions unde
consideration is thus equivalent to that of theZ2 model for
any polynomial truncation of the effective potential. Finally,
a comment regarding the behavior oflx atTc . While it may
seem odd that this coupling goes to minus infinity as the
cutoff is lowered, this does not mean that the theory is un-
bounded. It must be remembered that without our truncation
higher order terms would be present and that the four-
dimensional couplings do not have a simple physical inter-
pretation in the critical theory. To illustrate this point con-
sider theZ2 model and the couplingl8 corresponding to the
operatorw8. At high temperature the dimensionless effective
three-dimensional coupling relevant for the investigation of
fixed points ish85T3Ll8. The fixed point value ofh8 turns
out to be negative@14#, which means thatl8(L,Tc)→2`
asL→0. In fact it is clear that allln with n>8 will diverge
at Tc . The point is that the physics near the phase transition
is parametrized by the critical exponents of the effective
three-dimensional theory and not by the four-dimensional
couplings.
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