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Dual superconductor scenario of confinement: A systematic study of Gribov copy effects
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We perform a study of the effects from maximal Abelian gauge Gribov copies in the context of the dual
superconductor scenario of confinement, on the basis of a novel approach for the estimation of systematic
uncertainties from incomplete gauge fixing. We present numerical results,(B) Bittice gauge theory, using
the overrelaxed simulated annealing gauge-fixing algorithm. We find Abelian and non-Abelian string tensions
to differ significantly, their ratio being 0.92(4) #=2.5115. An approximate factorization of the Abelian
potential into monopole and photon contributions has been confirmed, the former giving rise to the Abelian
string tension[S0556-282(96)02116-9

PACS numbgs): 11.15.Ha, 12.38.Aw, 12.38.Gc

[. INTRODUCTION possible after formulating the Abelian projection for lattice
gauge theorie$7]. In previous numerical studiesee re-
Understanding how confinement arises from QCD is aviews[8,9] and references thersirit has been demonstrated
central problem of strong interaction physics. 't Hopfff  that the maximal AbeliafMA) gauge was a very suitable
and Mandelstanj2] proposed the QCD vacuum state to be-candidate for lattice investigations of the 't Hooft—
have like a magnetic superconductor. A dual Meissner effedlandelstam confinement scenario, being the only known
is believed to be responsible for the formation of thin string-renormalizable Abelian gauge.
like chromoelectric flux tubes between quarks in SIJ( These studies provided strong evidence for the QCD
Yang-Mills theories. This confinement mechanism has invacuum indeed to act like a dual superconductor. In R
deed been established in compact QEBB-5]. The disorder the value of the Abelian string tension, i.e., the slope of the
of the related topological objects — magnetic monopoles —static potential between charge one static sources at large
gives rise to an area law for large Wilson loops and, thusdistance, has been observed to be close to that of the poten-
leads to a confining potential. The application of this idea tatial between static quarks in the fundamental representation
non-Abelian gauge theories is based on the Abelian projesf the non-Abelian theory. This feature supports Abelian
tion [6], reducing the non-Abelian SB) gauge symmetry dominance as predicted by 't Hooft. Recently, various results
to the maximal Abelian(Cartan subgroup W1)N~! by in favor of this picture have been obtained by other groups as
gauge fixing the off-diagonal components of the gauge fieldwell [9].
Then the theory can be regarded as an Abelian gauge theory At this stage it appears to be important to address such
with magnetic monopoles and charged matter fiétflsarks  issues on a more quantitative level. This requires a careful
and off-diagonal gluons The dual superconductor idea is study of the problem of gauger Gribov) ambiguities[11],
realized if these Abelian monopoles condense. In this sceand the resulting biases on Abelian observables. In the
nario large distancdow momentum properties of QCD are present paper we aim at removing this uncertainty of previ-
carried by the Abelian degrees of freeddgibelian domi-  ous studies. We shall develop a new effective gauge-fixing
nance. algorithm, thus reducing gauge-fixing ambiguities with re-
Nonperturbative investigations of this conjecture becamespect to the standard relaxation algorithm employed so far.
We propose a numerical procedure to estimate the remaining
gauge-fixing biases. This enables us to carry out high preci-
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tistical errors, the effect of gauge copies cannot be neglectesvhere V,, ,=expléy, ,7), —27<d¢, ,<2m, transforms like
even with the improved gauge-fixing algorithm. Neverthe-a (neutra) gauge field ancC, , like a charged matter field
less, the new algorithm does reduce the variance of obserwith respect to transformations within the residual Abelian
ables with respect to various gauge copies considerablsubgroup:

compared with the traditional relaxation plus overrelaxation

algorithm, and, on average, yields larger values of the func- Vn”uﬂvnvn'#v;_*_,&, cn,ﬁuncn,ﬂvg. (5)
tional to be maximized.

Our paper is organized as follows. In Sec. Il we review, inQuark fields are also charged with respect to su¢t) tans-
short, the status of gauge fixing and monopole kinematics tgormations. The Abelian lattice gauge fieldg , constitute
set the stage and to present the underlying formulas in an Abelian-projected configuration.
self-contained fashion. In Sec. Ill, we present the overre- The SU2) action of the original gauge theory can be de-
laxed simulated annealing gauge-fixing algorithm and comeomposed into a (1) pure gauge action, a term describing
pare it to the standard algorithm. In Sec. IV we elaborate ofinteractions of the (1) gauge fields with charged fields, i.e.,
a procedure to estimate the effect of remaining gauge-fixinghe off-diagonal components, and a self-interaction term of
ambiguities on Abelian observables, such as the monopolhose charged fieldgl3]. Maximizing the diagonal compo-
density or the Abelian potential. Physical results on the nonnents of all gauge fields with respect to the off-diagonal
Abelian and Abelian potentials, the decomposition of the pocomponents amounts to enhancing the effect of the p(te U
tential into monopole and photon contributions, the Abeliangauge part in comparison with those contributions containing
potential between charge two static sources, and the mondnteractions with charged fields. On a heuristic level, one
pole density are presented in Sec. V. might expect the importance of thg1) degrees of freedom
to be enhanced in the MA-projected theory, in comparison
with other Abelian projections.

II. PHYSICS FROM MAXIMAL ABELIAN GAUGE . . . .
The Abelian Wilson loop for charge one static sources is

A. Abelian projection defined as
We start from the lattice versidi?] of 't Hooft's Abelian 1
projection[6]. The idea is to partially fix gauge degrees of WAB(C) = —Tr( H V|) -R H U|). (6)
freedom such that the maximal Abelid@artan subgroup 2 \icc feC

[UN~1(1) for SU(N) gauge groupsremains unbroken.
A few Abelian gauges have been suggested in F@f. where u, ,=exp(6,,), 6n,=3#,,. C denotes a closed
where MA gauge, referring to a differential gauge condition,contour. In what follows, we will usé,, , to specify Abelian
has been favored. Lattice simulations have indeed demoriattice fields for the sake of convenience. The “Re” symbol
strated MA gauge to be very suitable for investigations ofcan be omitted from the definition of the Abelian Wilson
Abelian projections of gauge theories. loop since expectation values of this operator become auto-
In the following, we will restrict ourselves to the case of matically real due to charge invariance (lify_cu;)=0).
SU(2) gauge theory. Fixing MA gauge on the lattice amounts
to maximizing the functional\{= NjiteJ, B. Monopoles on the lattice

1 One defines magnetic monopoles with respect to the re-
F(U)= WE Tr(o3Un, 03U ), (1) sidual U1) gauge group in the way proposed in R@f4] for
Mk U(1) lattice gauge theory: Abelian plaquette variables,

with respect to local gauge transformations, Onpuv="0nput Oni iy Onis = Onel—4mdm), (7)

) can be decomposed into a periodieegula) part —

Up,—U? =g.U, .95 -.
ne S Il <6, ,,< and a singular pann,, ,,=0,+1,*2,

Condition (1) fixes (in addition to other possible degenera- 0. =6 +27m. ®)
cies g, only up to multiplicationsg,—v,g, with v, Mgy Tpy Mg

=expla,m), T3=03/2, —2r<a,<2m, €., 0, ,.» describes the U)-invariant “electromagnetic” flux
gne SU/U(D). through the plaquette ant, ,, is the number of Dirac

It has been shown that the corresponding continuuMinge passing through it. Magnetic monopole currents
gauge, defined by the bilinear differential gauge condition, | .., residing on the links of the dual lattice, are defined as

(9, *igA>)A,; =0, A =AL*iA%, 3) y =i£ o ©
n,u 47T pvpo®v¥n,po
is renormalizablg12], a feature that is crucial for a con-
tinuum interpretation of lattice results. where a lattice forward derivative is usetf,=f, . ;—f,.
After a configuration has been transformed to satisfy thdt is obvious thatk, , represents a conserved current:
MA gauge condition, a coset decomposition is performed,

> a9k, ,=0. (10
Ur‘l,,u:Cn,p,Vn,;u (4) V22 pop
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Note, that the shifted currents, ,=k,.; , form closed By imposing the Lorentz gauge conditiod o, ,=0) one
loops on the dual lattice. As has already been mentionedinds

first lattice results on Abelian dominance have been obtained

in Ref.[10] where the string tension computed from Abelian )

. 2 . = D(n—m)k,, ,+con 1
Wilson loops after MA projection, Eq6), has been numeri- Po.u Tr%" ( Yk, CONSE, (7
cally found to agree approximately with the string tension as _
extracted from the full, non-Abelian theory. Since then addi-where D(n—m) denotes the lattice Coulomb propagator.
tional lattice results in support of the 't Hooft—Mandelstam Equations(14), (15), and(17) defined, , up to an irrelevant
confinement scenario have been foU®9]. In particular, constant. By inserting Eq$14) and(17) into Eq. (13), one
the monopole contribution to the Abelian string tension hasarrives at
been investigated.

g WAP = monpph /v (18)
C. Photon and monopole dynamics where

It is known that in the Villain formulation of compact
U(1) lattice gauge theory one meets an exact factorization of mon_ o _
expectation values of Wilson loops into monopole and pho- w ex Zmnzm Kn,uD(N=m)km, |, (19
ton partg[4] and one would expect to encounter remnants of

this in other lattice formulations of the theory, in the form 1
Kn,;/,:zevp,aﬁavlvl n,aB: (20)
(WYY = (yymom, (\\ehy, (12)
This factorization would induce a decomposition of the po- wWeh=exd =i 9.6" M 21)
tential between static charges at separakion W Moy
VUD(R)~VMYR)+VPY(R), (12)
=exp(i2 aglen,V), (22)
where the photon contribution is expected to be Coulomb- n
like. .
The decomposition rule, Eq12), has indeed been veri- WV=exd — '_0_0 M 23
fied to hold approximately in simulatiofi$5] for the case of 2 ”VEn: nav 23

compact UWl) with Wilson action. Similarly, in MA-
projected SW2) gauge theory, Abelian Wilson loop poten- Where the last expression denotes a finite volume contribu-
tials were found to decomposgialitatively[16,17). tion. After applying Eq.(14), WP" can be written in a form
As we aim at moregjuantitativeconclusions about the role that is more convenient for calculations:
of monopoles and photons within gluodynamics, we will

proceed to collect all necessary formulas, following essen- WPh= ex —iz (Ta_nWD(n—m)Jm Ll (24)
tially Ref. [5]. am M0 ’

The Abelian Wilson loop operat@6) can be easily trans- ) o )
formed to It is worth mentioning that in Ref§15-17 only mono-

pole and photon contributions have been considered while
b [ — the finite volume contribution has been neglected. As pointed
WH(C)=exp — EnzV On,uvMn, v | (13 out above, for 1) gauge theory with Villain action, it can
i be shown that Eq(18) holds for expectation values of Wil-
whereM,, ,,, is an integer-valued antisymmetric field, living SOn loops as well. _
on plaquettes, satisfying the conditign M, ,,=J,; Jn., It is straightforward to generall_ze EqgEl9)—(23) to t_he
being an external current associated with tbeented con-  €ase of extended monopoleg8] of sizel. These are defined

tour C where it takes the values 1. d, denotes the lattice as
backward derivativeg, f,=f,—f,_;. Let us now rewrite 1 e
., it f dual potential d a photon field K ="g,,,0000 => k (25)
n,uv IN terms of dual potentialp, ,, and a photon fie nu ™ gy Eurpadn O njpo= 24 Kmps
0.0 !
— — Mf —¢ .5 g0 — R
On uv= Ep-vaﬁ(?;pn ,8+(9,U-0r,1 V_(?VGI; ut 0 ,?wy (14 whered, fn=fn.1; = fn, _0 nuv Emes‘l On, v C ands, are
Y ' ' ’ cubes and squares of linear exténSubsequently, the op-
where 6° , are zero modes defined by eratorw"?(C) can be decomposed in the same way as in Eq.
K (18) with the monopole contribution defined by
— 1l — 2
0°,=<> On =" M- 15 ,
wr vzn: o Vv ; o (19 vv<'>~m°n:exp( —277%‘,“ KY,DO(n—m)kl)), |, (26)
The dual vector potential satisfies the equation L
()R ()
3y D= 3y D= — 27K (16) Knu=% €vnapdy Mn.ap, @
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D®(n—m) being the lattice Coulomb propagator on a lattice The adjoint static “quark” field has one neutral and two
of linear dimensior_/I. charged components with respect to residual Abelian gauge

It is useful to apply an alternative decomposition of thetransformations. The neutral component does not interact
Abelian Wilson loop into monopole and photon parts, basedvith Abelian gauge fields and gives rise to the constant on
on the monopole vector potenti§b], o= 4, ,— 6, the right-hand side of Eq36). Thus, it is evident that, for a

v np . 3

From Eqgs(8) and(14) one finds§™" to satisfy the condition full description of the interaction between adjoint sources,

i effects from the off-diagonal gluon fields3, have to be
9,0, 92“;”_ 3,0, 6,T?,”=2w&p_mn i (29 considered. However, one still might expect Abelian domi-
' ' ’ nance to hold for charged quarks. We define the Abelian
which has the Lorentz gauge solution projected analogue of the adjoint potentidf>2%R), from
the asymptotic decay of large Wilson loop&>%(R,T):
ﬁmin: —2#% D(n_ m)a;mmyw-l- const. (29) WAb'Z(R,T)OCEXF(_VAb’adj( R)T)+ e (38)
We can now write We expect the string tension extracted fraffP29(R) to

approximate the adjoint string tension that can be defined at
b ) mon _ , intermediate distances. This expectation is supported by an
WH(C)=ex 'IEC 6 J) |ex 'lzc 6 J; (300 investigation of the Abelian projection for the adjoint repre-
- - sentation in the limit of largé\, [20,21].
=WmonM C)WP(C). (31
lIl. EFFICIENT GAUGE FIXING

In Eq. (30), W™V combines both monopole and finite vol-
ume contributions. This representation has the advantage that _ _ o
— provided the vector potentialg]%" and 6;, , have been ~ As has been pointed out above, the Abelian projection

computed — smearing techniqud®] can be applied, which procedure requiregpartia) gauge fixing. The differential

have been proven to be very useful in extracting potential§auge condition(3), supplemented by the constraint of
from Wilson loops. Fadeev-Popov operator positivity, is equivalent to finding a

maximum of the lattice functional, Eq1). In addition to
absolute maxima — which can, in principle, be degenerate
even beyond trivial gauge transformations, such as constant
From Eqg.(4), the following decomposition of link vari- ones and transformations within the maximal Abelian sub-
ables within the adjoint representatiuﬁ,# can be derived:  group — the functionaF (U) can have any number of local
A A A maxima. This feature resembles the Gribov problem of con-
Unu=CnuVnu (32 tinuum gauge theorieg11]. While degenerate absolute
maxima, at least for Landau gauge, may be safely ignored

A. Overrelaxed simulated annealing algorithm

D. Charge two potential

where [22], imperfect gaugindwhere the system is stuck on some
1 local maximum may lead to fake physics result23]. The
(Cﬁﬂ)aﬁ:_-rr[gacn'#gﬂcx B (33  aim of any reliable analysis must therefore be to drive the
’ 2 ' system by appropriate gauge procedures into local maxima
q as close as possible to the absolute ones. This would help to
an

reduce systematic uncertainties due to gauge-fixing ambigu-
1 ities. A similar approach of gauge fixing in numerical simu-
VA Y =TT oV, oV ]=exliT _ (34) lations, motivated by global gauge-fixing conditidi2e, 25,
(Vo ap= 3T TaVnu0gVn ] =X Tadn ). (39 has been advocated for Landau and Coulomb gauges in Ref.

26).

T3 is the generator of the adjoint representation and the IinIE '%’raditionally, the relaxation plus overrelaxati¢®@R) al-
angle ¢y, has been defined above. gorithm has been employed for MA gauge fixing. In Ref.

The “adjoint” Abelian Wilson loop [27], we reported on the implementation of simulated anneal-

ing (SA), a technique that has been proven to be very useful
H VIA (35) in handling various optimization problems. In this SA algo-
rec rithm [28,29, the functionalF(U) is regarded as a ‘“spin
action:”

o1
WAEHC) = 2T

can be expressed in terms of Abelian link angles
1
S(s)=F(U9%)= s_an Tr(SaUn uSnsuUn ), (39
v

. 1
WAPRH(C) = S [1+2XWPHC)], (36)
. wheres, =g o030, resemble spin variables. The lattice fields
with U, . play the role oflalmos) random local couplings. Maxi-
mizing the functionalF (U9) is equivalent to decreasing the
WAD2(C)=cog260), 6o= E 0. (37) auxiliary temperatur@ of the statistical system with parti-

'ec tion function
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1 TABLE |. Comparison of gauge-fixing algorithms.
Z=> ex ?S(s) . (40
{sn} OR OSAl OSA2 OSA3
One starts with equilibrating this spin glass at high tem-(?) 0.737@2) 0.73832) 0.73872) 0.739@2)
perature. Subsequently,is decreased adiabatically. It is evi- 5, 18x10°° 13x10°° 10x10°° 8x107°

dent that in the limifT— O the system approaches its ground, 0.02182) 0.02093) 0.02073) 0.02043)
state, i.e., the maximal value & The merits of SA can be w,, 0.77025) 0.77185) 0.77205) 0.77235)
phrased in the language of solid state physics: standard rgy,, 0.0851) 0.0901) 0.0911) 0.0922)
laxation that corresponds to fast cooling might cause defectgab 0.0633) 0.0573) 0.0553) 0.0543)
which are avoided in the adiabatic cooling procedure of SA
In order to enhance the adiabatic movement of the spin vari-

ables through phase space we complement simulated anneldependent equilibrated MC configurations and produced
ing with overrelaxationOSA). ten random gauge copies from each of them as inputs for the

Our procedure consists of three stefl: thermalization ~ OUr algorithms. . .
athz.%; (2) gradual decreasing af dowﬁnbtoTzo.Ol; and Consider a gauge-dependent Abelian quantityin the
(3) final maximization by means of the OR algorithm. following, we denoteA to be the average over gauge copies
In steps 1 and 2, an overrelaxation transformation is per@nd(A) to be the statistical average. In Table I, we compare
formed at six consecutive lattice sites and heatbath is applied® output of the four algorithms for various quantities.
to the seventh. Within step 2, every time when the heatbati®2q= (F2— F2) denotes the scatter of the maximized value of
update is applied to a site, the temperature is lowered by the functional among gauge copies. An ideal algorithm
quantumsT. For our large volume studie®/32%), avari-  would always yieldF=F ., i.e., 5s4=0. pmon=1/(4V)
ant of this algorithm(suitable for parallel computers such as X(Z, .k, ,) denotes the so-called monopole density;
the Connection Machine CM-5, where sites are visited inare Abeliani X j Wilson loops andK*® is the Abelian string
lexicographical ordering within subcubes of 2ites each  tension in lattice units.
has been employed. The combined effect of local overrelax- The comparison of F) and 854 reveals that any one of
ation plus local temperature reduction is to cut the number obur OSA schedules is superior to the standard OR algorithm,
cooling sweeps while remaining close to equilibrium. with the longest schedule yielding the best results. The
For the initial thermalization aT=2.5, 20 sweeps have OSA2 and OSA3 algorithms perform equally on the level of
been performed. Within the temperature range=2[%0.1,  statistical errors. In terms of total computer time spent with a
ST(T) has been tuned such that the spin action increasescalar code, OSA2 is about a factor 2 slower than OR.
almost linearly with the number of iteration sweeps. This hagDSAL, still being an improvement, is just 30% slower than
been realized by subdividing this range into 24 intervals ofOR. In our parallel implementation on a Connection Ma-
width AT=0.1. chine CM-5, OSA1 was found to run even slightly faster
The corresponding differences of the actidnS(T) than OR.
=S(T)—S(T—AT) have been computed on equiliborated The lesson from Table | is that physical results can be
configurations and were found to be very stable against stasubstantially corrupted by inadequate gauge fixing. The
tistical fluctuations among different Monte CafIC) con-  functionalF turns out to be correlated with Wilson loops and
figurations. We found practically no volume dependence anénticorrelated with the monopole number and Abelian string
only a moderate impact from variations of the gauge coutension.
pling B. The number of sweefsut of a fixed total number By applying state-of-the-art smearing techniques on the
to be performed within each interval € AT, T] was chosen spatial transporters of Abelian Wilson loops, we have been
to be proportional taAS(T) and, subsequently, the corre- able to compute the Abelian ground state potential. In Fig. 1
sponding value ofsT(T) has been determined. Within the these potentials are displayed for the QRed by all previ-
region 0.1>T=0.01, 50 additional sweeps have been per-ous authors for MA gauge fixingand the OSA3 algorithms
formed. Finally, the OR algorithm has been applied till awith only one gauge copy used in both cases. In addition, the
convergence criterion was satisfied.

06 1 os?sg —e— i
B. Tuning the gauge-fixing algorithm best —e—s . %
Prior to the large volume production runs, we compared 051 3 )

[N

the OR gauge-fixing algorithm with three different OSA
variants, using a 2lattice at3=2.43. The OSA variants
employ three different cooling schedules at step 2 of our
procedure: 2500SA1), 500(0SA2), and 10000SAJ) total 031
sweeps. The standard proced(@R) has been applied with
identical convergence criterion. We collected 30 statistically

04

V(R)

an
1

02 ¢® b

R
The iterations have been stopped as soon as all rotatioss of

among the lattice sites within a maximization sweep were equal to FIG. 1. Abelian potentials from ORriangles, OSA3(squarey
identity within single precision numerical accuracy. and “best” copy (circles.
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copy with largest functional among all OSA3 copies has

been chosen on each configuration as our best estimate of the
“true” maximum (circleg. From this potential we obtain
Kpo.~=0.0478(38) as an estimate of the Abelian string
tension? From Fig. 1 it is evident that this value will be
overestimated by about 30% by use of the standard proce- w
dure (see also Table)l Even our most expensive algorithm

OSAZ3 yields a value that is off by about one statistical stan-

dard deviation from our best estimate[KAX,s

=0.0536(30)).
In order to study the scaling properties, the investigations
have been partly repeated on a lattice with a nearly equal T

physical size but a smaller lattice resolution {16t
B=2.5115). The OSA2 and OR algorithms have been ap- FIG. 2. The spin functionaF as a function of the temperature
plied to ten copies on 20 configurations each. The qualitativd for various cooling schedules. The curves correspond to
properties are seen to be the same. Again, the string tensidh=5200, N;=2100, Ng=1100, Ns=550, andNs=300, respec-
obtained after application of the OR algorithm is drasticallytively.
overestimated: KA2=0.0362(15) vs Kpb.=0.0305(19).
Since the non-Abelian string tension at tisvalue turned
out to beK=0.0325(12), this difference is relevant to the
physical conclusions drawn.

We conclude that the quality of MA gauge fixifgn
terms of the value oF (U9 and the scatter of results among
different gauge copigdsan be significantly improved by ap-

curves indicate that even fdd,>2000 thermal equilibrium
is not yet reached.

For our final run, we decided to apply 1100 gauge-fixing
sweeps as a compromise between effort and outcome. This
choice allows to generate a few local maximaF(U) on
each configuration and, subsequently, to select the best out of

plying the OSA algorithm, without any cost in computer them. As will be described below, the availability of several

time. Our systematic study of nongauge-invariant quantitie$Ocal m?xtlma enab]!_es us to estimate systematic biases due to
revealed that such improvement is, in fact, mandatory: for ghcomplete gauge fixing.

reliable extraction of the Abelian potential and other observ- _
ables one must carefully eliminate biases from incomplete B. Error estimates
gauge fixing. An extension of the method to other gauges |n order to estimate systematic errors induced by an in-
(e.g., Landau gauges straightforward. complete gauge-fixing procedure, we have generhite®0
random gauge copies on each Mf=30 gauge configura-
IV. BIASES FROM GRIBOV COPIES tions. Subsequently, these copies have been fixed to the MA
gauge. Each Abelian configuratidne., each gauge copy
o _ _ Ci(i)={60""(n):u=1,....,4neV} is labeled in the fol-
Our main simulations have been performed Ofll [3ftices |owing Way:j runs from one to the number of gauge Copies
at,B=25115 As a first Step, test runs with different OSA N, while i runs from one to the number of Monte Carlo
cooling scheduletas explained in the previous sectidrave  generated S(2) gauge configurationsl,. On each of these
been performed on four gauge copies, generated from twegpjes, Abelian quantitieA(C,(i)) are measured, wher
thermalized Conﬁgurations with the above simulation paramdenotes either @mearebjwnson |oop’ the p|aquette, or the
eters. We have chosen the following schedules for the temnonopole number. In addition, the values of the gauge-fixing

perature degrading sweepdls=250+50, Ns=500+50,  functionalF(C;(i)) are stored. All gauge copiéen a given
Ns= 1000+ 100, Ns= 2000+ 100, andNs=5000+200. The  configuration are sorted by the value of this functional:

first numbers denote the sweeps spent within the linear re-

gion (0.1<T<2.5). The latter numbers correspond to the F(Cy=F(Cy)=---<F(Cy). (42

sweeps applied within the interval 08T <0.1. Finally, di- . _ .

rect maximization sweepsTE0) have been applied. De- ~ We are now prepared to investigate which valué\afre

pending on the configuration and cooling schedule, typicalljvould have obtained on the “best” out <N copies. To

10—-100 such steps had to be performed until the rest vectgswer this question, one has to selectandom copies out

criterion was satisfied. of the N copies that have been generated in total and, subse-
The hysteresis curves of the spin actlors a function of ~ quently, extracA from the copy with the largest functional

the temperaturd are displayed in Fig. 2. The upmost curve F. i.e., largest index. Averaging over all possible choices,

corresponds to the longest schedule. The scatter within eadfields

curve (which is not visible on the scale of the figliis due AN

to the four gauge copies generated and indicative for the A =( N) 2 (J_l)A(C-)

(small) statistical uncertainty. The differences between the m \m j—m |

A. Simulation technicalities

(42

j=m

as the “average best copy” expectation Afon subsets of
2Within this section, all errors have been obtained by the jackknifesize m where the gauge configuration index has been omit-
procedure. ted. As expected, the above formula corresponds to the av-
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T T . 0.00020 : . ' ;
0.7529 | : % data —o—
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FIG. 3. The maximized value of the spin functiorfalas a FIG. 4. The differencesAF(N,m)=Fy—F,,, and an exponen-

function of the number of local maxima generated on each configutia fit.
ration. The solid lingwith error band represents our extrapolated

value (m—). where(A..), ¢1, andd, are free parameters. The statistical

errors on{A,,) imply a large uncertainty ofA..). However,

due to strong correlations among the data, the differences
Afn can be obtained quite accurately. In view of our limited
Matistics for the study of gauge-fixing ambiguities
(N.=30) we have not applied full correlated fits. Nonethe-
less, some of the correlations have been taken into account
Eby fitting the differences

erage over all copies for the special case-1 while for
m=N one obtains the value & on the “best” copy. Quan-
tities such as the Abelian potential can be computed fro
averages of thes&,,’'s over theN, configurations. The situ-
ation is visualized in Fig. 3 for the gauge functiofaltself.
Throughout the rest of this paper all statistical errors hav
been computed by the bootstrap procedure.

We wish to determine the expected deviation of the esti- A B A a(N—m)d,
mate(Am)z(llNc)EileAm(i) from the true valugA..), re- AR(N,m) =(An—Am) = Ay(e -1 (45)
lated to an absolute maximum. To estimate this bias we
make the following assumptions: The absolute maxirisn Wwith Aj=c,e~N%, rather than following Eq(44). The result
unique; the algorithm is in principle able to reach the absoof such a fit(from m=5 onwardg s visualized in Fig. 4. On
lute maximumF g5y, i.€., Fo.=Fgopa; in the neighborhood  the basis of this fit the bias ok, can be traced back into the
of the absolute maximum{A,,) approachegA.) as a mo- region of smallm, in the formA~=AR{+AA(N,m).
notonous function of F..— F ;). Results from the above procedure for the functidhathe

The first assumption is supported by Zwanziger’s proof ofAbelian plaquette actior§=1—(WA"(1,1)), and the mono-
the nondegeneracy of absolute maxima within the interior opole densityp,,, for m=1,10,20 as well as for the extrapo-
the fundamental modular region in Landau gauge on the latated value (h=«) are compiled in Table Il. We find that
tice [22] while the third assumption is supported by numeri-the proposed error analysis is a powerful tool to obtain reli-
cal evidence as all our observables exhibit strong correlaable estimates for biases. For instance, when selecting the
tions with the average value of the functional. best out of ten copies generated by our OSA algorithm, we

The difference A% =(A..—A,), is to be seen as the very find AF;;=0.000 055(10), AS;,=—0.000 037(30), and
bias onA, from incomplete gauge fixing. The statistical un- Apmpqn 1= —0.000 015(15).
certainty on this bias, on the other hand, is nothing else but We would like to emphasize that, by computing the bi-
the systematic error on our final result. As to iisdepen- ases, we have found a way to extrapolate values, obtained on
dence, we start from the ansatz local maxima, to an absolute maximum. The accuracy of all

computations is limited by the statistical error on the biases.
Af=ciexp(—dm)+- - (43

) ) ) C. Application to the Abelian potential
for the (large m) asymptotic behavior, to be tested against

the data. Accordingly, we can fit our data to the form The Abelian potentiaVy’(R), as well as the Abelian
string tensiorKﬁf’ have been computed for variooms<N, by
(Am)=(A.)—ciexp(—dim)+- - -, (44)  use of the method described in Sec. V A. We find the Abe-

lian string tensiorKﬁb to be anticorrelated with the gauge-
fixing functional K/°<KAP .). The potential values them-
3The term “absolute maximum” is to be understood modulo Selves exhibit a systematic, but statistically insignificant,

trivial degeneracies, due to constant gauge transformations, gaug#ift.
transformations within the unfixed diagonal1) subgroup, and the The correlation between the fitted Abelian string tension
2* degenerate maxima fro#, center group transformations within andm can be read off from Fig. 5. In analogy to the extrapo-
hyperplanes perpendicular to the four possible lattice orientationdation method discussed in the previous sectidfi(N,m) is
which only affect expectation values of Polyakov linelike operatorsfitted to an exponential ansatz. As a result, the systematic
but leave the spectrum invariant. bias, AK=AK—AX(N,m) is obtained as a function ah
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TABLE II. Dependence of results on the number of gauge copies 8=2.5115,V=32*, N.= 30.

m=1 m=10 m=20 m= oo
(F) 0.752 64134) 0.752 78935) 0.752 82236) 0.752 84%37)
S 0.202 50860) 0.202 29964) 0.202 26764) 0.202 26166)
Pmon 0.011 63926) 0.011 52830) 0.011 51%32) 0.01151833)
KAP 0.032%11) 0.031113) 0.030616) 0.030317)

(Fig. 6). The statistical errors omN.=30 configuration5 rations by use of one and the same analysis method to allow

(solid line) are indicated in the figure, as well as the error onfor direct comparison of results.

the final statistical ensemble of 108 configurations, obtained Our final results on the Abelian potential have been ob-

on the best out of ten gauge copig®rizontal dashed line  tained on the best out of ten gauge copies. The systematic
For the final production runs we decided to choosebiases are estimated from 30 configurations with 20 gauge

m=10 as a reasonable compromise. For timisvalue the copies on each. Both Abelian and non-Abelian potentials

expected statistical error on the string tension matches bothave been obtained from Wilson loops with smeared spatial

the size and the uncertainty of its bias. paths in order to enhance the overlap of (& creation
Contrary to the case of the string tensiétg. 6), we find  operator with theQ Q ground stat¢19]. To reduce statistical

no statistically significant bias on the values of the Coulomk¥jyctuations, we have analytically integrated out temporal

coefficiente and the self-energy, that are dominated by Jinks of the non-Abelian Wilson loopg33].

the short range part of the potential. We found good results by iteratively applying the smear-
Results on the Abelian string tension from different num-ing procedure

bers of gauge copies are collected in Tablddst row. The

bias on ten gauge copies Ef(): —0.000 78(72) while the 4

Onj—ar

ae i+ E el (Onkt Ontij = On+ k) (46)

expected bias on one gauge copy would have been ey

A¥=-0.00219).

to spatial link angles, i.e., by substituting the corresponding
V. PHYSICS RESULTS U(1) element by a linear combination of the previous one

Our main measurements have been performed on thand the sum of the four spatial staples enclosing it. We have
same lattice volume and value as the investigation of sys- chosen t_he parameter value=1 and 150 iterations. Rectan-.
tematic gauge-fixing errors, presented in the previous sectiou/ar Wilson loops, constructed from such smeared spatial
(V=32 B=2.5115). This enables u8) to correct the re- links, can be decomposed into a linear combination of vari-
sults for the estimated biases afiil to include systematic ©OYS loops with fixed corners but different spatial connec-

uncertainties into the final errors. The spatial lattice extenf!onS: For extraction of the non-Abelian potential, we applied

corresponds to 2.7 fm in physical units where the scale ha& Similar procedure on the $8) link variables with the pa-

been obtained from the value=Ka 2= (440 Me\)?2 for ~ fameter valuer=2. _
the string tension. This ensures finite size effects on the po- FOr large temporal exterT, the potential can be extracted
tentials to be negligible. Thg value was chosen sufficiently from the asymptotic expectation:

large to be within the scaling region, and in respect to future

finite temperature studig¢he critical temperature comes out (W(R,T))=C(R)exd —V(R)T]+ - - -, (47)

to beT,=(8a) ! [30]].

The hybrid-overrelaxed algorithrhi31] with Fabricius-
Haan heatbath sweep82] has been applied to update the
gauge fields. Subsequent configurations are separated by 200
such sweeps and have been found to be statistically indepen- 0.034 ' : : '
dent. Abelian projections and measurements have been per-
formed on 108 such gauge configurations. The following
Abelian observablesi.e., quantities expressed in terms of
Abelian gauge fields¢, ,) have been investigated: charge
one and two potentials and string tensions, photon and 25 oom | _
monopole contributions to the Abelian string tension, and the
Abelian monopole density. 00s | IR J \ l J l 1 1

whereC(R) denote the ground-state overlaps. For finite val-

0.033 + 1

0.032 b | bbb e e e e e

A. Abelian and non-Abelian static potentials 0.029 - :

We have computed the Abelian potential on 108 configu- 0025 , , , )
rations as well as the non-Abelian potential on 644 configu- o 5 10 15 20

FIG. 5. The Abelian string tension vs the number of MA gauge
“The statistical errors come out to decrease with decreasidge  copiesm. The solid line(with error bandl represents our extrapo-
to the procedure of combinatoric averaging, Ep). lated value fn—x).
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TABLE Illl. Fit parameters for the static potentials in Abelian-

0.003 | bias +e— | projected SW2) (corrected by the estimated bias due to incomplete
AK (N =3(f)'§ T gauge fixing and the potential of full S2). Errors are systematic
AKgtNZ108) oo and statistical.
0.002 .
. . AP SU?2) SU2)
x? ., N //
L e 0.095(11) 0.252(24)
0.001 Faf I Vo 0.240(4) 0.545(10)
g ‘H}H K 0.0297(8) 0.0325(12)
0 I
0 5 10 15 20 out above, all systematic uncertainties are understood and

under control in the present investigation, in particular the

FIG. 6. Differences between the extrapolated vaﬁﬁ (from appr_oa(_:h to thd —oe limit. The bia_ses du_e to gauge'ﬁxmg
the exponential fitand K”°, obtained on a finite number of gauge ambiguities have been neglected in previous studies but turn

copiesm. The solid line denotes the statistical uncertaintykdt? ~ Out to be important as demonstrated in Secs. Ill and IV.
from 30 gauge configurations. The horizontal dashed line is the The value of the Abelian string tension comes out to be
statistical uncertainty on 108 configurations with= 10. KAP=0.0305(3) on the best out of ten OSA gauge copies,
which nicely agrees with the valu€*’=0.0305(19), as ob-
ues of T, we define the following approximants to overlaps tained on a 186 lattice (Sec. Il) at the sameg value. By
and potentials, which will monotonously decrease towards$ncluding bias and uncertainty of the bias, we end up with

their asymptotic values: KAP=0.02978), where the error includes the systematic un-
certainty. This amounts to the rati¢"’/K=0.92(4) (see
v (R):In( (W(R,T)) ) (4g Tableli.
T (W(R,T+1))/’ Given the precision of our data and analysis tools, we find

a significant deviation between the string tension of(3U
Ct(R)=(W(R,T))exd V{(R)T]. (490  gauge theory and its MA content At= 2.5115. Further mea-

. i . surements at different lattice spacings are required to decide
~ By comparing results on the potential approximase-  \yhether this ratio approaches unity in the continuum limit, as
lian and non-Abelian between the on-axis direction with eypected from Abelian dominance. However, for the time
those obtained on five different off-axis directions, we findpeing, at finite lattice spacing, the string tension from the
SQO(3) rotational invariance to be restorégithin statistical Abelian-projected theory appears to be definitely smaller
accuracy for R=3. In both cases, the data f&=2./3 are than its non-Abelian counterpart.
well describedfor T=3) by the parametrization

e B. Decomposition of the Abelian potential
V(R)=Vy+KR— =. (50 . . .
R We have tried two different approaches to disentangle

- . : ) ) . monopole and photon contributions to the potential.
By fitting differentT approximants to the potential with this 1,4 first method rests on the determination of the mono-

parametrization, we obtain approximants to the string tenSiOBoIe part from elementary monopole currekys, . The po-
Kr. By demanding plateaus @r(R), V1(R), andKy for i estimatoryT°(R), extracted fron(WmonkR,T)> [see

T=Tin, We find T,;,,=4 andT,,,=6 for the Abelian and . :

. ! ! . g. (18)] at fixedR have been observed to increase with
non—Abell_an .potentlals, respectlvely. The. different onset o hich means that the coefficien® of the decomposition,
asymptotics is due to superior overlaps with the ground state

in case of the smeared Abelian Wilson loops. The self- <Wmon(-r)>:CefvmonT_’_C/er’monT_*__.. (51)
energy ternAv’ab is much smaller than its Abelian counterpart ’
Vq, resulting in larger numerical values of the corresponding

Abelian Wilson loops. These two effects are among the rea- 06 Vv ' ' ' ' ' '
sons for reduced statistical errors on the Abelian potential 05 va”-vgb::
and fit parameters. We take tig,, approximants to poten- 0.4 L
tial values and fit parameters as our asymptotic results. To
avoid systematic effects from the fit range creeping into the . 031
comparative interpretation of results, we select a universal £ oz2f
R range for all fits, 2/3<R<16. This provides us with 45 01 L P
on- and off-axis data points. o ;
Our results on the fit parameters arequalitative agree- i}/
ment with previous publicationg8]. In particular, the self- 0.1 ¥ 1
energyv’o*b and Coulomb coefficiene”® come out to be 02 L —
more than a factor 2 smaller than their non-Abelian counter- 2 4 8 8 10 12 14 16

parts while the Abelian string tension is found to be close to
the non-Abelian ondsee Table Ill and Fig. )7 As pointed FIG. 7. The Abelian and non-Abelian potential§® andV.
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08— The resulting potentials as well a&"* are displayed in
07 L Von o e Fig. 8 and the parameter values as obtained from fits accord-
mon\{"‘mp'ﬁ ot e < ing to Eq.(50) are quoted in Table IV. The corresponding
06 f VTV e 1 values for the Abelian potential are included as well, where
05 b /zﬁxf—‘x' . we have omitted the bias from gauge-fixing ambiguities, to
£ o4l gx:;sﬁz' =] allow for a direct comparison.
= P %x” One can see from Fig. 8 that the photon p#t does not
081 f,«’f e o e ] contribute to the string tension. Therefore, in MA projection
Pl s on
0.2 jome® | 1 only the monopole part of the Abelian gauge flelag
0.1 7 ,x_xe«*"”x _ gives rise to the flux tube. A comparison &P W|th
el vmonfuy \Ph reveals a qualitative agreement, implying the

approximate validity of the factorization ansatz. The string

tension of the monopole contribution amounts to £95%
of the full Abelian string tension. The approximate decom-
position of the Abelian static potential into monopole and
photon parts gives evidence for the interaction term between
monopoles and photons within the corresponding effective
action to be weak.

We have also attempted to fit the photon part of the po-

tential to the ansatz
are not necessarily positive. This unpleasant feature, in con-

junction with the requirement of> R, makes this procedure
of extractingV™(R) unreliable.
As a way out, we started from an alternative representawith
tion of the factorization property t&/*° [Egs.(29) and(30)],
which allows decoupling of excited states through smearing
of spatial links 67" In this second approach, the Abelian
configuration has been fixed for technical reasons to the Lan-
dau gauge, for various fit rangesG (R) is the Coulomb potential on the
lattice that approaches R/in the infinite volume limit
(L—) for large (lattice) R. Lattice artefacts turned out to
be well parametrized by this functional form. As a result, we
prior to evaluation oy’ [Eq. (29)]. This reduces the num- quoteVgy=0.2513(3) and =0.130(30), obtained on the fit
ber of plaquettes with nonzenm, ,, and, thus, computer range 3<R=<12.12. Data and fit curve are visualized in Fig.
time by more than 1 order of magnitude. It should be noted. The fit range turned out to be correlated with the param-
that — thoughe”“;n transforms under (1) gauge transfor- eter valuef in so far asf tended to be larger if large values
mations (5) — WM as well aswP" are gauge-invariant had been included and smaller for sm&livalues. This is
guantities. also evident from the figure and might be interpreted as a
After evaluation ofgm‘;” andé, ,= 6, smearing relic of asymptotic freedom within the Abelian-projected
has been applied and the correspondlng potentlals have begauge theory. From tree-level perturbation theory, one might
extracted. For smak, the results as obtained from the two expectf =Ve/ G _35(0)~0.0814, which is smaller than the
methods are found to agree, while at laieplateaus inT fitted f quoted above, in accordance with a running coupling
could only be established for potential estimates extractethterpretation.
from smeared monopole and photon Wilson loops. The monopole contribution to the Abelian potential
As pointed out in Sec. Il, the full factorization ansatz mayV| , has been extracted from extended monopoles of size
include finite volume contributions. However, no statistically | =2 as well, by use of the method, introduced in Se¢EH.
significant such effects have been found by comparison of26)]. By computing the potential from the corresponding
unsmearedV™"v with W™ [calculated by use of elemen- Wilson loops (which has been done in Ref16] the first
tary monopole currentk, , via Eq. (18) for all realizedR  time), we found the approximants to decrease monotonously
and T values, on a configuration-by-configuration basis in T. The value of the monopole string tension turned out to
Thus, we conclude that finite size effects can indeed be ndse slightly smaller than the one extracted from elementary
glected on our lattice volume. monopoles K"°=0.0271(3) instead oK™"=0.029(3),

FIG. 8. The Abelian potentialdiamond$ in comparison with
the photon contributior(squarel the monopole(plus finite vol-
ume contribution (crosses and the sum of these two parsi-
angles. Notice that ndself-energy constants have been subtracted
from any of the data sets.

VP(R) = Ve~ FGL-32(R) (53

4 .
G (R)= ngo eRD(K,0) (54)

d,sin(6,,)=0, (52)

emon

TABLE IV. Test of factorization of the Abelian potential into monopole and photon parts. Biases from
incomplete gauge fixing have been omitted throughout the table.

VAb Vmon,fv+vph Vmon,fv Vlrrlozn Vph
e 0.0956) 0.0685) —0.0585) 0.0194) 0.1242)
Vo 0.24Q3) 0.2322) —0.0292) 0.0102) 0.2611)
K 0.030%3) 0.02913) 0.029@3) 0.02713) 0.000 074)
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FIG. 9. The photon contribution to the Abelian potential. The ~ FIG. 10. The static Abelian charge two potentiéd®4(R) in
dashed vertical lines indicate the fit ranelid curve and squares ~ comparison toVA’(R). In addition, the expectatioV"*?(R)
—V{P2~8/3KA"R— 4e*"/R is included(upmost dashed line

cf. Table 1V], which might indicate that a small portion of Ab2/eAb— 4 0(5) for the fit parameters that are sensitive to

';hxtieittrmg tension is due to monopole structures of smalleghort range physics. We have included the curve

Th thod of ting th | ribut 8/3KAP— 4e"’/R into Fig. 10, which corresponds to $)
€ new method of computing the Monopole CONTbUtioN 5 gy, scaling for the linear part of the potential and to the

to the potential by combining Eq$29) and (30) with the o hative 1) expectation for its Coulomb part.
smearing method has the advantage of large ground—sta?e

overlaps. Also, the potential can easily be computed for off-
axis points while the blocking method even reduces the num-
ber of on-axis points at which the potential can be measured Monopole densities for elementary as well as for extended
by a factor 2. Notice thav™"fs obtained by use of the monopole currents of size=2 have been evaluated. The
smearing method is identical ™"+ V'S, as computed in density of monopoles of siZein physical units is defined &s
the traditional way from elementary monopole currents,

while monopole structures on the scale of a lattice spacing (1),ph_ 1 2 <|k(') 1) (55)

are neglected in the blocking method. Pmon 4V(Ia)3n,ﬂ nulse

D. Monopole density

C. Charge two case We obtain the following results for the monopole densities,

In order to extract the charge two potentdl®?(R) (Sec.  converted into units of the string tension as measured in the
Il D), smeared charge two Wilson loop&/"®%R,T) have present investigation:
been evaluated. The data for the fundamental and charge two

. . . . - . . ph (2),ph
Abelian potentials are displayed in Fig. 1@ith the fitted Pmon Pmon
self-energies being subtracjed K3 =1.9624), K372 =1.2692). (56)

Flux tube models lead to the expectatiiA®/ K = 8/3 for
the ratio of the adjoint over the fundamental string tension. The value for elementary monopole currents has been cor-
This value was qualitatively supported by numerical datarected by its systematic bias from incomplete gauge fixing.
[34,35. However, recent resul{s6,37] indicate that at in- In order to relate our results to those obtained in previous
termediate to large distances the above ratio tends to beublications, we compare our value on the density of el-
somewhat smaller than 8/3. We suggest the slope of thementary monopoles with the valughy {K3?=2.11(2)
charge two potentiak"°2 to constitute the Abelian projec- from Ref.[38] for a 16' lattice at3=2.5, which is close to
tion counterpart to the adjoint string tension and, thus, expeatur coupling constant3=2.5115. Note, that we have res-
the ratioKA°%/K”® to agree with results ok®¥/K. However, caled the result of Ref38] into units of the string tension as
the lack of high precision data on the latter ratio prevents usbtained in Ref[19]. The result of Ref[38] turns out to be
from a quantitative test of this assumption. From our datagonsistent, within errors, with results from other authors
we find the valueK”??/KAP=2.23(5) significantly smaller [39,17,4Q while our value is significantly smaller. Since fi-
than 8/3(see Table V. nite size effects are negligible for the lattice extents under

For smallR, perturbation theory yields the same 8/3 ratio consideration, the difference seems to be due to our im-
between the adjoint and the fundamental potential, whichproved OSA gauge-fixing algorithm. A similar discrepancy
differs from the expected ratio between Abelian charge twds observed for extended monopoles. In this case our value,
and charge one potentials, where one naively would expect &q. (56), should be compared with{2).PYK¥?=1.32, as ob-
factor 2=4. We, indeed, obtainv4>%V4°=3.96(7) and tained on a 2%lattice at3=2.5 by means of the standard

OR gauge-fixing procedurel].

50f course, the adjoint string tension is only an effective quantity
since, at large distance, string breaking is expected to set, caused bfThe factor|® appears in the denominator of E(f5), due to
screening from the creation of glueball pairs. averaging over thé® possible blocked sublattices.
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TABLE V. Static potential parameters for the Abelian projec- been found to work qualitatively, the monopole contribution
tions of the fundamentak(=1) and adjoint (= 2) representations accounting for the string tension within a margin of 5%.
of SU(2). We have calculated the Abelian projection approximation
for the adjoint string tension. Our result for raic\®%/KA®
AP SU2) (q=1) AP SU2) (q=2) (9=2)/(q=1) is in qualitative agreement with numerical data on its non-
Abelian counterpart.
N 0.095(6) 0.37636) 3.9848) We believe trF])at further computations at differghtval-
Vo 0.240(2) 0.950L3) 3.967) ues, provided all sources of errors are kept under control as
K 0.0305(3) 0.068a1) 2.235) in the present paper, will answer the question of whether the
Abelian-projected theory exactly reproduces the large dis-
tance behavior of the full theory in the continuum limit.
VI. SUMMARY AND CONCLUSIONS Note added in proofAfter completion of the present pa-
per, we became aware of a paper by G. Pddi, in which
the author has demonstrated that one should expiict and
adj 1o coincide to the same extent K$° andK agree by
use of reasonable approximations.

Let us summarize our main results and conclude.

The present study is based on a self-contained and sel
consistent analysis on the largest lattice volume that has be
studied so far for this kind of simulations with comparatively
high statistics. A systematic error analysis has been carried
out for the first time in this context.

To obtain reliable results in the Abelian-projected theory We thank the Deutsche Forschungsgemeinschaft for sup-
with MA gauge condition, one has to investigate and controporting the Wuppertal CM-5 proje¢Grants No. Schi 257/
the uncertainty that is inevitably introduced by the incom-1-4 and Schi 257/392and the HLRZ for computing time on
plete gauge fixing of numerical practice. The OSA algorithmthe CM-5 at GMD. G.S.B., K.S., and M.M.P. appreciate sup-
has been shown to be a powerful tool for gauge fixing. Aport by European Union Contracts No. SC1*-CT91-0642
method for estimation of residual uncertainties is proposedand CHRX-CT92-0051. During completion of this work,

We have founcK*® to be (8+4)% smaller than the non- G.S.B. received funding by EU Contract No. ERB-CHBG-
Abelian string tension gB=2.5115. CT94-0665. This work was supported in part by Grant No.

Our investigation of the decomposition of the static Abe-NJP00O, financed by the International Science Foundation,
lian potential into monopole and photon parts confirms, at dy Grant No. NJP300, financed by the International Science
higher confidence level, earlier observations. By applying &oundation and by the Government of the Russian Federa-
new method for extracting the monopole contribution to thetion. V.B. obtained partial support from DFG Grants No.
potential, we have been able to extract the corresponding36-RUS-113 and 93-02-03609, financed by the Russian
potentials and fit parameters reliably. The factorization hasoundation for Fundamental Sciences.
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