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In this paper we express the velocity-dependent, spin-dependent heavy quark putghitieQCD in terms
of a Wilson loopW(I") determined by pure Yang-Mills theory. We use an effective dual theory of long-
distance Yang-Mills theory to calculaw/(T") for large loops, i.e., for loops of siZ/@>Rgr. [Rey is the flux
tube radius, fixed by the value of the Higgeonopolg mass of the dual theory, which is a concrete realization
of the Mandelstam-'t Hooft dual superconductor mechanism of confineh\&et.replaceW(I") by Weg(T"),
given by a functional integral over the dual variables, whichRor R can be evaluated by a semiclassical
expansion, since the dual theory is weakly coupled at these distances. The classical approximation gives the
leading contribution t&W+(I") and yields a velocity-dependent heavy quark potential that for Rrigecomes
linear inR, and that for smalR approaches lowest-order perturbative QCD. This latter fact means that these
results should remain applicable down to distances where radiative corrections giving rise to a running cou-
pling constant become important. The spin dependence of the potential at long range as well as at short range
reflects the vector coupling of quarks in QCD combined with the dual treatment of long-distance Yang-Mills
theory. The methods developed here should be applicable to any realization of the dual superconductor mecha-
nism. They give an expression determinMg«(I") independent of the classical approximation, but semiclas-
sical corrections due to fluctuations of the flux tube are not worked out in this paper. Taking these into account
should lead to an effective string theory free from the conformal anorh@(5656-282(96)03916-1

PACS numbegps): 12.38.Aw, 11.15.Kc, 12.38.Lg, 12.39.Pn

I. INTRODUCTION In Sec. IV we describe the dual theory and show how to
calculateW(TI") for large loops. The size of the lodp fixed
In this paper we give expressions for the heavy quarky the classical trajectories of the moving quark-antiquark
potential in QCD using an effective dual theory of long- pair provides a length scaR (the quark-antiquark separa-
distance Yang-Mills theory. This work goes beyond a previ-tion) and we use the dual theory to evaluatgI’) for
ous treatmenfl] where the quark motion was treated semi-R>Rgy, the radius of the flux tube that forms between the
classically and where the dual theory was considered only ahoving quark-antiquark pair. This is done by replacing
the classical level, and provides an independent approach W(I") by W(I"), a functional integral over dual potentials
the problem of the heavy quark potential. C, that are the fundamental variables of the dual theory. We
In Sec. Il we give the formulas for the heavy quark spin-then obtain the spin-independent part of the heavy quark
dependent, velocity-dependent potenté obtained in  potential directly in terms oW.x(I"). Finally we discuss the
Refs.[2—-4] in terms of a Wilson loopN(I"). This extends relation of the dual theory to recent work i8] on the use
previous work of Eichten and Feinbef§], Peskin[5], and  of electric-magnetic duality to determine the long-distance
others [6] to include the velocity-dependent spin- behavior of certain supersymmetric non-Abelian gauge theo-
independent part of the potential. All momenta, spinsries.
masses, and quantum mechanical properties of the quarks In Sec. V we give explicit expressions for the spin-
appear explicitly in the formulas relating,;to W(I'). The  dependent part of the heavy quark potential in terms of quan-
problem of the heavy quark potential is then reduced to caltities determined by the dual theory. Since the theory is
culatingW(T'), a problem in pure Yang-Mills theory. weakly coupled at large distancé®«(I") and, henceV ¢
To clarify the techniques used in the dual description wecan be evaluated by a semiclassical expansion.
illustrate them in Sec. Il with the example of electrodynam- In Sec. VI we calculat&V.4(I") in the classical approxi-
ics. mation to the dual theory. We show how these results yield
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the dual superconductor picture of confinement and discuss
their relation to the “modified area law” mod€l9] for
W(T"). Finally we remark how recent progress on quantiza-
tion around classical vortex solutiofs0] may be useful for
calculating corrections t&/.4(I") accounting for fluctuations

of the length of the flux tube.

In Sec. VII we use the results of Sec. V and the classical
solution to the dual theory to obtain the spin-dependent part
of the heavy quark potential. This calculation gives a contri-
bution toV44-not obtained previouslj11] and yields a sim-
plified expression for the spin orbit potential that reflects the
vector nature of both the short-range force and the confine-
ment force.

In the conclusion we emphasize that, in contrast to Ref.
[1], the methods developed in this paper yield an expression Y,
for W(I') valid independent of the classical approximation.
Furthermore, we point out that the results presented here
should be regarded more as consequences of the dual super-
conductor picture in general rather than of our particular re- FIG. 1. Wilson loop for the quark-antiquark system.
alization of it[12].

Xy

The spin-independent part of the potentih+V\p, is
Il. HEAVY QUARK POTENTIAL IN QCD obtained from the zero order and the quadratic terms in the

To obtain the heavy quark potentilg-[2], we make a expansion oﬁInW(F) for small velocitiesz,(t) and z,(t).
Foldy-Wouthuysen transformation on the quark-antiquark! NiS expansion has the form
Green'’s function and show that the result can be written as a
Feynman path integral over particle and antiparticle coordi-
nates and momenta of a Lagrangian depending only upon the
spin, coordinates, and momenta of the quark and antiquark. X
Separating off the kinetic terms from this Lagrangian one
can identify what remains as the heavy quark potential +iE:
Vqq- (Closed loops of light quark pairs and annihilation con-
tributions were not includegl.The terms inV.q of order
(quark masp ? are of two types: velocity dependelt,p
and spin dependeisp. The full potentialV,gis then 2 3

Vip= 2 2 ZOVERWZ (D). (25
Vgg=Vo(R)+Vyp+Vsp, 21 iS1krZ ! !

L= =

tf
iInW(T")= f dt( Vo(R(1))

3
J WE:l'zikmvh/(ﬁe(t))'z( ], 24

whereR(t) = z;(t) — z,(t), and

whereVO(R) is the static po'tential. These potenti.als are all[jlnw(I') has an expansion of the for(@.4) only to second
expressed in terms of a Wilson lo&y(I") determined by  order in the velocitie§.The expressiof2.5) for Vi, follows
pure Yang-Mills theory, given by from the same argument used to identi¥{y(R) as the
. . velocity-independent term in the expansi@h4). We can
JDAESM MirPexp(—iefrdx“A,(x)) write Eq.(2.4) in the form

[ DAESMA

W)=
(2.2 _ t o
||nW(F):_f dtL|(Zl,Zz,Zl,Zz), (26)
The closed lood" is defined by quarkantiquari trajec- t
tories z;(t) [Z,(t)] running fromy; to X;(X, to y,) ast
varies from the initial timd; to the final timet; . The quark
[anti-quarR trajectories z,(t) [Z,(t)] define world lines —L;=Vo(R)+Vyp 2.7
I'1(T",) running fromt; to t¢(t; to t;). The world linesI';
andT',, along with two straight lines at fixed time connecting is an effective interaction Lagrangian for classical particles
y1 to y, andx; to X,, then make up the contollit (see Fig. moving along trajectorieg;(t) and z,(t) with gauge cou-
1). As usualA (x) = %)\aA‘;(x), tr means the trace over color plings e(—e) and we can then interpreinW(I") as an ef-
indices, P prescribes the ordering of the color matrices ac-fective action describing the motion of classical particles af-
cording to the direction fixed on the loop aBdy,(A) is the ter elimination of the Yang-Mills field.
Yang-Mills action including a gauge fixing term. We have  The spin-dependent potentiek contains structures for
denoted the Yang-Mills coupling constant byi.e., each quark analogous to those obtained by making a Foldy-
Wouthuysen transformation on the Dirac equation in an ex-
ternal fieIdFiXJ along with an additional teril s having the
structure of a spin-spin interaction. We can then write

where

ag=—. (2.3
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VSD_V +VThomas+ VDarwm+ VSSv (2-8)

f dtVpawin= — ~ 8m f dXM<<Dva,u X)>>

using a notation that indicates the physical significance of the 1 2.15
individual terms(mag denotes magnelicThe first two terms '

in EQ. (2.8 can be obtained by making the replacement  \yhere

FOO00—((F (X)), (2.9 D'F,,=dF,,—ie[A"F,,]. (2.16
in the corresponding expression for the interaction of a DiracdAgain because of the explicit factor Ofrﬂ?, the integral
particle in an external field, where over the trajectory’; of the jth quark is evaluated for static
) quarks.
AT = JDAESWMAP{ex] —iedrdx“A,(X)]f(A)} The final termVggin Eq. (2.8) is given by
(fA)= JDAESWArPex —iefrdx A, (x)] 2
B0 [ i3 ] o
Vsgdt= ]2 mm m, dx
and
ro k - c !
F.=0d,A,—d,A,—ie[A, Al (2.11) X JFJIdX S/ S{ (((F/u(X)F (X))
i.e., ((F,,(X))) is the expectation of the Yang-Mills field —((lE/M(X)>><<|Eka(X’)>>), (2.17
tensor in the presence of a quark and antiquark moving along '
classical trajectorieg; (t) andz,(t), respectively. whereTs is the spin time ordering operator along the paths
The exp||c|t express|0ns fdfmag andVThomasobtained in Fl and Fz, and the aVerages are evaluated fOI’ static quarkS.
Ref.[2] aré The termsj#j’ in Eq. (2.17) give a spin-spin interaction
proportional to Ith;m, while the termsj=j’ in Eq. (2.17)

e R give a spin-independent term  proportional to
J dtV[es= E FJ dx"S/((F/,(x))), (212  (1/m2+1/m3). The spin ordering is relevant only for these
=T latter terms.
We have thus obtained the explicit expressi@m) for
the spin-dependent potential as a sum of terms depending
2 upon the quark and antiquark spins, masses, and momenta
__ - wa/ /kr ok with coefficients that are expectation val of opera-
f dtVnomas Z mjzfr-dx S € TPHFL O, tors computed in Yang-Mills theory in theLKs?e)sence of clas-
(2.13 sical sources generated by the moving quark-antiquark pair.
We now show that these expectation values can be obtained
where as functional derivatives ofnW(I") with respect to the path,

i.e., with respect to the trajectoriefg(t) or Zz(t). For ex-
Fro, (2.14 ample, consider the changeWi(I") induced by letting

and

v Es,uvpa

) Z,(t)—2z4(t)+ 6z4(1), where 8z,(t;) = 8z,(t;)=0.

S; is the spin matrix, andn; is the mass of thg¢th quark.

Because the expression 18¢,,mascontains an explicit factor Then from the definition$2.2) and(2.10, it follows that
of 1/m the integral over the trajectory of the -

jth quark Jr dx*((F(x))) can be replaced by 5|InW(I‘)——ef S l)<<F,U«V( ), (218
(- 1)J+1ftfdt ((FOr(z ))) evaluated for static quarks. This

gives the usual expression fWk,omasin terms of the deriva-  where
tive of the static potentiaf{see Sec. Y. The expression for

Vis? on the other hand contains only a single power of 8S""(z1) = (dz{ 6z —dz]5Z). (2.19
1/m; andfp dx?({F /,(x))) must be evaluated to first order
in the quark velocities. There results the usual magnetic in-
teraction of the spin of th¢th quark with the expectation SiNW(T)

value((F ,(z)))- —e((F(z))) =~ — (2.20
The ex/preésion fOW parwin IS i 65"(z1)

Equation(2.18 then gives

and similarly one can get

Here and in the following [ dx"f#(x) Silnw(T")
=(-1) " [idi fo(z) - 7 ()], wherez = (t.2(1)). The factor e(Ful2)))= Fgmzy
(—1)I"1 accounts for the fact that world linE, runs fromt; to
t;. We also use the notatiar = (t',z;(t")). Varying the pathz,(t) in Eq. (2.20 gives
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92(<<|:W(zl)|:pg(zz)>>_<<|:MV(21))><<|:M(22)>>) tion (7..2) expresses the collor magn(_atic field in the cpmoving
frame in terms of the classical soluti@), of the equation of

2.21) motion (6.2) of the dual theory. This equation differs from

' Eq. (3.17) (describing electrodynamics in the dual represen-

tation) by the presence of the monopole current that screens

] o o the color field of the quarks so that at laigea color electric

The first and second variational derivativesvd(I") then  Aprikosov-Nielsen-Olesen vortex forms between the moving
determine the expectation valuesfof, needed to evaluate qq pair. This solution generates a spin-orbit potential deter-
Vgp. Furthermore, we show in an appendix thatmined byV,(R) (7.10 that for smallR approaches the one
((D"F,,,(x))) appearing ifVpawin can also be expressed in g on exchange result and which for larBedecreases like
terms of variational derivatives aV(I"). The Wilson loop  1/R.
W(I') that is determined by pure Yang-Mills theory then  gince the same classical solution generates a static poten-
fixes the complete heavy quark potenfiffg. Thus, up t0 i) that for largeR is linear inR, the spin-orbit potential
order (1/quark mas$)the dynamics of a quark anti-quark cannot be described by vector exchange, for which
pair in QCD is completely fixed by the dynamics of Yang- v (R)=dv,/dR for all R (6). This potential arises rather
Mills theory. The properties of the quark spins, masses, €Ctrom the vector structure of Eq2.12) taken together with
appear only as given kinematic factors in the terms definingq cjassical solution of the dual theory, and differs from one
the heavy quark potential. _ gluon exchange because of the nonlinearity of the classical

The structure2.8—(2.21) of Vgp is a consequence of the g ations produced by the monopole current. At large quark
vector nature of the QCD interaction just as the structure Ogeparations where Yang-Mills theory becomes strongly
the Fermi-Breit potential is a consequence of the vector Nazoupled only the dual description is appropriate and the
ture of the QED interaction. The latter pote_ntial results frommonopole current is essential. At small separations, on the
the (1{mass§ expansion of the electron positron Green func-gther hand, the color field generated by the quarks expels the
tion with a corresponding omission of closed loops of elec'monopole condensate from the region between them, and the
tron positron pairs. It can be obtained from E(s8)—(2.21) potential does become one gluon exchange.
by replacingW(I') in these equations by the Wilson loop of = \ste that the specific result thet(R) vanishes for large
free electrodynamickEq. (3.6) with e=1]. Using EQ.(3.6) g \which follows from Eq.(7.10, obtains also in a model

in (2.20 yields the classical electromagnetic field of thewhere the effective long distancg interaction comes from

moving electron-positron pair and the resulting potential be-SFaIar exchange, for whici,(R) =0 for all R (6). We have
. . y 2 - .

nggsof??g p(f:(())';())ng eeri( ; rg?gg?/.i aFé) (; éxlaz)mgrlled, (zth:lé,) frllissmgeen here that this long-distance limit\8§(R) is a conse-

one photonwexchange spin-orbit poténtial givén by Eqs.ql.Jence of the vector coupling Of. quarks in QCD. combined

(710 and (7.12 with Vo(R)=—e¥(4n7R) and with the dual treatment of long-distance Yang-Mills theory.

The essence of the constituent quark model is that the

’ — a2 2\

Va(R)=e /(47TR )_dVO(R)./dR.' same potential can also be used to calculate the energy levels
In Yang-Mills theory, which is strongly coupled at large

distances{(F , ,(x)}) does not take on its classical value and of mesons containing light quarks with constituent masses
v : L
Egs. (2.12 and (2.13 are not equivalent to one gluon ex- fixed by hadron spectroscopy. The assumption is that the

change or indeed to the exchange of any single vector obje(formmpal effect of the light quark dynamics can be accounted

)
:iem«ﬂy(zl)»-

However its Lorentz transformation properties make evideno” by giving the light quarks effective masses that become
wever | z lon propert Vi he parameters of the constituent quark model. The vector

the Lorentz vector nature of the potential. This is primarily apature ofVyq is crucial to any relativistic treatment of the

I;Sriglggl:sresult that is a consequence of the following as-Spin and kinematics of constituent quarks.

. . Lo . Finally we note the following “modified area law” pro-
g Tri?n?:a(;r grndtleqrtjc?dla(lrll? tﬁ::;g?; ;S?ggggg kl?: g\ce:D'posed in Ref[g]g iIn_VV(F) is written as the sum of a short-
. —— ) S range(SR) contribution and a long-rangé&.R) one:

expansion of theyq Green’s function in inverse powers of
the quark mass(Beyond this order radiation must be ac-
counted for, and the potential is no longer defined.

(3) Closed loops of quark pairs are omitted. o s _ _ i

The dynamical manifestation of this vector coupling de-With iinW §(I") given by ordinary perturbation theory and
pends upon the behavior &fF ,,(x))), which we determine e
in Secs. V and VIl using the classical approximation to the HNW=S(T) = oS, (2.23
dual theory. To clarify the technical details in these sections
we describe some of them here. Equatiénl0 expresses Wwhere Sy, is the minimal surface enclosed by the lobp
((F ..(x))) as the dual of the corresponding tensdy, of  ando is the string tension. We will show in Sec. VI that
the dual theory and Eq$5.195 and (5.17) reexpress Eqgs. these two components ofnW(I") arise as two limits of a
(2.12 and(2.13 in terms of the color electric and magnetic single classical solution of the dual theory.

components of this tensor denotéd and H, respectively.

Equation(5.15 is the usual expression faf;s in terms of || THE DUAL DESCRIPTION OF ELECTRODYNAMICS
the color magnetic field in the comoving frame. ) ) ) . )
In Sec. VII we use the classical solution of the dual theory ~Consider a pair of particles with charge§—e) moving

to evaluate this expression fdf, s at long distances. Equa- along trajectorieg; (t)[z,(t)] in a relativistic medium hav-

iINW(T) =i InWSRT) +iInW-R(T"), (2.22



54 CONFINEMENT: UNDERSTANDING THE RELATION ... 2833

ing dielectric constané. The current density*“(x) then has tensor, representing a moving line of polarization running
the form from the negatively charged to the positively charged par-
ticle, namely,[15]:

*x)=e é dz*6(x—2z), (3.1 ay® ayP
r Glsw(x)= _eel"’”‘ﬁf do-f dTE Eﬁ[x—y((r,r)],

wherelI is the world line described in Fig. 1. In the usual (3.10

A, (electrig description this system is described by a La- N _ .
grangian wherey“(o,7) is a world sheet with boundary swept out

by the Dirac string. Thefl5]
. € . %2
La(]) == 7(daPg= gA)*—] "Aq, (3.2 _ g €asn G (0) i .19
2 ath '

from which on ins th | Maxwell ion . .
0] ch one obtains the usual Maxwell equations and the solution of Eq(3.8) is

If the (wave-number dependegrdielectric constane—0 at
long distances, then we see from E8.3) thatA , is strongly
coupled at long distance@ntiscreening From Egs.(3.1)
and(3.2) we have

which defines the magnetic variabléthe dual potentials
C,). [With Egs.(3.1) and(3.12 the inhomogeneous Max-
well equations become Bianchi identitigs.

The homogeneous Maxwell equations EbandB, which

. €(d,A,~d,A,)° we write in the form
j de‘A(J)=—f dxf—esﬁrdzﬂAM(z).

(34) (9“(,U,Gaﬁ)=0, (313)
where u=(1/e) is the magnetic susceptibility, now become
dynamical equations for the dual potentials. These equations
IDA exp(i fdX[ La(i)+ Ler]) can be obtained by varying,, in the Lagrangian
o
- - , (3.
TDAxi O] LA =00+ Lod)’

The functional integral definingV(I") in electrodynamics

W(T)=

1
Le(Gp,) == 74G,,G"", (314
where L is a gauge fixing term, is Gaussian and has the
value whereG,,, is given by Eq.(3.12. This Lagrangian provides
ie? D, (x—x") the dual(magneti¢ description of the Maxwell theor3.2).
W(F)zex;{ -5 § dx* fﬁ dx'V’”—>, In the dual description the Wilson lody/(I") is given by
r r €

(3.6 _ IDCexpifdX Lc(Gy,) + Lar])
= , —— .
where D ,, is the free photon propagator and where self- IDC exp(if AN Lc(G,=0) + Larl)
energies have been subtracted. Because of current conserva- (3.19

tion the result(3.6) is independent of the choice of gauge. Evaluating the functional integraB.15 by completing
Letting e=1 and expandingInW(I') to second order in the 4 square gives

velocities, as in Eq(2.4), gives the Darwin Lagrangiahp
describing the interaction of a pair of oppositely charged W(F):e—(ip,/4)fde§ﬁ(x)GaB(x) (3.16
particles[13,14: ' '

where G*A(x) is the dual field tenso(3.12 with C#:CB
3.7 determined from the solution of E@3.13, which has the
explicit form

L& 1el. . (RR
DT47R ™ 24xR|Y1V2 R2

In the dual description we consider first the inhomoge- I*m(9,CR—3pC0)=—3"uGy. (3.17
neous Maxwell equations, which we write in the form
Solving Eg. (3.17), inserting the resulting expression for
Bea[mG‘”‘ _ G*# into Eq. (3.16, and using Eq(3.11), we obtain the
B P (38 same resul{Eq. (3.6) with 1/e— ] for the Wilson loop
(3.15 defined in the magnetic description as we had ob-
whereG,, is the dual field tensor composed of the electrictained for the Wilson loop defined in the electric description.

displacement vectdd and the magnetic field vectdt: We then have two equivalent descriptions at all distances of
the electromagnetic interaction of two charged particles.
Gox=Hx, G,m=€,mD". (3.9 [Note, however, that ife—0 at long distances, then

pu— 1le—o0 and the dual potentials,, determined from Eq.
Next we express the charged particle current in Bf) as  (3.13 are not strongly coupled at long distances unlike the
the divergence of a polarization tens@aﬁv the Dirac string  potentialsA , determined from Eq(3.3).]
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IV. THE DUAL DESCRIPTION OF LONG-DISTANCE
YANG-MILLS THEORY

The basic manifestation of the dual superconducting prop-
erties of L is that it generates classical equations of motion
having solutiong17] carrying a unit ofZ flux confined in a
narrow tube along the axis (corresponding to having quark
sources ag= +=). (These solutions are dual to Abrikosov-
(gr ) ) ;

Nielsen-Olesen magnetic vortex solutigds] in a supercon-
ductor) We briefly describe these classical solutions here in
order to specify the color structures that enter into the sub-
sequent treatment of the dual theory with quark sources that
is not restricted to the classical approximation. We look for
solutions where the dual potential is proportional to the hy-

[percharge matrix/ = Ag//3:

The dual theory is an effective theory of long-distance
Yang-Mills theory described by a Lagrangian dengity; in
which the fundamental variables are an octet of dual pote
tials C,, coupled minimally to three octets of scalar Higgs
fields B; carrying magnetic color chargéThe gauge cou-
pling constant of dual theorg=27/e wheree is the Yang-
Mills coupling constani. The monopole fields; develop
nonvanishing vacuum expectation valuBg; (monopole
condensationthat give rise to massiv€,, and consequently
to a dual Meissner effect. Dual potentials couple to electri
color charge like ordinary potentials couple to monopoles. (4.5
The potential<C , thus couple to a quark-antiquark pair via a
Dirac string connecting the pair. The dual Meissner effectAs a consequence the non-Abelian terms in the expression
prevents the electric color flux from spreading out as the4.3) for the dual field tenso6 ,, vanish.
distanceR between the quark-antiquark pair increases. As a We choose Higgs FieldB; having the color structure
result a linear potential develops that confines the quarks in
hadrons. The dual theory then provides a concrete realization
of the Mandelstam—'t Hooff16] dual superconductor pic-
ture of confinement.

Because the quanta of the potenti@ls are massive, the
dual theory is weakly coupled at distanées 1/M (M being
either the mass of the dual gluon or of the monopole fjeld
and a semiclassical expansion can be used to calculate theith this ansatz the Higgs potenti turns out to be
heavy quark potential at those distances. The classical ap- )
proximation gives the leading contribution to functional in- ,,, 4 2 02\2 2 o2\2 2 B2\2
tegrals defined by, in contrast to the functional integrals w= 3)\{1][(|¢1| Bo)™+ (|42"=Bo)™+ (| #5l"~ Bo)“]
of Yang-Mills theory where no single configuration of gauge

C,=C,Y.

BlzBl(X))\7+B—1(X)(_)\G),
B,=B(X)(—\g5)+Ba(X)\y,

B3=B3(X)\2+B3(X)(—\y). (4.6)

2
potentials dominate®/(I'). The duality assumption that the + 71>+ 2>+ b3l —3B5) %}, (4.7)
long-distance physics of Yang-Mills theory depending upon h

strongly coupled gauge potentidg is the same as the long- where

distance physics of the dual theory describing the interac- $i(X)=B:(X)— iB:(X). 4.9

tions of weakly coupled dual potentias, and monopole
fields B; forms the basis of the work of this paper.

Using Egs.(4.5 and(4.6) we also find
In absence of sourceb.;, has the forn{1]

- 1 2tr>, (D,Bi)?=4|(d,—igC,)b1|>+4|(3,—igC,) ¢,|?
Lo=2t1 = 7G*'Gy,, + 5(D,B)? | -W(B), (4D e w19C, »~i9C,

+4]9,b4|%. 4.9
where

Since ¢, and ¢, couple toC,, in the same way ang; does
not couple to C, at all we can choose

¢1= o= ¢p=B—iB, and ¢3=Bj3, so that

ID#Bi:ﬁMBi_ig[CM,Bi], (42)

G,,=3,C,—d,C,—ig[C,,C,], (4.3

92?7

C, andB; are SU3) matrices, andV(B;) is the Higgs po-

2trY, (D,B;)?=8|(9,—igC,) ¢|>+4(3,Bs)%
(4.10

At large distances from the center of the flux tube, using

cylindrical coordinatep, 6, z we have the boundary con-
ditions

tential that has a minimum at nonzero vall&g that have
the color structure
Bo1=BoN7,  Boa=Bo(—As),

803: Bo)\z . (44)

C—>——H,

—>Bei6,
g’ ¢ Bo

Bs—>Bo, as p—®,
The three matrices;,—\5, and\, transform as §=1 (4.11)

irreducible representation of an &) subgroup of S(B)

and as there is no SB) transformation that leaves all three The nonvanishing oB, produces a color monopole current

B, invariant the dual S(B) gauge symmetry is completely confining the electric color flux. The line integral of the dual

broken and the eight Goldstone bosons become the longityotential around a large loop surrounding #hexis measures

dinal components of the now masside, . the electric color flux, just as the corresponding line integral



54 CONFINEMENT: UNDERSTANDING THE RELATION ... 2835

of the ordinary vector potential measures the magnetic flux 1

in a superconducting vortex. Since the dual potential is along D'ézifkmnGsm“, H'§= ng- (4.18
a single direction in color space path ordering is unnecessary
and the boundary conditiof.11) for ¢ gives Then Eq.(4.16 becomes

e 198100pC- 07 — g27iY — e2mif3). (4.12

D=-VxC+Dsg, H:—ﬁco—%+ﬁs. (4.19
which manifests the unit aZ; flux in the tube[A continu-

ous deformation in S(B) of our particular solution into a The Lagrangian densit;leﬁ(Giv) (4.17 can then be written
non-Abelian configuration will leave unchanged the path or-as the sum of an “electric”’ part, and a “magnetic”’ part
dered integralPexp(—igfC-d/)=e?""3). The energy per L,:i.e.,

unit length in this flux tube is the string tensien The quan- s

tity g2/\ plays the role of a Landau-Ginzburg parameter. Its Le(Gy,)=Lot+ Lo, (4.20
value can be obtained by relating the difference between the
energy density at a large distance from the flux tube and th&'here
energy density at its center to the gluon condensate. This

procedure giveg?’/A=5. We get from the numerical inte- Lo=— 3524- 4/(V+igC)|?+2(VB3) 2+ W,
gration of the static field equatiof&7] 3 421
_ 2
o~1.1(24B2). 413

We are left with two free parameters i)+, which we take 2.
to be ag=e%/47=m/g? and the string tension. £2=§H2+ 4|(9o—igCq) #|?+2(99B3)%,  (4.22
To coupleC,, to aqq pair separated by a finite distance

we must represent quark sources by a Dirac string eNSALL all terms involving time derivatives appear onlyds.

S .
G,, We choose the dual potentla_l to havesthe same color \ya genote byW.«(T) the Wilson loop of the dual theory:
structure(4.5) as the flux tube solution. The@;, mustalso q

be proportional to the hypercharge matrix
/DC,D$DBzexp(i fdX] Lei(Gy,) + Lor])
JDC,DpDBzexpli fdX] Lex(G,,=0)+ Lg])’

Wherer’” is given by Eq.3.10, so that one unit o5 flux (4.23

flows along the Dirac string connecting .the quark and anti-The functional integraW,«(I') Eq. (4.23 determines in the
quark. We then couple quarks by replaci@g, in Ler (4.1)  dual theory the same physical quantity \W&I') in Yang-

G.,=YG,,, (4149  We(I)=

by Mills theory, namely the action for a quark-antiquark pair
moving along classical trajectories. The coupling in
GCuv=YGCyu, (4.19 Leﬁ(wa) of dual potentials to Dirac strings plays the role in
the expressioi4.23 for Wei(I") of the explicit Wilson loop
where integrale1®r“A.(9) in the expressiori2.2) for> W(I').
_ _ s The assumption that the dual theory describes the long-
Crr=uCr= 0Lt Gy (4.18 distanceqq interaction in Yang-Mills theory then takes the
Inserting Eq.(4.19 into Eg. (4.1) and using Eq(4.10 form
then yields the Lagrangiaﬁeﬁ(Gf;V) coupling dual poten- W(T)=W.(T), for large loopd". (4.24)
tials to classical quark sources moving along trajectories
z,(t) andzy(t): Large loops means that the siReof the loop is large com-
pared to the inverse mass of the Higgs partigcteonopole
s 4(,C,—0,C,+ G/S“,)2 field) ¢. Furthermore since the dual theory is weakly
Len(GL)=—3 7 coupled at large distances we can evaluatg(I') via a
semiclassical expansion to which the classical configuration
8|(<9M—igCM)¢|2 4(3M83)2 of dual potentials and monopoles gives the leading contribu-
+ 2 =W, tion. This then allows us to picture heavy quaf&sconstitu-

ent quarky as sources of a long-distance classical field of
(4.17 dual gluons determining the heavy quark potential. Thus, in a

whereW is given by Eq.(4.7) with ¢,=d,= ¢, $3=Bs.

It is useful, as in Eq(3.9), to decomposés,,, into its AWe emphasize the distinction betwedhy(I") and the dual Wil-

lor electric componen® and color magnetic componen , .
color electric components and color magnetic components son loop defined as an averageeff /9. This dual Wilson loop

A S . o
H. S|m|I§rIy we decompos6&,;, into its polagzatlon COM-  would describe the interaction of a monopole-antimonopole pair.
ponentsD g and its magnetization componens: For large loops the dual Wilson loop satisfies a perimeter law.
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certain sense the dual gluon fiel@,, mediate the heavy role, and the example of Yang-Mills theory where neither the

quark interaction just as the electromagnetic field mediatesriginal theory nor the proposed dual Lagrangi@g con-

the electron-positron interaction. tains fermions. Here confinement manifests itself via the de-
Using the duality hypothesis, we replad®(I') by  velopment of a linear potential between heavy quark sources,

W,(I) in Egs.(2.4—(2.6) to obtain expressions fory(R) Whergas in 'the supe(symmetric models confinement mani-

andV,p, in the dual theory as the zero-order and quadratidests itself via the realization of the hadron spectrum as com-

. L B posites of the original quark variables. In the supersymmetric
terms in the expansion 6nWeg(I") for small velocitiesz, model these hadrons are massless and as usual the produc-

andz,, i.e., the interaction Lagrangidn , calculated in the tion of these particles prevents the development of a linear

dual theory, is obtained from the equation potential. However, all the gauge bosons of the dual theory
. are massive and the coupling of the pure gauge sector to

iINW(D) = — f td“_l(gli} :.21-'22)- (4.25 quark sources would produce a long-distance Iinear_ potential
t; between these sources. The common feature of Seiberg’s su-

persymmetric model, where duality is “inferred,” and Yang-
Mills theory, where duality is conjectured, is that in both
cases the dual gluons receive mass via a Higgs mechanism,
which is the essential element of the dual superconductor

) ] ) mechanism.
There has been a recent revival of interest in the role of

electric-magnetic duality due to the work of Seiberg and

Witten [7] and Seiberd8] on supersymmetric non-Abelian

gauge theories. Seiberg considered BYJ( gauge theory

with N; flavors of massless quarks. Although he did not ex-

hibit an explicit duality transformation he inferred the com-  We now express the spin-dependent heavy quark potential

plete structure of the magnetic gauge group and hence thégp (2.8) in terms of quantities of the dual theory. As a first

associated massless particle content of the dual Lagrangiastep we find relations of matrix elements of the dual field

For a certain range dfl; the dual theory is weakly coupled tensorG,, to variations ofW,«(I") that are analogous to Eq.

at large distances and hence the low-energy spectrum of th@.20 relating((F ,,)) to variations inW(I"). Consider the

theory consists just of the massless particles of the dual Larariation inW,x(I") produced by the change

grangian. Since this dual “magnetic” Lagrangian describes s s s

the same low-energy physics as the original Lagrangian, the G, (X) =G, (X)+6G,(x). (5.1)

particle spectrum, mirroring the ”.“?9”95‘? gaug(?,group, MUSErom Eqg. (4.23 we find that the corresponding variation

appear as composites of the original “electric”’ gauge de-5W (T") is given by

grees of freedom. FoN;=N;+1 the dual gauge group is eff

completely broken, the associated dual gauge bosons become 4 5Gsy(x)

massive and the quarks of the original theory are confined. Sl INWer(I') = §f dXMT«G“V(X)))eﬁ, (5.2
There are obvious differences between Seiberg’s example

where the number of massless fermions plays an essentiahere

Remark

V. THE POTENTIAL Vg5 IN THE DUAL THEORY

IDC,DHDBzexpli [dX] Le(GS,) + Loe)F(C,, ,¢,Bs)
JDC,DpDBzexpli [dX] Lei(G,) + Lor])

<<f(CM!¢!B3)>>eﬁE (53)

Using EQ.(3.10 to express the variation (ﬁlsw interms  The right-hand side of Eq(5.4) arises from varying the
of the variation of the world shegt“(o,7), we obtain boundary of the Dirac sheet. The variation of the interior of
the sheet produces a contribution proportional to the mono-
pole current™"

4

6GS (x)
[ x (Gmr0))un

e thd
= — S€ T
2 MVNa "

0z
=023 —{(G""(22)))err|- (5.9

1770 =04G (%) (5.5
A

oz}
52 2(GH(20) e

[See Eq.(A52) of Ref.[1] for details] This gives no addi-
tional contribution to Eq(5.4) since the monopole current
must vanish on the Dirac sheet, so that no monopole can pass
through the Dirac string connecting the charged particles.
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Using Egs.(5.13 and(5.14) in Eq. (2.12 gives the fol-

the consistency of a theory containing both electric chargelwing expression fon[&9in the dual theory:

and monopole§l5].
Definingdz*=dr9z"/ 97, we can then write E¢(5.4) as

[ o

s
6G,,,(x)

(GO e

e f (828d2(G o 20) et

— 625d2((Ga(22))Ven), (5.6
where
R 1 \
G,LLV(X)EEE,U.V)\(TG (T(X)' (SW
Choosing a variation that vanishes on the curye we ob-
tain
' 4 ([ 6S%(z1) =
SIWe1)= = 56 [ 5228, 2))er, 59

where §5*7(z,) is given by Eq.(2.19. Equations(5.2) and
(5.8 can be written as

SiNW.(T) 4 .
W:—ge«Gw(Zl)»eﬁ
e OlINWeg(T)
__ESMVXUTGMSTJ-)! (59)

which is the dual theory analogue of E.20. The duality
assumption(4.24 then gives a corresponding relation be-
tween matrix elements:

(Fulz)=s(Gu@er. (610

Equation(5.10 gives a correspondence between local quan
tities in Yang-Mills theory and in the dual theory. The utility

2 4 ej o N N R
j=1§Hjsi'(<<H(Zi)>>eﬁ_viX<<D(2j)>>eff),
(5.15

wheree; =e ande,= —e. Note that((H))es—v; X ((D))es
is the color magnetic field at thgh quark in the comoving
Lorentz frame,V{'sY the magnetic interaction of this field
with a quark having @ factor 2. The fact that heavy quarks
interact with a Dirac magnetic moment is a consequence of
the (1Lm) expansion[2] for the qq Green’s function upon
which this analysis is based.

To evaluateVpomas(2.13 we note from Eq(5.12) that

mag_ _
LS —

e
gz | S BF (2

4 e oo
:§2—nﬁfdt31-p1><<<D(Zl)>>eff' (5.16

and obtain

2

1
VThomas™ — EJZ]_ 3m

g

-S;-(0;X{({D(Z)))er)- (5.17)
]

The expressioni5.17) is the contribution to the potential due
to the precession of the axis of the comoving frame. In Ap-
pendix A it is shown that Eq(5.17 can be written in the
usual form

1 1dV,. .1 dV.
VThomaszz_mlﬁd_RSl'lMXR_z_mzd_RSZ

- -

. sz ﬁ
(5.18

Equation(5.18) is essentially a kinematic relation and is in-
dependent of the dynamics of Yang-Mills theory. On the
other handv['§9(5.15 depends upon the dynamics and can-
not be expressed solely in terms of the static potential.

To expressd/sg (2.17) in terms of quantities involving the

of electric-magnetic duality is that for large loops semiclas-dual theory we need the following:

sical configurations dominate the right-hand side of Eq
(5.10 in contrast to the rapidly fluctuating configurations of
Yang-Mills potential that contribute to the left-hand side.
Equation(5.10 breaks up into its electric and magnetic com-
ponents

4
~((Fr))= 3€mn ((H et (5.13
4
((Fo))= §<<D/>>effv (5.12
or, equivalently,

(Fo)) = ((Her 513

. 4
((Fmn)= §€mnk<<Dk>>eff- (5.149

iez{(<|3/0(zj)|3k0(zj’,)>>— <<'A:/o(2j)>><<'eko(zj’r)>>}

_ iez S((HK(Z))))ett

3% ot (2 (5.19

To obtain Eq.(5.19 we use Eqs(2.21) and (5.13 and the
equation

S((Hi(Z))err  €/mn I(HK(Z)))esr
8Goz) 2 8S™(z)

(5.20

[Compare Eq(5.9).] Using Eqg.(5.19 in (2.17), we obtain

12 & ‘
f dtVSS:_E 2 —myTSJFjdthj,dt S]/SJr

pir=1 M
] |

J

f 5<<Hk(Zj)>>eff

3 otte (2] (5.2
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The factor muItipIyingSj/S}(, is symmetric ink and #* and 9(0,Cp—05C,)=—10 GSB-Fj?;O”, (6.2
hence the terms in E@5.21) wherej=]' involve the com-
bination ) ) 1 oW
(0,~19C,)°b=— 7 5= 55 (6.3
S’s+ss 1
o Z‘Sk/' and
Equation(5.21) then becomes 2p _ _ E ﬂ
2 #By=—7 58, (6.4)
, O(HW(Z))))ert
f dtVss=— 3 f dtf dt S H(IZ )e where the monopole currefif®"
4( e? )J dtf 4 ey BHZD e = —3i9[¢*(0u—igcﬂ)¢—¢(3M+igCM)¢*]-(6 5
3 mpym, Iy r, SZ 5HS/(22) ’ ‘

As a result of the classical approximation all quantities in

(522 brackets are replaced by their classical values
The first term in Eq(5.22 is a spin-independent velocity- _
independent contribution to the potential proportional to in- {{GuuX)))etr= G un(X). 6.6

verse square of the quark masses while the second term i,q alectric and magnetic components of E&j6) are
Eq. (5.22 yields a spin-spin interaction of the expected

structure. 2 2> 5 xTon
D(x =D(x), H(x =H(x), 6.
Finally consideVpawin (2.15 and note that {DOONer=D ), ((HONeir=H) 6.7
" W\ — g _ whereD andH are the color electric and magnetic fields,
(D" ou(z))) = 0" ((Fuu(z))- (523 respectively, given in terms of the dual potentials by Eq.
The derivative of the Wilson loop occurring in the definition (4.19.
(2.10 of ((F,,(x))) yields the Yang-Mills potentiah,, ap- We choose the Dirac strmg to be a straight linecon-
pearing inDVF . Using Eq.(5.10 we obtairt necting the quarlés. As X _ approaches the string,
. . ?(X)—)O, CL(X)—C,(x), saU_sfymg Eq. (3.17). As
Voo dt=— = — v/ ) Xx—o, $(X)—By, C,(X)—0, in contrast with the large
f parwin At mlzf jdx (G0 e distance boundary condition for the infinite flux tube. We

(5.24 can then choosé(x) to be real so that

For an alternative expression f¥p,min based on Eq(A7) d(x)=B(x), j5*(x)=—6g°C,B>. (6.8
of Ref.[4] see Eq.(B3) of Appendix B. o
Consider first the case of static quarks=v,=0. Then

VI. THE CLASSICAL APPROXIMATION the scalar potential, and the color magnetic field vanish,
FOR Vo(R) AND Vyp and L reduces taCg Eq. (4.21) that yields the static poten-
tial

In the classical approximation E(4.23 becomes

HINWegr= — f dxLex(GS,), (6.1) Vo(R)=— J dxLo, (6.9

s . , where £, is evaluated at the static solution of Ed6.2)—
where Le(G,) (4.17) is evaluated at the solution of the (g 4 \which have the following form in this case:
classical equations of motion;

~Vx(VxC)—6g?B2C=—VxDs, (6.10

3Notice that((F ,,(2))) depends not only on the pointout on the . 2\
entire Wilson loop. So in order for E¢5.23 to make sense one has (—V?+g?C?)B=— ?B(ZSBZ-F 7B§— 3233),
to use the appropriate definition of derivative. Given a functional 6.11)
(I’[vab] of the curvey,, with endsa andb, under general regularity
condition the variation ofb consequent to an infinitesimal modifi- and
cation of the curvey— y+ 8y can be expressed as the sum of
various terms proportional respectively &a,sb and to the ele-
mentséS,,(x) of the surface swept by the curve. Then the deriva-
tives dldaP,dldb? and 6/6S°7(x) are defined by the equation
b =P/ 3al sa+ P/ b bP+ [ ,657(x) 6P/ 55 7(x). In our  where we have used the explicit form, E¢.7), of W.
case this would amount to put naively  To solve Eq.(5.34) it is convenient to write
9l az"PE([2dx*A (X)) =~ PF' (f2dx A, (X))A,(2) and o
algzf [ZAXHA ,(X) = A, (2) P (JZdX A, (X)). C=CP+c, (6.13

5 4N 2 2 2
. v B3:—?Bs(7B +9B5—16Bp), (6.12
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whereCP is the Dirac potential satisfying the static form of pendence of, B, andB; then results from the explicit time

Eq. (3.179: namely, dependence oR. Furthermore, sincgdx(, generates the
. o ap I static field equations, it is stationary about the solution to
—VX(VXC¥)=-VXDs, (6.14  these equations and remains unchanged to second order in

L o . _ the velocities. The velocity dependence in the potential then
with Ds given by Eq.(4.18. In cylindrical coordinates with  comes from the “magnetic” contributiori,, which depends
th_e+z /3XIS along the line joining the two quarks at quadratically upomoé, doB3, andCy, all of which are first
z=*R/2, Eq.(3.10 gives order in the velocities. The scalar potenty satisfies the

- R i i f he ti f B2
Be= e 0(z—RI2)— 0(z+RI2)}I5(x)8(y), (6.19 equation, obtained from the time component of B2,
26 _anlR2C. V.4
which describes the polarization vector for a line of dipoles. V°Co=69"B°Co=V-Hs, (6.2

The solution of Eq(6.14) is valid to first order in the velocities. With the Higgs field

éb=p.cP (6.16 B(x) already determined by the static equations, (B1) is
a linear equation for the scalar potential, givi@g to first
where order in the velocity. The velocity dependent potentay, is
then given by
e z—R/2 (z+R/2)

“amp \/p2+(Z—R/2)2_ Jp?+(z+R2)? )’ VVD=—fd>?£2, (6.22
(6.17)

D

representing the magnetic color energy due to the fields fol-
lowing the moving quarks.

For smallR the potentialVyy approaches the velocity
dependent part of the Darwin potenti@.7) (multiplied by
the color factor 4/8because for smaR the color magnetic

field I:|(>Z) becomes the ordinary Biot-Savart magnetic field.

Then

and Eq.(6.10 becomes the following equation fer

(V2—-69°B?)c=692B2CP, (6.19  AsRincreases the color magnetic field lines are compressed
so that for large separatioy,, becomes linear ifiR. As an
where example consider the case in which two equal mass quarks
91 3 2 move in a circular orbit of frequencyw. Then
V2f(p,2)= _<_ —(pf)) +—. (620 vi1=—v,=(wXR/2), sothatw is proportional to 1R and
ap\p dp 0z Vyp reduces to

Equationg6.11), (6.12, and(6.19 are three nonlinear equa- 1
tions for the static configuration, B, andBs with boundary Vyp=— El (R)w?, (6.23
conditions:c— —CP, B—B,, B;—B, at large distances;
c—0, B—0 for x onL. These equations have been solvedwhere
[19] with the following results:

The monopole current in E¢6.10 screens the color elec-
tric field produced by the quark sources so that as the quark-

antiquark separation increases the line®adre compressed

from their Coulomb-like behavior at smaf to form a flux  and where

tube, and thu¥,(R)— oR at largeR. Both this smalR and

this largeR behavior of the potential have their common A=0.210, (6.29

origin in the evolving distribution of the flux ob whose . . .
divergence is fixed by the color electric charge of the quarksdetermmed numericallfl] from Eq. (6.23. By comparison

s o o . i we note that the moment of inertia(R) of an infinitely thin
(V-D=V-Dg) and whose curl is determined by the mono-

_ > flux tube of lengthR is
pole current. Thus, the dual theory already in the classical

approximation gives a potential that evolves smoothly from 1

the largeR confinement region to the short-distance pertur- I'(R)= E(A’R)RZ, (6.26
bative domain. This shows how the dual theory realizes the

Mandelstam—'t Hooft mechanism. It does not describe QCDQyith

at shorter distances where radiative corrections giving rise to

asymptotic freedom and a running coupling constant are im- A’ =o/6. (6.27)
portant.

To calculate the terms ilnW, that are quadratic in the The comparison of Eq(6.27 describing an infinitely thin
guark velocities we solve the field equations for movingflux tube with Eq.(6.25 gives a quantitative estimate of the
quarks. To first order in the velocities the static field distri-increase of the moment of inertiéR) of the flux tube due to
butions follow the quark motion adiabatically. The time de-its finite thickness.

_ 1
lim I(R)~§(AR)R2, (6.24)

R— o0
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We now compare these results g+ V\p=—L, of the (2) The Lagrangian densit{q (4.17) describes the cou-
dual theory with the “modified area law” moddB] Eq. pling of the Dirac string to Abelian configurations of dual
(2.22. In the dual theoryilnW(T') is replaced by potentials, and the functional integre#.23 for We«(I') is
iINnW,«(T"), given in the classical approximation by E§.1).  restricted to such configurations. The extemglpair has in
This gives in the limit of short distances the perturbative€effect selected out a particular sector of the dual theory rel-
expression Eq(3.7) so that the short-distance limit of the €vant to theqq potential. As a consequence the resulting
dual theory is the short-range componémwSR(I'). The potential should not be very sensitive to the details of the

long distance limit ofilnW(T) is fixed by the values of dual gauge group. , , ,

o and A. Replacing A by A’ in this limit yields (3) The Dirac string in the classical solution was a straight
iINWLR(T). This shows thaiInWLR(I") describes a zero- line connecting thejq pair. This gave the configuration hav-
width flux tube. Aside from this difference we see that the'"9 the minimum field energ§The flux tube corresponding

“two components” of Eq.(2.22 arise as two limits of a to a given string position is concentrated in the neighborhood

inale classical solution describing the evolution of th of that string since the monopole current vanishes there. To
single classical solution describing e evolution of e P-4, 4t the contributions to the potential arising from fluc-
tential produced by compression of the field lines with in-

X tuations of the shape and length of the flux t{iB&] we must
creasingR. o integrate over field configurations generated by all Dirac
As the simplest example of the implicationsbjp, We  gyrings connecting theq pair. This amounts to doing a func-

add relativistic kinetic energy terms 0 (Vo+ Vyp) 10 ob- tional integral over all Dirac polarization tenso@, (x).
tain a classical Lagrangian, and calculate classically the eNsimilar integrals have recently been carried out blglyAkhme—
ergy and angular momentum qf circular orbits, which are dov et al. [10] in a somewhat different context. The func-
those that have the largest angular momendufor a given

) : : tional integral oveiGS (x) is replaced by a functional inte-
energy. We find20] a Regge trajectory as a function of ny L
E2 ?ﬁ/at for Cl[arg]e E2 g%econﬁes I)iznear with slope gral over corresponding world shegt$( o, 7), multiplied by

. an appropriate Jacobian. As a result they obfai] an ef-
a'=J/E?=1/8s(1—Alg). Then Eq. (6.25 gives : :
a'~1/(6.37), which is close to the string model relation fective string theory free from the conformal anomg®g].

&' =1/(2m ). This comparison shows how at the ClassicalSuch techniques when applied in the context of the dual

. X heory should | rr nding effective string theory.
level a string model emerges when the velocity dependencte eory should lead to a corresponding effective string theory

of the qq potential is included. The fact that the difference

between the two expressions fet is small indicates that the

infinity narrow string may be a good approximation to the |n this section we evaluate the expressionVgp, given in

finite-width flux tube forms between thgq pair. Sec. V using the classical solutions to the dual theory de-
To summarize(1) The potentiaVy(R) is determined by scribed in Sec. VI. We consider separately the four contribu-

Egs.(6.9) and(4.21) evaluated at the static solutiof2) The  tions toVgp [see Eq(2.9)].

potentialV\ is given by Eqs(6.22) and(4.22 evaluated at (1) Vrhomas Equations(5.17 and (5.18 with V,(R) de-

the solution of the classical equations to first order in thetermined by Eq(6.9).

velocity. The resultant integrals have been calculated nu- mag. ; ; 3 3 }

merically [1] and determine  four functions | (Z)dvgs t.hE_quzlatlon.(S.lla Iwg <<5|>_»|>eﬁ andl«H»Eﬁ e

V.(R), V_(R), VL(R), and V|(R) that specify uniquely P'a¢c€d by heir classical vaiues andH, hamely

VIl. THE CLASSICAL APPROXIMATION FOR Vgp

the terms in the potential proportional to the velocity 2 4
squared. Explicit expressions for these functions are given in Vs ig. “(H(z)—v:xXD(z)), (7.0
Ref. [1]. Fi3m S .

with H —Jj x D calculated to first order in the velocity. To
Remarks this order the static field configurations follow the motion of

(1) In the absence of quark source@ij), Lo de- the quarks adiabatically and we find from, £4.19),
scribes a system of massive dual gluons and monopoles. Be- . . . . . - I
cause of the dual Higgs boson mechanism there are no un- H(Z)—v;xD(z)= _V(CO(X)_C(X)'”(X))|>?=2j’
wanted massless particles in the spectrum. The massive (7.2
particles of the dual theory cannot be identified with the
massive particles of Yang-Mills theory, since the dual theor))"’here
just describes the low-energy spectrum. These masses deter- - -
mine rather the scal@-;=1/M above which the dual theory - o Uitvp -

. —F . . . = (7.3
should describe thgq interaction. Since a quark-antiquark
pair moving in an orbit of radiuR can only radiate a particle
of massM if 1/R>M, in the domairR>1/M where the dual
theory describes Yang-Mills theory no dual gluons or mono- “The Dirac string of the dual theory, in contrast to that of electro-
poles are emitted. The glueballs of Yang-Mills theory, on thedynamics, is physical. The vanishing of the Higgs field on the string
otherhand, are described by closed loops of color flux, obproduces a vortex and an associated flux tube containing energy.
tained by coupling the dual potentials to closed Dirac stringsThis vortex cannot be removed by a gauge transformation since
and finding the corresponding static solution of the fieldsuch a transformation leaves the magnitude of the Higgs field un-
equations of the dual theory. changed.
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and

ag e
Va(R)=31 gz~ 3, g,LPc-(p:2)] po]- (7.10

z=R/2

Rx (dR/dt)
R? '

0= (7.9

The first term in Eq(7.10 is the perturbative contribution to

- s , ) _ V4(R) arising fromCP and the second term is the nonper-
In Eqgs.(7.2—(7.4), (v1+v,)/2 is the instantaneous velocity y, hative part that behaves likeRUfor large R and that

of the origin of the coordinates that we have chosen as thg,qyid not be present in the simple flux tube picture of Buch-
midpoint of the lineL connecting thegq pair andw is the  muller.

instantaneous angular velocity bf [The motion of theqq Finally addingV"29to Vrpomasgives the complete expres-

pair alongL does not contribute to E(ﬁ72)] sion for the Spin orbit Coup“nyLS:
We can understand the res(ht.2), as follows. The left-

hand side is the color magnetic field at the position of the 1dV, Vi(R][S -Rxp; S,-Rxp,
jth quark in the Lorentz system in which it is instantaneously Vis= RdR = o o2
at rest. The magnetic field in this comoving system is deter- my mz

mined by the gradient of the corresponding dual scalar po- / 2 Bul & Bul
mec by "he gracient ponding dual scaar p V3(R)[ S, Rxpy  S1-RXp,
tential, namelyCy— C-v. Indeed Eq(7.2) remains valid be- + R — , (7.11)
yond the classical approximation with the replacement miM; mimy
Co—((Co)ets C—={(C))eit- where
ChoosingR to lie along thez axis and using Eqg6.21)
and (6.10 for C, andC we find , , dVy
° Vi(RI=V3(R) - & (7.12
. - . dR
Co—C-v=¢ey HC—(Z*P)* (7.9 Equation(7.11) expresses the spin-orbit potential in terms of
the static potential and a single independent function
wherep, ¢,z are cylindrical coordinates, and V5(R) determined by the dual scalar potent@d—éﬂ in
the comoving frame. This result f&f 5 satisfies identically
C,(Z,p)ZCB(Z,p)-I-C,(Z,p), (7.6 the constraints of Lorentz invarian¢é.12 (the Gromes re-
lations [24]). Furthermore, sinc&/;(R)— 1/R for large R,
where we have
ep 1 1 ) dVy
CP(z,p)= , limVi(R)~— == =—o0, (7.13
(2= 7R Vp?+(z—RI2)? \p?+(z+RI2)? R dR
(7.7

which is the value given by the flux tube model for Rl
and wherec_(z,p) satisfies the equation (3) Ves: Equation(5.22 with 5((ﬁ(21)>>eﬁ/5ﬁs(2j') re-
placed by&ﬁ(zj)léﬁs(zj,). Since, to first order in the ve-
(7.8 locity, C is determined byﬁs alone [see EQ.(6.10] the
aClat term inH does not contribute to its variational deriva-

The solution of the linear integral equati¢i.8) for c_  tive with respect tcHs and Eq.(4.19 gives
determines, via Eqg7.2) and (7.5 the nonperturbative part

- 2 dc
2_ 2R\« —Rra2R2D _ 27"
(V°—69g°B“)c_=69°B“C=- R77"

of the color magnetic field in the comoving Lorentz system. OH(x) 5 SR S(l—t") =T 0Co(x)
From Egs.(7.6)—(7.8) it follows that for any fixed value of SHg (x) % (x=x")o(t=t") - KSHg (x')
z andp this field vanishes like R for large qq separation. (7.19

The vanishing of this field at largR is in accordance with

the observation of Buchmullg¢23] that in a flux tube picture  The quantitysC,/SH in turn satisfies the equation obtained

the color field in the comoving frame should be purely elec-hy taking the variational derivative of E¢6.21) with respect
tric. However, for any finite value of theq separation there I:IS: namely

is a color magnetic field in this system, and E¢&1)—(7.8)
give 6Co(x
.o . (Vi-69°BY) 55 O((x)’)
mag. V2R [ [S1:(RXpy) S (RXpy) ¥
VLSg: 2 - 2
R m3 m;

=V, 8(x—x")8(t—t").
(7.15

o . The double integral in E(5.22 then becomes a single in-
S;-(RXpy) S+ (RXPpy) } (7.9  tegral ovett of the static quantityH (z;)/ sH«(z;:). We em-

m;m; mym;

+

phasize that this simplification obtains only in the classical
approximation we are now considering.
where Equations(7.14 and(7.15 give
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OH,(X) Sk S(Xx—X)+V V,G(x,X'), (7.16
— = X—X x,x"), (7.
Mo (%) k/ KV,

where the Green functioB(x,x’) satisfies
(—V2+69?B2(X))G(X,X")=8(x—x').  (7.17)

G(x,x') is the potential ak due to a point charge af’ in
presence of the monopole charge dengf§" (6.8) carried
by B()Z). Since B()Z) approaches its vacuum vallg, as
X—®,G vanishes exponentially at large distances: i.e.,

N e—M\;—§'|
G(X,X") .~ ===, (7.18
x—o  Ag|x—X'|
whereM is the mass of the dual gluon,
|\/|2—692|32—6—|32~zg (7.19
4 o’ )

S

and where we used the result~24BZ, obtained from the
energy per unit length of the static flux tube solution. Using

a valueas=0.37 obtained from fitting thec andbb spec-
trum [1] we obtainM ~640 MeV.
Separating off the Coulomb contribution ® we have

1
G=———>—+GP, (7.20
4ar|x—x|
whereGNP satisfies the equation
69°B2(x
(—V?+69°B?)GNP=— ge—(e). (7.21)
4ar|x—x']|

Inserting Eqs(7.16 and(7.20 into Eq. (5.22 gives

Vgg= VN4 U (7.22
where
2 -
VSpm 3 mym, {(51 52)5(21 Z,)
+(Sl x’—zz} (7-23
2 e2
4
1/m
Ves =32 8m2V \Y i
(7.29

The potentialV" is the same as previously obtainfgtl].

At small R it approaches the usual perturbative spin-spin
interaction, and at long distances it is exponentially damped Vgp=V, g+ Vi+
due to screening by the monopole charge. The spin-

independent contnbutlomfl’m of Vg5 depends upotR via
the dependence in Eq7. 2]) of GNP on B. It was not in-
cluded in Ref[11]. A

_ (4) Vpamwin: Equation(5.24 with ((G,,,))er replaced by

G,,, namely,
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f VDarwm

To evaluate Eq(7.25 we note from Eqs(3.11) and (4.16
that

2 —z-f dx*d"G,,(x). (7.29

(7.2

wherej,(x) is the quark-antiquark current. The monopole
current does not contribute WWG,,, andVpgpi, becomes

f VDanNm

9"G(X) =] ,(X),

2 8mf dxj ,(X)

__y S _

Omitting  self-energy terms  we  insert p(z;)
=—ed(2,—2,),p(2,) =e8(z,—7;) into Eq. (7.27 and ob-
tain
e/1 1\ . .
VDanNinZE _i—i_ m_g (21— 2,). (7.28

In Appendix B we show that the alternate for(B3) for
Vpamwin feduces in the classical approximation to the same
expression7.28).

There are two then spin- independent terms proportional to
(1/m2+1/m3). The first is Vl’m (7.24. The second is
VDaann (7 2&

To summarize: In Ref. [4] the coefficient of
(1/m2+1/m3) in the velocity dependent potential was writ-
ten as

| V2(Vo(R)+ Va(R))
T (7.29

which definesv,. Equations(7.24) and (7.28 give

V2V,=VA/5A(R) — 2V V' GNX, X 3571

(7.30

whereVyT(R) is the nonperturbative part of the static poten-
tial so thatV, is determined by the nonperturbative dynamics
of Yang-Mills theory. The first term in Eq7.30 is the color
electric contribution tov, and the second is the color mag-
netic contribution.

The spin dependent potential is then given by

2

8| mz "z VIVo(RI VAR

(7.31

with V5 given by Eq.(7.10 and(7.12), V" by Eq.(7.23
andV,(R) by Eq.(7.30.

It should be emphasized that to account for the effect of
fluctuations of the flux tube on the potential we must return
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to Egs.(5.19, (5.22, (5.24), and (5.3 that express/qq in SinWee(I') 4 . .
terms of dual potentials, independent of the classical ap- 55——»:§<<D(X)>>eﬁ- (A3)
proximation. s(X)

Now, using the fact that
VIIl. CONCLUSION

<

We have obtained an expression for the heavy quark po- 1Ds(x)=—elé(x—2zy), (A4)

tential Vg in terms of an effective Wilson loopVex(T") . .
determined by the dynamics of a dual theory that is weaklyvhereV,=d/dz;, we have
coupled at long distances. The coupling of the dual variables

to heavy quarks is then uniquely specified, with spin and dVg(R) s e
oL : R =R-VVq
relativistic effects accounted for unambiguously to order drR
(1/mass quark), the highest order for which the concept of ]
a potential makes sense. =§f d)—z&lnweff'ﬁ B(3)
The classical approximation gives the leading long- *S)Z 1=s

distance contribution toWg(I') and yields a velocity-

dependent spin-dependent heavy quark potential that for

largeR becomes linear iR and that for smalR approaches

lowest-order perturbative QCD. The dual theory cannot de-

scribe QCD at shorter distances, where radiative corrections

giving rise to asymptotic freedom become important. At such

distances the dual potentials are strongly coupled and the

dual description is no longer appropriate. _ Now by symmetry((D(z;)))er evaluated at the position of
As a final rem_ark we not_e_that the dual_ theory is a3V 4 quark must lie alon@. Hence,

gauge theory, like the original Yang-Mills gauge theory.

However, the coupling to quarks selected out only Abelian 4 . .

configurations of the dual potential. Therefore, our results for - §e((D(zl)>)eff= R

theqq interaction do not depend upon the details of the dual

gauge group and should be regarded more as consequences . -

of the general dual superconductor picture rather than of ogduation(Al) then givesa, = —(R/my)(dVo/dR), so that

particular realization of it. The essential feature of this pic-EQ- (A2) gives Eq.(5.18.

ture is the description of long-distance Yang-Mills theory by

a dual gauge theory in which all particles become massive APPENDIX B

via a dual Higgs mechanism.

. A4 L -
——eR [ GXUBENerdlh—7)

4 N -
= —ezR((D(Z))erR. (AS)

A

iR (AB)

Here we begin with an alternate form f¥pin Where

A, does not appear explicitly.
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APPENDIX A

ts . ,
Notice that =ft_ dtVZVO_'ezfr_dtfr_dt'[«FOk(zj)FOK(ZJ )))
! ] ]

. de . . —((For(Z)){(FO(Z)HN]1. (B1)
LA a1 ((Fadz)){(Fz)))]
) Equation(5.12 and the relation betweefs*” and variations

S .
can be interpreted as the acceleration ofjtiequark so that of Gy, give

Eq. (5.17) can be rewritten s
e dtJ dt’ —5——((F%(z,
f[‘j Fj 530k(zj ) << ( J)>>

_ 4€? , 5((Di(Z))))eft
_Tfrjdtfrjdt oDs|z) (B2

2
1 - -
Vhomas™ — Ejzl Sj : (Uj X aj)y (A2)

which is the usual expression obtained from semiclassical
considerations. To expre¥5yomasin terms of the derivative Then using Eq(2.21) with z, replaced byz; ande by —e
of the static potential we first note from E.9) that we obtain
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f dtVpamin= > f dtV2Vy/8m?
J

4e? , 1 5(Di(z)))er
hd frjdtJFjdt — ,

mj  dDg(Z])

(B3)

which gives a second form foVp,win- The classical ap-
proximation to Eq.(B3) is obtained by replacing

5<<5(Zj)>>efr b 5(21')
3Ds(z]) 3Ds(z))

o(t—t").

This yields the expression

2 2
1 4 e

\V; e — V3 R)—3 PN
Darwin jzl 8mj2 of 3 mj2 5Dsk(zj)

M. BAKER et al.

Following the same reasoning that led to E45) we obtain

4, 5D(zy)

—e — =V2VNP(R).
3 5D5k(21) 1vo ( )

(B5)

[There is no perturbative contribution to the left-hand side of

Eqg. (B5).] The second term in EqB4) then cancels the
nonperturbative part of the first term. EquatiéB4) then
becomes

(B6)

which coincides with Eq(7.28.
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