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Dual superconductor scenario of confinement: A systematic study of Gribov copy effects
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We perform a study of the effects from maximal Abelian gauge Gribov copies in the context of the dual
superconductor scenario of confinement, on the basis of a novel approach for the estimation of systematic
uncertainties from incomplete gauge fixing. We present numerical results, in SU~2! lattice gauge theory, using
the overrelaxed simulated annealing gauge-fixing algorithm. We find Abelian and non-Abelian string tensions
to differ significantly, their ratio being 0.92(4) atb52.5115. An approximate factorization of the Abelian
potential into monopole and photon contributions has been confirmed, the former giving rise to the Abelian
string tension.@S0556-2821~96!02116-9#
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I. INTRODUCTION

Understanding how confinement arises from QCD is
central problem of strong interaction physics. ’t Hooft@1#
and Mandelstam@2# proposed the QCD vacuum state to b
have like a magnetic superconductor. A dual Meissner ef
is believed to be responsible for the formation of thin strin
like chromoelectric flux tubes between quarks in SU(N)
Yang-Mills theories. This confinement mechanism has
deed been established in compact QED@3–5#. The disorder
of the related topological objects — magnetic monopoles
gives rise to an area law for large Wilson loops and, th
leads to a confining potential. The application of this idea
non-Abelian gauge theories is based on the Abelian pro
tion @6#, reducing the non-Abelian SU(N) gauge symmetry
to the maximal Abelian~Cartan! subgroup U~1!N21 by
gauge fixing the off-diagonal components of the gauge fie
Then the theory can be regarded as an Abelian gauge th
with magnetic monopoles and charged matter fields~quarks
and off-diagonal gluons!. The dual superconductor idea
realized if these Abelian monopoles condense. In this s
nario large distance~low momentum! properties of QCD are
carried by the Abelian degrees of freedom~Abelian domi-
nance!.

Nonperturbative investigations of this conjecture beca
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possible after formulating the Abelian projection for lattice
gauge theories@7#. In previous numerical studies~see re-
views @8,9# and references therein!, it has been demonstrated
that the maximal Abelian~MA ! gauge was a very suitable
candidate for lattice investigations of the ’t Hooft–
Mandelstam confinement scenario, being the only know
renormalizable Abelian gauge.

These studies provided strong evidence for the QCD
vacuum indeed to act like a dual superconductor. In Ref.@10#
the value of the Abelian string tension, i.e., the slope of th
static potential between charge one static sources at lar
distance, has been observed to be close to that of the pote
tial between static quarks in the fundamental representatio
of the non-Abelian theory. This feature supports Abelian
dominance as predicted by ’t Hooft. Recently, various result
in favor of this picture have been obtained by other groups a
well @9#.

At this stage it appears to be important to address suc
issues on a more quantitative level. This requires a caref
study of the problem of gauge~or Gribov! ambiguities@11#,
and the resulting biases on Abelian observables. In th
present paper we aim at removing this uncertainty of prev
ous studies. We shall develop a new effective gauge-fixin
algorithm, thus reducing gauge-fixing ambiguities with re-
spect to the standard relaxation algorithm employed so fa
We propose a numerical procedure to estimate the remainin
gauge-fixing biases. This enables us to carry out high prec
sion measurements of the Abelian string tension and oth
Abelian observables, with control over systematic errors
The main results have been obtained on a 324 lattice at
b52.5115.

Our investigation revealed that, compared to typical sta

or
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2864 54BALI, BORNYAKOV, MÜ LLER-PREUSSKER, AND SCHILLING
tistical errors, the effect of gauge copies cannot be neglec
even with the improved gauge-fixing algorithm. Neverth
less, the new algorithm does reduce the variance of obse
ables with respect to various gauge copies considera
compared with the traditional relaxation plus overrelaxatio
algorithm, and, on average, yields larger values of the fun
tional to be maximized.

Our paper is organized as follows. In Sec. II we review,
short, the status of gauge fixing and monopole kinematics
set the stage and to present the underlying formulas in
self-contained fashion. In Sec. III, we present the over
laxed simulated annealing gauge-fixing algorithm and co
pare it to the standard algorithm. In Sec. IV we elaborate
a procedure to estimate the effect of remaining gauge-fix
ambiguities on Abelian observables, such as the monop
density or the Abelian potential. Physical results on the no
Abelian and Abelian potentials, the decomposition of the p
tential into monopole and photon contributions, the Abelia
potential between charge two static sources, and the mo
pole density are presented in Sec. V.

II. PHYSICS FROM MAXIMAL ABELIAN GAUGE

A. Abelian projection

We start from the lattice version@7# of ’t Hooft’s Abelian
projection@6#. The idea is to partially fix gauge degrees o
freedom such that the maximal Abelian~Cartan! subgroup
@UN21(1) for SU(N) gauge groups# remains unbroken.

A few Abelian gauges have been suggested in Ref.@6#
where MA gauge, referring to a differential gauge conditio
has been favored. Lattice simulations have indeed dem
strated MA gauge to be very suitable for investigations
Abelian projections of gauge theories.

In the following, we will restrict ourselves to the case o
SU~2! gauge theory. Fixing MA gauge on the lattice amoun
to maximizing the functional (V5Nsites),

F~U !5
1

8V(
n,m

Tr~s3Un,ms3Un,m
† !, ~1!

with respect to local gauge transformations,

Un,m→Un,m
g 5gnUn,mgn1m̂

† . ~2!

Condition ~1! fixes ~in addition to other possible degenera
cies! gn only up to multiplicationsgn→vngn with vn
5exp(iant3), t35s3/2, 22p<an,2p, i.e.,
gnPSU~2!/U~1!.

It has been shown that the corresponding continuu
gauge, defined by the bilinear differential gauge condition

~]m6 igAm
3 !Am

650, Am
65Am

16 iAm
2 , ~3!

is renormalizable@12#, a feature that is crucial for a con
tinuum interpretation of lattice results.

After a configuration has been transformed to satisfy t
MA gauge condition, a coset decomposition is performed

Un,m5Cn,mVn,m , ~4!
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whereVn,m5exp(ifn,mt3), 22p<fn,m,2p, transforms like
a ~neutral! gauge field andCn,m like a charged matter field
with respect to transformations within the residual Abelia
subgroup:

Vn,m→vnVn,mvn1m̂
† , Cn,m→vnCn,mvn

† . ~5!

Quark fields are also charged with respect to such U~1! trans-
formations. The Abelian lattice gauge fieldsVn,m constitute
an Abelian-projected configuration.

The SU~2! action of the original gauge theory can be de
composed into a U~1! pure gauge action, a term describing
interactions of the U~1! gauge fields with charged fields, i.e.,
the off-diagonal components, and a self-interaction term
those charged fields@13#. Maximizing the diagonal compo-
nents of all gauge fields with respect to the off-diagona
components amounts to enhancing the effect of the pure U~1!
gauge part in comparison with those contributions containin
interactions with charged fields. On a heuristic level, on
might expect the importance of the U~1! degrees of freedom
to be enhanced in the MA-projected theory, in compariso
with other Abelian projections.

The Abelian Wilson loop for charge one static sources
defined as

WAB~C!5
1

2
TrS )

lPC
Vl D 5ReS )

lPC
ul D , ~6!

where un,m5exp(iun,m), un,m5 1
2fn,m . C denotes a closed

contour. In what follows, we will useun,m to specify Abelian
lattice fields for the sake of convenience. The ‘‘Re’’ symbo
can be omitted from the definition of the Abelian Wilson
loop since expectation values of this operator become au
matically real due to charge invariance (Im^) lPCul&50).

B. Monopoles on the lattice

One defines magnetic monopoles with respect to the r
sidual U~1! gauge group in the way proposed in Ref.@14# for
U~1! lattice gauge theory: Abelian plaquette variables,

un,mn5un,m1un1m̂,n2un1 n̂,m2un,nP@24p,4p!, ~7!

can be decomposed into a periodic~regular! part 2p
<ūn,mn,p and a singular partmn,mn50,61,62,

un,mn5 ūn,mn12pmn,mn . ~8!

ūn,mn describes the U~1!-invariant ‘‘electromagnetic’’ flux
through the plaquette andmn,mn is the number of Dirac
strings passing through it. Magnetic monopole curren
kn,m , residing on the links of the dual lattice, are defined a

kn,m5
1

4p
«mnrs]nūn,rs , ~9!

where a lattice forward derivative is used,]n f n5 f n1 n̂2 f n .
It is obvious thatkn,m represents a conserved current:

(
m

]mkn,m50. ~10!
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Note, that the shifted currentsj n,m5kn1m̂,m form closed
loops on the dual lattice. As has already been mention
first lattice results on Abelian dominance have been obtain
in Ref. @10# where the string tension computed from Abelia
Wilson loops after MA projection, Eq.~6!, has been numeri-
cally found to agree approximately with the string tension
extracted from the full, non-Abelian theory. Since then add
tional lattice results in support of the ’t Hooft–Mandelstam
confinement scenario have been found@8,9#. In particular,
the monopole contribution to the Abelian string tension h
been investigated.

C. Photon and monopole dynamics

It is known that in the Villain formulation of compact
U~1! lattice gauge theory one meets an exact factorization
expectation values of Wilson loops into monopole and ph
ton parts@4# and one would expect to encounter remnants
this in other lattice formulations of the theory, in the form

^WU~1!&'^Wmon&^Wph&. ~11!

This factorization would induce a decomposition of the p
tential between static charges at separationR,

VU~1!~R!'Vmon~R!1Vph~R!, ~12!

where the photon contribution is expected to be Coulom
like.

The decomposition rule, Eq.~12!, has indeed been veri-
fied to hold approximately in simulations@15# for the case of
compact U~1! with Wilson action. Similarly, in MA-
projected SU~2! gauge theory, Abelian Wilson loop poten
tials were found to decomposequalitatively @16,17#.

As we aim at morequantitativeconclusions about the role
of monopoles and photons within gluodynamics, we w
proceed to collect all necessary formulas, following esse
tially Ref. @5#.

The Abelian Wilson loop operator~6! can be easily trans-
formed to

WAb~C!5expS 2
i

2(
n,mn

ūn,mnMn,mnD , ~13!

whereMn,mn is an integer-valued antisymmetric field, living
on plaquettes, satisfying the condition]m

2Mn,mn5Jn,n ; Jn,n
being an external current associated with the~oriented! con-
tour C where it takes the values61. ]m

2 denotes the lattice
backward derivative,]m

2 f n5 f n2 f n2m̂ . Let us now rewrite
ūn,mn in terms of dual potentialsrn,m , and a photon field

un,m8

ūn,mn5emnab]a
2rn,b1]mun,n8 2]nun,m8 1 ū mn

0 , ~14!

whereūmn
0 are zero modes defined by

ū mn
0 5

1

V(
n

ūn,mn52
2p

V (
n

mn,mn . ~15!

The dual vector potential satisfies the equation

]n]n
2rn,m2]m

2]nrn,n522pkn,m . ~16!
ed,
ed
n

as
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By imposing the Lorentz gauge condition (]mrn,m50) one
finds

rn,m52p(
m

D~n2m!km,m1const, ~17!

where D(n2m) denotes the lattice Coulomb propagator.
Equations~14!, ~15!, and~17! defineun,m8 up to an irrelevant
constant. By inserting Eqs.~14! and ~17! into Eq. ~13!, one
arrives at

WAb5WmonWphWfv, ~18!

where

Wmon5expS 22p i(
n,m

Kn,mD~n2m!km,mD , ~19!

Kn,m5
1

2
enmab]nMn,ab , ~20!

Wph5expS 2 i(
n

]mun,n8 Mn,mnD ~21!

5expS i(
n

un,n8 Jn,nD , ~22!

Wfv5expS 2
i

2
ū mn

0 (
n

Mn,mnD , ~23!

where the last expression denotes a finite volume contribu-
tion. After applying Eq.~14!, Wph can be written in a form
that is more convenient for calculations:

Wph5expS 2 i(
n,m

]m
2ūn,mnD~n2m!Jm,nD . ~24!

It is worth mentioning that in Refs.@15–17# only mono-
pole and photon contributions have been considered while
the finite volume contribution has been neglected. As pointed
out above, for U~1! gauge theory with Villain action, it can
be shown that Eq.~18! holds for expectation values of Wil-
son loops as well.

It is straightforward to generalize Eqs.~19!–~23! to the
case of extended monopoles@18# of sizel . These are defined
as

kn,m
~ l ! 5

1

4p
«mnrs]n

~ l !ū n,rs
~ l ! 5 (

mPcl
km,m , ~25!

where]n
( l ) f n5 f n1 l n̂2 f n , ū n,mn

( l ) 5(mPsl
ūn,mn , cl andsl are

cubes and squares of linear extentl . Subsequently, the op-
eratorWAb(C) can be decomposed in the same way as in Eq.
~18! with the monopole contribution defined by

W~ l !,mon5expS 22p i(
n,m

Kn,m
~ l ! D ~ l !~n2m!km,m

~ l ! D , ~26!

Kn,m
~ l ! 5

1

2
enmab]n

~ l !Mn,ab , ~27!
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D ( l )(n2m) being the lattice Coulomb propagator on a lattic
of linear dimensionL/ l .

It is useful to apply an alternative decomposition of th
Abelian Wilson loop into monopole and photon parts, bas
on the monopole vector potential@5#, un,m

mon5un,m2un,m8 .
From Eqs.~8! and~14! one findsun,m

mon to satisfy the condition

]n]n
2un,m

mon2]n]m
2un,n

mon52p]r
2mn,rm , ~28!

which has the Lorentz gauge solution

un,m
mon522p(

m
D~n2m!]n

2mm,nm1const. ~29!

We can now write

WAb~C!5expS i(
lPC

u l
monJl DexpS i(

lPC
u l8Jl D ~30!

[Wmon,fv~C!Wph~C!. ~31!

In Eq. ~30!, Wmon,fv combines both monopole and finite vol
ume contributions. This representation has the advantage
— provided the vector potentialsun,m

mon and un,m8 have been
computed — smearing techniques@19# can be applied, which
have been proven to be very useful in extracting potenti
from Wilson loops.

D. Charge two potential

From Eq.~4!, the following decomposition of link vari-
ables within the adjoint representationUn,m

A can be derived:

Un,m
A 5Cn,m

A Vn,m
A , ~32!

where

~Cn,m
A !ab5

1

2
Tr@saCn,msbCn,m

† # ~33!

and

~Vn,m
A !ab5

1

2
Tr@saVn,msbVn,m

† #5exp~ iT3fn,m!. ~34!

T3 is the generator of the adjoint representation and the l
anglefn,m has been defined above.

The ‘‘adjoint’’ Abelian Wilson loop

WAb,adj~C!5
1

3
TrAF )

lPC
Vl
AG ~35!

can be expressed in terms of Abelian link angles

WAb,adj~C!5
1

3
@1123WAb,2~C!#, ~36!

with

WAb,2~C!5cos~2uC!, uC5 (
lPC

u l . ~37!
e

e
ed

-
that
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The adjoint static ‘‘quark’’ field has one neutral and two
charged components with respect to residual Abelian gauge
transformations. The neutral component does not interact
with Abelian gauge fields and gives rise to the constant on
the right-hand side of Eq.~36!. Thus, it is evident that, for a
full description of the interaction between adjoint sources,
effects from the off-diagonal gluon fieldsCn,m

adj have to be
considered. However, one still might expect Abelian domi-
nance to hold for charged quarks. We define the Abelian
projected analogue of the adjoint potential,VAb,adj(R), from
the asymptotic decay of large Wilson loopsWAb,2(R,T):

WAb,2~R,T!}exp~2VAb,adj~R!T!1•••. ~38!

We expect the string tension extracted fromVAb,adj(R) to
approximate the adjoint string tension that can be defined at
intermediate distances. This expectation is supported by an
investigation of the Abelian projection for the adjoint repre-
sentation in the limit of largeNc @20,21#.

III. EFFICIENT GAUGE FIXING

A. Overrelaxed simulated annealing algorithm

As has been pointed out above, the Abelian projection
procedure requires~partial! gauge fixing. The differential
gauge condition~3!, supplemented by the constraint of
Fadeev-Popov operator positivity, is equivalent to finding a
maximum of the lattice functional, Eq.~1!. In addition to
absolute maxima — which can, in principle, be degenerate
even beyond trivial gauge transformations, such as constan
ones and transformations within the maximal Abelian sub-
group — the functionalF(U) can have any number of local
maxima. This feature resembles the Gribov problem of con-
tinuum gauge theories@11#. While degenerate absolute
maxima, at least for Landau gauge, may be safely ignored
@22#, imperfect gauging~where the system is stuck on some
local maximum! may lead to fake physics results@23#. The
aim of any reliable analysis must therefore be to drive the
system by appropriate gauge procedures into local maxima
as close as possible to the absolute ones. This would help to
reduce systematic uncertainties due to gauge-fixing ambigu-
ities. A similar approach of gauge fixing in numerical simu-
lations, motivated by global gauge-fixing conditions@24,25#,
has been advocated for Landau and Coulomb gauges in Ref
@26#.

Traditionally, the relaxation plus overrelaxation~OR! al-
gorithm has been employed for MA gauge fixing. In Ref.
@27#, we reported on the implementation of simulated anneal-
ing ~SA!, a technique that has been proven to be very useful
in handling various optimization problems. In this SA algo-
rithm @28,29#, the functionalF(U) is regarded as a ‘‘spin
action:’’

S~s!5F~Ug!5
1

8V(
n,m

Tr~snUn,msn1mUn,m
† !, ~39!

wheresn5gn
†s3gn resemble spin variables. The lattice fields

Un,m play the role of~almost! random local couplings. Maxi-
mizing the functionalF(Ug) is equivalent to decreasing the
auxiliary temperatureT of the statistical system with parti-
tion function
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Z5(
$sn%

expS 1TS~s! D . ~40!

One starts with equilibrating this spin glass at high te
perature. Subsequently,T is decreased adiabatically. It is ev
dent that in the limitT→0 the system approaches its groun
state, i.e., the maximal value ofS. The merits of SA can be
phrased in the language of solid state physics: standard
laxation that corresponds to fast cooling might cause defe
which are avoided in the adiabatic cooling procedure of S
In order to enhance the adiabatic movement of the spin v
ables through phase space we complement simulated an
ing with overrelaxation~OSA!.

Our procedure consists of three steps:~1! thermalization
atT52.5; ~2! gradual decreasing ofT down toT50.01; and
~3! final maximization by means of the OR algorithm.

In steps 1 and 2, an overrelaxation transformation is p
formed at six consecutive lattice sites and heatbath is app
to the seventh. Within step 2, every time when the heatb
update is applied to a site, the temperature is lowered b
quantumdT. For our large volume studies (V5324), a vari-
ant of this algorithm~suitable for parallel computers such a
the Connection Machine CM-5, where sites are visited
lexicographical ordering within subcubes of 24 sites each!
has been employed. The combined effect of local overre
ation plus local temperature reduction is to cut the numbe
cooling sweeps while remaining close to equilibrium.

For the initial thermalization atT52.5, 20 sweeps have
been performed. Within the temperature range 2.5>T>0.1,
dT(T) has been tuned such that the spin action increa
almost linearly with the number of iteration sweeps. This h
been realized by subdividing this range into 24 intervals
width DT50.1.

The corresponding differences of the actionDS(T)
5S(T)2S(T2DT) have been computed on equilibrate
configurations and were found to be very stable against
tistical fluctuations among different Monte Carlo~MC! con-
figurations. We found practically no volume dependence a
only a moderate impact from variations of the gauge co
pling b. The number of sweeps~out of a fixed total number!
to be performed within each interval (T2DT,T# was chosen
to be proportional toDS(T) and, subsequently, the corre
sponding value ofdT(T) has been determined. Within th
region 0.1.T>0.01, 50 additional sweeps have been p
formed. Finally, the OR algorithm has been applied till
convergence criterion was satisfied.1

B. Tuning the gauge-fixing algorithm

Prior to the large volume production runs, we compar
the OR gauge-fixing algorithm with three different OS
variants, using a 124 lattice atb52.43. The OSA variants
employ three different cooling schedules at step 2 of o
procedure: 250~OSA1!, 500~OSA2!, and 1000~OSA3! total
sweeps. The standard procedure~OR! has been applied with
identical convergence criterion. We collected 30 statistica

1The iterations have been stopped as soon as all rotations osn
among the lattice sites within a maximization sweep were equa
identity within single precision numerical accuracy.
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independent equilibrated MC configurations and produced
ten random gauge copies from each of them as inputs for the
four algorithms.

Consider a gauge-dependent Abelian quantityA. In the
following, we denoteĀ to be the average over gauge copies
and^A& to be the statistical average. In Table I, we compare
the output of the four algorithms for various quantities.
dsd
2 5^F22F̄2& denotes the scatter of the maximized value of
the functional among gauge copies. An ideal algorithm
would always yieldF5Fmax, i.e., dsd50. rmon51/(4V)
3^(n,mkn,m& denotes the so-called monopole density.Wij
are Abeliani3 j Wilson loops andKAb is the Abelian string
tension in lattice units.

The comparison of̂ F̄& and dsd reveals that any one of
our OSA schedules is superior to the standard OR algorithm
with the longest schedule yielding the best results. The
OSA2 and OSA3 algorithms perform equally on the level of
statistical errors. In terms of total computer time spent with a
scalar code, OSA2 is about a factor 2 slower than OR.
OSA1, still being an improvement, is just 30% slower than
OR. In our parallel implementation on a Connection Ma-
chine CM-5, OSA1 was found to run even slightly faster
than OR.

The lesson from Table I is that physical results can be
substantially corrupted by inadequate gauge fixing. The
functionalF turns out to be correlated with Wilson loops and
anticorrelated with the monopole number and Abelian string
tension.

By applying state-of-the-art smearing techniques on the
spatial transporters of Abelian Wilson loops, we have been
able to compute the Abelian ground state potential. In Fig. 1
these potentials are displayed for the OR~used by all previ-
ous authors for MA gauge fixing! and the OSA3 algorithms
with only one gauge copy used in both cases. In addition, the

f
l to

TABLE I. Comparison of gauge-fixing algorithms.

OR OSA1 OSA2 OSA3

^F̄& 0.7370~2! 0.7383~2! 0.7387~2! 0.7390~2!

dsd 1831025 1331025 1031025 831025

rmon 0.0218~2! 0.0209~3! 0.0207~3! 0.0204~3!

W11 0.7702~5! 0.7716~5! 0.7720~5! 0.7723~5!

W44 0.085~1! 0.090~1! 0.091~1! 0.092~2!

KAb 0.063~3! 0.057~3! 0.055~3! 0.054~3!

FIG. 1. Abelian potentials from OR~triangles!, OSA3~squares!,
and ‘‘best’’ copy ~circles!.
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copy with largest functional among all OSA3 copies ha
been chosen on each configuration as our best estimate o
‘‘true’’ maximum ~circles!. From this potential we obtain
Kbest
Ab 50.0478(38) as an estimate of the Abelian strin

tension.2 From Fig. 1 it is evident that this value will be
overestimated by about 30% by use of the standard pro
dure ~see also Table I!. Even our most expensive algorithm
OSA3 yields a value that is off by about one statistical sta
dard deviation from our best estimate@KOSA3

Ab

50.0536(30))#.
In order to study the scaling properties, the investigatio

have been partly repeated on a lattice with a nearly eq
physical size but a smaller lattice resolution (164 at
b52.5115). The OSA2 and OR algorithms have been a
plied to ten copies on 20 configurations each. The qualitat
properties are seen to be the same. Again, the string ten
obtained after application of the OR algorithm is drastical
overestimated: KRO

Ab50.0362(15) vs Kbest
Ab 50.0305(19).

Since the non-Abelian string tension at thisb value turned
out to beK50.0325(12), this difference is relevant to th
physical conclusions drawn.

We conclude that the quality of MA gauge fixing@in
terms of the value ofF(Ug) and the scatter of results amon
different gauge copies# can be significantly improved by ap-
plying the OSA algorithm, without any cost in compute
time. Our systematic study of nongauge-invariant quantit
revealed that such improvement is, in fact, mandatory: fo
reliable extraction of the Abelian potential and other obse
ables one must carefully eliminate biases from incomple
gauge fixing. An extension of the method to other gaug
~e.g., Landau gauge! is straightforward.

IV. BIASES FROM GRIBOV COPIES

A. Simulation technicalities

Our main simulations have been performed on 324 lattices
at b52.5115. As a first step, test runs with different OS
cooling schedules~as explained in the previous section! have
been performed on four gauge copies, generated from
thermalized configurations with the above simulation para
eters. We have chosen the following schedules for the te
perature degrading sweeps:Ns5250150, Ns5500150,
Ns510001100,Ns520001100, andNs550001200. The
first numbers denote the sweeps spent within the linear
gion (0.1,T,2.5). The latter numbers correspond to th
sweeps applied within the interval 0.01,T,0.1. Finally, di-
rect maximization sweeps (T50) have been applied. De-
pending on the configuration and cooling schedule, typica
10–100 such steps had to be performed until the rest vec
criterion was satisfied.

The hysteresis curves of the spin actionF as a function of
the temperatureT are displayed in Fig. 2. The upmost curv
corresponds to the longest schedule. The scatter within e
curve ~which is not visible on the scale of the figure! is due
to the four gauge copies generated and indicative for
~small! statistical uncertainty. The differences between t

2Within this section, all errors have been obtained by the jackkn
procedure.
s
f the

g

ce-

n-

ns
ual

p-
ive
sion
ly

e

g

r
ies
r a
rv-
te
es

A

two
m-
m-

re-
e

lly
tor

e
ach

the
he

curves indicate that even forNs.2000 thermal equilibrium
is not yet reached.

For our final run, we decided to apply 1100 gauge-fixing
sweeps as a compromise between effort and outcome. Th
choice allows to generate a few local maxima ofF(U) on
each configuration and, subsequently, to select the best out
them. As will be described below, the availability of several
local maxima enables us to estimate systematic biases due
incomplete gauge fixing.

B. Error estimates

In order to estimate systematic errors induced by an in
complete gauge-fixing procedure, we have generatedN520
random gauge copies on each ofNc530 gauge configura-
tions. Subsequently, these copies have been fixed to the M
gauge. Each Abelian configuration~i.e., each gauge copy!
Cj ( i )5$um

( j ,i )(n):m51, . . . ,4,nPV% is labeled in the fol-
lowing way: j runs from one to the number of gauge copies
N, while i runs from one to the number of Monte Carlo
generated SU~2! gauge configurationsNc . On each of these
copies, Abelian quantitiesA„Cj ( i )… are measured, whereA
denotes either a~smeared! Wilson loop, the plaquette, or the
monopole number. In addition, the values of the gauge-fixing
functionalF„Cj ( i )… are stored. All gauge copies~on a given
configuration! are sorted by the value of this functional:

F~C1!<F~C2!<•••<F~CN!. ~41!

We are now prepared to investigate which value ofA we
would have obtained on the ‘‘best’’ out ofm<N copies. To
answer this question, one has to selectm random copies out
of theN copies that have been generated in total and, subs
quently, extractA from the copy with the largest functional
F, i.e., largest indexi . Averaging over all possible choices,
yields

Am5S NmD 21

(
j5m

N S j21

j2mDA~Cj ! ~42!

as the ‘‘average best copy’’ expectation ofA on subsets of
sizem where the gauge configuration index has been omit
ted. As expected, the above formula corresponds to the av

ife

FIG. 2. The spin functionalF as a function of the temperature
T for various cooling schedules. The curves correspond to
Ns55200, Ns52100, Ns51100, Ns5550, andNs5300, respec-
tively.
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erage over all copies for the special casem51 while for
m5N one obtains the value ofA on the ‘‘best’’ copy. Quan-
tities such as the Abelian potential can be computed fr
averages of theseAm’s over theNc configurations. The situ-
ation is visualized in Fig. 3 for the gauge functionalF itself.
Throughout the rest of this paper all statistical errors ha
been computed by the bootstrap procedure.

We wish to determine the expected deviation of the e
mate^Am&5(1/Nc)( i51

Nc Am( i ) from the true valuêA`&, re-
lated to an absolute maximum. To estimate this bias
make the following assumptions: The absolute maximum3 is
unique; the algorithm is in principle able to reach the ab
lute maximumFglobal, i.e.,F`5Fglobal; in the neighborhood
of the absolute maximum,̂Am& approacheŝA`& as a mo-
notonous function of̂F`2Fm&.

The first assumption is supported by Zwanziger’s proof
the nondegeneracy of absolute maxima within the interior
the fundamental modular region in Landau gauge on the
tice @22# while the third assumption is supported by nume
cal evidence as all our observables exhibit strong corre
tions with the average value of the functional.

The difference,Dm
A5^A`2Am&, is to be seen as the ver

bias onAm from incomplete gauge fixing. The statistical un
certainty on this bias, on the other hand, is nothing else
the systematic error on our final result. As to itsm depen-
dence, we start from the ansatz

Dm
A5c1exp~2d1m!1••• ~43!

for the ~largem) asymptotic behavior, to be tested again
the data. Accordingly, we can fit our data to the form

^Am&5^A`&2c1exp~2d1m!1•••, ~44!

3The term ‘‘absolute maximum’’ is to be understood modu
trivial degeneracies, due to constant gauge transformations, g
transformations within the unfixed diagonal U~1! subgroup, and the
24 degenerate maxima fromZ2 center group transformations within
hyperplanes perpendicular to the four possible lattice orientatio
which only affect expectation values of Polyakov linelike operato
but leave the spectrum invariant.

FIG. 3. The maximized value of the spin functionalF as a
function of the number of local maxima generated on each confi
ration. The solid line~with error band! represents our extrapolate
value (m→`).
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where ^A`&, c1, andd1 are free parameters. The statistical
errors on̂ Am& imply a large uncertainty on̂A`&. However,
due to strong correlations among the data, the difference
Dm
A can be obtained quite accurately. In view of our limited

statistics for the study of gauge-fixing ambiguities
(Nc530) we have not applied full correlated fits. Nonethe-
less, some of the correlations have been taken into accou
by fitting the differences

DA~N,m!5^AN2Am&5DN
A~e~N2m!d121! ~45!

with DN
A5c1e

2Nd1, rather than following Eq.~44!. The result
of such a fit~fromm55 onwards! is visualized in Fig. 4. On
the basis of this fit the bias onAm can be traced back into the
region of smallm, in the formDm

A5DN
A1DA(N,m).

Results from the above procedure for the functionalF, the
Abelian plaquette action,S512^WAb(1,1)&, and the mono-
pole densityrmon for m51,10,20 as well as for the extrapo-
lated value (m5`) are compiled in Table II. We find that
the proposed error analysis is a powerful tool to obtain reli
able estimates for biases. For instance, when selecting t
best out of ten copies generated by our OSA algorithm, w
find DF1050.000 055(10), DS10520.000 037(30), and
Drmon,10520.000 015(15).

We would like to emphasize that, by computing the bi-
ases, we have found a way to extrapolate values, obtained
local maxima, to an absolute maximum. The accuracy of a
computations is limited by the statistical error on the biases

C. Application to the Abelian potential

The Abelian potentialVm
Ab(R), as well as the Abelian

string tensionKm
Ab have been computed for variousm<N, by

use of the method described in Sec. V A. We find the Abe
lian string tensionKm

Ab to be anticorrelated with the gauge-
fixing functional (Km

Ab,Km21
Ab ). The potential values them-

selves exhibit a systematic, but statistically insignificant
drift.

The correlation between the fitted Abelian string tension
andm can be read off from Fig. 5. In analogy to the extrapo-
lation method discussed in the previous section,DK(N,m) is
fitted to an exponential ansatz. As a result, the systemat
bias, Dm

K5DN
K2DK(N,m) is obtained as a function ofm

lo
uge

ns,
rs

gu-
FIG. 4. The differences,DF(N,m)5FN2Fm , and an exponen-

tial fit.
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TABLE II. Dependence of results on the number of gauge copiesm at b52.5115,V5324, Nc530.

m51 m510 m520 m5`

^F& 0.752 641~34! 0.752 789~35! 0.752 822~36! 0.752 845~37!
S 0.202 508~60! 0.202 299~64! 0.202 267~64! 0.202 261~66!
rmon 0.011 639~26! 0.011 528~30! 0.011 515~32! 0.011 513~33!
KAb 0.0325~11! 0.0311~13! 0.0306~16! 0.0303~17!
~Fig. 6!. The statistical errors onNc530 configurations4

~solid line! are indicated in the figure, as well as the error o
the final statistical ensemble of 108 configurations, obtain
on the best out of ten gauge copies~horizontal dashed line!.

For the final production runs we decided to choo
m510 as a reasonable compromise. For thism value the
expected statistical error on the string tension matches b
the size and the uncertainty of its bias.

Contrary to the case of the string tension~Fig. 6!, we find
no statistically significant bias on the values of the Coulom
coefficiente and the self-energyV0 that are dominated by
the short range part of the potential.

Results on the Abelian string tension from different num
bers of gauge copies are collected in Table II~last row!. The
bias on ten gauge copies isD10

K 520.000 78(72) while the
expected bias on one gauge copy would have be
D1
K520.0021(9).

V. PHYSICS RESULTS

Our main measurements have been performed on
same lattice volume andb value as the investigation of sys
tematic gauge-fixing errors, presented in the previous sec
(V5324, b52.5115). This enables us~a! to correct the re-
sults for the estimated biases and~b! to include systematic
uncertainties into the final errors. The spatial lattice exte
corresponds to 2.7 fm in physical units where the scale h
been obtained from the valuek5Ka225(440 MeV! 2 for
the string tension. This ensures finite size effects on the
tentials to be negligible. Theb value was chosen sufficiently
large to be within the scaling region, and in respect to futu
finite temperature studies@the critical temperature comes ou
to beTc5(8a)21 @30##.

The hybrid-overrelaxed algorithm@31# with Fabricius-
Haan heatbath sweeps@32# has been applied to update th
gauge fields. Subsequent configurations are separated by
such sweeps and have been found to be statistically indep
dent. Abelian projections and measurements have been
formed on 108 such gauge configurations. The followin
Abelian observables~i.e., quantities expressed in terms o
Abelian gauge fields,un,m) have been investigated: charg
one and two potentials and string tensions, photon a
monopole contributions to the Abelian string tension, and t
Abelian monopole density.

A. Abelian and non-Abelian static potentials

We have computed the Abelian potential on 108 config
rations as well as the non-Abelian potential on 644 config

4The statistical errors come out to decrease with decreasingm due
to the procedure of combinatoric averaging, Eq.~42!.
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rations by use of one and the same analysis method to allow
for direct comparison of results.

Our final results on the Abelian potential have been ob-
tained on the best out of ten gauge copies. The systematic
biases are estimated from 30 configurations with 20 gauge
copies on each. Both Abelian and non-Abelian potentials
have been obtained from Wilson loops with smeared spatial
paths in order to enhance the overlap of theQQ̄ creation
operator with theQQ̄ ground state@19#. To reduce statistical
fluctuations, we have analytically integrated out temporal
links of the non-Abelian Wilson loops@33#.

We found good results by iteratively applying the smear-
ing procedure

un, j→argFaeiun, j1(
kÞ j

ei ~un,k1un1 k̂, j2un1 ĵ ,k!G ~46!

to spatial link angles, i.e., by substituting the corresponding
U~1! element by a linear combination of the previous one
and the sum of the four spatial staples enclosing it. We have
chosen the parameter valuea51 and 150 iterations. Rectan-
gular Wilson loops, constructed from such smeared spatial
links, can be decomposed into a linear combination of vari-
ous loops with fixed corners but different spatial connec-
tions. For extraction of the non-Abelian potential, we applied
a similar procedure on the SU~2! link variables with the pa-
rameter valuea52.

For large temporal extentT, the potential can be extracted
from the asymptotic expectation:

^W~R,T!&5C~R!exp@2V~R!T#1•••, ~47!

whereC(R) denote the ground-state overlaps. For finite val-

FIG. 5. The Abelian string tension vs the number of MA gauge
copiesm. The solid line~with error band! represents our extrapo-
lated value (m→`).
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ues ofT, we define the following approximants to overlap
and potentials, which will monotonously decrease towar
their asymptotic values:

VT~R!5 lnS ^W~R,T!&

^W~R,T11!& D , ~48!

CT~R!5^W~R,T!&exp@VT~R!T#. ~49!

By comparing results on the potential approximants~Abe-
lian and non-Abelian! between the on-axis direction with
those obtained on five different off-axis directions, we fin
SO~3! rotational invariance to be restored~within statistical
accuracy! for R>3. In both cases, the data forR>2A3 are
well described~for T>3) by the parametrization

V~R!5V01KR2
e

R
. ~50!

By fitting differentT approximants to the potential with this
parametrization, we obtain approximants to the string tens
KT . By demanding plateaus ofCT(R), VT(R), andKT for
T>Tmin , we find Tmin54 andTmin56 for the Abelian and
non-Abelian potentials, respectively. The different onset
asymptotics is due to superior overlaps with the ground st
in case of the smeared Abelian Wilson loops. The se
energy termV0

Ab is much smaller than its Abelian counterpa
V0, resulting in larger numerical values of the correspondi
Abelian Wilson loops. These two effects are among the re
sons for reduced statistical errors on the Abelian poten
and fit parameters. We take theTmin approximants to poten-
tial values and fit parameters as our asymptotic results.
avoid systematic effects from the fit range creeping into t
comparative interpretation of results, we select a univer
R range for all fits, 2A3<R<16. This provides us with 45
on- and off-axis data points.

Our results on the fit parameters are inqualitativeagree-
ment with previous publications@8#. In particular, the self-
energyV0

Ab and Coulomb coefficienteAb come out to be
more than a factor 2 smaller than their non-Abelian count
parts while the Abelian string tension is found to be close
the non-Abelian one~see Table III and Fig. 7!. As pointed

FIG. 6. Differences between the extrapolated valueK`
Ab ~from

the exponential fit! andKAb, obtained on a finite number of gauge
copiesm. The solid line denotes the statistical uncertainty onKAb

from 30 gauge configurations. The horizontal dashed line is
statistical uncertainty on 108 configurations withm510.
s
ds

d

ion

of
ate
lf-
rt
ng
a-
tial

To
he
sal

er-
to

out above, all systematic uncertainties are understood an
under control in the present investigation, in particular the
approach to theT→` limit. The biases due to gauge-fixing
ambiguities have been neglected in previous studies but tur
out to be important as demonstrated in Secs. III and IV.

The value of the Abelian string tension comes out to be
KAb50.0305(3) on the best out of ten OSA gauge copies,
which nicely agrees with the valueKAb50.0305(19), as ob-
tained on a 164 lattice ~Sec. III! at the sameb value. By
including bias and uncertainty of the bias, we end up with
KAb50.0297(8), where the error includes the systematic un-
certainty. This amounts to the ratioKAb/K50.92(4) ~see
Table III!.

Given the precision of our data and analysis tools, we find
a significant deviation between the string tension of SU~2!
gauge theory and its MA content atb52.5115. Further mea-
surements at different lattice spacings are required to decid
whether this ratio approaches unity in the continuum limit, as
expected from Abelian dominance. However, for the time
being, at finite lattice spacing, the string tension from the
Abelian-projected theory appears to be definitely smaller
than its non-Abelian counterpart.

B. Decomposition of the Abelian potential

We have tried two different approaches to disentangle
monopole and photon contributions to the potential.

The first method rests on the determination of the mono-
pole part from elementary monopole currentskn,m . The po-
tential estimatorsVT

mon(R), extracted from̂Wmon(R,T)& @see
Eq. ~18!# at fixedR have been observed to increase withT,
which means that the coefficientsC8 of the decomposition,

^Wmon~T!&5Ce2VmonT1C8e2V8monT1•••, ~51!

the

TABLE III. Fit parameters for the static potentials in Abelian-
projected SU~2! ~corrected by the estimated bias due to incomplete
gauge fixing! and the potential of full SU~2!. Errors are systematic
and statistical.

AP SU~2! SU~2!

e 0.095(11) 0.252(24)
V0 0.240(4) 0.545(10)
K 0.0297(8) 0.0325(12)

FIG. 7. The Abelian and non-Abelian potentialsVAb andV.
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are not necessarily positive. This unpleasant feature, in c
junction with the requirement ofT@R, makes this procedure
of extractingVmon(R) unreliable.

As a way out, we started from an alternative represen
tion of the factorization property toWAb @Eqs.~29! and~30!#,
which allows decoupling of excited states through smear
of spatial linksun, j

mon In this second approach, the Abelia
configuration has been fixed for technical reasons to the L
dau gauge,

]msin~un,m!50, ~52!

prior to evaluation ofun,m
mon @Eq. ~29!#. This reduces the num

ber of plaquettes with nonzeromn,mn and, thus, computer
time by more than 1 order of magnitude. It should be no
that — thoughun,m

mon transforms under U~1! gauge transfor-
mations~5! — Wmon,fv as well asWph are gauge-invariant
quantities.

After evaluation ofun,m
mon andun,m8 5un,m2un,m

mon, smearing
has been applied and the corresponding potentials have
extracted. For smallR, the results as obtained from the tw
methods are found to agree, while at largeR, plateaus inT
could only be established for potential estimates extrac
from smeared monopole and photon Wilson loops.

As pointed out in Sec. II, the full factorization ansatz m
include finite volume contributions. However, no statistica
significant such effects have been found by comparison
unsmearedWmon,fv with Wmon @calculated by use of elemen
tary monopole currentskn,m via Eq. ~18! for all realizedR
and T values, on a configuration-by-configuration basi#.
Thus, we conclude that finite size effects can indeed be
glected on our lattice volume.

FIG. 8. The Abelian potential~diamonds! in comparison with
the photon contribution~squares!, the monopole~plus finite vol-
ume! contribution ~crosses!, and the sum of these two parts~tri-
angles!. Notice that no~self-energy! constants have been subtracte
from any of the data sets.
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The resulting potentials as well asVAb are displayed in
Fig. 8 and the parameter values as obtained from fits accor
ing to Eq. ~50! are quoted in Table IV. The corresponding
values for the Abelian potential are included as well, where
we have omitted the bias from gauge-fixing ambiguities, to
allow for a direct comparison.

One can see from Fig. 8 that the photon partVph does not
contribute to the string tension. Therefore, in MA projection
only the monopole part of the Abelian gauge fieldsun,m

mon

gives rise to the flux tube. A comparison ofVAb with
Vmon,fv1Vph reveals a qualitative agreement, implying the
approximate validity of the factorization ansatz. The string
tension of the monopole contribution amounts to (9561)%
of the full Abelian string tension. The approximate decom-
position of the Abelian static potential into monopole and
photon parts gives evidence for the interaction term betwee
monopoles and photons within the corresponding effectiv
action to be weak.

We have also attempted to fit the photon part of the po
tential to the ansatz

Vph~R!5Vself2 fGL532~R! ~53!

with

GL~R!5
4p

V (
kÞ0

eikRD~k,0! ~54!

for various fit ranges.GL(R) is the Coulomb potential on the
lattice that approaches 1/R in the infinite volume limit
(L→`) for large ~lattice! R. Lattice artefacts turned out to
be well parametrized by this functional form. As a result, we
quoteVself50.2513(3) andf50.130(30), obtained on the fit
range 3<R<12.12. Data and fit curve are visualized in Fig.
9. The fit range turned out to be correlated with the param
eter valuef in so far asf tended to be larger if largeR values
had been included and smaller for smallR values. This is
also evident from the figure and might be interpreted as
relic of asymptotic freedom within the Abelian-projected
gauge theory. From tree-level perturbation theory, one migh
expectf5Vself/GL532(0)'0.0814, which is smaller than the
fitted f quoted above, in accordance with a running coupling
interpretation.

The monopole contribution to the Abelian potential
Vl52
Ab has been extracted from extended monopoles of siz

l52 as well, by use of the method, introduced in Sec. II@Eq.
~26!#. By computing the potential from the corresponding
Wilson loops ~which has been done in Ref.@16# the first
time!, we found the approximants to decrease monotonous
in T. The value of the monopole string tension turned out to
be slightly smaller than the one extracted from elementar
monopoles@Kl52

mon50.0271(3) instead ofKmon50.0290(3),

d

TABLE IV. Test of factorization of the Abelian potential into monopole and photon parts. Biases from
incomplete gauge fixing have been omitted throughout the table.

VAb Vmon,fv1Vph Vmon,fv Vl52
mon Vph

e 0.095~6! 0.068~5! 20.056~5! 0.019~4! 0.124~2!

V0 0.240~3! 0.232~2! 20.029~2! 0.010~2! 0.261~1!

K 0.0305~3! 0.0291~3! 0.0290~3! 0.0271~3! 0.000 07~4!
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cf. Table IV#, which might indicate that a small portion of
the string tension is due to monopole structures of smal
extent.

The new method of computing the monopole contributio
to the potential by combining Eqs.~29! and ~30! with the
smearing method has the advantage of large ground-s
overlaps. Also, the potential can easily be computed for o
axis points while the blocking method even reduces the nu
ber of on-axis points at which the potential can be measur
by a factor 2. Notice thatVmon,f s obtained by use of the
smearing method is identical toVmon1Vfs, as computed in
the traditional way from elementary monopole current
while monopole structures on the scale of a lattice spaci
are neglected in the blocking method.

C. Charge two case

In order to extract the charge two potentialVAb,2(R) ~Sec.
II D !, smeared charge two Wilson loops,WAb,2(R,T) have
been evaluated. The data for the fundamental and charge
Abelian potentials are displayed in Fig. 10~with the fitted
self-energies being subtracted!.

Flux tube models lead to the expectationKadj/K58/3 for
the ratio of the adjoint over the fundamental string tension5

This value was qualitatively supported by numerical da
@34,35#. However, recent results@36,37# indicate that at in-
termediate to large distances the above ratio tends to
somewhat smaller than 8/3. We suggest the slope of t
charge two potentialKAb,2 to constitute the Abelian projec-
tion counterpart to the adjoint string tension and, thus, expe
the ratioKAb,2/KAb to agree with results onKadj/K. However,
the lack of high precision data on the latter ratio prevents
from a quantitative test of this assumption. From our dat
we find the valueKAb,2/KAb52.23(5) significantly smaller
than 8/3~see Table V!.

For smallR, perturbation theory yields the same 8/3 rati
between the adjoint and the fundamental potential, whi
differs from the expected ratio between Abelian charge tw
and charge one potentials, where one naively would expec
factor 2254. We, indeed, obtainV0

Ab,2/V0
Ab53.96(7) and

5Of course, the adjoint string tension is only an effective quanti
since, at large distance, string breaking is expected to set, cause
screening from the creation of glueball pairs.

FIG. 9. The photon contribution to the Abelian potential. Th
dashed vertical lines indicate the fit range~solid curve and squares!.
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eAb,2/eAb54.0(5) for the fit parameters that are sensitive t
short range physics. We have included the curv
8/3KAb24eAb/R into Fig. 10, which corresponds to SU~2!
Casimir scaling for the linear part of the potential and to th
perturbative U~1! expectation for its Coulomb part.

D. Monopole density

Monopole densities for elementary as well as for extende
monopole currents of sizel52 have been evaluated. The
density of monopoles of sizel in physical units is defined as6

rmon
~ l !,ph5

1

4V~ la !3(n,m ^ukn,m
~ l ! u&. ~55!

We obtain the following results for the monopole densities
converted into units of the string tension as measured in t
present investigation:

rmon
ph

K3/251.962~4!,
rmon

~2!,ph

K3/2 51.269~2!. ~56!

The value for elementary monopole currents has been c
rected by its systematic bias from incomplete gauge fixing

In order to relate our results to those obtained in previou
publications, we compare our value on the density of e
ementary monopoles with the valuermon

ph /K3/252.11(2)
from Ref. @38# for a 164 lattice atb52.5, which is close to
our coupling constant,b52.5115. Note, that we have res-
caled the result of Ref.@38# into units of the string tension as
obtained in Ref.@19#. The result of Ref.@38# turns out to be
consistent, within errors, with results from other author
@39,17,40# while our value is significantly smaller. Since fi-
nite size effects are negligible for the lattice extents und
consideration, the difference seems to be due to our im
proved OSA gauge-fixing algorithm. A similar discrepancy
is observed for extended monopoles. In this case our valu
Eq. ~56!, should be compared withrmon

(2),ph/K3/251.32, as ob-
tained on a 244 lattice atb52.5 by means of the standard
OR gauge-fixing procedure@41#.

ty
d by6The factor l 3 appears in the denominator of Eq.~55!, due to
averaging over thel 3 possible blocked sublattices.

e FIG. 10. The static Abelian charge two potentialVAb,2(R) in
comparison toVAb(R). In addition, the expectationVAb,2(R)
2V0

Ab,2'8/3KAbR24eAb/R is included~upmost dashed line!.
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VI. SUMMARY AND CONCLUSIONS

Let us summarize our main results and conclude.
The present study is based on a self-contained and s

consistent analysis on the largest lattice volume that has b
studied so far for this kind of simulations with comparativel
high statistics. A systematic error analysis has been carr
out for the first time in this context.

To obtain reliable results in the Abelian-projected theor
with MA gauge condition, one has to investigate and contr
the uncertainty that is inevitably introduced by the incom
plete gauge fixing of numerical practice. The OSA algorithm
has been shown to be a powerful tool for gauge fixing.
method for estimation of residual uncertainties is propose

We have foundKAb to be (864)% smaller than the non-
Abelian string tension atb52.5115.

Our investigation of the decomposition of the static Abe
lian potential into monopole and photon parts confirms, at
higher confidence level, earlier observations. By applying
new method for extracting the monopole contribution to th
potential, we have been able to extract the correspond
potentials and fit parameters reliably. The factorization h

TABLE V. Static potential parameters for the Abelian projec
tions of the fundamental (q51) and adjoint (q52) representations
of SU~2!.

AP SU~2! (q51) AP SU~2! (q52) (q52)/(q51)

e 0.095(6) 0.376~36! 3.98~48!
V0 0.240(2) 0.950~13! 3.96~7!

K 0.0305(3) 0.0682~11! 2.23~5!
elf-
een
y
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y
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-
a
a
e
ing
as

been found to work qualitatively, the monopole contribution
accounting for the string tension within a margin of 5%.

We have calculated the Abelian projection approximatio
for the adjoint string tension. Our result for ratioKAb,2/KAb

is in qualitative agreement with numerical data on its non
Abelian counterpart.

We believe that further computations at differentb val-
ues, provided all sources of errors are kept under control
in the present paper, will answer the question of whether t
Abelian-projected theory exactly reproduces the large di
tance behavior of the full theory in the continuum limit.

Note added in proof. After completion of the present pa-
per, we became aware of a paper by G. Poulis@42#, in which
the author has demonstrated that one should expectKAb,2 and
Kadj to coincide to the same extent asKAb andK agree by
use of reasonable approximations.
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