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In this paper we express the velocity-dependent, spin-dependent heavy quark potentialVq q̄ in QCD in terms
of a Wilson loopW(G) determined by pure Yang-Mills theory. We use an effective dual theory of long-
distance Yang-Mills theory to calculateW(G) for large loops, i.e., for loops of sizeR.RFT . @RFT is the flux
tube radius, fixed by the value of the Higgs~monopole! mass of the dual theory, which is a concrete realization
of the Mandelstam-’t Hooft dual superconductor mechanism of confinement.# We replaceW(G) by Weff(G),
given by a functional integral over the dual variables, which forR.RFT can be evaluated by a semiclassical
expansion, since the dual theory is weakly coupled at these distances. The classical approximation gives the
leading contribution toWeff(G) and yields a velocity-dependent heavy quark potential that for largeR becomes
linear inR, and that for smallR approaches lowest-order perturbative QCD. This latter fact means that these
results should remain applicable down to distances where radiative corrections giving rise to a running cou-
pling constant become important. The spin dependence of the potential at long range as well as at short range
reflects the vector coupling of quarks in QCD combined with the dual treatment of long-distance Yang-Mills
theory. The methods developed here should be applicable to any realization of the dual superconductor mecha-
nism. They give an expression determiningWeff(G) independent of the classical approximation, but semiclas-
sical corrections due to fluctuations of the flux tube are not worked out in this paper. Taking these into account
should lead to an effective string theory free from the conformal anomaly.@S0556-2821~96!03916-1#

PACS number~s!: 12.38.Aw, 11.15.Kc, 12.38.Lg, 12.39.Pn
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I. INTRODUCTION

In this paper we give expressions for the heavy qua
potential in QCD using an effective dual theory of long
distance Yang-Mills theory. This work goes beyond a prev
ous treatment@1# where the quark motion was treated sem
classically and where the dual theory was considered only
the classical level, and provides an independent approac
the problem of the heavy quark potential.

In Sec. II we give the formulas for the heavy quark spi
dependent, velocity-dependent potentialVq q̄ obtained in
Refs. @2–4# in terms of a Wilson loopW(G). This extends
previous work of Eichten and Feinberg@5#, Peskin@5#, and
others @6# to include the velocity-dependent spin
independent part of the potential. All momenta, spin
masses, and quantum mechanical properties of the qu
appear explicitly in the formulas relatingVq q̄ toW(G). The
problem of the heavy quark potential is then reduced to c
culatingW(G), a problem in pure Yang-Mills theory.

To clarify the techniques used in the dual description w
illustrate them in Sec. III with the example of electrodynam
ics.
54-2821/96/54~4!/2829~16!/$10.00
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In Sec. IV we describe the dual theory and show how to
calculateW(G) for large loops. The size of the loopG fixed
by the classical trajectories of the moving quark-antiquar
pair provides a length scaleR ~the quark-antiquark separa-
tion! and we use the dual theory to evaluateW(G) for
R.RFT , the radius of the flux tube that forms between the
moving quark-antiquark pair. This is done by replacing
W(G) by Weff(G), a functional integral over dual potentials
Cm that are the fundamental variables of the dual theory. W
then obtain the spin-independent part of the heavy quar
potential directly in terms ofWeff(G). Finally we discuss the
relation of the dual theory to recent work in@7,8# on the use
of electric-magnetic duality to determine the long-distance
behavior of certain supersymmetric non-Abelian gauge theo
ries.

In Sec. V we give explicit expressions for the spin-
dependent part of the heavy quark potential in terms of quan
tities determined by the dual theory. Since the theory i
weakly coupled at large distances,Weff(G) and, hence,Vq q̄
can be evaluated by a semiclassical expansion.

In Sec. VI we calculateWeff(G) in the classical approxi-
mation to the dual theory. We show how these results yiel
2829 © 1996 The American Physical Society
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2830 54M. BAKER et al.
the dual superconductor picture of confinement and disc
their relation to the ‘‘modified area law’’ model@9# for
W(G). Finally we remark how recent progress on quantiz
tion around classical vortex solutions@10# may be useful for
calculating corrections toWeff(G) accounting for fluctuations
of the length of the flux tube.

In Sec. VII we use the results of Sec. V and the classic
solution to the dual theory to obtain the spin-dependent p
of the heavy quark potential. This calculation gives a cont
bution toVq q̄ not obtained previously@11# and yields a sim-
plified expression for the spin orbit potential that reflects t
vector nature of both the short-range force and the confi
ment force.

In the conclusion we emphasize that, in contrast to R
@1#, the methods developed in this paper yield an express
forWeff(G) valid independent of the classical approximatio
Furthermore, we point out that the results presented h
should be regarded more as consequences of the dual su
conductor picture in general rather than of our particular
alization of it @12#.

II. HEAVY QUARK POTENTIAL IN QCD

To obtain the heavy quark potentialVq q̄ @2#, we make a
Foldy-Wouthuysen transformation on the quark-antiqua
Green’s function and show that the result can be written a
Feynman path integral over particle and antiparticle coor
nates and momenta of a Lagrangian depending only upon
spin, coordinates, and momenta of the quark and antiqua
Separating off the kinetic terms from this Lagrangian on
can identify what remains as the heavy quark potent
Vq q̄ . ~Closed loops of light quark pairs and annihilation con
tributions were not included.! The terms inVq q̄ of order
~quark mass! 22 are of two types: velocity dependentVVD
and spin dependentVSD. The full potentialVq q̄ is then

Vq q̄5V0~R!1VVD1VSD, ~2.1!

whereV0(R) is the static potential. These potentials are a
expressed in terms of a Wilson loopW(G) determined by
pure Yang-Mills theory, given by

W~G!5
*DAeiSYM~A!trPexp„2 ierGdx

mAm~x!…

*DAeiSYM~A! .

~2.2!

The closed loopG is defined by quark@antiquark# trajec-
tories zW1(t) @zW2(t)# running from yW 1 to xW1(xW2 to yW 2) as t
varies from the initial timet i to the final timet f . The quark
@anti-quark# trajectories zW1(t) @zW2(t)# define world lines
G1(G2) running from t i to t f(t f to t i). The world linesG1
andG2, along with two straight lines at fixed time connectin
yW 1 to yW 2 andxW1 to xW2, then make up the contourG ~see Fig.
1!. As usualAm(x)5

1
2laAm

a (x), tr means the trace over colo
indices,P prescribes the ordering of the color matrices a
cording to the direction fixed on the loop andSYM(A) is the
Yang-Mills action including a gauge fixing term. We hav
denoted the Yang-Mills coupling constant bye, i.e.,

as5
e2

4p
. ~2.3!
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The spin-independent part of the potential,V01VVD , is
obtained from the zero order and the quadratic terms in the

expansion ofi lnW(G) for small velocitieszẆ1(t) and zẆ2(t).
This expansion has the form

i lnW~G!5E
t i

t f
dtS V0„R~ t !…

1 (
i , j51

2

(
k,l 51

3

żi
k~ t !Vi j

kl
„RW ~ t !…żj

l ~ t !D , ~2.4!

whereRW (t)5zW1(t)2zW2(t), and

VVD5 (
i , j51

2

(
k,l 51

3

żi
k~ t !Vi j

kl
„RW ~ t !…żj

l ~ t !. ~2.5!

@ i lnW(G) has an expansion of the form~2.4! only to second
order in the velocities.# The expression~2.5! for VVD follows
from the same argument used to identifyV0(R) as the
velocity-independent term in the expansion~2.4!. We can
write Eq. ~2.4! in the form

i lnW~G!52E
t i

t f
dtLI~z1 ,z2 ,ż1 ,ż2!, ~2.6!

where

2LI5V0~R!1VVD ~2.7!

is an effective interaction Lagrangian for classical particles
moving along trajectorieszW1(t) and zW2(t) with gauge cou-
plings e(2e) and we can then interpreti lnW(G) as an ef-
fective action describing the motion of classical particles af-
ter elimination of the Yang-Mills field.

The spin-dependent potentialVSD contains structures for
each quark analogous to those obtained by making a Foldy
Wouthuysen transformation on the Dirac equation in an ex-
ternal fieldFmn

ext along with an additional termVSShaving the
structure of a spin-spin interaction. We can then write

FIG. 1. Wilson loop for the quark-antiquark system.
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VSD5VLS
mag1VThomas1VDarwin1VSS, ~2.8!

using a notation that indicates the physical significance of
individual terms~mag denotes magnetic!. The first two terms
in Eq. ~2.8! can be obtained by making the replacement

Fmn
ext~x!→^^Fmn~x!&&, ~2.9!

in the corresponding expression for the interaction of a Di
particle in an external field, where

^^ f ~A!&&[
*DAeiSYM~A!trP$exp@2 ierGdx

mAm~x!# f ~A!%

*DAeiSYM~A!trPexp@2 ierGdx
mAm~x!#

,

~2.10!

and

Fmn5]mAn2]nAm2 ie@Am ,An#, ~2.11!

i.e., ^^Fmn(x)&& is the expectation of the Yang-Mills field
tensor in the presence of a quark and antiquark moving a
classical trajectorieszW1(t) andzW2(t), respectively.

The explicit expressions forVLS
mag andVThomasobtained in

Ref. @2# are1

E dtVLS
mag5(

j51

2
e

mj
E

G j

dxsSj
l ^^F̂ l s~x!&&, ~2.12!

and

E dtVThomas52(
j51

2
e

2mj
2E

G j

dxmSj
l e l krpj

k^^Fmr~x!&&,

~2.13!

where

F̂mn52
1

2
«mnrsF

rs, ~2.14!

SW j is the spin matrix, andmj is the mass of thej th quark.
Because the expression forVThomascontains an explicit factor
of 1/mj

2 the integral over the trajectory of th
j th quark *G j

dxm^^Fmr(x)&& can be replaced by

(21) j11* t i
t fdt ^^F0r(zj )&& evaluated for static quarks. Thi

gives the usual expression forVThomasin terms of the deriva-
tive of the static potential~see Sec. V!. The expression for
VLS
mag on the other hand contains only a single power

1/mj and*G j
dxs^^F̂ l s(x)&& must be evaluated to first orde

in the quark velocities. There results the usual magnetic
teraction of the spin of thej th quark with the expectation
value ^^F̂ l s(zj )&&.

The expression forVDarwin is

1Here and in the following *G j
dxm f m(x)

[(21) j11* t i

t fdt@ f 0(zj )2 żW j• fW(zj )#, wherezj5„t,zW j (t)…. The factor

(21) j11 accounts for the fact that world lineG2 runs from t f to

t i . We also use the notationzj85„t8,zW j (t8)….
the
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E dtVDarwin52(
j51

2
e

8mj
2E

G j

dxm^^DnFnm~x!&&,

~2.15!

where

DnFnm5]nFnm2 ie@An,Fnm#. ~2.16!

Again because of the explicit factor of 1/mj
2 , the integral

over the trajectoryG j of the j th quark is evaluated for static
quarks.

The final termVSS in Eq. ~2.8! is given by

E VSSdt52
1

2 (
j , j 851

2
ie2

mjmj 8
TsE

G j

dxm

3E
G j 8

dx8sSj
l Sj 8

k
~^^F̂ l m~x!F̂ks~x8!&&

2^^F̂ l m~x!&&^^F̂ks~x8!&&!, ~2.17!

whereTs is the spin time ordering operator along the paths
G1 andG2, and the averages are evaluated for static quarks
The termsjÞ j 8 in Eq. ~2.17! give a spin-spin interaction
proportional to 1/m1m2 while the termsj5 j 8 in Eq. ~2.17!
give a spin-independent term proportional to
(1/m1

211/m2
2). The spin ordering is relevant only for these

latter terms.
We have thus obtained the explicit expression~2.8! for

the spin-dependent potential as a sum of terms dependin
upon the quark and antiquark spins, masses, and momen
with coefficients that are expectation values^^ && of opera-
tors computed in Yang-Mills theory in the presence of clas-
sical sources generated by the moving quark-antiquark pai
We now show that these expectation values can be obtaine
as functional derivatives ofi lnW(G) with respect to the path,
i.e., with respect to the trajectorieszW1(t) or zW2(t). For ex-
ample, consider the change inW(G) induced by letting

zW1~ t !→zW1~ t !1dzW1~ t !, where dzW1~ t i !5dzW1~ t f !50.

Then from the definitions~2.2! and ~2.10!, it follows that

d i lnW~G!52eE
t i

t fdSmn~z1!

2
^^Fmn~z1!&&, ~2.18!

where

dSmn~z1!5~dz1
mdz1

n2dz1
ndz1

m!. ~2.19!

Equation~2.18! then gives

2e^^Fmn~z1!&&5
d i lnW~G!

dSmn~z1!
, ~2.20!

and similarly one can get

e^^Fmn~z2!&&5
d i lnW~G!

dSmn~z2!
.

Varying the pathzW2(t) in Eq. ~2.20! gives
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e2~^^Fmn~z1!Frs~z2!&&2^^Fmn~z1!&&^^Frs~z2!&&!

5 ie
d

dSrs~z2!
^^Fmn~z1!&&. ~2.21!

The first and second variational derivatives ofW(G) then
determine the expectation values ofFmn needed to evaluate
VSD. Furthermore, we show in an appendix th
^^DnFnm(x)&& appearing inVDarwin can also be expressed i
terms of variational derivatives ofW(G). The Wilson loop
W(G) that is determined by pure Yang-Mills theory the
fixes the complete heavy quark potentialVq q̄ . Thus, up to
order (1/quark mass)2 the dynamics of a quark anti-quar
pair in QCD is completely fixed by the dynamics of Yan
Mills theory. The properties of the quark spins, masses, e
appear only as given kinematic factors in the terms defin
the heavy quark potential.

The structure~2.8!–~2.21! of VSD is a consequence of th
vector nature of the QCD interaction just as the structure
the Fermi-Breit potential is a consequence of the vector
ture of the QED interaction. The latter potential results fro
the (1/mass)2 expansion of the electron positron Green fun
tion with a corresponding omission of closed loops of ele
tron positron pairs. It can be obtained from Eqs.~2.8!–~2.21!
by replacingW(G) in these equations by the Wilson loop o
free electrodynamics@Eq. ~3.6! with e51#. Using Eq.~3.6!
in ~2.20! yields the classical electromagnetic field of th
moving electron-positron pair and the resulting potential b
comes one photon exchange. For example, this class
value of^^Fmn(x)&& generates via Eqs.~2.12! and~2.13! the
one photon exchange spin-orbit potential given by E
~7.11! and ~7.12! with V0(R)52e2/(4pR) and
V28(R)5e2/(4pR2)5dV0(R)/dR.

In Yang-Mills theory, which is strongly coupled at larg
distances,̂^Fmn(x)&& does not take on its classical value an
Eqs. ~2.12! and ~2.13! are not equivalent to one gluon ex
change or indeed to the exchange of any single vector ob
However its Lorentz transformation properties make evid
the Lorentz vector nature of the potential. This is primarily
kinematic result that is a consequence of the following
sumptions.

~1! The quark-antiquark interaction is described by QC
~2! Terms of order~quark mass! 22 are retained in the

expansion of theqq̄ Green’s function in inverse powers o
the quark mass.~Beyond this order radiation must be a
counted for, and the potential is no longer defined.!

~3! Closed loops of quark pairs are omitted.
The dynamical manifestation of this vector coupling d

pends upon the behavior of^^Fmn(x)&&, which we determine
in Secs. V and VII using the classical approximation to t
dual theory. To clarify the technical details in these sectio
we describe some of them here. Equation~5.10! expresses
^^Fmn(x)&& as the dual of the corresponding tensorGmn of
the dual theory and Eqs.~5.15! and ~5.17! reexpress Eqs.
~2.12! and~2.13! in terms of the color electric and magnet
components of this tensor denotedDW andHW , respectively.
Equation~5.15! is the usual expression forVLS in terms of
the color magnetic field in the comoving frame.

In Sec. VII we use the classical solution of the dual theo
to evaluate this expression forVLS at long distances. Equa
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tion ~7.2! expresses the color magnetic field in the comoving
frame in terms of the classical solutionCm of the equation of
motion ~6.2! of the dual theory. This equation differs from
Eq. ~3.17! ~describing electrodynamics in the dual represen-
tation! by the presence of the monopole current that screens
the color field of the quarks so that at largeR a color electric
Abrikosov-Nielsen-Olesen vortex forms between the moving
qq̄ pair. This solution generates a spin-orbit potential deter-
mined byV28(R) ~7.10! that for smallR approaches the one
gluon exchange result and which for largeR decreases like
1/R.

Since the same classical solution generates a static poten
tial that for largeR is linear inR, the spin-orbit potential
cannot be described by vector exchange, for which
V28(R)5dV0 /dR for all R ~6!. This potential arises rather
from the vector structure of Eq.~2.12! taken together with
the classical solution of the dual theory, and differs from one
gluon exchange because of the nonlinearity of the classical
equations produced by the monopole current. At large quark
separations where Yang-Mills theory becomes strongly
coupled only the dual description is appropriate and the
monopole current is essential. At small separations, on the
other hand, the color field generated by the quarks expels the
monopole condensate from the region between them, and the
potential does become one gluon exchange.

Note that the specific result thatV28(R) vanishes for large
R, which follows from Eq.~7.10!, obtains also in a model
where the effective long distanceqq̄ interaction comes from
scalar exchange, for whichV28(R)50 for all R ~6!. We have
seen here that this long-distance limit ofV28(R) is a conse-
quence of the vector coupling of quarks in QCD combined
with the dual treatment of long-distance Yang-Mills theory.

The essence of the constituent quark model is that the
same potential can also be used to calculate the energy levels
of mesons containing light quarks with constituent masses
fixed by hadron spectroscopy. The assumption is that the
principal effect of the light quark dynamics can be accounted
for by giving the light quarks effective masses that become
the parameters of the constituent quark model. The vector
nature ofVq q̄ is crucial to any relativistic treatment of the
spin and kinematics of constituent quarks.

Finally we note the following ‘‘modified area law’’ pro-
posed in Ref.@9#: i lnW(G) is written as the sum of a short-
range~SR! contribution and a long-range~LR! one:

i lnW~G!5 i lnWSR~G!1 i lnWLR~G!, ~2.22!

with i lnWSR(G) given by ordinary perturbation theory and

i lnWLR~G!5sSmin , ~2.23!

whereSmin is the minimal surface enclosed by the loopG
and s is the string tension. We will show in Sec. VI that
these two components ofi lnW(G) arise as two limits of a
single classical solution of the dual theory.

III. THE DUAL DESCRIPTION OF ELECTRODYNAMICS

Consider a pair of particles with chargese(2e) moving
along trajectorieszW1(t)@zW2(t)# in a relativistic medium hav-
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ing dielectric constante. The current densityj m(x) then has
the form

j m~x!5e R
G
dzmd~x2z!, ~3.1!

whereG is the world line described in Fig. 1. In the usua
Am ~electric! description this system is described by a La
grangian

LA~ j !52
e

4
~]aAb2]bAa!22 j aAa , ~3.2!

from which one obtains the usual Maxwell equations

]ae~]aAb2]bAa!5 j b . ~3.3!

If the ~wave-number dependent! dielectric constante→0 at
long distances, then we see from Eq.~3.3! thatAm is strongly
coupled at long distances~antiscreening!. From Eqs.~3.1!
and ~3.2! we have

E dxLA~ j !52E dx
e~]mAn2]nAm!2

4
2erGdz

mAm~z!.

~3.4!

The functional integral definingW(G) in electrodynamics

W~G!5
*DAmexp~ i*dx@LA~ j !1LGF# !

*DAmexp~ i*dx@LA~ j50!1LGF# !
, ~3.5!

whereLGF is a gauge fixing term, is Gaussian and has t
value

W~G!5expS 2
ie2

2 R
G
dxm R

G
dx8n

Dmn~x2x8!

e D ,
~3.6!

whereDmn is the free photon propagator and where se
energies have been subtracted. Because of current conse
tion the result~3.6! is independent of the choice of gauge
Letting e51 and expandingi lnW(G) to second order in the
velocities, as in Eq.~2.4!, gives the Darwin LagrangianLD
describing the interaction of a pair of oppositely charge
particles@13,14#:

LD5
e2

4pR
2
1

2

e2

4pR
FvW 1•vW 21 ~vW 1•RW !~vW 2•RW !

R2 G . ~3.7!

In the dual description we consider first the inhomog
neous Maxwell equations, which we write in the form

2]b
eabslG

sl

2
5 j a , ~3.8!

whereGmn is the dual field tensor composed of the electr
displacement vectorDW and the magnetic field vectorHW :

G0k[Hk , Gl m5e l mnD
n. ~3.9!

Next we express the charged particle current in Eq.~3.8! as
the divergence of a polarization tensorGmn

S the Dirac string
l
-

he

lf-
rva-
.

d

e-

ic

tensor, representing a moving line of polarization running
from the negatively charged to the positively charged par
ticle, namely,@15#:

Gmn
S ~x!52eemnabE dsE dt

]ya

]s

]yb

]t
d@x2y~s,t!#,

~3.10!

whereya(s,t) is a world sheet with boundaryG swept out
by the Dirac string. Then@15#

2]b
eabslG

Ssl~x!

2
5 j a~x!, ~3.11!

and the solution of Eq.~3.8! is

Gmn5]mCn2]nCm1Gmn
S , ~3.12!

which defines the magnetic variables~the dual potentials
Cm). @With Eqs.~3.11! and~3.12! the inhomogeneous Max-
well equations become Bianchi identities.#

The homogeneous Maxwell equations forEW andBW , which
we write in the form

]a~mGab!50, ~3.13!

wherem5(1/e! is the magnetic susceptibility, now become
dynamical equations for the dual potentials. These equation
can be obtained by varyingCm in the Lagrangian

LC~Gmn
S !52

1

4
mGmnG

mn, ~3.14!

whereGmn is given by Eq.~3.12!. This Lagrangian provides
the dual~magnetic! description of the Maxwell theory~3.2!.
In the dual description the Wilson loopW(G) is given by

W~G![
*DCmexp~ i*dx@LC~Gmn

S !1LGF# !

*DCmexp~ i*dx@LC~Gmn
S 50!1LGF# !

.

~3.15!

Evaluating the functional integral~3.15! by completing
the square gives

W~G!5e2~ im/4!*dxGab
S

~x!Gab~x!, ~3.16!

whereGab(x) is the dual field tensor~3.12! with Cm5Cm
D

determined from the solution of Eq.~3.13!, which has the
explicit form

]am~]aCb
D2]bCa

D!52]amGab
S . ~3.17!

Solving Eq. ~3.17!, inserting the resulting expression for
Gab into Eq. ~3.16!, and using Eq.~3.11!, we obtain the
same result@Eq. ~3.6! with 1/e→m] for the Wilson loop
~3.15! defined in the magnetic description as we had ob-
tained for the Wilson loop defined in the electric description.
We then have two equivalent descriptions at all distances o
the electromagnetic interaction of two charged particles
@Note, however, that ife→0 at long distances, then
m→1/e→` and the dual potentialsCm determined from Eq.
~3.13! are not strongly coupled at long distances unlike the
potentialsAm determined from Eq.~3.3!.#
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IV. THE DUAL DESCRIPTION OF LONG-DISTANCE
YANG-MILLS THEORY

The dual theory is an effective theory of long-distan
Yang-Mills theory described by a Lagrangian densityLeff in
which the fundamental variables are an octet of dual po
tials Cm coupled minimally to three octets of scalar Hig
fields Bi carrying magnetic color charge.@The gauge cou-
pling constant of dual theoryg52p/e wheree is the Yang-
Mills coupling constant.# The monopole fieldsBi develop
nonvanishing vacuum expectation valuesB0i ~monopole
condensation! that give rise to massiveCm and consequently
to a dual Meissner effect. Dual potentials couple to elec
color charge like ordinary potentials couple to monopol
The potentialsCm thus couple to a quark-antiquark pair via
Dirac string connecting the pair. The dual Meissner eff
prevents the electric color flux from spreading out as
distanceR between the quark-antiquark pair increases. A
result a linear potential develops that confines the quark
hadrons. The dual theory then provides a concrete realiza
of the Mandelstam–’t Hooft@16# dual superconductor pic
ture of confinement.

Because the quanta of the potentialsCm are massive, the
dual theory is weakly coupled at distancesR.1/M (M being
either the mass of the dual gluon or of the monopole fie!,
and a semiclassical expansion can be used to calculate
heavy quark potential at those distances. The classical
proximation gives the leading contribution to functional i
tegrals defined byLeff , in contrast to the functional integral
of Yang-Mills theory where no single configuration of gau
potentials dominatesW(G). The duality assumption that th
long-distance physics of Yang-Mills theory depending up
strongly coupled gauge potentialsAm is the same as the long
distance physics of the dual theory describing the inter
tions of weakly coupled dual potentialsCm and monopole
fieldsBi forms the basis of the work of this paper.

In absence of sourcesLeff , has the form@1#

Leff52trF2
1

4
GmnGmn1

1

2
~DmBi !

2G2W~Bi !, ~4.1!

where

DmBi5]mBi2 ig@Cm ,Bi #, ~4.2!

Gmn5]mCn2]nCm2 ig@Cm ,Cn#, ~4.3!

g5
2p

e
,

Cm andBi are SU~3! matrices, andW(Bi) is the Higgs po-
tential that has a minimum at nonzero valuesB0i that have
the color structure

B015B0l7 , B025B0~2l5!, B035B0l2 . ~4.4!

The three matricesl7 ,2l5, andl2 transform as aj51
irreducible representation of an SU~2! subgroup of SU~3!
and as there is no SU~3! transformation that leaves all thre
B0i invariant the dual SU~3! gauge symmetry is completel
broken and the eight Goldstone bosons become the lon
dinal components of the now massiveCm .
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The basic manifestation of the dual superconducting prop
erties ofLeff is that it generates classical equations of motion
having solutions@17# carrying a unit ofZ3 flux confined in a
narrow tube along thez axis ~corresponding to having quark
sources atz56`). ~These solutions are dual to Abrikosov-
Nielsen-Olesen magnetic vortex solutions@18# in a supercon-
ductor.! We briefly describe these classical solutions here in
order to specify the color structures that enter into the sub
sequent treatment of the dual theory with quark sources tha
is not restricted to the classical approximation. We look for
solutions where the dual potential is proportional to the hy-
percharge matrixY5l8 /A3:

Cm5CmY. ~4.5!

As a consequence the non-Abelian terms in the expressio
~4.3! for the dual field tensorGmn vanish.

We choose Higgs FieldsBi having the color structure

B15B1~x!l71B̄1~x!~2l6!,

B25B2~x!~2l5!1B̄2~x!l4 ,

B35B3~x!l21B̄3~x!~2l1!. ~4.6!

With this ansatz the Higgs potentialW turns out to be

W5
2

3
l$11@~ uf1u22B0

2!21~ uf2u22B0
2!21~ uf3u22B0

2!2#

17~ uf1u21uf2u21uf3u223B0
2!2%, ~4.7!

where

f i~x!5Bi~x!2 iB̄ i~x!. ~4.8!

Using Eqs.~4.5! and ~4.6! we also find

2tr(
i

~DmBi !
254u~]m2 igCm!f1u214u~]m2 igCm!f2u2

14u]mf3u2. ~4.9!

Sincef1 andf2 couple toCm in the same way andf3 does
not couple to Cm at all, we can choose
f15f25f[B2 iB̄, andf35B3, so that

2tr(
i

~DmBi !
258u~]m2 igCm!fu214~]mB3!

2.

~4.10!

At large distances from the center of the flux tube, using
cylindrical coordinatesr, u, z we have the boundary con-
ditions

CW→2
êu

gr
, f→B0e

iu, B3→B0 , as r→`.

~4.11!

The nonvanishing ofB0 produces a color monopole current
confining the electric color flux. The line integral of the dual
potential around a large loop surrounding thez axis measures
the electric color flux, just as the corresponding line integra
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of the ordinary vector potential measures the magnetic
in a superconducting vortex. Since the dual potential is al
a single direction in color space path ordering is unneces
and the boundary condition~4.11! for C¢ gives

e2 igr loopC¢ •dlW 5e2p iY5e2p~ i /3!, ~4.12!

which manifests the unit ofZ3 flux in the tube.@A continu-
ous deformation in SU~3! of our particular solution into a
non-Abelian configuration will leave unchanged the path
dered integralPexp(2ig*C¢ •dlW )5e2p i /3). The energy per
unit length in this flux tube is the string tensions. The quan-
tity g2/l plays the role of a Landau-Ginzburg parameter.
value can be obtained by relating the difference between
energy density at a large distance from the flux tube and
energy density at its center to the gluon condensate. T
procedure givesg2/l55. We get from the numerical inte
gration of the static field equations@17#

s'1.1~24B0
2!. ~4.13!

We are left with two free parameters inLeff , which we take
to beas5e2/4p5p/g2 and the string tensions.

To coupleCm to a qq̄ pair separated by a finite distanc
we must represent quark sources by a Dirac string ten
Gmn
S We choose the dual potential to have the same c

structure~4.5! as the flux tube solution. ThenGmn
S must also

be proportional to the hypercharge matrix

Gmn
S 5YGmn

S , ~4.14!

whereGmn
S is given by Eq.~3.10!, so that one unit ofZ3 flux

flows along the Dirac string connecting the quark and a
quark. We then couple quarks by replacingGmn in Leff ~4.1!
by

Gmn5YGmn , ~4.15!

where

Gmn5]mCn2]nCm1Gmn
S . ~4.16!

Inserting Eq.~4.15! into Eq. ~4.1! and using Eq.~4.10!
then yields the LagrangianLeff(Gmn

S ) coupling dual poten-
tials to classical quark sources moving along trajecto
zW1(t) andzW2(t):

Leff~Gmn
S !52

4

3

~]mCn2]nCm1Gmn
S !2

4

1
8u~]m2 igCm!fu2

2
1
4~]mB3!

2

2
2W,

~4.17!

whereW is given by Eq.~4.7! with f15f25f, f35B3.
It is useful, as in Eq.~3.9!, to decomposeGmn into its

color electric componentsDW and color magnetic componen
HW . Similarly we decomposeGmn

S into its polarization com-

ponentsDW S and its magnetization componentsHW S :
flux
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DS
k5

1

2
ekmnG

Smn, HS
k5G0k

S . ~4.18!

Then Eq.~4.16! becomes

DW 52¹W 3CW 1DW S , HW 52¹W C02
]CW

]t
1HW S . ~4.19!

The Lagrangian densityLeff(Gmn
S ) ~4.17! can then be written

as the sum of an ‘‘electric’’ partL0 and a ‘‘magnetic’’ part
L2: i.e.,

Leff~Gmn
S !5L01L2 , ~4.20!

where

L052H 23DW 214u~¹W 1 igCW !fu212~¹W B3!
21WJ ,

~4.21!

and

L25
2

3
HW 214u~]02 igC0!fu212~]0B3!

2, ~4.22!

and all terms involving time derivatives appear only inL2.
We denote byWeff(G) the Wilson loop of the dual theory:

i.e.,

Weff~G!5
*DCmDfDB3exp„i*dx@Leff~Gmn

S !1LGF#…
*DCmDfDB3exp„i*dx@Leff~Gmn

S 50!1LGF#…
.

~4.23!

The functional integralWeff(G) Eq. ~4.23! determines in the
dual theory the same physical quantity asW(G) in Yang-
Mills theory, namely the action for a quark-antiquark pair
moving along classical trajectories. The coupling in
Leff(Gmn

S ) of dual potentials to Dirac strings plays the role in
the expression~4.23! for Weff(G) of the explicit Wilson loop
integrale2 ierGdx

mAm(x) in the expression~2.2! for2 W(G).
The assumption that the dual theory describes the long

distanceqq̄ interaction in Yang-Mills theory then takes the
form

W~G!5Weff~G!, for large loopsG. ~4.24!

Large loops means that the sizeR of the loop is large com-
pared to the inverse mass of the Higgs particle~monopole
field! f. Furthermore since the dual theory is weakly
coupled at large distances we can evaluateWeff(G) via a
semiclassical expansion to which the classical configuration
of dual potentials and monopoles gives the leading contribu-
tion. This then allows us to picture heavy quarks~or constitu-
ent quarks! as sources of a long-distance classical field of
dual gluons determining the heavy quark potential. Thus, in a

2We emphasize the distinction betweenWeff(G) and the dual Wil-

son loop defined as an average ofeig RCW •dlW . This dual Wilson loop
would describe the interaction of a monopole-antimonopole pair.
For large loops the dual Wilson loop satisfies a perimeter law.
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certain sense the dual gluon fieldsGmn mediate the heavy
quark interaction just as the electromagnetic field media
the electron-positron interaction.

Using the duality hypothesis, we replaceW(G) by
Weff(G) in Eqs.~2.4!–~2.6! to obtain expressions forV0(R)
andVVD in the dual theory as the zero-order and quadra

terms in the expansion ofi lnWeff(G) for small velocitieszẆ1
andzẆ2, i.e., the interaction LagrangianLI , calculated in the
dual theory, is obtained from the equation

i lnWeff~G!52E
t i

t t
dtLI~zW1 ,zW2 ,zẆ1 ,zẆ2!. ~4.25!

Remark

There has been a recent revival of interest in the role
electric-magnetic duality due to the work of Seiberg a
Witten @7# and Seiberg@8# on supersymmetric non-Abelia
gauge theories. Seiberg considered SU(Nc) gauge theory
with Nf flavors of massless quarks. Although he did not e
hibit an explicit duality transformation he inferred the com
plete structure of the magnetic gauge group and hence
associated massless particle content of the dual Lagran
For a certain range ofNf the dual theory is weakly couple
at large distances and hence the low-energy spectrum o
theory consists just of the massless particles of the dual
grangian. Since this dual ‘‘magnetic’’ Lagrangian describ
the same low-energy physics as the original Lagrangian,
particle spectrum, mirroring the magnetic gauge group, m
appear as composites of the original ‘‘electric’’ gauge d
grees of freedom. ForNf5Nc11 the dual gauge group i
completely broken, the associated dual gauge bosons bec
massive and the quarks of the original theory are confine

There are obvious differences between Seiberg’s exam
where the number of massless fermions plays an esse
tes

tic

of
nd

x-
-
the
ian.
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role, and the example of Yang-Mills theory where neither th
original theory nor the proposed dual LagrangianLeff con-
tains fermions. Here confinement manifests itself via the d
velopment of a linear potential between heavy quark sourc
whereas in the supersymmetric models confinement ma
fests itself via the realization of the hadron spectrum as co
posites of the original quark variables. In the supersymmet
model these hadrons are massless and as usual the pro
tion of these particles prevents the development of a line
potential. However, all the gauge bosons of the dual theo
are massive and the coupling of the pure gauge sector
quark sources would produce a long-distance linear poten
between these sources. The common feature of Seiberg’s
persymmetric model, where duality is ‘‘inferred,’’ and Yang
Mills theory, where duality is conjectured, is that in both
cases the dual gluons receive mass via a Higgs mechani
which is the essential element of the dual superconduc
mechanism.

V. THE POTENTIAL Vqq̄ IN THE DUAL THEORY

We now express the spin-dependent heavy quark poten
VSD ~2.8! in terms of quantities of the dual theory. As a firs
step we find relations of matrix elements of the dual fie
tensorGmn to variations ofWeff(G) that are analogous to Eq.
~2.20! relating ^^Fmn&& to variations inW(G). Consider the
variation inWeff(G) produced by the change

Gmn
S ~x!→Gmn

S ~x!1dGmn
S ~x!. ~5.1!

From Eq. ~4.23! we find that the corresponding variation
dWeff(G) is given by

d i lnWeff~G!5
4

3E dx
dGmn

S ~x!

2
^^Gmn~x!&&eff , ~5.2!

where
^^ f ~Cm ,f,B3!&&eff[
*DCmDfDB3exp„i*dx@Leff~Gmn

S !1LGF#…f ~Cm ,f,B3!

*DCmDfDB3exp„i*dx@Leff~Gmn
S !1LGF#…

. ~5.3!
f
o-

ass
s.
Using Eq.~3.10! to express the variation ofGmn
S in terms

of the variation of the world sheetym(s,t), we obtain

E dx
dGmn

S ~x!

2
^^Gmn~x!&&eff

52
e

2
emnlaE

t i

t f
dtFdz1

a
]z1

l

]t
^^Gmn~z1!&&eff

2dz2
a

]z2
l

]t
^^Gmn~z2!&&effG . ~5.4!
The right-hand side of Eq.~5.4! arises from varying the
boundary of the Dirac sheet. The variation of the interior o
the sheet produces a contribution proportional to the mon
pole currentj n

mon

j n
mon~x![]mGmn~x!. ~5.5!

@See Eq.~A52! of Ref. @1# for details.# This gives no addi-
tional contribution to Eq.~5.4! since the monopole current
must vanish on the Dirac sheet, so that no monopole can p
through the Dirac string connecting the charged particle
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This latter assertion is just the dual of Dirac’s condition fo
the consistency of a theory containing both electric charg
and monopoles@15#.

Definingdzl[dt]zl/]t, we can then write Eq.~5.4! as

E dx
dGmn

S ~x!

2
^^Gmn~x!&&eff

52eE ~dz1
adz1

l^^Ĝla~z1!&&eff

2dz2
adz2

l^^Ĝla~z2!&&eff!, ~5.6!

where

Ĝmn~x![
1

2
emnlsG

ls~x!. ~5.7!

Choosing a variation that vanishes on the curveG2, we ob-
tain

d i lnWeff~G!52
4

3
eE dSmn~z1!

2
^^Ĝmn~z1!&&eff , ~5.8!

wheredSmn(z1) is given by Eq.~2.19!. Equations~5.2! and
~5.8! can be written as

d i lnWeff~G!

dSmn~z1!
52

4

3
e^^Ĝmn~z1!&&eff

52
e

2
«mnls

d i lnWeff~G!

dGls
S ~z1!

, ~5.9!

which is the dual theory analogue of Eq.~2.20!. The duality
assumption~4.24! then gives a corresponding relation be
tween matrix elements:

^^Fmn~z1!&&5
4

3
^^Ĝmn~z1!&&eff . ~5.10!

Equation~5.10! gives a correspondence between local qua
tities in Yang-Mills theory and in the dual theory. The utility
of electric-magnetic duality is that for large loops semicla
sical configurations dominate the right-hand side of E
~5.10! in contrast to the rapidly fluctuating configurations o
Yang-Mills potential that contribute to the left-hand side
Equation~5.10! breaks up into its electric and magnetic com
ponents

2^^Fmn&&5
4

3
emnl ^^H l &&eff , ~5.11!

^^F0l &&5
4

3
^^D l &&eff , ~5.12!

or, equivalently,

^^F̂0l &&5
4

3
^^H l &&eff , ~5.13!

^^F̂mn&&5
4

3
emnk̂ ^Dk&&eff . ~5.14!
r
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Using Eqs.~5.13! and ~5.14! in Eq. ~2.12! gives the fol-
lowing expression forVLS

mag in the dual theory:

VLS
mag52(

j51

2
4

3

ej
mj
SW j•~^^HW ~zj !&&eff2vW j3^^DW ~zj !&&eff!,

~5.15!

wheree15e ande252e. Note that^^HW &&eff2vW j3^^DW &&eff
is the color magnetic field at thej th quark in the comoving
Lorentz frame,VLS

mag the magnetic interaction of this field
with a quark having ag factor 2. The fact that heavy quarks
interact with a Dirac magnetic moment is a consequence o
the (1/m) expansion@2# for the qq̄ Green’s function upon
which this analysis is based.

To evaluateVThomas~2.13! we note from Eq.~5.12! that

e

2m1
2E dz1

mS1
l e l krp1

k^^Fmr~z1!&&

5
4

3

e

2m1
2E dtSW 1•pW 13^^DW ~z1!&&eff , ~5.16!

and obtain

VThomas52
1

2(j51

2
4

3

ej
mj

Sj•~vW j3^^DW ~zj !&&eff!. ~5.17!

The expression~5.17! is the contribution to the potential due
to the precession of the axis of the comoving frame. In Ap-
pendix A it is shown that Eq.~5.17! can be written in the
usual form

VThomas5
1

2m1

1

R

dV0
dR

SW 1•vW 13RW 2
1

2m2

dV0
dR

SW 2•vW 23RW .

~5.18!

Equation~5.18! is essentially a kinematic relation and is in-
dependent of the dynamics of Yang-Mills theory. On the
other handVLS

mag ~5.15! depends upon the dynamics and can-
not be expressed solely in terms of the static potential.

To expressVSS ~2.17! in terms of quantities involving the
dual theory we need the following:

ie2$^^F̂ l 0~zj !F̂k0~zj 8
8 !&&2^^F̂ l 0~zj !&&^^F̂k0~zj 8

8 !&&%

5
4

3
e2

d^^Hk~zj !&&eff
dHSl ~zj 8

8 !
. ~5.19!

To obtain Eq.~5.19! we use Eqs.~2.21! and ~5.13! and the
equation

d^^Hk~zj !&&eff
dG0l

S ~zj 8!
52

e l mn

2

d^^Hk~zj !&&eff
dSmn~zj 8!

. ~5.20!

@Compare Eq.~5.9!.# Using Eq.~5.19! in ~2.17!, we obtain

E dtVSS52
1

2 (
j , j 851

2
e2

mjmj 8
TsE

G j

dtE
G j 8

dt8Sj
l Sj 8

k

3S 43 d^^Hk~zj !&&eff
dHSl ~zj 8

8 ! D . ~5.21!
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The factor multiplyingSj
l Sj 8

k is symmetric ink and l and
hence the terms in Eq.~5.21! where j5 j 8 involve the com-
bination

Sj
l Sj

k1Sj
kSj
l

2
5
1

4
dkl .

Equation~5.21! then becomes

E dtVSS52
4

3(j51

2
e2

8mj
2E

G j

dtE
G j

dt8
d^^Hk~zj !&&eff

dHSk~zj8!

2
4

3 S e2

m1m2
D E

G1

dtE
G2

dt8S1
kS2
l

d^^Hk~z1!&&eff
dHSl ~z28!

.

~5.22!

The first term in Eq.~5.22! is a spin-independent velocity-
independent contribution to the potential proportional to in
verse square of the quark masses while the second term
Eq. ~5.22! yields a spin-spin interaction of the expecte
structure.

Finally considerVDarwin ~2.15! and note that

^^DnFnm~zj !&&5]n^^Fnm~zj !&&. ~5.23!

The derivative of the Wilson loop occurring in the definition
~2.10! of ^^Fnm(x)&& yields the Yang-Mills potentialAn ap-
pearing inDnFnm . Using Eq.~5.10! we obtain3

E VDarwin dt52
4

3(j
e

8mj
2E

G j

dxm]n^^Ĝnm~x!&&eff .

~5.24!

For an alternative expression forVDarwin based on Eq.~A7!
of Ref. @4# see Eq.~B3! of Appendix B.

VI. THE CLASSICAL APPROXIMATION
FOR V0„R… AND VVD

In the classical approximation Eq.~4.23! becomes

i lnWeff52E dxLeff~Gmn
S !, ~6.1!

whereLeff(Gmn
S ) ~4.17! is evaluated at the solution of the

classical equations of motion:

3Notice that̂ ^Fmn(z)&& depends not only on the pointz but on the
entire Wilson loop. So in order for Eq.~5.23! to make sense one has
to use the appropriate definition of derivative. Given a function
F@gab#

of the curvegab with endsa andb, under general regularity
condition the variation ofF consequent to an infinitesimal modifi-
cation of the curveg→g1dg can be expressed as the sum o
various terms proportional respectively toda,db and to the ele-
mentsdSrs(x) of the surface swept by the curve. Then the deriva
tives ]/]ar,]/]br and d/dSrs(x) are defined by the equation
dF5]F/]ardar1]F/]brdbr1*gdSrs(x)dF/dSrs(x). In our
case this would amount to put naively
]/]zrPf„*z

bdxmAm(x)…52Pf8„*z
bdxmAm(x)…Ar(z) and

]/]zr*a
zdxmAm(x)5Ar(z)Pf8„*a

zdxmAm(x)….
-
in

d

]a~]aCb2]bCa!52]aGab
S 1 j b

mon, ~6.2!

~]m2 igCm!2f52
1

4

dW

df*
, ~6.3!

and

]2B352
1

4

dW

dB3
, ~6.4!

where the monopole currentj m
mon is

j m
mon523ig@f* ~]m2 igCm!f2f~]m1 igCm!f* #.

~6.5!

As a result of the classical approximation all quantities in
brackets are replaced by their classical values

^^Gmn~x!&&eff5Gmn~x!. ~6.6!

The electric and magnetic components of Eq.~6.6! are

^^DW ~x!&&eff5DW ~xW !, ^^HW ~x!&&eff5HW ~xW !, ~6.7!

whereDW andHW are the color electric and magnetic fields,
respectively, given in terms of the dual potentials by Eq.
~4.19!.

We choose the Dirac string to be a straight lineL con-
necting the quarks. As xW approaches the string,
f(x)→0, Cm(x)→Cm

D(x), satisfying Eq. ~3.17!. As

xW→`, f(x)→B0 , Cm(x)→0, in contrast with the large
distance boundary condition for the infinite flux tube. We
can then choosef(x) to be real so that

f~x!5B~x!, j m
mon~x!526g2CmB

2. ~6.8!

Consider first the case of static quarks,vW 15vW 250. Then
the scalar potentialC0 and the color magnetic fieldHW vanish,
andLeff reduces toL0 Eq. ~4.21! that yields the static poten-
tial

V0~R!52E dxWL0 , ~6.9!

whereL0 is evaluated at the static solution of Eqs.~6.2!–
~6.4!, which have the following form in this case:

2¹W 3~¹W 3CW !26g2B2CW 52¹W 3DW S , ~6.10!

~2¹21g2CW 2!B52
2l

3
B~25B217B3

2232B0
2!,

~6.11!

and

2¹2B352
4l

3
B3~7B

219B3
2216B0

2!, ~6.12!

where we have used the explicit form, Eq.~4.7!, of W.
To solve Eq.~5.34! it is convenient to write

CW 5CW D1cW , ~6.13!
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whereCW D is the Dirac potential satisfying the static form o
Eq. ~3.17!: namely,

2¹W 3~¹W 3CW D!52¹W 3DW S , ~6.14!

with DW S given by Eq.~4.18!. In cylindrical coordinates with
the z axis along the line joining the two quarks a
z56R/2, Eq. ~3.10! gives

DW S5eêz$u~z2R/2!2u~z1R/2!%d~x!d~y!, ~6.15!

which describes the polarization vector for a line of dipole
The solution of Eq.~6.14! is

CW D5êfC
D, ~6.16!

where

CD5
e

4pr H z2R/2

Ar21~z2R/2!2
2

~z1R/2!

Ar21~z1R/2!2
J .
~6.17!

Then

cW5êfc, ~6.18!

and Eq.~6.10! becomes the following equation forc:

~¹̃226g2B2!c56g2B2CD, ~6.19!

where

¹̃2f ~r,z![
]

]rS 1r ]

]r
~r f ! D1

]2f

]z2
. ~6.20!

Equations~6.11!, ~6.12!, and~6.19! are three nonlinear equa-
tions for the static configurationc, B, andB3 with boundary
conditions:c→2CD, B→B0 , B3→B0 at large distances;
c→0, B→0 for xW on L. These equations have been solve
@19# with the following results:

The monopole current in Eq.~6.10! screens the color elec-
tric field produced by the quark sources so that as the qua
antiquark separation increases the lines ofDW are compressed
from their Coulomb-like behavior at smallR to form a flux
tube, and thusV0(R)→sR at largeR. Both this smallR and
this largeR behavior of the potential have their common
origin in the evolving distribution of the flux ofDW whose
divergence is fixed by the color electric charge of the quar
(¹W •DW 5¹W •DW S) and whose curl is determined by the mono
pole current. Thus, the dual theory already in the classic
approximation gives a potential that evolves smoothly fro
the largeR confinement region to the short-distance pertu
bative domain. This shows how the dual theory realizes t
Mandelstam–’t Hooft mechanism. It does not describe QC
at shorter distances where radiative corrections giving rise
asymptotic freedom and a running coupling constant are i
portant.

To calculate the terms ini lnWeff that are quadratic in the
quark velocities we solve the field equations for movin
quarks. To first order in the velocities the static field distr
butions follow the quark motion adiabatically. The time de
f
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pendence ofCW , B, andB3 then results from the explicit time
dependence ofR. Furthermore, since*dxWL0 generates the
static field equations, it is stationary about the solution to
these equations and remains unchanged to second order
the velocities. The velocity dependence in the potential then
comes from the ‘‘magnetic’’ contributionL2, which depends
quadratically upon]0CW , ]0B3, andC0, all of which are first
order in the velocities. The scalar potentialC0 satisfies the
equation, obtained from the time component of Eq.~6.2!,

¹2C026g2B2C05¹W •HW S , ~6.21!

valid to first order in the velocities. With the Higgs field
B(xW ) already determined by the static equations, Eq.~6.21! is
a linear equation for the scalar potential, givingC0 to first
order in the velocity. The velocity dependent potentialVVD is
then given by

VVD52E dxWL2 , ~6.22!

representing the magnetic color energy due to the fields fol
lowing the moving quarks.

For smallR the potentialVVD approaches the velocity
dependent part of the Darwin potential~3.7! ~multiplied by
the color factor 4/3! because for smallR the color magnetic
field HW (xW ) becomes the ordinary Biot-Savart magnetic field.
As R increases the color magnetic field lines are compresse
so that for large separationVVD becomes linear inR. As an
example consider the case in which two equal mass quark
move in a circular orbit of frequencyv. Then

vW 152vW 25(vW 3RW /2), sothatvW is proportional to 1/R and
VVD reduces to

VVD52
1

2
I ~R!v2, ~6.23!

where

lim
R→`

I ~R!;
1

2
~AR!R2, ~6.24!

and where

A.0.21s, ~6.25!

determined numerically@1# from Eq. ~6.22!. By comparison
we note that the moment of inertiaI 8(R) of an infinitely thin
flux tube of lengthR is

I 8~R!5
1

2
~A8R!R2, ~6.26!

with

A85s/6. ~6.27!

The comparison of Eq.~6.27! describing an infinitely thin
flux tube with Eq.~6.25! gives a quantitative estimate of the
increase of the moment of inertiaI (R) of the flux tube due to
its finite thickness.
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We now compare these results forV01VVD52LI of the
dual theory with the ‘‘modified area law’’ model@9# Eq.
~2.22!. In the dual theory i lnW(G) is replaced by
i lnWeff(G), given in the classical approximation by Eq.~6.1!.
This gives in the limit of short distances the perturbati
expression Eq.~3.7! so that the short-distance limit of th
dual theory is the short-range componenti lnWSR(G). The
long distance limit ofi lnWeff(G) is fixed by the values of
s and A. Replacing A by A8 in this limit yields
i lnWLR(G). This shows thati lnWLR(G) describes a zero-
width flux tube. Aside from this difference we see that t
‘‘two components’’ of Eq.~2.22! arise as two limits of a
single classical solution describing the evolution of the p
tential produced by compression of the field lines with i
creasingR.

As the simplest example of the implications ofVVD , we
add relativistic kinetic energy terms to2(V01VVD) to ob-
tain a classical Lagrangian, and calculate classically the
ergy and angular momentum ofqq̄ circular orbits, which are
those that have the largest angular momentumJ for a given
energy. We find@20# a Regge trajectoryJ as a function of
E2 that for large E2 becomes linear with slope
a85J/E251/8s(12A/s). Then Eq. ~6.25! gives
a8'1/(6.3s), which is close to the string model relatio
a851/(2ps). This comparison shows how at the classic
level a string model emerges when the velocity depende
of the qq̄ potential is included. The fact that the differenc
between the two expressions fora8 is small indicates that the
infinity narrow string may be a good approximation to th
finite-width flux tube forms between theqq̄ pair.

To summarize:~1! The potentialV0(R) is determined by
Eqs.~6.9! and~4.21! evaluated at the static solution.~2! The
potentialVVD is given by Eqs.~6.22! and~4.22! evaluated at
the solution of the classical equations to first order in t
velocity. The resultant integrals have been calculated
merically @1# and determine four functions
V1(R), V2(R), VL(R), and Vuu(R) that specify uniquely
the terms in the potential proportional to the veloci
squared. Explicit expressions for these functions are give
Ref. @1#.

Remarks

~1! In the absence of quark sources (Gmn
S 50), Leff de-

scribes a system of massive dual gluons and monopoles.
cause of the dual Higgs boson mechanism there are no
wanted massless particles in the spectrum. The mas
particles of the dual theory cannot be identified with t
massive particles of Yang-Mills theory, since the dual theo
just describes the low-energy spectrum. These masses d
mine rather the scaleRFT51/M above which the dual theory
should describe theqq̄ interaction. Since a quark-antiquar
pair moving in an orbit of radiusR can only radiate a particle
of massM if 1/R.M , in the domainR.1/M where the dual
theory describes Yang-Mills theory no dual gluons or mon
poles are emitted. The glueballs of Yang-Mills theory, on t
otherhand, are described by closed loops of color flux,
tained by coupling the dual potentials to closed Dirac strin
and finding the corresponding static solution of the fie
equations of the dual theory.
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~2! The Lagrangian densityLeff ~4.17! describes the cou-
pling of the Dirac string to Abelian configurations of dual
potentials, and the functional integral~4.23! for Weff(G) is
restricted to such configurations. The externalqq̄ pair has in
effect selected out a particular sector of the dual theory rel
evant to theqq̄ potential. As a consequence the resulting
potential should not be very sensitive to the details of the
dual gauge group.

~3! The Dirac string in the classical solution was a straight
line connecting theqq̄ pair. This gave the configuration hav-
ing the minimum field energy.4 The flux tube corresponding
to a given string position is concentrated in the neighborhood
of that string since the monopole current vanishes there. T
evaluate the contributions to the potential arising from fluc-
tuations of the shape and length of the flux tube@21# we must
integrate over field configurations generated by all Dirac
strings connecting theqq̄ pair. This amounts to doing a func-
tional integral over all Dirac polarization tensorsGmn

S (x).
Similar integrals have recently been carried out by Akhme-
dov et al. @10# in a somewhat different context. The func-
tional integral overGmn

S (x) is replaced by a functional inte-
gral over corresponding world sheetsym(s,t), multiplied by
an appropriate Jacobian. As a result they obtain@10# an ef-
fective string theory free from the conformal anomaly@22#.
Such techniques when applied in the context of the dua
theory should lead to a corresponding effective string theory

VII. THE CLASSICAL APPROXIMATION FOR VSD

In this section we evaluate the expression forVSD given in
Sec. V using the classical solutions to the dual theory de
scribed in Sec. VI. We consider separately the four contribu
tions toVSD @see Eq.~2.8!#.

~1! VThomas: Equations~5.17! and ~5.18! with V0(R) de-
termined by Eq.~6.9!.

~2! VLS
mag: Equation~5.15! with ^^DW &&eff and ^^HW &&eff re-

placed by their classical valuesDW andHW , namely

VLS
mag52(

j51

2
4

3

ej
mj
SW j•„HW ~zW j !2vW j3DW ~zW j !…, ~7.1!

with HW 2vW j3DW calculated to first order in the velocity. To
this order the static field configurations follow the motion of
the quarks adiabatically and we find from, Eq.~4.19!,

HW ~zW j !2vW j3DW ~zW j !52¹W „C0~xW !2CW ~xW !•vW ~xW !…uxW5zW j
,
~7.2!

where

vW ~xW !5
vW 11vW 2
2

1vW 3xW , ~7.3!

4The Dirac string of the dual theory, in contrast to that of electro-
dynamics, is physical. The vanishing of the Higgs field on the string
produces a vortex and an associated flux tube containing energ
This vortex cannot be removed by a gauge transformation sinc
such a transformation leaves the magnitude of the Higgs field un
changed.
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and

vW 5
RW 3~dRW /dt!

R2 . ~7.4!

In Eqs.~7.2!–~7.4!, (vW 11vW 2)/2 is the instantaneous velocity
of the origin of the coordinates that we have chosen as
midpoint of the lineL connecting theqq̄ pair andvW is the
instantaneous angular velocity ofL. @The motion of theqq̄
pair alongL does not contribute to Eq.~7.2!#.

We can understand the result~7.2!, as follows. The left-
hand side is the color magnetic field at the position of t
j th quark in the Lorentz system in which it is instantaneous
at rest. The magnetic field in this comoving system is det
mined by the gradient of the corresponding dual scalar p
tential, namelyC02CW •vW . Indeed Eq.~7.2! remains valid be-
yond the classical approximation with the replaceme
C0→^^C0&&eff , CW→^^CW &&eff .

ChoosingRW to lie along thez axis and using Eqs.~6.21!
and ~6.10! for C0 andCW we find

C02CW •vW 5êf•
dRW

dt
C2~z,r!, ~7.5!

wherer,f,z are cylindrical coordinates, and

C2~z,r!5C2
D ~z,r!1c2~z,r!, ~7.6!

where

C2
D ~z,r!5

er

4pR H 1

Ar21~z2R/2!2
2

1

Ar21~z1R/2!2
J ,

~7.7!

and wherec2(z,r) satisfies the equation

~¹̃226g2B2!c256g2B2C2
D 2

2

R

]c

]z
. ~7.8!

The solution of the linear integral equation~7.8! for c2

determines, via Eqs.~7.2! and ~7.5! the nonperturbative part
of the color magnetic field in the comoving Lorentz system
From Eqs.~7.6!–~7.8! it follows that for any fixed value of
z andr this field vanishes like 1/R for largeqq̄ separation.
The vanishing of this field at largeR is in accordance with
the observation of Buchmuller@23# that in a flux tube picture
the color field in the comoving frame should be purely ele
tric. However, for any finite value of theqq̄ separation there
is a color magnetic field in this system, and Eqs.~7.1!–~7.8!
give

VLS
mag5

V28~R!

R H S SW 1•~RW 3pW 1!

m1
2 2

SW 2•~RW 3pW 2!

m2
2 D

1S SW 2•~RW 3pW 1!

m1m2
2
SW 1•~RW 3pW 2!

m1m2
D J , ~7.9!

where
the

he
ly
er-
o-

nt

.

c-

V28~R!5
4

3 H as

R2 2
e

2r

]

]r
@rc2~r,z!#U r50

z5R/2
J . ~7.10!

The first term in Eq.~7.10! is the perturbative contribution to
V28(R) arising fromC2

D and the second term is the nonper-
turbative part that behaves like 1/R for large R and that
would not be present in the simple flux tube picture of Buch-
muller.

Finally addingVLS
mag to VThomasgives the complete expres-

sion for the spin orbit couplingVLS :

VLS5F 1R dV0
dR

12
V18~R!

R GFSW 1•RW 3pW 1
2m1

2 2
SW 2•RW 3pW 2
2m2

2 G
1
V28~R!

R FSW 2•RW 3pW 1
m1m2

2
SW 1•RW 3pW 2
m1m2

G , ~7.11!

where

V18~R!5V28~R!2
dV0
dR

. ~7.12!

Equation~7.11! expresses the spin-orbit potential in terms of
the static potential and a single independent function
V28(R) determined by the dual scalar potentialC02CW •vW in
the comoving frame. This result forVLS satisfies identically
the constraints of Lorentz invariance~7.12! ~the Gromes re-
lations @24#!. Furthermore, sinceV28(R)→1/R for large R,
we have

lim
R→`

V18~R!;2
dV0
dR

52s, ~7.13!

which is the value given by the flux tube model for allR.
~3! VSS: Equation~5.22! with d^^HW (zj )&&eff /dHW S(zj 8) re-

placed bydHW (zj )/dHW S(zj 8). Since, to first order in the ve-
locity, CW is determined byDW S alone @see Eq.~6.10!# the
]CW /]t term inHW does not contribute to its variational deriva-
tive with respect toHW S and Eq.~4.19! gives

dHk~x!

dHSl ~x8!
5dkl d~xW2xW8!d~ t2t8!2¹k

dC0~x!

dHSl ~x8!
.

~7.14!

The quantitydC0 /dHW S in turn satisfies the equation obtained
by taking the variational derivative of Eq.~6.21! with respect
to HW S : namely,

~¹226g2B2!
dC0~x!

dHSl ~x8!
5¹ l d~xW2xW8!d~ t2t8!.

~7.15!

The double integral in Eq.~5.22! then becomes a single in-
tegral overt of the static quantitydHW (zW j )/dHW S(zW j 8). We em-
phasize that this simplification obtains only in the classical
approximation we are now considering.

Equations~7.14! and ~7.15! give
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dHk~xW !

dHSl ~xW8!
5dkl d~xW2xW8!1¹k¹ l8G~xW ,xW8!, ~7.16!

where the Green functionG(xW ,xW8) satisfies

~2¹216g2B2~xW !!G~xW ,xW8!5d~xW2xW8!. ~7.17!

G(xW ,xW8) is the potential atxW due to a point charge atxW8 in
presence of the monopole charge densityj 0

mon ~6.8! carried

by B(xW ). SinceB(xW ) approaches its vacuum valueB0 as
xW→`,G vanishes exponentially at large distances: i.e.,

G~xW ,xW8! ;
xW→`

2 e2M uxW2xW8u

4puxW2xW8u
, ~7.18!

whereM is the mass of the dual gluon,

M256g2B0
25

6p

as
B0
2'

p

4

s

as
, ~7.19!

and where we used the result,s'24B0
2, obtained from the

energy per unit length of the static flux tube solution. Usi
a valueas50.37 obtained from fitting thecc̄ andbb̄ spec-
trum @1# we obtainM'640 MeV.

Separating off the Coulomb contribution toG we have

G52
1

4puxW2xW8u
1GNP, ~7.20!

whereGNP satisfies the equation

~2¹216g2B2!GNP52
6g2B2~xW !

4puxW2xW8u
. ~7.21!

Inserting Eqs.~7.16! and ~7.20! into Eq. ~5.22! gives

VSS5VSS
spin1VSS

1/m2
, ~7.22!

where

VSS
spin5

4

3

e2

m1m2
$~SW 1•SW 2!d~zW12zW2!

1~SW 1•¹W !~SW 2•¹W 8!G~xW ,xW8!uxW5zW1 ,x
W85zW2

%, ~7.23!

VSS
1/m2

52
4

3(j51

2
e2

8mj
2¹W •¹W 8GNP~xW ,xW8!uxW85xW5zW j ,

.

~7.24!

The potentialVSS
spin is the same as previously obtained@11#.

At small R it approaches the usual perturbative spin-s
interaction, and at long distances it is exponentially dam
due to screening by the monopole charge. The sp

independent contributionVSS
1/m2

of VSS depends uponR via
the dependence in Eq.~7.21! of GNP on B. It was not in-
cluded in Ref.@11#.

~4! VDarwin: Equation~5.24! with ^^Ĝmn&&eff replaced by
Ĝmn , namely,
ng

pin
ped
in-

E VDarwindt52
4

3(j
e

8mj
2E

G j

dxm]nĜnm~x!. ~7.25!

To evaluate Eq.~7.25! we note from Eqs.~3.11! and ~4.16!
that

]nĜnm~x!5 j m~x!, ~7.26!

where j m(x) is the quark-antiquark current. The monopole
current does not contribute to]nĜnm andVDarwin becomes

E VDarwindt52
4

3(j
e

8mj
2E

G j

dxm j m~x!

52
4

3(j
ej
8mj

2E dtr~zj !. ~7.27!

Omitting self-energy terms we insert r(zW1)
52ed(zW12zW2),r(zW2)5ed(zW22zW1) into Eq. ~7.27! and ob-
tain

VDarwin5
e2

6 S 1

m1
2 1

1

m2
2D d~zW12zW2!. ~7.28!

In Appendix B we show that the alternate form~B3! for
VDarwin reduces in the classical approximation to the same
expression~7.28!.

There are two then spin-independent terms proportional to

(1/m1
211/m2

2). The first is VSS
1/m2

~7.24!. The second is
VDarwin ~7.28!.

To summarize: In Ref. @4# the coefficient of
(1/m1

211/m2
2) in the velocity dependent potential was writ-

ten as

VSS
1/m2

1VDarwin[
1

8 S 1

m1
2 1

1

m2
2D¹2

„V0~R!1Va~R!…

~7.29!

which definesVa . Equations~7.24! and ~7.28! give

¹2Va5¹2V0
NP~R!2

4

3
e2¹W •¹W 8GNP~xW ,xW8!uxW5xW85zW j

,

~7.30!

whereV0
NP(R) is the nonperturbative part of the static poten-

tial so thatVa is determined by the nonperturbative dynamics
of Yang-Mills theory. The first term in Eq.~7.30! is the color
electric contribution toVa and the second is the color mag-
netic contribution.

The spin dependent potential is then given by

VSD5VLS1VSS
spin1

1

8 S 1

m1
2 1

1

m2
2D¹2@V0~R!1Va~R!#,

~7.31!

with VLS given by Eq.~7.10! and~7.11!, VSS
spin by Eq. ~7.23!

andVa(R) by Eq. ~7.30!.
It should be emphasized that to account for the effect of

fluctuations of the flux tube on the potential we must return
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to Eqs.~5.15!, ~5.22!, ~5.24!, and ~5.3! that expressVq q̄ in
terms of dual potentials, independent of the classical a
proximation.

VIII. CONCLUSION

We have obtained an expression for the heavy quark
tential Vq q̄ in terms of an effective Wilson loopWeff(G)
determined by the dynamics of a dual theory that is weak
coupled at long distances. The coupling of the dual variab
to heavy quarks is then uniquely specified, with spin a
relativistic effects accounted for unambiguously to ord
(1/mass quark)2, the highest order for which the concept o
a potential makes sense.

The classical approximation gives the leading lon
distance contribution toWeff(G) and yields a velocity-
dependent spin-dependent heavy quark potential that
largeR becomes linear inR and that for smallR approaches
lowest-order perturbative QCD. The dual theory cannot d
scribe QCD at shorter distances, where radiative correcti
giving rise to asymptotic freedom become important. At su
distances the dual potentials are strongly coupled and
dual description is no longer appropriate.

As a final remark we note that the dual theory is an SU~3!
gauge theory, like the original Yang-Mills gauge theor
However, the coupling to quarks selected out only Abeli
configurations of the dual potential. Therefore, our results
theqq̄ interaction do not depend upon the details of the du
gauge group and should be regarded more as conseque
of the general dual superconductor picture rather than of
particular realization of it. The essential feature of this pi
ture is the description of long-distance Yang-Mills theory b
a dual gauge theory in which all particles become mass
via a dual Higgs mechanism.
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APPENDIX A

Notice that

aW j[
4

3

ej
mj

^^DW ~zW j !&&eff ~A1!

can be interpreted as the acceleration of thej th quark so that
Eq. ~5.17! can be rewritten

VThomas52
1

2(j51

2

Sj•~vW j3aW j !, ~A2!

which is the usual expression obtained from semiclassi
considerations. To expressVThomasin terms of the derivative
of the static potential we first note from Eq.~5.9! that
p-
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d i lnWeff~G!

dDW S~xW !
5
4

3
^^DW ~xW !&&eff . ~A3!

Now, using the fact that

¹W 1DW S~xW !52e1d~xW2zW1!, ~A4!

where¹W 15]/]zW1, we have

R
dV0~R!

dR
5RW •¹W 1V0

5RW E dxW
d i lnWeff

dDW S~xW !
•¹W 1DW S~xW !

52eRW •E dxW
4

3
^^DW ~xW !&&effd~xW2zW1!

52e
4

3
R^^DW ~zW1!&&eff•R̂. ~A5!

Now by symmetry,̂ ^DW (zW1)&&eff evaluated at the position of
a quark must lie alongR̂. Hence,

2
4

3
e^^DW ~zW1!&&eff5R̂

dV0
dR

. ~A6!

Equation~A1! then givesaW 152(R̂/m1)(]V0 /]R), so that
Eq. ~A2! gives Eq.~5.18!.

APPENDIX B

Here we begin with an alternate form forVDarwin where
Am does not appear explicitly.

eE dxm^^DnFnm~x!&&

5E
t i

t f
dt¹2V02 ie2E

G j

dxmE
G j

dxs8 @^^Fmn~x!Fsn~x8!&&

2^^Fmn~x!&&^^Fsn~x8!&&#

5E
t i

t f
dt¹2V02 ie2E

G j

dtE
G j

dt8@^^F0k~zj !F
0k~zj8!&&

2^^F0k~zj !&&^^F
0k~zj8!&&#. ~B1!

Equation~5.12! and the relation betweendSmn and variations
of Gmn

S give

eE
G j

dtE
G j

dt8
d

dS0k~zj8!
^^F0k~zj !&&

5
4e2

3 E
G j

dtE
G j

dt8
d^^Dk~zj !&&eff

dDSk~zj8!
. ~B2!

Then using Eq.~2.21! with z2 replaced byz1 ande by 2e
we obtain



2844 54M. BAKER et al.
E dtVDarwin5(
j
E dt¹2V0/8mj

2

2
4e2

3 (
j
E

G j

dtE
G j

dt8
1

8mj
2

d^^Dk~zj !&&eff
dDSk~zj8!

,

~B3!

which gives a second form forVDarwin. The classical ap-
proximation to Eq.~B3! is obtained by replacing

d^^DW ~zj !&&eff

dDW S~zj8!
by

dDW ~zW j !

dDW S~zW j !
d~ t2t8!.

This yields the expression

VDarwin5(
j51

2 F 1

8mj
2¹2V0~R!2

4

3

e2

8mj
2

dDk~zW j !

dDSk~zW j !
G .

~B4!
Following the same reasoning that led to Eq.~A5! we obtain

4

3
e2

dDk~zW1!

dDSk~zW1!
5¹1

2V0
NP~R!. ~B5!

@There is no perturbative contribution to the left-hand side of
Eq. ~B5!.# The second term in Eq.~B4! then cancels the
nonperturbative part of the first term. Equation~B4! then
becomes

VDarwin5S 1

8m1
2 1

1

8m2
2D¹2S 2

4

3

e2

4pRD
5e2

d~zW12zW2!

6 S 1

m1
2 1

1

m2
2D , ~B6!

which coincides with Eq.~7.28!.
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