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Spontaneous annihilation of high-density matter in the electroweak theory
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In the presence of fermionic matter the topologically distinct vacua of the standard model are metastable and
can decay by tunneling through the sphaleron barrier. This process annihilates one fermion per doublet due to
the anomalous nonconservation of baryon and lepton currents and is accompanied by a production of gauge
and Higgs bosons. We present a numerical method to obtain local bounce solutions which minimize the
Euclidean action in the space of all configurations connecting two adjacent topological sectors. These solutions
determine the decay rate and the configuration of the fields after the tunneling. We also follow the real time
evolution of this configuration and analyze the spectrum of the created bosons. If the matter density exceeds
some critical value, the exponentially suppressed tunneling triggers off an avalanche producing an enormous
amount of bosong.S50556-282096)05116-§

PACS numbegs): 12.15.Ji, 11.15.Kc

I. INTRODUCTION is as follows: Matter of high density is described by a chemi-
cal potentialu, which is, at temperature zero, the energy up
Baryon- and lepton-number-violating processes in thego which the Fermi levels are filled. A transition with
electroweak theory have been the subject of many recemlfNcg = 1 creates a fermion which has to be placed into the
investigations. They are due to the anomaly of the baryoriirst free level, i.e., it has energy. This energy must be
and lepton currents, discovered by 't Hofiffl, and the non- added to the potential energy of the gauge and Higgs bosons
trivial topological structure of the electroweak theory. Fad-[13,14:
deev[2] and Jackiw and ReblB] found that the potential
energy is periodic in a certain functional of the field, the Vo= Vport #Ncs. (11
Chern-Simons numbeN g, so that instead of one unique
vacuum there exist infinitely many field configurations with The extra term causes the previously degenerate vacua to
zero potential energy, classified by integer valuedlgg. become metastable and the height of the barrier to be re-
Each transition between vacua witfNcs=1 is accom- duced(see Fig. 1 wher&/, is plotted for a negative.) so
panied by a change of the baryon and lepton number of onthat the tunneling probability increases. At a certain critical
unit per fermion generation. The vacua are separated by arflue ., the barrier disappears completely and the states
energy barrier, called the sphaleron barrjé;5], whose at integerNqs become unstable.
height is of the order of 10 TeV. Under ordinary conditions The decay rate of a metastable state per volume can be
the barrier can only be overcome by tunneling, but the tuncalculated by the semiclassical WKB method. Following
neling probability is suppressed by the factor Coleman [15], it is expressed in the formI'/V=
exp(—2S,)~10 1% with  the instanton action B exp(—A). Inorder to find the exponerit one has to solve
Sins=8m?1g%, g~0.67, which means that the process prac-the classical Euclidean equations of motion, i.e., one has to
tically never happens. find the classical motion of the system in the potential
Under special conditions, however, the fermion number— V{5, from some metastable ground stéteg., a state with
violation rate might well be significant. For example, a largeN-s=0, as indicated in Fig.)1to a configuration with the
temperaturdof the order ofm,) allows the system to cross
the barrier classically6—8]; this process might have played
a key role for the generation and conservation of the baryon Vit
asymmetry in the early universe. The energy which is nec-
essary to overcome the barrier can possibly also be provided
by the incoming particles in a collision if the particle energy
is of the order of 10-100 Tey9-12. Hence fermion num-
ber violation might be observable at future supercolliders.

escape point

tunneling process (“bounce”)

In this paper we will investigate a third possibility to ob- A A AL
tain fermion number violation at a reasonable rate, namely in 0 . N
a surrounding of high density mattgt3,14. The mecha- o8
nism of how the suppression of the transition rate is reduced
B )
*Electronic address: diakonov@Inpi.spb.su FIG. 1. Schematic plot of the tunneling process between two
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same potential energy which is on the other side of the baref the barrier which belongs to the path in Euclidean space
rier. We call this configuration “escape point.” The expo- with the least action. The potential energy of the system after
nentA is twice the action of this motion, minimized over all the tunneling is greater than the energy of the metastable
possible escape points. In Euclidean space, after reaching theinimum in its current topological sectg¢see Fig. 1. The
escape point the system would move back the same way difference| 1| is the energy of the annihilated fermion which
the original ground state, so that this process is called “thdS now at the disposal of the boson fields.
bounce”[l5]‘ Hence the bounce represents the minimum of The field Configuration then performs a real time motion
the Euclidean action in the space of all possible paths from & Minkowksi space. Knowing the escape point field con-
metastable ground state to the other side of the barrier. Théguration and the field velocitigsvhich are zerp one has to
prefactorB basically contains zero mode factors and the desolve the standard Cauchi problem, which we perform by
terminant of small fluctuations about the bounce, but in thisstraightforward integration of the second-order differential
work we will not be concerned with it and only compute the equations. Usually the system will fall towards the minimum
exponentA. in the sector of the escape point, and eventually settles at that
It turns out that the chemical potentiénd hence the Minimum. The original energyu| of fermions from the
matter densitywhich is needed to obtain a reasonable decay-ermi surface is converted into classical radiation of bosons.
rate is quite large, so that it can hardly occur under normal 3+1 dimensions the amplitude of the outgoing wave
circumstances. Nevertheless, the results may still be relevaRfickage falls off as 1/s0 that the generally nonlinear equa-
because the decay rate is closely related to the rate of barydi@ns of motion can be linearized at large timgsand the
and lepton number violation at high particle enerdigg].  outgoing fields take the form of spherical waves. In order to
Also, to our knowledge, this is the first investigation of the evaluate the particle content of the multiboson final state one
metastable vacuum decay in a real theory, beyond the sas to carry out a Fourier transformation of the fields after
called thin wall approximation; and since it is a hard techni-their amplitudes got small enough. At this point we basically
cal problem, our numerical procedure might be useful infollow the work of Hellmund and Kripfgang21] (see also
other applications, ranging from spontaneous decay of hea?2l), who took a slightly disturbed sphaleron as starting
nuclei to inflationary scenarios of the early universe. configuration, let it evolve in real time and analyzed the re-
In principle there are two different possibilities to find the sulting multiboson state. Our main modifications are the re-
bounce numerically: Either one solves the equations of moPlacement of the sphaleron by the escape point of the bounce
tion by some initial value method like Runge-Kutta, or one@nd the introduction of the chemical potential according to
considers the action as a functional of the fields and miniEd. (1.1).
mizes it in the space of all field configurations. The first In certain cases, however, when the fermion density is
method seems to be unfeasible because the potent4}, arge enough though less than the critical dengify;, the
has no lower bound so that a slight deviation from the correcfe_al time eyolut|on of the fleI(_js. is utterly different. The fields
path will cause the system to fall into some abyss of theVill not quiet down at the minimum but “splash” over the
potential — V. We have therefore decided to take the secnextbarrier leading to a still lower minimurtat Nes=2 in
ond route. For the numerical implementation of the minimi-Fi9- 1, and so forth. As a result the fermion sea will be
zation we use a discretization in space and time, based onGPMPletely “dried out,” and a huge amount of energy will
procedure presented by Adler and Pifdi6], so that the be_ released in form of boson radiation. Naively, one Wou_ld
action becomes a function of the values of the boson fields 4PNk that such an avalanche happens only when the fermion
the grid nodes. At each step one considers the action as%gnSity exceeds the critical,; when the system is allowed
function of a certain field at a given point and keeps the othef© roll down classically. It is amusing that actually the ava-
values fixed. A single step of a Newtonian algorithm is per_Ianchellke fermion _anmhllatlon can be_ triggered off by a
formed, then one takes another field or moves to the nexiPOntaneous tunneling process at the first stage.
point until one has performed a “sweep” through the whole The paper is organlzed as follows. In $ec. Il we_set up the
lattice and starts with the next one. model and describe how matter of high density allows
Related problems have already been treated in the liter227YOn- and lepton-number-violating processes. In Sec. Il
ture, for example i17] the decay rate of a metastable state’® Present in detail our numerical procedure to find the
was also calculated by minimizing the Euclidean action on &20Unce trajectory. The classical motion after the tunneling is
grid in the context of technibaryons in the Skyrme model. Innvestigated in Sec. IV. In Sec. V we give the numerical
[18] the Euclidean action of the electroweak theory is mini-résults of our calculations, and finally we summarize our
mized, but with respect to only a few parameters in the spac¥©rK in Sec. V.
of parametrized functions. A method how to minimize the

action of a model with scalar fields was presentefil@]. A _ Il. DECAY OF HIGH-DENSITY MATTER
short paper about the present method has been published BY BARRIER PENETRATION
recently[20].

Another aim of this work is to investigate the fate of the = We consider the minimal version of the standard elec-
system after the tunneling process has happened. It is knowroweak theory with one Higgs doublet in the limit of van-
[15] that the motion in Euclidean space does not only prodishing Weinberg angle. We work with dimensionless re-
vide the probability of the barrier penetration, but also yieldsscaled quantities, the corresponding physical quantities can
the most probable field configuration in which we will find in general be obtained by multiplication with appropriate
the system after the tunneling. This is just the escape point gfowers of the gauge boson mang,. Sometimes this factor
the bounce trajectory, i.e., the configuration at the other sidés already included in the definition, for details & The
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bosonic part of the Lagrangian is shifted such that after the transition we have the same spec-
trum again. But now one more level is occupied or depleted,

4
_Mwo e caur, 1 T depending on whether the levels went up or down, hence the
L= ?( a P, P 2 (D, 2) (D) created or annihilated fermion has the energy Equation
(2.4) allows to include the change of the fermionic energy
— 5 1A(PTD—-4)?) (2.9 into the bosonic energy functional. The new potential energy
is[13,14

. . o B . .
with the covariant derivativeD ,=d,—iA,, A,= 3A7%,

the field strengthF,,=3F% ~=i[D,,D,], F%,=d,A3

—3,AL+ eabCAzAf,, and the Higgs doubletd>=($§). with Vg andNes from Eq. (2.3). u=2u; is the sum of the

v=my/my, is the ratio of Higgs and gauge boson massesphemicaj potentials of the single doublets. Obviously, we
the 7 are the Pauli matrices. We work entirely in temporal have fixed the zero point of the energy to the trivial vacuum
gaugeA,= 0, which restricts possible gauge transformationswith Ncs=0. In addition, we can neglect the change of the

Vo= Vport #Ncs, (2.9

to time-independent ones: Fermi energy due to the creation or annihilation of a small
_ . number of fermions.
A—U(A+ig)UT, ®—U®d, with U=U(r)eSU2). The additional term modifies the curvature of the potential

2.2 around the ground states of the topological sectors. A calcu-
The potential and kinetic energy and the Chern-Simons inl-‘.’jltlon Of_ the second der_lvatlve Ofpox _W'th respect to the
dex are fields yields the following modes in momentum space

(13,14
2

v —mWJ d3r E(Fa)2+1(D-CI>)T(D-(I>) 9’u
pot™ g2 4V 17 T i 1+p? v?+p? and 1+p2i—2—81_r - lpl; (2.6
'wW

besides, there is a zero mode due to gauge freedom. We see
that there are negative modes/if| exceeds the critical value

1
2 TdhH _ A1\2
+ g5 (@10 4)

(23) Merit=——2 My (27)

g

1672
2 b

m 1. 1. ..
Tkng—‘évf d3r[§(A?)2+—¢Tq>

1 3 Therefore, afu|> wqi the system may roll down classically

NCS_WJ dr ' without any tunneling. A numerical calculatig24] shows

that indeed the minimal energy barriers between the topo-
Ncs is only well defined if the configuration space can belogical sectors vanish in this case.
identified with the spher&;, which requires the fields to be We are mainly interested in the case [u| < ui, Where
continuous at infinity. We will always fix them to the trivial the topologically distinct minima with integéd g have dif-
vacuum there £;=0, ®=(3)). For vacuum configurations ferent energie¥§ = uNcs and are separated by energy bar-
A;=iUg;UT with U e SU(2) (pure gaugk Ncgis the integer  riers. Therefore, they are only local minima and are thus
winding number of the mappin§;— SU(2)~S;. Adjacent metastable and can decay spontaneously by quantum tunnel-
topological sectors are separated by energy barriers. Thag to the adjacent topological sector with lower ground state
field configurations which minimize the energy,, for  energy. The energy differendg| between the two ground
givenN¢g have been calculated numerically by Akiba, Kiku- states is the energy of the bosonic fields after the tunneling
chi, and YanagiddAKY) [23]. that will eventually be carried away by the outgoing boson

The fermions are coupled to the gauge and Higgs fieldsadiation.

via the covariant derivative and the Yukawa coupling, re- As mentioned in the introduction, the tunneling rate per
spectively. We do not consider them explicitly, but note thatvolume is of the forn{15]
due to the anomaly of the fermionic currents their number is
not conserved, it varies with the Chern-Simons number of F/V=B exp(—A), (2.8
the classical bosonic fields. For each doubigttie fermion
number changes as

1
fijk( A?&jAEJFg EabCAiaAJbAE

whereA is twice the Euclidean action of the bounce trajec-
tory, which is the classical path that connects the decaying

AN;=ANcs. (2.4  state and the turning point at the other side of the inverted

barrier and minimizes this action. The prefac®rcan be

We assume to have a macroscopic amount of fermions of found from the small oscillation determinant about the
very high density in thermal equilibrium at zefor very  bounce, with one negative mode and the zero modes re-
low) temperature. There afé,(N.+1)=12 doublets, three moved.B also contains the Jacobian factors of the transfor-
leptonic and nine quark ones. We describe them by thenation groups which leave the action invariant, i.e., which
chemical potentialge; of the doublets; since we have zero correspond to the zero modes. The factors coming from
temperaturey; is the energy up to which the fermionic lev- translational invariance in space and time are not included in
els are occupiedermi energy. In a process connecting two B but in the left-hand side of Eq.2.8), they lead to the
adjacent vacua one level crosses the gap, all others atensitionrate per volume.
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In this paper we concentrate on the calculatiompfve UR)=exdn-7iP(r)]; (2.11)
want to find the bounce solution numerically. This means to

find classical fieldsA?(t,r),®(t,r) which represent a sta- they transform the fields as

tionary point of the Euclidean action
A(t,r)—A(t,r)ycos2P(r)—B(t,r)sin2P(r),

t
SE:J 0 dtml(Tkin+Vgot)- (2.9 B(t,r)—B(t,r)cos2P(r)+A(t,r)sin2P(r),
, i C(t,r)—C(t,r)+2rP'(r), (2.12
At time t=—x the fields form a metastable ground state
with integerN¢sandT,;,=0; att=t, the system reaches the H(t,r)—H(t,r)cosP(r)—G(t,r)sinP(r),
turning point at the other side of the potential vallgyhich
is, considering the tunneling process, the escape point at the G(t,r)—G(t,r)coP(r)+H(t,r)sinP(r),

other side of the barrigrHere agairT,;,=0, andNs takes . _ _ _ _
a noninteger value belonging to the next topological sectorVe vy|ll use this transformauon later to adjust the numerical
The bounce lasts infinitely long because it starts from &solutions to our choice of the gauge.

ground state withoV4,/ 5A%= 8V4 / 5& = 0. Consequently, As mentioned above, we choose a gauge which yields the
t, is arbitrary, this corresponds o the translational invariancdfivial vacuum att=—c. In this gauge the fielda?, @ of
in time mentioned above. the bounce solution are continuous and dlfferentlable every-

As discussed previously, the choice of the temporal gaug@here and have finite potential and kinetic energy, because
still leaves the freedom of time independent transformationgthis is true for our starting point and will not be changed
Now we fix the gauge completely by demanding that atduring the evolution governed by the Euclidean equations of
t=—o the fields start from the trivial vacuum mMotion. This requires the following behavior of the radial
A?=0, ®=(3) with Ncs=0 (and hencev%,=T,;,=0). In  functions atr =0:
addition, we choosg.<0 so that the bounce moves from _ 2 3
Ncs=0 to the topological sector withlcg=1 At =1+2a,(Or*+0(r,

So far, we dgal with 13 real funct_ionsa depending on time B(t,r)=by(t)r +O(r3),

t and space, nine from the gauge field;", and four from

the complex Higgs doubleb. But we expect that our bounce C(t,r)=b(t)r+0(r?), (2.13
solution possesses higher symmetries than completely arbi-

trary fields. Therefore we restrict our ansatz to fields having H(t,r)=ho(t)+hy(t)r2+0(r3),

the spherical symmetry of the sphaleron and the AKY con-

figurations, which describe the minimal energy barrier: G(t,r)=g.(H)r+g,(t)r2+0(rd).

The numerical determination of the bounce is performed
by finding a stationary point of the Euclidean action directly,
without using the equations of motion. In our spherical an-

C(t,r) satz (2.10, Sg is a functional of the five functions
+n,n———, A,B,C,H,G of Eq. (2.10, depending on radial distanae
r and timet. The bounce has infinite extension as well in space
as in time, but we can introduce new variabesndu which

®(t,r)=[H(t,r)+iG(t,r)n- 7]<2>, (2.10 cover only finite intervals; for example,

Aa(t I’) Eau ]w+(6ai_nani)8(?r)

v a
with r=|r| andn=r/r. This reduces the effort to five func- r(x)=)\rarctar65x and t(u)=)\tarcta76§u),
tions depending ot andr. The free choice of the origin (2.14
corresponds to the spatial translational invariance discussed
after Eq.(2.8). Gauge transformations within this ansatz areand new profile functions depending @nandu. Using an-
given by satz(2.10 and the substitutio2.14 we get

S‘“Stf J 2 2C 20424 32 ' BC|® / c\® GC)*?
Se=5 dx— A+B+2+2r(H+G) oA+ —| +| ¢B' —— +2r? oH'+ o
c\? 1 1
+2r?| oG’ — > +?(A2+BZ—1)2+H2((A—1)2+BZ)+G2((A+1)2+BZ)—4BGH+Evzrz(H2+G2—1)2
C
+2p T(A2+BZ—1)+goBA’—cp(A—l)B’)}, (2.19
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with Au= Umax— Umin and Ax= Xmax™ Xmin (3.3)
dr)~* t) b )
p= 'u, o=@(X)= ) , w=ow(u)= —) For the substitution (2.14 the values are, e.g,
Mecrit dx du

2.16 Umin=—1, Unax=0 (for t5=0), Xyin=0, Xma=1. The five

' profile functions are put on the full node grid, the radial
and the dot and prime meaiidu andd/dx, respectively. In ~ distancer and the derivative® and¢ on the half node grid.
the next section we describe how we find stationary points o¥Ve introduce the notation
the functional(2.15 numerically.

A- AU X))y Tr12=T (X412 (3.9
IIl. NUMERICAL DETERMINATION
OF THE BOUNCE TRAJECTORY and accordingly for the other functions. The use of the half

' : . . node grid prevents the calculation of expressions tiker
Our way to find a stationary point @& is the use of a 1)r at the boundaries=2.0.

relaxation method which was discussed by Adler and Piran There are many different ways to put an integral as Eq
in great detaill16]. The functional(2.15 is put on a two- (2.15 on a grid, so that in the limin,,n s the original

dimensional g”.d of.5|zer.(u+1)><(nx+l). We distinguish functional is restored again. Therefore it is rather important
the full node grid with points ; o : . .
to choose a discretization that is suitable for numerical treat-
ment. Basically, we followed the suggestions[@b] here,

i=0,...Nn, but to fix the details we had to try and compare different
(U;, X)) = (Upin T TAU,Xpin+ jAX) j=0,...n,] ansatzes. For example, the property of some terms to vanish
at the origin and cancel therldivergence must not be lost

3.9 by the discretization. It showed that terms as?\( +BC/r)
should be discretized before being squared, and that instead

and the half node grid with points of C(t,r) the function
(Ui s 1/2:%j+12) = (Upint (i + 3) AU, Xpin+ (j +3) AX) C(u,x)
D(ux)=—— (3.5
r(x)
i=0,...n,—1 ) o
_0 1 (3.2) should be used, i.e., put on the full node gndI}gsWe use
J=80 L the following discretization foSg, Eq. (2.15), written here
as sum over contributions from grid cells centered at half
with node points @ 1/2,Xj+1/2) :
Sﬂns: gt AuAx |2+1/2

((A'“ AN+ (ALI— AL )2+ (BT =B+ (B 11— B, )%+ 217, )

|

S%”d

(Hi*1
27 &b i=0 Oi+12Pj+12 PINTE :

. 1 . .
—HDZH (HIL - HL D2+ (G 1= G+ (G11~ G )+ 7(D} "1 =D))%+ 7 S(Oi-Dl,.)7

1) @jr12 i 1 . i i 2 Pj+1/2 1 2
+§{ o (A1~ AN+ 5 (BIDj+ B 1D ) | +| 5 (Bj.1~Bj) —5(AD|+A],;Dj, )
Pj+1/2 2 ®j+1/2 1 2
+ + i imi i i
+2r,-2+1,2( e va H)+—<GD+G D) | +2rfiag —xy (Gje1— G;)—Z<H}D;+H}+1D;+l>>

[(A' +B' — 1)+ (A] +1+BJ+1 1)2]+}(H}2[(A' 1)2+B' 1+H; +1[(A,+1 1)2+B'+1]+G [(A'
4 j+l/2 2

+1)2+B' 1+Gj +l[(A +1+1)2+B'+1] 4B{GjH|—4B| G|, ,H] +1)+ V2r?, (H +G' —1)2+(HJ+l

(P]+1/2

+Gl 1~ 1))+ pD}(A+BI = 1)+ D}, (AL 1B 1~ 1)+ p 2 (AL~ AD(BI+ B, ) — (Al +AlL—2)

X(B},,—B)) | +12fi—i+1}]. (3.6
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Typically, we used grids of the sizg,=n,=80, inwhich ~ —v& <0 the bounce locally minimizes the action. Numeri-

case the profile functions are represented Dbycally, we find indeed that the action decreases monotonically
5X81x81=32805 points. To find a stationary point of and converges to some limit.

S now means to find a configuration which satisfies the  As starting configuration we usually take an instantonlike

equations configuration,
. . . . . i 2
aS%nd 0 &$r|d &SgErld o"S%”d o &S%”d A(t,l’)ZCOSG—Zrt S';B';r CSSG, (3.9)
gn, T aBj gDy aHy T 6G) A
(3.7 5 e 2rt cos8—r2sing
_ _ (Lr)=SiNg=2—7 "z 7
for all i andj.
The solution is found iteratively until the configuration A2 2rt
satisfies Eq(3.7) sufficiently well. In each step, only one D(t,r)=— r(r2+)\2)\B+ r2+t2+>\2)’

single number Al ,B! D! H'] or G\ for certain i,j Is
changed; all others are held constant. “Sweeping” over the

i ; : 1 t r
grid, we modify the field parameters one after another, where Hitr=1—=| 1+ 1+ coS
the order is only of minor importanc@/Ne changed the five (0 2 t2+ 72 Jr2+a2)’
functions for giveni,j and variedj for fixedi.) The change
of, e.g.,A'j is governed only by the according equation p—
oS¢ 9Al=0; all other equations are not taken into account. G(t,r)=3| 1+ 5 —|sin :
I X X i 2 t°+A JrZ+)\2
We perform the first step of a Newtonian algorithm that FetA
would converge against the solution of that equation, i.e., Weith
change the field parameter as
. ' B=B(LI) 2r ¢ t N T
. asg”d/aA'. = N =\/% arctar ——=+ 7 |.
i i J r<+\ e+ 2
j

The size parametex is chosen between 2 and 4. This con-
h [ | for the dampi h figuration has potential —V4,=0 at t=—o and
where in general for the damping parameter we c Oose_foot:—,u>0 att=o: we choase the boundary. of

«=1. The necessary partial derivatives in K88 mustbe grid such that at(u,,,) the potential crosses the zero
calculated from Eq(3.6); we do not write them explicitly . "
line. Hence foruy,,<u<upa We have—Vg,<0.

here. : X )
Unfortunately, the bounce solution is not a local mini- Ac?_ordéng t? our gaug%flxm(;_:] and to EQ'B) the T&eldSF
mum, but only a saddle point of the Euclidean action: Thearie 'Xet_foc some_ oun ir!;es 0 h ourA_gL:_.l or
problem is that because of the termNcg the Euclidean ;:LIIDmEG(—_O agdof::;(&)émé? ('rn;—) Yve(r_a\g; _e k;o,
potential— V4., is not bound from above; it can take positive .~ _~ 7’ € ONGIK=Xmin (=0) W W
po . . A=1, B=G=0. Accordingly, the following field param-
values. Because of energy conservation the bounce itself be-

tweenNcs=0 and 1 cannot have positive potential energyeters are held fixed:

— Vot at any time; its tota_\l e_znerggt?t: Tiin— Vpot is con- A?=Ain =Ai0=1,
stant and zerdFig. 1). But in its vicinity, one can construct X
paths which have positive potentialV}, for some time and B?= Blnx: Bi=0,

which give alower action than the bounce. We found that
unrestricted sweeps according to E8.8) always lead to

configurations of that kind. Once there, the system quickly G?:Glnx:GIOZO' (3.10
evolves to enormously high winding numbexs.s and an )

unlimitedly decreasing negative action. Thus, in order to D?=D'nx=0,

avoid this instability, we have to prevent the system from

acquiring positive potentiat- V. We did so by choosing H?:HL =1,

an initial configuration with nonpositive potential, and then *

rejecting all steps(3.8) which would yield a positive Unfortunately, if one only sweeps over the grid using Eq.

— Vo If @ step is not accepted, it is tried again wikh  (3.8), the outcome will not be a reasonable bounce solution,
divided by 2; this is repeated up to five times before the stefput a rather discontinuous and unusable configuration.
is completely rejected for the current sweep. UnfortunatelyTherefore the computational procedure cannot be run from
this method requires to calcula, (or actually the change start to end automatically, but requires the controlling and
of V&) for the current time slice after each single step,regulating of the user once in a while, which makes the work
which slows down the algorithm considerably. There area tedious and long lasting one. The following problems arise.
more sophisticated ways to take into account invariances like The Euclidean action (2.15 contains no term
energy conservatiofl9], but in our case the simple remedy D'=dD/dx. Hence adjacent field parameteD$ and D}H
proved to be most effective. Within the restriction are only weakly coupled and the field easily ceases to be
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smooth. Especially close to the origin the field is rather uniions described above. If any and which of the regulations
stable, therefore we do not use E8§.9) to fix D5 andD!, should be performed has to be decided by looking at the
but adjust them to a linear extrapolation throu@lﬁ and actual fielq cqnfiguration. At first sjght this procedure seems
D.. Nevertheless, in order to keep the fields reasonabl® P€ subjective and nonreproducible, but let us remark that
smooth, we are forced to smooth them by an averaging pr nefore we stop the program, the last manipulation is always

cedure from time to time, where each field parameter is retollowed by at least 500 sweeps. Moreover, we have always

. : . checked that the final configuration fulfills the equations of
placed by the average value of itself and some of its neigh-_ . .
: . . L motion with excellent accuracy.

bors, with weight factors according to their distance.

Certainly this disturbs the minimization algorithm and gen-

erally leads to a higher action again. But after some further

sweeps the action is down to its earlier value again, and the

fields are smoother now. In this section we show how we investigate the behavior
Another problem is the following: Close to of the boson field configuration after the barrier penetration

U=Upi, (t=—=) the factoro=du/dt which governs the and how we analyze the particle content of the state. We

kinetic energy terms is rather small so that adjacent timdollow basically the procedure presented 1], but instead

slices are only weakly coupled. Therefore, the fact that wedf the sphaleron we take the escape point of the bounce as

fixed the fields to the trivial vacuum at the=u,,,, boundary ~ starting configuration.

hardly influences the configuration at larger times. Instead, The potential energy of the escape point is larget oy

we usually see that going from large towards u,;, the than the potentlal_ energy of the ground state in the corre-

configuration continuously approachesantrivial vacuum spondm'g t090|09|0§1| sector. Hence the system performs a

state, and then close tq,;, the fields show a discontinuous motion in th_e real time .M'nkOWSk' space. The equations of

step from this nontrivial vacuum to the trivial one. We get Motion within the spherical ansa(2.10 are

rid of this step by performing a gauge transformation of the AC

kind (2.12 which converts the nontrivial vacuum at the edge A:(A’ +— ( B — _>

of the step to the trivial one. This gauge transformation is r r

appli.ed to all time inces except the ones closetg, where —A(H2+G?) +H2-G?,

the fields are already trivial.

IV. THE REAL TIME EVOLUTION
AFTER THE TUNNELING

!

AL C
— 2(A+B?-1)+| = +2p

Apart from the above manipulations which are necessary ) AC\" B c
to keep the configuration in an acceptable shape, we also B:(B’— —) — —(A2+B2-1)—| —+2p
have the possibility to accelerate the convergence of the al- r r r
gorithm. The solution has to obey the energy conservation BC
law E o= Tiin— Vhor=0. Given some arbitrary configuration X[ A"+ 3 B(H2+G?)+2HG,

for which this is not the case, one can find a different time
parametrization such that energy conservation is fulfilled.

Practically, we leave the valu¢éu;) of the times at the grid C= %( B — &) — é(Ar + %) —C(H2+G?)
nodes fixed and determine the fields of the reparametrized r r r r

configuration at those time{u;) by interpolation. By this 2p

operation one can gain a considerable decrease of the action +2r(HG'—-H'G) - T(A2+ B2—1),

without performing minimization sweeps.
Finally we remark that the grid size is not completely
fixed, but it is adgpted_to the status of the minimization. Hz—(rH)”+iz(CG+C’Gr+ZCG’r)+iz(AH+BG)
Usually we start with a size of 4441 nodes, and only when r 2 r
we are already close to the solution we double the grid to
81X 81 points. Moreover, we observe that during the sweeps  _ ___
the bounce, especially its escape point where the potential 2r?
reaches zero again, slowly moves towards smaller times. In L . L
principle, the time scale is arbitrary, as discussed above, byt " , ,
for numerical reasons a given configuration has slightlyl&_F(rG) ~ op2(CHFCHr +#2CH N+ 5 (BH-AG)
lower action when it is shifted to smaller times. We find that G 2 )
the energy at a few points next tg,,, becomes zero, so that 2 2. m2. 2 |V 2, ~2_
the escape point does no longer coincide with,. If the 2r2(1+A B 2 ) 2 GH™G~1), @Y
number of these points gets too large, we throw away the
part of the configuration beyond the escape point, which rewhere the dot means the derivative with respect to the time
sults in a lowerun,,, andn,. If n, becomes too small, we t and the prime with respect to the radial coordinate
double the grid in the time dimension only, i.e., we double These equations and the condition that-aD the system
n, but leaven,. For the final configuration we adjust the starts at the escape point of the bounce with kinetic energy
time scale such that the escape point is set on the origin, i.ezero [i.e., A(0)=B(0)=C(0)=H(0)=G(0)=0] form a
tp=0. Cauchi problem which is solved by direct integration. To do
Practically, the bounce trajectory is found by switchingthis we discretize the Minkowskian action in the same way
between the minimization sweeps and one of the manipulaas the Euclidean action, which means we take (B¢ and

2

C
1+A2+BZ+7

V2
—7H(H2+GZ—1),
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reverse the sign of the terms stemming from the potential The  gauge transformation  which  transforms

energy. Moreover, we identifi(u) =u instead of Eq(2.14,  A(r), ... G(r) into the trivial vacuum changes the Chern-
so thatw(u)=1, but we.st|lll keep_ the relatpn betweerapd Simons number bANcs= — 1. We apply it to our starting

x of Eq.(2.14. We obtain discretized equations of motion by configuration, the escape point, which hereby gets a Chern-
deriving the discretized Minkowskian action with respect tosjmons number between1 and 0 and the potential energy

the field C‘?Ofdi”a}ff\} e C.ijl These equations are solved v —|,|. Now we start the propagation again with the start-
for the Varlabley\j yoe 'GJ so that we obtain the fields |ng Configuration in the new gauge. By performing the same

with time indexi + 1 as a function of those with indicésand averaging process again, we can check that the system now
i—1. By iterative application of these equations it is thenindeed fluctuates about the trivial vacuum with excellent ac-
possible to evaluate the propagation of the system from theuracy, which proves that the gauge invariance is correctly
initial configuration at=0 to arbitrary positive times. reproduced in our numerics.

The grid of the discretization can be much more dense For the following we assume that the system has reached
here than in the case of the Euclidean problem. Usually wenhe status where it can be described by small fluctuations

take 800 steps per time unit and 3000 grid nodes in thehout the trivial vacuum. We denote these fluctuations with
interval fromx=0 to x=1. We checked that the results are small letters,

stable with respect to a further increase of these parameters.
The total time how long we follow the propagation of the At r)=1+a(t,r), B(t,r)=b(t,r), C(t,r)=c(t,r),
fields is typically around 20 to 30n units of m\j\,l).

As in the Euclidean case, special care has to be taken in
order to treat the fields close to the origi O adequately. If
the numerical solution does not exactly fulfill the expansion
given by Eq.(2.13, some terms of the right-hand side of Eq.
(4.1) become singular. Hence even a slight deviation from
this expansion increases rather quickly withand finally T(z)_477mwf°°
results in a strong divergence of the fields closer 00. kin—" g2 |4
Since small numerical errors will always cause this to hap-
pen we cannot take the discretized equations of motion close A (= [232 c
to the origin, but we rather impose the behavior of E413 Vg(gf): . Wf dr[—z +a'2+ ( b —=
by hand. For about the first 50 of the 3000 points we deter- 9" Jo r r
mine the fields not by the iteration method but by E3j13
where the coefficients,(t), etc. are chosen such that the

H(t,r)=1+h(t,r), G(t,r)="f(t,r), 4.3

and expand the energy to second order in the fluctuations:

~2

) . c . .
dr| a%+b?%+ ?+2r2(h2+f2)

2 2

c
+a2+b2+§

+4f2—abf—2rcf’ +2r%(h'2+f?)

functionsA, ... ,H are continuous and differentiable at the 2ac
matching point between the numerical solution and the fit +2v%r?h%+2p a’b—b’a+7”,
(2.13.
We find that for most sets of parametarsand p after 2) (2 @
some time the fields perform small oscillations about some Etot = Thin+ Voot - (4.4
vacuum configuratio’\(r), . .. ,G(r) in the topological sec-

tor of the escape poirttvhich is the one wittNes=1 forour ~ We found that\/géf) and Vg, coincide up to a deviation of
choice of gauge An indication for this behavior is that less than 1% for largé which indicates that the system has
Ncs, Vpot, @and T4, do not change any more with the ener- perfectly linearized. The potential in second order leads to
gies take constant values(|u|/2) according to the virial the linear equations of motion

theorem.

The Fourier analysis of the small oscillations is greatly .,
simplified if the vacuum about which the fields are fluctuat- a=a —a
ing is the trivial one. For this reason we perform a time
independent gauge transformation of the tyRel?) which ,
transforms the configuratioA(r), . .. ,G(r) into the trivial b= ( b — E) —b+2f—2pa’,
vacuum. In order to determine the configuration r

A_(r), c ,G_(r), we start the propagation of the fields with

+2p

2 c
1+—2 b,_—),
r r

L - : . 2 c a
the original escape point and average the fields: o F( b — : e orf _4”?'
_ 1 t
A(r):t—tsﬁsdt A(t ,I’), (42) rh=(l’h)”—v2rh,
and equivalently for the other profiles.is some time where rf=(rf)"— i(rc)’ +E _ 2_f (4.5)
the system already performs small oscillations. We checked 2r r o r

thatA(r), ...,G(r) are independent dfif t is large enough
and that they in fact represent a vacuum configuration with In the casep+# 0, for an arbitrary fixed momentuk the
Ncs=1. solution is
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ay(t,r)= 3 (B5() — B5(t)rjy(kr),

bi(t,r) = (BE(t) + B(1) + B5(1) + £ (t))rj o(kr)
+(B§(1) — 3 B5(1) — 3 B5(1) + LKD) o(kr),

C(t,1) = (B(1) + B () + B(1) + (1)) o(kr)
—2(B5(t) — 5 B5(1) = 3B5(1) + ZK(O)r o(kr),

h(t,r) = Y(D)jo(kr),

3 ‘ 1, ]
ft.r) == 5| kB~ £V |ja(kn), (4.6
with

B () =pBi(k)siwit+a;), i=0,1,2,

Y = y(K)sin(Qt+6),  Kt)=cit+cy,

wi=k*+1, o ,=k*+1x2kp, Q2=Kk*+1? (4.7)

and j;(kr) are the spherical Bessel functions. The phase
shifts «; , 8, and thec; are fixed constants depending on the

initial conditions. The zero mode in E¢4.6) is due to the

gauge freedom; since we have fixed the gauge its amplitude
=0,1,2 are eigenmodes
of free gauge bosonsn dimensionful units 1 has to be re-
placed bym\zN in Eq. (4.7]; Q represents the free Higgs

ZX(t) is zero. The frequencies; , i

particle eigenstates.
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result. Fitting the functiongx’;’:‘(t),yk(t) for t>t,s. with the
corresponding sing;t+ «;),sin(Qt+ 8) of Eq. (4.7) yields
the amplitudes3;(k), y(k).

One obtains for the total energy of the linearized system
in momentum spacgits coordinate space representation is
given by Eq.(4.4); the numerical values coincide up to a
deviation of less than 2%

Ele =Ew EH:mWf dk ew(k)+mwj dk ey (k)
0 0

97T mW

fT(wo(k)Bo(k)+ wi(k)BL(K)

+w§(k)ﬁ§(k))+ J =7 Q%K) y2(k).

4.9

Since energy and particle density are related by
e(k)=w(k)n(k) we can extract the total number of par-
ticles:

972

dk
| @i 800+ s B2

+ w,(K) B5(K)),

Nw=

4 dk
NH—lf @ 000 7(K).

g (4.10

V. RESULTS

The coefficients can be evaluated by Fourier transforma- In this section we present the numerical results of our

tion:
#o=2[arignmen-n,  @o
Bo(t) = —gf:dr r2j1(knG(t,r)
=2 [“arrtiokn @i+
+ (ki) @B(t,1) = 2C(1,0)]
s 401= 2 [ ar el ol @B(L0) Gt )

X (B(t,r)—C(t,r))=3j(kr)(A(t,r)—1)].

To find the amplitude®;(k),v(k) we Fourier transform
the numerical solution of the equations of moti@hl) ac-
cording to Eq.(4.9. The resulting functiongBX(t),y*(t)

calculation. Our model contains two free parameters, the
Higgs boson masg=m,/my, and the chemical potential
p=ulpei- We performed the calculations for the values
v=0, 1, 10, andp=-0.2,-0.4,—0.6, and —0.8. More-
over, we investigated the case=1, p=—0.9. The values
for v cover a wide range of Higgs boson masses, but it turns
out that most results do not depend too muchonThe
choicev=0 is certainly not physical since essential features
of the model, like spontaneous symmetry breaking, disap-
pear. It should therefore be understood as limiting case of
small masses. In fact we found that the configurations ob-
tained forv=0 and a mass like=0.1 are almost identical.
Similarly =10 is an example for a large Higgs boson mass.

A. Barrier penetration

In Fig. 2 we show the potential and kinetic energy as well
as the Chern-Simons number as functions of the time for the
bounce trajectories with chemical potentiglss —0.2 and
—0.8 and the Higgs boson mass-1. The arbitrariness of
the time scale has been removed by setting the time when the
system reaches the escape point at the other side of the bar-

should oscillate according to E¢4.7) when the system has rier tot=0. It can be seen that the energy conservation law

settled to small fluctuations about the vacuum. This is théE= Tyin— Vo=

case after some timigg (typically ~ 15m\7\,1) with excellent

0 is excellently satisfied. Fgr= —0.8 the
energiesT;, and Vi, are much smaller than fgs=—0.2.

accuracy. Moreover, we checked that the two different for-Also the value of Ncg at t=0 is lower in the case
mulas forﬁ'g(t) in Eq. (4.8) numerically lead to the same p=—0.8. The reason for this behavior is that the barrier
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FIG. 2. The potential energyvgot, the kinetic energ¥l};,, and FIG. 3. The profile function#\, B, C (solid lineg, andH and
the Cherm-Simons numbétcg versus timet (in units of my,*) for G (dashed linesversus the radial distange(in units of my,') of
chemical potentialsp=u/uc=—0.2 (solid lineg and —0.8  the configuration at the escape point of the bounce trajectory for
(dashed lines The Higgs boson mass is=my /my=1. p=wplpe=—0.2 and p=—0.8, and the Higgs boson mass

v=my/my=1.
between the trivial vacuum and the topological sector with
Ncs=1 decreases ifp| is increased so that less action is zero, so that the bounce action equals the instanton action
necessary to penetrate it and the system can escape at a cand the configuration at the escape point is a vacuum with
figuration with lower winding numbeNcs. The extension of N.s=1. In a pure gauge field theory the solution fo=0
the bounce in timéand also in space, see belpwiowever, would be an instanton of arbitrary size, but here the scale
increases with p|. For example, in the case=—0.2 the invariance is destroyed by the nonzero vacuum expectation
system moves out of the trivial vacuum significantly at aboutvalue of the Higgs field, so that for a finite size the action
t~—2 while this happens fop=—0.8 already at about would be larger than the instanton acti#b]. Hence in the

~—4. The Chern-Simons term in the functiond [Eq. Ilimit p—0 we obtain a trajectory with size zero. For
(2.19] lowers the action for large sizes, and its influence—1<p<0, however, due to the Chern-Simons term the
becomes stronger with increasifg|. Hence for largelp|  minimum of the action is taken by a configuration with finite

configurations with large sizes are favored, while for lowsize. The accuracy of the data in Tables | and Il can be
|p| the minimum is taken at a field configuration with a small estimated by increasing the density of the lattjagnich is
size. In the limitp— 0 one would even obtain a configuration usually of size about 8281) and the number of sweeps
with size zero(see below. (usually of the order of 10 000We find that the numerical
The field configuration at the escape point of the bouncerror of the results is around 1%. For each set of parameters
trajectory att=0 is interesting by itself, since subsequentv,p we performed two independent minimizations, starting
calculations like the investigation of the real time behavior offrom two rather different field configurations like, e.g., in-
the system require only this configuration rather than thestantons with siza =2 and 4[see Eq(3.9)]. Forv=1, both
complete bounce trajectory. In Fig. 3 we have plotted theminimizations always ran towards the same bounce trajec-
profile functions att=0 again for the two cases=—0.2  tory, within the given frame of accuracy. Fer=0 and 10,
and —0.8, and the Higgs mass=1. What we saw in Fig. 2 however, the two minimizations sometimes produced differ-
for the timet, we find here for the space coordinatethe  ent trajectories, which have the same action, but different
deviation of the fields from their values in the trivial vacuum N&¥ and also different behavior of the functions
is much stronger fop=—0.2, but the region where they
deviate is less extended. A suitable and accurate analytic fit

- . I . : TABLE I. The actionSg/ of the bounce trajectory for vari-
for the configurations at the escape point is provided in th%u e /Sins J y

s values of the chemical potentjaland the Higgs boson mass

Appendix.
In Table | we give the results for the actid@ of the
tunneling process in units of the acti&)=872/g? of the o= 1l prgry

instanton in pure gauge theory. In Table Il we show the —my

. ' . = . -0. -0. -0. -0. -1
Chern-Simons numbei&¥ of the configuration at the escape ™ my 0.0 0-2 04 06 08 0
point. Forpz —1 the barrier_ vanishe_s SO that the tu_nneling 0 1.00° 081 0.54 0.30 011 000
process is reduced to a single point in the configuration 1 1.008 082 0.58 0.34 014  0.00

space, namely the trivial vacuum. Hence in this case the
action andNgy are both 0. Fop— 0 the field configuration
which minimizes the action tends to an instanton with size®Known from theory.

1.00* 0.86 0.66 0.45 0.19 0.0b
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TABLE Il. The Chern-Simons numb@gy of the escape point of the bounce trajectory for various values
of the chemical potentigh and the Higgs boson mass

P::U«//‘«crit
my
y=— 0.0 -0.2 -0.4 -06 -0.8 -1.0
my
0 1.002 0.83/0.85° 0.64/0.66° 0.44/0.47° 0.22/0.24° 0.002
1 1.002 0.85 0.68 0.51 0.30 0.00
10 1.00? 0.87 0.74 0.66 0.42/0.42 0.002

& nown from theory.
PResults of two different trajectories with the same action.

Vholt), Ncg(t). Using a suitable averaging procedure, oneresults one might be able to deduqe the probability to ob-
finds that there exists an infinite number of different pathsS€rve such a process at a supercollider.

which all have the same actidmp to a deviation of 1%

Two conclusions are possible: either the bounce trajectory is B. Real time evolution

not unique, i.e., the action has a zero mode, or there is a Next we will describe how the system evolved in real

unique, but very shallow minimum. time after the barrier penetration. We solved the equations of
Unfortunately, the numerical accuracy of our method does,otion basically as it was done, e.g.,[2,27. In order to

not allow to distinguish between those two possibilities, but.pack the numerics, we first used the sphaleron as starting

for the following investigations this is quite irrelevant, any- configuration, and our results agreed with thosdaif, 2.

way: In 'Fhe case of a true Z€ro mode the different tunlr!elingl-hen we replaced the sphaleron by the configuration at the
trajectories will be taken witlexactlythe same probability escape point of the barrier penetration process. By perform-

while in the case of a shallow minimum the tunneling prob-ing the gauge transformation withNes=— 1 to ensure that

abilities zlare_almofstthhe fgakrjne. f\{Ve V;]’i” see blelovvl thzgt thedrea_l the fields fluctuate about thevial vacuum(see Sec. IYthe
time evolution of the fields after the tunneling leads to devi-,,a i) energy of the starting configuratiorf, is in-

ating bosonic signatures for two different trajectories. In an : . 2,2 .
X . . creased from O tdu| [in units of (874/g%) My = w¢if2 this
case, if a barrier penetration happens, both results detur means it is increased from O td8]. The Chern-Simons

”?030 equally likely, so that the accuracy Of all res_ults 'S humber is lowered by one unit and starts betweehand 0.
given by the range of values which we obtain for different . :
In Fig. 4 we present the behavior &ff,, Ty,, and

trajectories with the same action. Certainly, the tunnelin functi ftimeé=0 after the t i f
rate is influenced by the volume of a possible transformation ¢S as afunction ot tim aer the tunneling process for
—0.6 andp=—0.9. The Higgs boson massis=1. We

s ) ; p=
?nrﬁ]l:ﬁ“\jvrght;:ﬁ;f:; ?)ztlg?r;oor:t:rb%i\g)tg l,:rr]\éas:g?aggp g(;r_]e find that for timest=10 the behavior of the system in the
(2.8) which is not discussed in this paper.

Thus, in Table Il we have given both values fofs if we
obtained two different configurations with the same action.
We find that both the action anddy increase if|p| is de-
creased or the Higgs massis increased. The reason is that
the barrier becomes wider and higher with decreakihgnd
increasingv so that more action is necessary to penetrate
through it, and the escape point moves further away from the 0
trivial vacuum. We see that both quantities are roughly lin-
early related tgp, and, as anticipated, the dependence of the
results on the Higgs mass is rather weak.

The suppression facta 2Snst~ 10153 of the tunneling
rate forp=0 becomes less strong figs| >0, but significant 2.0 — Vel
tunneling amplitudes can only be obtained for chemical po- - J
tentials as high a|=0.9 (for p=—0.9 andv=1 we ob- 1.0 — Nes ’ ~—=
tained Sg/S,¢=0.06 andNgs=0.17). Oneneeds, how- 7 N ’
ever, a matter density which is about®liimes larger than 00 T ===
the photon density in the early universe at the electroweak T/
phase transition, or about fnuclear matter density, in or-
der to correspond to such a large chemical potential. Pres-
ently it is not known if a matter density of this order has ever  fiG. 4. The potential energy’,, the kinetic energyTy, (in
existed in the early universe. Even if this is not the case, oufinits of 8x2m,,/g?, and the Chern-Simons numbBl.g versus
results still have some physical significance because the tuimet (in units of my,*) for chemical potentialg= s/ ;= — 0.6
neling rate may be related to the rate of fermion numbersolid lineg and —0.9 (dashed lings and the Higgs boson mass
violation at high particle energigsl4]. Hence, taking our v=my/my=1.
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two cases is quite similar: The system starts to move, i.e., the
kinetic energy increases, while the potential energy de- i
creases. Energy conservation is satisfied very accurately dur- 1.0 —
ing the whole process. The Chern-Simons number increases -
quickly to values around 0, which means the system comes

close to the trivial vacuum. $ 06

In the casep= — 0.6 the energy dissipates into small fluc- i
tuations about the vacuum. We checked that the energy o4 —
Vgétz) in second order of the fluctuations agrees up to a de- 7
viation of less than 1% witNV{,;, moreover we see in Fig. 4
that potential and kinetic energy both become constant atthe ¢ <% R amy e o SR N
value of |u|/2 in accordance with the viral theorem. The 0 5 10 15 2 25 30
Chern-Simons number takes a constant value slightly below
zero. Hence the system has settled to small oscillations about
the trivial vacuum and will stay in this topological sector
forever (apart from possible tunneling later JorLater we
will analyze the particle content of this state. o

In the casep=—0.9, however, we observe a completely
different behavior for times=10. HereNcg suddenly in- . i ) )
creases from values around O to about 1, later even to 2rginally filled up to the Fermi surfacg., is completely
Hence the system does not stay in the topological sector ofSPlashed.” _
the trivial vacuum but moves classically over the next barrier " Fi9- 5 we show for-=1 andp=—0.6 how the density
to the sector witiNgs= 1. Here it also stays only for a short ©f the total —energy, defined by Ei=Tiin+ Vi
period before it moves to the next sector wilag=2. This ~ =Mw/dr €(r), evolves in time. Our plot is similar to the
behavior is also demonstrated by the plot of the potentiaPn€ given in[21,22, where one starts with a slightly dis-
energy which shows the successive falls of the system like Blrbed sphaleron instead of the configuration at the escape
cascade towards configurations with increasing windingPoint of the bounce. As was found [21,22, the outgoing
number and decreasing energy. Once the first tunneling pravave moves with almost the speed of light and shows some
cess has happened, the system moves classically over all tHispersion, but in our case the dispersion is less strong. For
following barriers so that the whole fermion matter decaysthe sphaleron, after=25m,,* the height of the pulse has
rapidly and sets free an enormous amount of energy. Agecreased to about 30% of its original valuetat0, while
mentioned above, the tunneling amplitude is not extremelyor the bounce configuration it drops only to about 65% of
small forp=—0.9 (10 ° instead of 101%9), but in order to  the value at=0.
generate such a large chemical potential a huge fermion den- Next we wish to analyze the particle content of the state
sity is required & 10 nuclear matter density after the tunneling. This is only possible if the system stays

It is a property of the periodic plus linear potential thatin the topological sector of the trivial vacuum and does not
even at smallu, the energy barriers become lower than themove classically over the next barrier. In this case after some
local minimum atNs=0, if one goes far enough iNcs.  time (typically ~10my,') the system has settled to small
Therefore, if the systems tunnels directly to that far-awayoscillations about the trivial vacuum so that one can perform
sector(which would require multi-instanton-like bounce so- the Fourier decompositio4.8). Figure 6 shows how the
lutions), the avalanche would probably develop, too. Oftotal energy &|u|) is distributed among the Higgs boson
course, the multi-instanton tunneling probability is evenand gauge boson modes. Integration of the curves yields the
smaller than for a single bounce, but it should grow fastetotal energy of the HiggsEy) and gauge E,y) bosongsee
with w«. It would be interesting to estimate the total decayEq. (4.9)]; we have found that the sub,+E,y is equal to
probability as a function ofw, with tunneling to different |u| up to a deviation of usually less than 2%, which is an-
topological sectors summed up. other check of our numerics.

Energetically, this behavior of a classical rapid decay is In Table Ill we show how much of the energy is taken by
allowed if the top of the barrier between the sectors withthe Higgs bosongin percent. This number is generally in
Ncs=0 and 1 is lower than the chemical potential. For  the range up to 10%; it increases slightly withl. If we
v=1, this is the case already fl|=0.2, but we found that increase the Higgs boson mass frem 0 to v=1 (and keep
only for |p|=0.9 it actually happens. For chemical potentialsp fixed), the Higgs boson particles gain some energy on the
between 0.2 and 0.9 the system could in principle cross thexpense of the gauge bosons, but #e+ 10 the share of the
next barrier, but the energy is dissipated among the modes ¢figgs bosons is almost zero. In this last case the Higgs
small oscillations and not concentrated on the direction to th&osons are too heavy to be produced at all, for small masses
next minimum so that the system does not find the collectivaheir total energy is basically correlated to the individual
path over the barrier. Far=0, we have found that the ava- energy of each particle, i.e., it rises with the mass.
lanche starts developing already |at=0.8. We think we Figure 6 demonstrates that the spectrum is shifted to
have observed an interesting phenomenon of how an expdarger k when v is increased. This effect is particularly
nentially suppressed spontaneous decay triggers off a catatrong in the case of the Higgs bosons. kerl10 the energy
strophic avalanche which never stops until the fermion seajensity takes its maximum at abdut5 while forv<1 itis

8x?

r

FIG. 5. The densitg,, of the total energy versus radial distance
r for various timeg (r andt in units ofm;vl). The parameters are
= ,lLllLLcrit: 06 andV: mH /mW: 1
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TABLE lll. The ratio of the energy of the Higgs bosons to the

TABLE IV. The number of gauge bosoms, (upper numbeps

total energyEy /(Ew+Ey) in percent after the system settles to and Higgs bosonsl, (lower numbers after the system settles to
small oscillations about the trivial vacuum. The results are given forsmall oscillations about the trivial vacuum. The results are given for
various values of the chemical potentj@land the Higgs boson various values of the chemical potentialand the Higgs boson

massv. massu.
p= ! perit p= ! perit
my my
n=— 0.2 -04 —-0.6 -0.8 v=— -0.2 -0.4 —-0.6 -0.8
My My
0 3.8/3.12 4.9/4.22 6.4/6.32 b 0 24.5/22. 7 49.0/45.3 74.2/69.3 ¢
1 5.1 7.6 8.5 11.3 b b b c
10 0.0 0.0 2.3 1.3/1.% 1 22.9 46.2 67.1 102.6
*Results of aiff - - h th - 1.9 5.9 9.6 16.8
bsestu ts (()j two |t erer:} ttrajegtorlets_vyltl the samt()e ?CIIOI’I. e 10 20.8 403 64.3 117 2/1124
ystem does not oscillate about trivial vacuum but moves classi- 00 00 04 0.3/0.4
cally to next sector.

®Results of two different trajectories with the same action.

only atk~1.5, for v=0 very light Higgs bosons with mo- PDetermination impossible due to infrared behavior.

menta around=0 are produced in a large number. ‘System does not oscillate about trivial vacuum but moves classi-
Table IV shows the total particle numbeXs, andN, of  cally to next sector.

the gauge and Higgs bosons, respectively. In the oasé ) )

the determination oy, is not possible because the numberUdes of the modes in momentum space. We find that the

densityny(K) is strongly peaked close to=0 so that the €or of the data is in general less than 2%. We have to keep

numerical error of the integration is uncontrollable. This is ofi" Mind, however, that the bounce trajectory, and hence the
course an artifact of the unphysical choige:0, however starting configuration, is not unique, but in some cases there
also for finite. but small masses one would have to také'e different solutions with almost the same tunneling prob-
many values i,n thé lattice around 0 and perform the inte- ability. These different starting configurations yield results
gration carefully to get a reasonable result. We find that th or the pafrtlcle %ont;nt Wh'c_lh E?n I(Ijlewaéel\u/p _tl_ohzoc?’ as c|:1an
particle numbers rise withp|, because the released energy € seen from t'e ata in apie 11l an - Ineretore, t.e
increases and allows the production of more particles. Thgrobablllty density for the particle content of the final state is

number of Higgs boson particles is much smaller than thePréad over a range of numbers abaut0% around the

number of gauge bosons, again we see that in case of a lary@Ue given in the tables.
Higgs boson mass no Higgs bosons are produced.
Finally we comment on the numerical uncertainty of the

data in Tables Ill and IV. The error can be estimated by |, this work we have presented a method to find the
increasing the numerical parameters of the Runge-Kutta timg, nce trajectory in the electroweak theory and calculated

integrgtion and the number &fvalues in the Foqrier rans- e probability for the decay of high density fermionic mat-
formation. Moreover, one can choose different tihgs[see (o,

explanation after Eq(4.8)] where we start to fit the ampli- e pounce trajectory is obtained by minimization of the

Euclidean action as a function of the discretized Higgs boson

0.5 and gauge boson fields. At each step of the procedure the
action is regarded as a function of only one parameter, i.e., it
is minimized with respect to the value of one field profile
function at a certain point in the lattice while the values of
the other fields and at the other points are kept fixed. After
finishing one step of the minimization one moves to the next
field or next point until each field at each point of the lattice
has been considered. Many of such “sweeps” through the
lattice (of the order of 10 00Dhave to be performed until a
stable configuration is reached which does not change any-
more if it undergoes further sweeps. From time to time the
user has to interfere into the process of minimization. The
program contains several options to manipulate the field con-
figuration, partially in order to keep the fields in a continuous
and smooth shape, partially in order to accelerate the conver-

0.00 gence. It has been checked that the final configuration always

fulfills the Euclidean equations of motion with sufficient ac-

FIG. 6. The energy densities, andey, of the gauge and Higgs curacy.
bosons versus momentutn (in units of my,) for Higgs boson The determination of the bounce has been carried out for
massesv=my/my=0 (solid lineg, »=1 (dashed lines and  several choices of the Higgs boson massmy/my, and the
v=10 (dotted line$. The chemical potential ip=—0.6. chemical potentiap= u/ui Of the fermionic matter. We

VI. SUMMARY
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find that the actiors; of the bounce drops from the instanton ~ TABLE V. The parameters of the fitting functions for the con-
action S;,; at p=0 to zero at|p|=1 roughly linearly and figuration at the escape point of the bounce trajectory according to
depends only weakly om. A similar behavior is found for Eq. (A1) for several values of the chemical potentjaland the
the Chern-Simons number of the escape point of the bouncé!iggs boson mass=m,/my,=1.

¢s which decreases from 1 to 0. The actiBg is the ex-

ponent of the tunneling rate which itself is correlated to the?~#/#et  —02 ~ —04 ~ —06  —08  —09
probability of the fermion number violation at high particle 5, ~1.166 —1.873 —1957 —1.379 —-0.685
energies. It might therefore be possible to use our results fof, —0.123 -0.183 -0.108 +0.358 +1.100
Efolznesosrder to predict the cross section of the high energy,, —0.042 —-0006 —0020 —0.084 —0.144
For several sets of parameters we found that the bound® +0.986 +0.487 —0.290 -0.925 -0.949
solution is not unique; instead there exist several solution82 —0.738 -0472 -1.008 -0.138 +0.326
with different escape points, but with the same actiorthe ~ bs +0.180 +0.270 -0.303 -0.224 -0.349
given frame of accuragy Since after the barrier penetration ) +0258 40320 +0343 +0.528 -+0.705
each of these escape points will be taken with the same prola— 5514 —3165 -2.224 —1.001 -0.501

ability, for some results of this work we can only give a d
range of values instead of a definite number.
After the tunneling process, the bosonic fields can evoIve

—3.298 —2524 -1926 -—-1.341 -0.740
+0.001 -0.005 +0.000 +0.162 +0.118

in real time Minkowskian space since they have obtained th& —0.674 -0976 -0.957 -0.625 -0.299
energy of the annihilated fermions as potential energy. Thé, +0.663 +0.974 +0.963 +0.538 +0.228
equations of motion can be solved by some time integratioih, +0.153 +0.129 +0.118 +0.031 -0.011
method rather than a minimization of the action. h; —-0.025 -0.016 -0.015 -0.005 +0.000

For chemical potentialgp|=0.8 the system stays in the
topological sector where it came to after the tunneling an
settles to small oscillations about the minimum. The oscilla-Jt
tions correspond to the radiation of Higgs and gauge boson§?2 —0.141 ~0.104  —0.043 +0.009 +0.011
and we have analyzed the particle content of this state b§3 +0.134 +0.117 +0.066 -0.027 -0.057
Fourier transformation. We find that usually less than 10% of+ —0019 -0013 -0.004 +0010 +0.018
the energy is absorbed by the creation of the Higgs bosons;
and correspondingly the total number of produced gauge
bosons is also about 10 times greater than the number é@ a deviation of about 1%. FO“OWing the real time behavior
H|ggs bosons. The results depend Stronghpcand par“a”y of the fit and the numerical fields we find that the partiCIe
also on the Higgs boson mass For large chemical poten- numbersNy,, Ny and the energiegy,, Ey are reproduced
tials | p|=0.9 the system has enough energy and coherenddP t0 a deviation less than 3%.
after the tunneling to move classically over the next barriers. The parameterization is chosen so that it includes the pos-
This corresponds to an avalanche decay of the fermionigibility to describe both the trivial vacuum witcs=0 and
matter and to the production of an enormous amount ofhe nontrivial vacuum witiNcs= 1. For this reason the fit is

Higgs and gauge bosons. performed in a gauge where the fidldr)=0 everywhere.
We denote the other fields in this gauge by

Ap(r), Bg(r), Ho(r), Gg(r). (Here and in the following
the argument=0 is dropped. The gauge transformation
We are grateful to C. Weiss for pointing our attention to Which transformsAg(r), . .. .Go(r) to the field configuration
the use of relaxation methofs6] and thank P. Pobylitsa, M. A(r),...,G(r) at the escape point of the bounce is de-

Polyakov, and V. Petrov for numerous discussions. The worI%C”bed by some functioR(r) according to Eq(2.12.
has been supported in part by the Deutsche For- For the functionsP(r), D(r), Aq(r), Bo(r), Ho(r),
schungsgemeinschaft and the RFBR Grant No. 95-07-0366%0(") we use the ansatz

+0.389 +0.092 -0.285 -0.561 -0.506
—0.556 -0.254 +0.145 +0.360 +0.315

ACKNOWLEDGMENTS

APPENDIX r 2
P(r):_)\d[do 1+X +d2 x +ﬁ)
To investigate the real time behavior after tunneling one d d d
only needs the field configuration at the escape point of the r2 r3
bounce (which we fix att=0) rather than the functions +3d;| 1+ WREETCAY e ",
A(t,r),...,G(t,r) in the whole two-dimensional spatg . d
Hence it is useful to have a parametrization of the functions
A(Or),...,G(0r) so that one can take them as input for r2 r3
further calculations without having the necessity to recalcu- D(r)=2P’(r)=[do 1+ —|+d,—+dy—5|e ",
late the complete bounce trajectory. In this appendix we give Ag A4 7\d
an analytic fit which matches the numerically determined
functionsA(Oyr), ... ,G(0r) very accurately. The potential ; r2 3
energy and the Chern-Simons number of the fit agree with Ao(r)=ag| 1+ — +ay,— +az—3|e "a+1,
the corresponding values of the numerical configuration up Aa Na A
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r2 r3 d
Bo(r):bo 1+ )\_b+b2:2+b3:g e_r/)\b, hl:(H(O)?O_G,(O))S|r{)\d(do+d2+3d3)],
b b
r r2 r3 do
Ho(r)z[ho 1+ | +hir +hyz+hs s e My, 9:=—| H(0) 5 —G'(0) Jcoghg(do+d+3d3)],  (A2)
h h h
) 2 (3 ” where we have useG’(O)zh—l)adf(_do;r_der3d3). The pa-
Go()=|go| 1+ — | +01r +Go—+9s—5+0s—2 e g rametersk 5, Ap,Ap,Ag, are held fixed:
Ng \ Ny NG

Then we perform a gauge transformation on the fields
A(r),...,G(r), using the functiorP(r) of Eq. (A1) to ob-

tain Ag(r), . .. ,Go(r). These functions are fitted to yield the
remaining parametera,,as,b,,b;,h,,h3,0,,05, and g,.
Altogether, our fits contain 12 parameters determined by the
fitting algorithm plus 7 parameters depending on the three

The procedure how we obtain the parameters in(Bq) is
the following: To ensure the correct behavior of the fitting
functions atr=0 [Eq. (2.13] we first take dy=B'(0)
(evaluated by a quadratic fit @& atr=0), use a suitable
fitting algorithm forD(r) to determine\y, d,, andds, and

set valuesB’(0), H(0), andG’(0). So intotal the number of
ap=C0g 2\ 4(do+dy+3d3)]— 1, free parameters is 15. '
In Table V the results of the parameters are given for
bo=sin 2\ 4(do+d,+3d3)], several values of the chemical potentjaland the fixed
Higgs boson mass=my/my,=1. For this Higgs boson
ho=H(0)cog Ay(dp+dy+3d3)]—1, mass we always obtain a unique field configuration at the
escape point, i.e., it does not depend on the initial configu-
go=H(0)siM\y(dg+d,+3d3)], ration before the minimization of the action starts.
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