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Spontaneous annihilation of high-density matter in the electroweak theory
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In the presence of fermionic matter the topologically distinct vacua of the standard model are metastable an
can decay by tunneling through the sphaleron barrier. This process annihilates one fermion per doublet due
the anomalous nonconservation of baryon and lepton currents and is accompanied by a production of gaug
and Higgs bosons. We present a numerical method to obtain local bounce solutions which minimize the
Euclidean action in the space of all configurations connecting two adjacent topological sectors. These solution
determine the decay rate and the configuration of the fields after the tunneling. We also follow the real time
evolution of this configuration and analyze the spectrum of the created bosons. If the matter density exceed
some critical value, the exponentially suppressed tunneling triggers off an avalanche producing an enormou
amount of bosons.@S0556-2821~96!05116-8#

PACS number~s!: 12.15.Ji, 11.15.Kc
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I. INTRODUCTION

Baryon- and lepton-number-violating processes in t
electroweak theory have been the subject of many rec
investigations. They are due to the anomaly of the bary
and lepton currents, discovered by ’t Hooft@1#, and the non-
trivial topological structure of the electroweak theory. Fa
deev@2# and Jackiw and Rebbi@3# found that the potential
energy is periodic in a certain functional of the field, th
Chern-Simons numberNCS, so that instead of one unique
vacuum there exist infinitely many field configurations wit
zero potential energy, classified by integer values ofNCS.

Each transition between vacua withDNCS51 is accom-
panied by a change of the baryon and lepton number of o
unit per fermion generation. The vacua are separated by
energy barrier, called the sphaleron barrier@4,5#, whose
height is of the order of 10 TeV. Under ordinary condition
the barrier can only be overcome by tunneling, but the tu
neling probability is suppressed by the facto
exp(22Sinst)'102153 with the instanton action
Sinst58p2/g2, g'0.67, which means that the process pra
tically never happens.

Under special conditions, however, the fermion numb
violation rate might well be significant. For example, a larg
temperature~of the order ofmw) allows the system to cross
the barrier classically@6–8#; this process might have played
a key role for the generation and conservation of the bary
asymmetry in the early universe. The energy which is ne
essary to overcome the barrier can possibly also be provi
by the incoming particles in a collision if the particle energ
is of the order of 10–100 TeV@9–12#. Hence fermion num-
ber violation might be observable at future supercolliders

In this paper we will investigate a third possibility to ob
tain fermion number violation at a reasonable rate, namely
a surrounding of high density matter@13,14#. The mecha-
nism of how the suppression of the transition rate is reduc
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is as follows: Matter of high density is described by a chemi
cal potentialm, which is, at temperature zero, the energy up
to which the Fermi levels are filled. A transition with
DNCS 5 1 creates a fermion which has to be placed into th
first free level, i.e., it has energym. This energy must be
added to the potential energy of the gauge and Higgs boso
@13,14#:

Vpot
m 5Vpot1mNCS. ~1.1!

The extra term causes the previously degenerate vacua
become metastable and the height of the barrier to be r
duced~see Fig. 1 whereVpot

m is plotted for a negativem) so
that the tunneling probability increases. At a certain critica
valuemcrit , the barrier disappears completely and the state
at integerNCS become unstable.

The decay rate of a metastable state per volume can
calculated by the semiclassical WKB method. Following
Coleman @15#, it is expressed in the formG/V5
B exp(2A). In order to find the exponentA one has to solve
the classical Euclidean equations of motion, i.e., one has
find the classical motion of the system in the potentia
2Vpot

m from some metastable ground state~e.g., a state with
NCS50, as indicated in Fig. 1! to a configuration with the

FIG. 1. Schematic plot of the tunneling process between tw
topological sectors.
2814 © 1996 The American Physical Society
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54 2815SPONTANEOUS ANNIHILATION OF HIGH-DENSITY . . .
same potential energy which is on the other side of the b
rier. We call this configuration ‘‘escape point.’’ The expo
nentA is twice the action of this motion, minimized over a
possible escape points. In Euclidean space, after reaching
escape point the system would move back the same wa
the original ground state, so that this process is called ‘‘t
bounce’’ @15#. Hence the bounce represents the minimum
the Euclidean action in the space of all possible paths from
metastable ground state to the other side of the barrier. T
prefactorB basically contains zero mode factors and the d
terminant of small fluctuations about the bounce, but in th
work we will not be concerned with it and only compute th
exponentA.

It turns out that the chemical potential~and hence the
matter density! which is needed to obtain a reasonable dec
rate is quite large, so that it can hardly occur under norm
circumstances. Nevertheless, the results may still be relev
because the decay rate is closely related to the rate of bar
and lepton number violation at high particle energies@14#.
Also, to our knowledge, this is the first investigation of th
metastable vacuum decay in a real theory, beyond the
called thin wall approximation; and since it is a hard techn
cal problem, our numerical procedure might be useful
other applications, ranging from spontaneous decay of he
nuclei to inflationary scenarios of the early universe.

In principle there are two different possibilities to find th
bounce numerically: Either one solves the equations of m
tion by some initial value method like Runge-Kutta, or on
considers the action as a functional of the fields and mi
mizes it in the space of all field configurations. The fir
method seems to be unfeasible because the potential2Vpot

m

has no lower bound so that a slight deviation from the corre
path will cause the system to fall into some abyss of t
potential2Vpot

m . We have therefore decided to take the se
ond route. For the numerical implementation of the minim
zation we use a discretization in space and time, based o
procedure presented by Adler and Piran@16#, so that the
action becomes a function of the values of the boson fields
the grid nodes. At each step one considers the action a
function of a certain field at a given point and keeps the oth
values fixed. A single step of a Newtonian algorithm is pe
formed, then one takes another field or moves to the n
point until one has performed a ‘‘sweep’’ through the who
lattice and starts with the next one.

Related problems have already been treated in the lite
ture, for example in@17# the decay rate of a metastable sta
was also calculated by minimizing the Euclidean action on
grid in the context of technibaryons in the Skyrme model.
@18# the Euclidean action of the electroweak theory is min
mized, but with respect to only a few parameters in the spa
of parametrized functions. A method how to minimize th
action of a model with scalar fields was presented in@19#. A
short paper about the present method has been publis
recently@20#.

Another aim of this work is to investigate the fate of th
system after the tunneling process has happened. It is kno
@15# that the motion in Euclidean space does not only pr
vide the probability of the barrier penetration, but also yiel
the most probable field configuration in which we will find
the system after the tunneling. This is just the escape poin
the bounce trajectory, i.e., the configuration at the other s
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of the barrier which belongs to the path in Euclidean spac
with the least action. The potential energy of the system aft
the tunneling is greater than the energy of the metastab
minimum in its current topological sector~see Fig. 1!. The
differenceumu is the energy of the annihilated fermion which
is now at the disposal of the boson fields.

The field configuration then performs a real time motio
in Minkowksi space. Knowing the escape point field con
figuration and the field velocities~which are zero!, one has to
solve the standard Cauchi problem, which we perform b
straightforward integration of the second-order differentia
equations. Usually the system will fall towards the minimum
in the sector of the escape point, and eventually settles at t
minimum. The original energyumu of fermions from the
Fermi surface is converted into classical radiation of boson
In 311 dimensions the amplitude of the outgoing wav
package falls off as 1/t so that the generally nonlinear equa
tions of motion can be linearized at large timest, and the
outgoing fields take the form of spherical waves. In order t
evaluate the particle content of the multiboson final state o
has to carry out a Fourier transformation of the fields afte
their amplitudes got small enough. At this point we basicall
follow the work of Hellmund and Kripfganz@21# ~see also
@22#!, who took a slightly disturbed sphaleron as startin
configuration, let it evolve in real time and analyzed the re
sulting multiboson state. Our main modifications are the re
placement of the sphaleron by the escape point of the boun
and the introduction of the chemical potential according t
Eq. ~1.1!.

In certain cases, however, when the fermion density
large enough though less than the critical densitymcrit , the
real time evolution of the fields is utterly different. The fields
will not quiet down at the minimum but ‘‘splash’’ over the
nextbarrier leading to a still lower minimum~at NCS52 in
Fig. 1!, and so forth. As a result the fermion sea will be
completely ‘‘dried out,’’ and a huge amount of energy will
be released in form of boson radiation. Naively, one woul
think that such an avalanche happens only when the fermi
density exceeds the criticalmcrit when the system is allowed
to roll down classically. It is amusing that actually the ava
lanchelike fermion annihilation can be triggered off by a
spontaneous tunneling process at the first stage.

The paper is organized as follows. In Sec. II we set up th
model and describe how matter of high density allow
baryon- and lepton-number-violating processes. In Sec.
we present in detail our numerical procedure to find th
bounce trajectory. The classical motion after the tunneling
investigated in Sec. IV. In Sec. V we give the numerica
results of our calculations, and finally we summarize ou
work in Sec. VI.

II. DECAY OF HIGH-DENSITY MATTER
BY BARRIER PENETRATION

We consider the minimal version of the standard elec
troweak theory with one Higgs doublet in the limit of van-
ishing Weinberg angle. We work with dimensionless re
scaled quantities, the corresponding physical quantities c
in general be obtained by multiplication with appropriate
powers of the gauge boson massmW . Sometimes this factor
is already included in the definition, for details see@8#. The
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bosonic part of the Lagrangian is

L5
mW
4

g2
„2 1

4 Fmn
a Famn1 1

2 ~DmF!†~DmF!

2 1
32 n2~F†F24!2… ~2.1!

with the covariant derivativeDm5]m2 iAm, Am5 1
2Am

a ta,

the field strengthFmn5 1
2 Fmn

a ta5 i @Dm ,Dn#, Fmn
a 5]mAn

a

2]nAm
a1eabcAm

bAn
c , and the Higgs doubletF5(F0

F1

).
n5mH /mW is the ratio of Higgs and gauge boson masse
the ta are the Pauli matrices. We work entirely in tempora
gauge,A050, which restricts possible gauge transformation
to time-independent ones:

Ai→U~Ai1 i ] i !U
†, F→UF, with U5U~r !PSU~2!.

~2.2!

The potential and kinetic energy and the Chern-Simons
dex are

Vpot5
mW

g2 E d3r F14~Fi j
a !21

1

2
~DiF!†~DiF!

1
1

32
n2~F†F24!2G ,

Tkin5
mW

g2 E d3r F12 ~Ȧi
a!21

1

2
Ḟ†ḞG , ~2.3!

NCS5
1

16p2E d3r Fe i jk SAi
a] jAk

a1
1

3
eabcAi

aAj
bAk

cD G .
NCS is only well defined if the configuration space can b
identified with the sphereS3, which requires the fields to be
continuous at infinity. We will always fix them to the trivial
vacuum there (Ai50, F5(2

0)). For vacuum configurations
Ai5 iU ] iU

† with UPSU(2) ~pure gauge!, NCS is the integer
winding number of the mappingS3→SU(2);S3. Adjacent
topological sectors are separated by energy barriers. T
field configurations which minimize the energyVpot for
givenNCShave been calculated numerically by Akiba, Kiku
chi, and Yanagida~AKY ! @23#.

The fermions are coupled to the gauge and Higgs fiel
via the covariant derivative and the Yukawa coupling, re
spectively. We do not consider them explicitly, but note th
due to the anomaly of the fermionic currents their number
not conserved, it varies with the Chern-Simons number
the classical bosonic fields. For each doublet (i ) the fermion
number changes as

DNi5DNCS. ~2.4!

We assume to have a macroscopic amount of fermions o
very high density in thermal equilibrium at zero~or very
low! temperature. There areNg(Nc11)512 doublets, three
leptonic and nine quark ones. We describe them by t
chemical potentialsm i of the doublets; since we have zero
temperature,m i is the energy up to which the fermionic lev-
els are occupied~Fermi energy!. In a process connecting two
adjacent vacua one level crosses the gap, all others
s;
l
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shifted such that after the transition we have the same sp
trum again. But now one more level is occupied or deplete
depending on whether the levels went up or down, hence
created or annihilated fermion has the energym i . Equation
~2.4! allows to include the change of the fermionic energ
into the bosonic energy functional. The new potential ener
is @13,14#

Vpot
m 5Vpot1mNCS, ~2.5!

with Vpot andNCS from Eq.~2.3!. m5S im i is the sum of the
chemical potentials of the single doublets. Obviously, w
have fixed the zero point of the energy to the trivial vacuu
with NCS50. In addition, we can neglect the change of th
Fermi energy due to the creation or annihilation of a sm
number of fermions.

The additional term modifies the curvature of the potent
around the ground states of the topological sectors. A cal
lation of the second derivative ofVpot

m with respect to the
fields yields the following modes in momentum spac
@13,14#:

11p2, n21p2, and 11p26
g2m

8p2mW
upu; ~2.6!

besides, there is a zero mode due to gauge freedom. We
that there are negative modes ifumu exceeds the critical value

mcrit5
16p2

g2
mW . ~2.7!

Therefore, atumu.mcrit the system may roll down classically
without any tunneling. A numerical calculation@24# shows
that indeed the minimal energy barriers between the top
logical sectors vanish in this case.

We are mainly interested in the case 0,umu,mcrit , where
the topologically distinct minima with integerNCS have dif-
ferent energiesVpot

m 5mNCS and are separated by energy ba
riers. Therefore, they are only local minima and are th
metastable and can decay spontaneously by quantum tun
ing to the adjacent topological sector with lower ground sta
energy. The energy differenceumu between the two ground
states is the energy of the bosonic fields after the tunnel
that will eventually be carried away by the outgoing boso
radiation.

As mentioned in the introduction, the tunneling rate p
volume is of the form@15#

G/V5B exp~2A!, ~2.8!

whereA is twice the Euclidean action of the bounce traje
tory, which is the classical path that connects the decay
state and the turning point at the other side of the invert
barrier and minimizes this action. The prefactorB can be
found from the small oscillation determinant about th
bounce, with one negative mode and the zero modes
moved.B also contains the Jacobian factors of the transfo
mation groups which leave the action invariant, i.e., whic
correspond to the zero modes. The factors coming fro
translational invariance in space and time are not included
B but in the left-hand side of Eq.~2.8!, they lead to the
transitionrate per volume.
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In this paper we concentrate on the calculation ofA, we
want to find the bounce solution numerically. This means
find classical fieldsAi

a(t,r ),F(t,r ) which represent a sta-
tionary point of the Euclidean action

SE5E
2`

t0
dt mW

21~Tkin1Vpot
m !. ~2.9!

At time t52` the fields form a metastable ground sta
with integerNCSandTkin50; at t5t0 the system reaches the
turning point at the other side of the potential valley~which
is, considering the tunneling process, the escape point at
other side of the barrier!. Here againTkin50, andNCS takes
a noninteger value belonging to the next topological sect
The bounce lasts infinitely long because it starts from
ground state withdVpot

m /dAi
a5dVpot

m /dF 5 0. Consequently,
t0 is arbitrary, this corresponds to the translational invarian
in time mentioned above.

As discussed previously, the choice of the temporal gau
still leaves the freedom of time independent transformatio
Now we fix the gauge completely by demanding that
t52` the fields start from the trivial vacuum
Ai
a50, F5(2

0) with NCS50 ~and henceVpot
m 5Tkin50). In

addition, we choosem,0 so that the bounce moves from
NCS50 to the topological sector withNCS51.

So far, we deal with 13 real functions depending on tim
t and spacer , nine from the gauge fieldAi

a , and four from
the complex Higgs doubletF. But we expect that our bounce
solution possesses higher symmetries than completely a
trary fields. Therefore we restrict our ansatz to fields havi
the spherical symmetry of the sphaleron and the AKY co
figurations, which describe the minimal energy barrier:

Ai
a~ t,r !5eai jnj

12A~ t,r !

r
1~dai2nani !

B~ t,r !

r

1nani
C~ t,r !

r
,

F~ t,r !5@H~ t,r !1 iG~ t,r !n•t#S 02D , ~2.10!

with r5ur u andn5r /r . This reduces the effort to five func-
tions depending ont and r . The free choice of the origin
corresponds to the spatial translational invariance discus
after Eq.~2.8!. Gauge transformations within this ansatz a
given by
to

te

the

or.
a

ce

ge
ns.
at

e

rbi-
ng
n-

sed
re

U~R!5exp@n•t iP~r !#; ~2.11!

they transform the fields as

A~ t,r !→A~ t,r !cos2P~r !2B~ t,r !sin2P~r !,

B~ t,r !→B~ t,r !cos2P~r !1A~ t,r !sin2P~r !,

C~ t,r !→C~ t,r !12rP8~r !, ~2.12!

H~ t,r !→H~ t,r !cosP~r !2G~ t,r !sinP~r !,

G~ t,r !→G~ t,r !cosP~r !1H~ t,r !sinP~r !,

We will use this transformation later to adjust the numerical
solutions to our choice of the gauge.

As mentioned above, we choose a gauge which yields the
trivial vacuum att52`. In this gauge the fieldsAi

a , F of
the bounce solution are continuous and differentiable every-
where and have finite potential and kinetic energy, because
this is true for our starting point and will not be changed
during the evolution governed by the Euclidean equations of
motion. This requires the following behavior of the radial
functions atr50:

A~ t,r !511a2~ t !r
21O~r 3!,

B~ t,r !5b1~ t !r1O~r 3!,

C~ t,r !5b1~ t !r1O~r 3!, ~2.13!

H~ t,r !5h0~ t !1h2~ t !r
21O~r 3!,

G~ t,r !5g1~ t !r1g2~ t !r
21O~r 3!.

The numerical determination of the bounce is performed
by finding a stationary point of the Euclidean action directly,
without using the equations of motion. In our spherical an-
satz ~2.10!, SE is a functional of the five functions
A,B,C,H,G of Eq. ~2.10!, depending on radial distancer
and timet. The bounce has infinite extension as well in space
as in time, but we can introduce new variablesx andu which
cover only finite intervals; for example,

r ~x!5l rarctanS p

2
xD and t~u!5l tarctanS p

2
uD ,

~2.14!

and new profile functions depending onx andu. Using an-
satz~2.10! and the substitution~2.14! we get
SE5
Sinst
2p E

21

u0
duE

0

1

dx
1

vwFv2S Ȧ21Ḃ21
Ċ2

2
12r 2~Ḣ21Ġ2! D 1S wA81

BC

r D 21S wB82
AC

r D 212r 2S wH81
GC

2r D 2

12r 2S wG82
HC

2r D 21 1

2r 2
~A21B221!21H2

„~A21!21B2
…1G2

„~A11!21B2
…24BGH1

1

2
n2r 2~H21G221!2

12rSCr ~A21B221!1wBA82w~A21!B8D G , ~2.15!
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with

r5
m

mcrit
, w5w~x!5S drdxD

21

, v5v~u!5S dtduD
21

~2.16!

and the dot and prime meand/du andd/dx, respectively. In
the next section we describe how we find stationary points
the functional~2.15! numerically.

III. NUMERICAL DETERMINATION
OF THE BOUNCE TRAJECTORY

Our way to find a stationary point ofSE is the use of a
relaxation method which was discussed by Adler and Pi
in great detail@16#. The functional~2.15! is put on a two-
dimensional grid of size (nu11)3(nx11). We distinguish
the full node grid with points

~ui ,xj !5~umin1 iDu,xmin1 jDx! S i50, . . . ,nu

j50, . . . ,nxD ,
~3.1!

and the half node grid with points

~ui11/2,xj11/2!5„umin1~ i1 1
2 !Du,xmin1~ j1 1

2 !Dx…

S i50, . . . ,nu21

j50, . . . ,nx21D , ~3.2!

with
of

ran

Du5
umax2umin

nu
and Dx5

xmax2xmin
nx

. ~3.3!

For the substitution ~2.14! the values are, e.g.,
umin521, umax50 ~for t050), xmin50, xmax51. The five
profile functions are put on the full node grid, the radial
distancer and the derivativesv andw on the half node grid.
We introduce the notation

Aj
i5A~ui ,xj !, r j11/25r ~xj11/2! ~3.4!

and accordingly for the other functions. The use of the hal
node grid prevents the calculation of expressions liker or
1/r at the boundariesr5`,0.

There are many different ways to put an integral as Eq
~2.15! on a grid, so that in the limitnu ,nx→` the original
functional is restored again. Therefore it is rather importan
to choose a discretization that is suitable for numerical trea
ment. Basically, we followed the suggestions of@16# here,
but to fix the details we had to try and compare differen
ansatzes. For example, the property of some terms to vani
at the origin and cancel the 1/r divergence must not be lost
by the discretization. It showed that terms as (wA81BC/r )
should be discretized before being squared, and that inste
of C(t,r ) the function

D~u,x![
C~u,x!

r ~x!
~3.5!

should be used, i.e., put on the full node grid asDj
i We use

the following discretization forSE , Eq. ~2.15!, written here
as sum over contributions from grid cells centered at ha
node points (ui11/2,xj11/2) :
SE
grid5

Sinst
2p (

i50

nu21

(
j50

nx21
DuDx

v i11/2w j11/2
Fv i11/2

2

2Du2 S ~Aj
i112Aj

i !21~Aj11
i112Aj11

i !21~Bj
i112Bj

i !21~Bj11
i112Bj11

i !212r j11/2
2 F ~Hj

i11

2Hj
i !21~Hj11

i112Hj11
i !21~Gj

i112Gj
i !21~Gj11

i112Gj11
i !21

1

4
~Dj

i112Dj
i !21

1

4
~Dj11

i112Dj11
i !2G D

1
1

2 H S w j11/2

Dx
~Aj11

i 2Aj
i !1

1

2
~Bj

iD j
i1Bj11

i D j11
i ! D 21S w j11/2

Dx
~Bj11

i 2Bj
i !2

1

2
~Aj

iD j
i1Aj11

i D j11
i ! D 2

12r j11/2
2 S w j11/2

Dx
~Hj11

i 2Hj
i !1

1

4
~Gj

iD j
i1Gj11

i D j11
i ! D 212r j11/2

2 S w j11/2

Dx
~Gj11

i 2Gj
i !2

1

4
~Hj

iD j
i1Hj11

i D j11
i ! D 2

1
1

4r j11/2
2 @~Aj

i21Bj
i221!21~Aj11

i2 1Bj11
i2 21!2#1

1

2
„Hj

i2@~Aj
i21!21Bj

i2#1Hj11
i2 @~Aj11

i 21!21Bj11
i2 #1Gj

i2@~Aj
i

11!21Bj
i2#1Gj11

i2 @~Aj11
i 11!21Bj11

i2 #24Bj
iGj

iH j
i24Bj11

i Gj11
i H j11

i
…1

1

4
n2r j11/2

2
„~Hj

i21Gj
i221!21~Hj11

i2

1Gj11
i2 21!2…1r„Dj

i ~Aj
i21Bj

i221!1Dj11
i ~Aj11

i2 1Bj11
i2 21!…1r

w j11/2

Dx
„~Aj11

i 2Aj
i !~Bj

i1Bj11
i !2~Aj

i1Aj11
i 22!

3~Bj11
i 2Bj

i !…J 11/2$ i→ i11%G . ~3.6!
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Typically, we used grids of the sizenu5nx580, in which
case the profile functions are represented
5381381532805 points. To find a stationary point o
SE
grid now means to find a configuration which satisfies th
equations

]SE
grid

]Aj
i 50,

]SE
grid

]Bj
i 50,

]SE
grid

]Dj
i 50,

]SE
grid

]Hj
i 50,

]SE
grid

]Gj
i 50

~3.7!

for all i and j .
The solution is found iteratively until the configuration

satisfies Eq.~3.7! sufficiently well. In each step, only one
single numberAj

i ,Bj
i ,Dj

i ,Hj
i or Gj

i for certain i , j is
changed; all others are held constant. ‘‘Sweeping’’ over t
grid, we modify the field parameters one after another, whe
the order is only of minor importance.~We changed the five
functions for giveni , j and variedj for fixed i .) The change
of, e.g., Aj

i is governed only by the according equatio
]SE

grid/]Aj
i50; all other equations are not taken into accoun

We perform the first step of a Newtonian algorithm th
would converge against the solution of that equation, i.e.,
change the field parameter as

Aj
i→Aj

i2k
]SE

grid/]Aj
i

]2SE
grid/]Aj

i2
, ~3.8!

where in general for the damping parameter we choo
k51. The necessary partial derivatives in Eq.~3.8! must be
calculated from Eq.~3.6!; we do not write them explicitly
here.

Unfortunately, the bounce solution is not a local min
mum, but only a saddle point of the Euclidean action: T
problem is that because of the termmNCS the Euclidean
potential2Vpot

m is not bound from above; it can take positiv
values. Because of energy conservation the bounce itself
tweenNCS50 and 1 cannot have positive potential energ
2Vpot

m at any time; its total energyEtot5Tkin2Vpot
m is con-

stant and zero~Fig. 1!. But in its vicinity, one can construct
paths which have positive potential2Vpot

m for some time and
which give alower action than the bounce. We found tha
unrestricted sweeps according to Eq.~3.8! always lead to
configurations of that kind. Once there, the system quick
evolves to enormously high winding numbersNCS and an
unlimitedly decreasing negative action. Thus, in order
avoid this instability, we have to prevent the system fro
acquiring positive potential2Vpot

m . We did so by choosing
an initial configuration with nonpositive potential, and the
rejecting all steps~3.8! which would yield a positive
2Vpot

m . If a step is not accepted, it is tried again withk
divided by 2; this is repeated up to five times before the st
is completely rejected for the current sweep. Unfortunate
this method requires to calculateVpot

m ~or actually the change
of Vpot

m ) for the current time slice after each single ste
which slows down the algorithm considerably. There a
more sophisticated ways to take into account invariances l
energy conservation@19#, but in our case the simple remed
proved to be most effective. Within the restrictio
y
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2Vpot
m <0 the bounce locally minimizes the action. Numeri-

cally, we find indeed that the action decreases monotonically
and converges to some limit.

As starting configuration we usually take an instantonlike
configuration,

A~ t,r !5cosb22
rt sinb1r 2cosb

r 21t21l2 , ~3.9!

B~ t,r !5sinb22
rt cosb2r 2sinb

r 21t21l2 ,

D~ t,r !52
l2

r ~r 21l2!S b1
2rt

r 21t21l2D ,
H~ t,r !512

1

2S 11
t

t21l2D S 11cos
pr

Ar 21l2D ,
G~ t,r !5

1

2S 11
t

t21l2D sin pr

Ar 21l2
,

with

b5b~ t,r !5
2r

Ar 21l2 S arctan t

Ar 21l2
1

p

2 D .
The size parameterl is chosen between 2 and 4. This con-
figuration has potential 2Vpot

m 50 at t52` and
2Vpot

m 52m.0 at t5`; we choose the boundaryumax of
the grid such that att(umax) the potential crosses the zero
line. Hence forumin,u,umax we have2Vpot

m ,0.
According to our gauge fixing and to Eq.~2.13! the fields

are fixed at some boundaries of our grid. For
u5umin (t52`) or x5xmax (r5`) we haveA5H51,
B5D5G50, and for the originx5xmin (r50) we know
A51, B5G50. Accordingly, the following field param-
eters are held fixed:

Aj
05Anx

i 5A0
i 51,

Bj
05Bnx

i 5B0
i 50,

Gj
05Gnx

i 5G0
i 50, ~3.10!

Dj
05Dnx

i 50,

Hj
05Hnx

i 51,

Unfortunately, if one only sweeps over the grid using Eq.
~3.8!, the outcome will not be a reasonable bounce solution,
but a rather discontinuous and unusable configuration.
Therefore the computational procedure cannot be run from
start to end automatically, but requires the controlling and
regulating of the user once in a while, which makes the work
a tedious and long lasting one. The following problems arise.

The Euclidean action ~2.15! contains no term
D85]D/]x. Hence adjacent field parametersDj

i andDj11
i

are only weakly coupled and theD field easily ceases to be
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smooth. Especially close to the origin the field is rather u
stable, therefore we do not use Eq.~3.8! to fix D0

i andD1
i ,

but adjust them to a linear extrapolation throughD2
i and

D3
i . Nevertheless, in order to keep the fields reasona

smooth, we are forced to smooth them by an averaging p
cedure from time to time, where each field parameter is
placed by the average value of itself and some of its neig
bors, with weight factors according to their distanc
Certainly this disturbs the minimization algorithm and ge
erally leads to a higher action again. But after some furth
sweeps the action is down to its earlier value again, and
fields are smoother now.

Another problem is the following: Close to
u5umin (t52`) the factorv5du/dt which governs the
kinetic energy terms is rather small so that adjacent tim
slices are only weakly coupled. Therefore, the fact that
fixed the fields to the trivial vacuum at theu5umin boundary
hardly influences the configuration at larger times. Instea
we usually see that going from largeu towardsumin the
configuration continuously approaches anontrivial vacuum
state, and then close toumin the fields show a discontinuous
step from this nontrivial vacuum to the trivial one. We ge
rid of this step by performing a gauge transformation of th
kind ~2.12! which converts the nontrivial vacuum at the edg
of the step to the trivial one. This gauge transformation
applied to all time slices except the ones close toumin where
the fields are already trivial.

Apart from the above manipulations which are necessa
to keep the configuration in an acceptable shape, we a
have the possibility to accelerate the convergence of the
gorithm. The solution has to obey the energy conservat
law Etot5Tkin2Vpot

m 50. Given some arbitrary configuration
for which this is not the case, one can find a different tim
parametrization such that energy conservation is fulfille
Practically, we leave the valuest(ui) of the times at the grid
nodes fixed and determine the fields of the reparametriz
configuration at those timest(ui) by interpolation. By this
operation one can gain a considerable decrease of the ac
without performing minimization sweeps.

Finally we remark that the grid size is not complete
fixed, but it is adapted to the status of the minimizatio
Usually we start with a size of 41341 nodes, and only when
we are already close to the solution we double the grid
81381 points. Moreover, we observe that during the swee
the bounce, especially its escape point where the poten
reaches zero again, slowly moves towards smaller times
principle, the time scale is arbitrary, as discussed above,
for numerical reasons a given configuration has sligh
lower action when it is shifted to smaller times. We find th
the energy at a few points next toumax becomes zero, so tha
the escape point does no longer coincide withumax. If the
number of these points gets too large, we throw away
part of the configuration beyond the escape point, which
sults in a lowerumax andnu . If nu becomes too small, we
double the grid in the time dimension only, i.e., we doub
nu but leavenx . For the final configuration we adjust the
time scale such that the escape point is set on the origin,
t050.

Practically, the bounce trajectory is found by switchin
between the minimization sweeps and one of the manipu
n-
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tions described above. If any and which of the regulations
should be performed has to be decided by looking at the
actual field configuration. At first sight this procedure seems
to be subjective and nonreproducible, but let us remark tha
before we stop the program, the last manipulation is alway
followed by at least 500 sweeps. Moreover, we have alway
checked that the final configuration fulfills the equations of
motion with excellent accuracy.

IV. THE REAL TIME EVOLUTION
AFTER THE TUNNELING

In this section we show how we investigate the behavior
of the boson field configuration after the barrier penetration
and how we analyze the particle content of the state. We
follow basically the procedure presented in@21#, but instead
of the sphaleron we take the escape point of the bounce a
starting configuration.

The potential energy of the escape point is larger byumu
than the potential energy of the ground state in the corre
sponding topological sector. Hence the system performs
motion in the real time Minkowski space. The equations of
motion within the spherical ansatz~2.10! are

Ä5SA81
BC

r D 8
2
A

r 2
~A21B221!1SCr 12r D SB82

AC

r D
2A~H21G2!1H22G2,

B̈5SB82
AC

r D 8
2
B

r 2
~A21B221!2SCr 12r D

3SA81
BC

r D2B~H21G2!12HG,

C̈5
2A

r SB82
AC

r D2
2B

r SA81
BC

r D2C~H21G2!

12r ~HG82H8G!2
2r

r
~A21B221!,

Ḧ5
1

r
~rH !91

1

2r 2
~CG1C8Gr12CG8r !1

1

r 2
~AH1BG!

2
H

2r 2 S 11A21B21
C2

2 D2
n2

2
H~H21G221!,

G̈5
1

r
~rG !92

1

2r 2
~CH1C8Hr12CH8r !1

1

r 2
~BH2AG!

2
G

2r 2 S 11A21B21
C2

2 D2
n2

2
G~H21G221!, ~4.1!

where the dot means the derivative with respect to the tim
t and the prime with respect to the radial coordinater .

These equations and the condition that att50 the system
starts at the escape point of the bounce with kinetic energ
zero @i.e., Ȧ(0)5Ḃ(0)5Ċ(0)5Ḣ(0)5Ġ(0)50] form a
Cauchi problem which is solved by direct integration. To do
this we discretize the Minkowskian action in the same way
as the Euclidean action, which means we take Eq.~3.6! and
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reverse the sign of the terms stemming from the potent
energy. Moreover, we identifyt(u)5u instead of Eq.~2.14!,
so thatv(u)51, but we still keep the relation betweenr and
x of Eq. ~2.14!. We obtain discretized equations of motion b
deriving the discretized Minkowskian action with respect t
the field coordinatesAj

i , . . . ,Gj
i . These equations are solved

for the variablesAj
i11 , . . . ,Gj

i11 so that we obtain the fields
with time indexi11 as a function of those with indicesi and
i21. By iterative application of these equations it is the
possible to evaluate the propagation of the system from t
initial configuration att50 to arbitrary positive times.

The grid of the discretization can be much more den
here than in the case of the Euclidean problem. Usually w
take 800 steps per time unit and 3000 grid nodes in t
interval fromx50 to x51. We checked that the results are
stable with respect to a further increase of these paramet
The total time how long we follow the propagation of the
fields is typically around 20 to 30~in units ofmW

21).
As in the Euclidean case, special care has to be taken

order to treat the fields close to the originr50 adequately. If
the numerical solution does not exactly fulfill the expansio
given by Eq.~2.13!, some terms of the right-hand side of Eq
~4.1! become singular. Hence even a slight deviation fro
this expansion increases rather quickly witht and finally
results in a strong divergence of the fields close tor50.
Since small numerical errors will always cause this to ha
pen we cannot take the discretized equations of motion clo
to the origin, but we rather impose the behavior of Eq.~2.13!
by hand. For about the first 50 of the 3000 points we dete
mine the fields not by the iteration method but by Eq.~2.13!
where the coefficientsa2(t), etc. are chosen such that the
functionsA, . . . ,H are continuous and differentiable at the
matching point between the numerical solution and the
~2.13!.

We find that for most sets of parametersn and r after
some time the fields perform small oscillations about som
vacuum configurationĀ(r ), . . . ,Ḡ(r ) in the topological sec-
tor of the escape point~which is the one withNCS51 for our
choice of gauge!. An indication for this behavior is that
NCS,Vpot

m , andTkin do not change any more witht, the ener-
gies take constant values6(umu/2) according to the virial
theorem.

The Fourier analysis of the small oscillations is great
simplified if the vacuum about which the fields are fluctua
ing is the trivial one. For this reason we perform a tim
independent gauge transformation of the type~2.12! which
transforms the configurationĀ(r ), . . . ,Ḡ(r ) into the trivial
vacuum. In order to determine the configuratio

Ā(r ), . . . ,Ḡ(r ), we start the propagation of the fields with
the original escape point and average the fields:

Ā~r !5
1

t2ts
E
ts

t

dt8A~ t8,r !, ~4.2!

and equivalently for the other profiles.ts is some time where
the system already performs small oscillations. We check
that Ā(r ), . . . ,Ḡ(r ) are independent oft if t is large enough
and that they in fact represent a vacuum configuration w
NCS51.
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The gauge transformation which transforms

Ā(r ), . . . ,Ḡ(r ) into the trivial vacuum changes the Chern-
Simons number byDNCS521. We apply it to our starting
configuration, the escape point, which hereby gets a Chern
Simons number between21 and 0 and the potential energy
Vpot

m 5umu. Now we start the propagation again with the start-
ing configuration in the new gauge. By performing the same
averaging process again, we can check that the system no
indeed fluctuates about the trivial vacuum with excellent ac-
curacy, which proves that the gauge invariance is correctly
reproduced in our numerics.

For the following we assume that the system has reache
the status where it can be described by small fluctuations
about the trivial vacuum. We denote these fluctuations with
small letters,

A~ t,r !511a~ t,r !, B~ t,r !5b~ t,r !, C~ t,r !5c~ t,r !,

H~ t,r !511h~ t,r !, G~ t,r !5 f ~ t,r !, ~4.3!

and expand the energy to second order in the fluctuations:

Tkin
~2!5

4pmW

g2 E
0

`

drS ȧ21ḃ21
ċ2

2
12r 2~ ḣ21 ḟ 2! D ,

Vpot
m~2!5

4pmW

g2 E
0

`

drF2a2r 2 1a821S b82
c

r D
2

1a21b21
c2

2

14 f 224b f22rc f 812r 2~h821 f 82!

12n2r 2h212rS a8b2b8a1
2ac

r D G ,
Etot

~2!5Tkin
~2!1Vpot

m~2! . ~4.4!

We found thatVpot
m(2) andVpot

m coincide up to a deviation of
less than 1% for larget which indicates that the system has
perfectly linearized. The potential in second order leads to
the linear equations of motion

ä5a92aS 11
2

r 2D12rS b82
c

r D ,
b̈5S b82

c

r D 8
2b12 f22ra8,

c̈5
2

r S b82
c

r D2c12r f 824r
a

r
,

rḧ5~rh !92n2rh,

r f̈5~r f !92
1

2r
~rc !81

b

r
2
2 f

r
. ~4.5!

In the caserÞ0, for an arbitrary fixed momentumk the
solution is
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ak~ t,r !5 3
2 „b1

k~ t !2b2
k~ t !…r j 1~kr !,

bk~ t,r !5„b0
k~ t !1b1

k~ t !1b2
k~ t !1zk~ t !…r j 0~kr !

1„b0
k~ t !2 1

2 b1
k~ t !2 1

2 b2
k~ t !1zk~ t !…r j 2~kr !,

ck~ t,r !5„b0
k~ t !1b1

k~ t !1b2
k~ t !1zk~ t !…r j 0~kr !

22„b0
k~ t !2 1

2 b1
k~ t !2 1

2b2
k~ t !1zk~ t !…r j 2~kr !,

hk~ t,r !5gk~ t ! j 0~kr !,

f k~ t,r !52
3

2 S kb0
k~ t !2

1

k
zk~ t ! D j 1~kr !, ~4.6!

with

b i
k~ t !5b i~k!sin~v i t1a i !, i50,1,2,

gk~ t !5g~k!sin~Vt1d!, zk~ t !5c1t1c2 ,

v0
25k211, v1,2

2 5k21162kr, V25k21n2, ~4.7!

and j i(kr) are the spherical Bessel functions. The pha
shiftsa i ,d, and theci are fixed constants depending on th
initial conditions. The zero mode in Eq.~4.6! is due to the
gauge freedom; since we have fixed the gauge its amplit
zk(t) is zero. The frequenciesv i , i50,1,2 are eigenmode
of free gauge bosons@in dimensionful units 1 has to be re
placed bymW

2 in Eq. ~4.7!#; V represents the free Higg
particle eigenstates.

The coefficients can be evaluated by Fourier transform
tion:

gk~ t !5
2k2

p E
0

`

dr r 2 j 0~kr !„H~ t,r !21…, ~4.8!

b0
k~ t !52

4k

3pE0
`

dr r 2 j 1~kr !G~ t,r !

5
2k2

9p E
0

`

dr r @ j 0~kr !„2B~ t,r !1C~ t,r !…

1 j 2~kr !„2B~ t,r !22C~ t,r !…#,

b1,2
k ~ t !5

2k2

9p E
0

`

dr r @ j 0~kr !„2B~ t,r !1C~ t,r !…2 j 2~kr !

3„B~ t,r !2C~ t,r !…63 j 1~kr !„A~ t,r !21…#.

To find the amplitudesb i(k),g(k) we Fourier transform
the numerical solution of the equations of motion~4.1! ac-
cording to Eq. ~4.8!. The resulting functionsb i

k(t),gk(t)
should oscillate according to Eq.~4.7! when the system has
settled to small fluctuations about the vacuum. This is
case after some timetosc ~typically ;15mW

21) with excellent
accuracy. Moreover, we checked that the two different f
mulas forb0

k(t) in Eq. ~4.8! numerically lead to the same
se
e

ude
s
-
s

a-

the

or-

result. Fitting the functionsb i
k(t),gk(t) for t.tosc with the

corresponding sin(v i t1a i),sin(Vt1d) of Eq. ~4.7! yields
the amplitudesb i(k),g(k).

One obtains for the total energy of the linearized syste
in momentum space@its coordinate space representation i
given by Eq.~4.4!; the numerical values coincide up to a
deviation of less than 2%#

Etot
~2!5EW1EH5mWE

0

`

dk eW~k!1mWE
0

`

dk eH~k!

5
9p2mW

g2 E
0

`dk

k2
„v0

4~k!b0
2~k!1v1

2~k!b1
2~k!

1v2
2~k!b2

2~k!…1
4p2mW

g2 E
0

`dk

k2
V2~k!g2~k!.

~4.9!

Since energy and particle density are related b
e(k)5v(k)n(k) we can extract the total number of par-
ticles:

NW5
9p2

g2 E0
`dk

k2
„v0

3~k!b0
2~k!1v1~k!b1

2~k!

1v2~k!b2
2~k!…,

NH5
4p2

g2 E0
`dk

k2
V~k!g2~k!. ~4.10!

V. RESULTS

In this section we present the numerical results of ou
calculation. Our model contains two free parameters, th
Higgs boson massn5mH /mW and the chemical potential
r5m/mcrit . We performed the calculations for the values
n50, 1, 10, andr520.2,20.4,20.6, and20.8. More-
over, we investigated the casen51, r520.9. The values
for n cover a wide range of Higgs boson masses, but it turn
out that most results do not depend too much onn. The
choicen50 is certainly not physical since essential feature
of the model, like spontaneous symmetry breaking, disa
pear. It should therefore be understood as limiting case
small masses. In fact we found that the configurations o
tained forn50 and a mass liken50.1 are almost identical.
Similarly n510 is an example for a large Higgs boson mas

A. Barrier penetration

In Fig. 2 we show the potential and kinetic energy as we
as the Chern-Simons number as functions of the time for t
bounce trajectories with chemical potentialsr520.2 and
20.8 and the Higgs boson massn51. The arbitrariness of
the time scale has been removed by setting the time when
system reaches the escape point at the other side of the b
rier to t50. It can be seen that the energy conservation la
Etot5Tkin2Vpot

m [0 is excellently satisfied. Forr520.8 the
energiesTkin andVpot

m are much smaller than forr520.2.
Also the value of NCS at t50 is lower in the case
r520.8. The reason for this behavior is that the barrie
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between the trivial vacuum and the topological sector w
NCS51 decreases ifuru is increased so that less action i
necessary to penetrate it and the system can escape at a
figuration with lower winding numberNCS. The extension of
the bounce in time~and also in space, see below!, however,
increases withuru. For example, in the caser520.2 the
system moves out of the trivial vacuum significantly at abo
t'22 while this happens forr520.8 already at about
'24. The Chern-Simons term in the functionalSE @Eq.
~2.15!# lowers the action for large sizes, and its influenc
becomes stronger with increasinguru. Hence for largeuru
configurations with large sizes are favored, while for lo
uru the minimum is taken at a field configuration with a sma
size. In the limitr→0 one would even obtain a configuratio
with size zero~see below!.

The field configuration at the escape point of the boun
trajectory att50 is interesting by itself, since subseque
calculations like the investigation of the real time behavior
the system require only this configuration rather than t
complete bounce trajectory. In Fig. 3 we have plotted t
profile functions att50 again for the two casesr520.2
and20.8, and the Higgs massn51. What we saw in Fig. 2
for the time t, we find here for the space coordinater : the
deviation of the fields from their values in the trivial vacuum
is much stronger forr520.2, but the region where they
deviate is less extended. A suitable and accurate analytic
for the configurations at the escape point is provided in t
Appendix.

In Table I we give the results for the actionSE of the
tunneling process in units of the actionSinst58p2/g2 of the
instanton in pure gauge theory. In Table II we show th
Chern-Simons numberNCS

escof the configuration at the escap
point. Forr521 the barrier vanishes so that the tunnelin
process is reduced to a single point in the configurati
space, namely the trivial vacuum. Hence in this case
action andNCS

esc are both 0. Forr→0 the field configuration
which minimizes the action tends to an instanton with si

FIG. 2. The potential energy2Vpot
m , the kinetic energyTkin , and

the Cherm-Simons numberNCS versus timet ~in units ofmW
21) for

chemical potentialsr5m/mcrit520.2 ~solid lines! and 20.8
~dashed lines!. The Higgs boson mass isn5mH /mW51.
th
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zero, so that the bounce action equals the instanton action
and the configuration at the escape point is a vacuum with
NCS51. In a pure gauge field theory the solution forr50
would be an instanton of arbitrary size, but here the scale
invariance is destroyed by the nonzero vacuum expectation
value of the Higgs field, so that for a finite size the action
would be larger than the instanton action@25#. Hence in the
limit r→0 we obtain a trajectory with size zero. For
21,r,0, however, due to the Chern-Simons term the
minimum of the action is taken by a configuration with finite
size. The accuracy of the data in Tables I and II can be
estimated by increasing the density of the lattice~which is
usually of size about 81381) and the number of sweeps
~usually of the order of 10 000!. We find that the numerical
error of the results is around 1%. For each set of parameters
n,r we performed two independent minimizations, starting
from two rather different field configurations like, e.g., in-
stantons with sizel52 and 4@see Eq.~3.9!#. Forn51, both
minimizations always ran towards the same bounce trajec-
tory, within the given frame of accuracy. Forn50 and 10,
however, the two minimizations sometimes produced differ-
ent trajectories, which have the same action, but different
NCS
esc and also different behavior of the functions

FIG. 3. The profile functionsA, B, C ~solid lines!, andH and
G ~dashed lines! versus the radial distancer ~in units ofmW

21) of
the configuration at the escape point of the bounce trajectory for
r5m/mcrit520.2 and r520.8, and the Higgs boson mass
n5mH /mW51.

TABLE I. The actionSE /Sinst of the bounce trajectory for vari-
ous values of the chemical potentialr and the Higgs boson mass
n.

r5m/mcrit

n5
mH

mW
0.0 20.2 20.4 20.6 20.8 21.0

0 1.00a 0.81 0.54 0.30 0.11 0.00a

1 1.00a 0.82 0.58 0.34 0.14 0.00a

10 1.00a 0.86 0.66 0.45 0.19 0.00a

aKnown from theory.
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TABLE II. The Chern-Simons numberNCS
escof the escape point of the bounce trajectory for various values

of the chemical potentialr and the Higgs boson massn.

r5m/mcrit

n5
mH

mH
0.0 20.2 20.4 20.6 20.8 21.0

0 1.00a 0.83/0.85b 0.64/0.66b 0.44/0.47b 0.22/0.24b 0.00a

1 1.00a 0.85 0.68 0.51 0.30 0.00a

10 1.00a 0.87 0.74 0.66 0.42/0.42b 0.00a

aKnown from theory.
bResults of two different trajectories with the same action.
-
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Vpot
m (t), NCS(t). Using a suitable averaging procedure, o

finds that there exists an infinite number of different pat
which all have the same action~up to a deviation of 1%!.
Two conclusions are possible: either the bounce trajector
not unique, i.e., the action has a zero mode, or there
unique, but very shallow minimum.

Unfortunately, the numerical accuracy of our method do
not allow to distinguish between those two possibilities, b
for the following investigations this is quite irrelevant, an
way: In the case of a true zero mode the different tunne
trajectories will be taken withexactly the same probability
while in the case of a shallow minimum the tunneling pro
abilities arealmostthe same. We will see below that the re
time evolution of the fields after the tunneling leads to de
ating bosonic signatures for two different trajectories. In a
case, if a barrier penetration happens, both results occur~al-
most! equally likely, so that the accuracy of all results
given by the range of values which we obtain for differe
trajectories with the same action. Certainly, the tunnel
rate is influenced by the volume of a possible transforma
group with invariant action or the~low! curvature around the
minimum, but these only contribute to the prefactorB of Eq.
~2.8! which is not discussed in this paper.

Thus, in Table II we have given both values forNCS
escif we

obtained two different configurations with the same acti
We find that both the action andNCS

esc increase ifuru is de-
creased or the Higgs massn is increased. The reason is th
the barrier becomes wider and higher with decreasinguru and
increasingn so that more action is necessary to penetr
through it, and the escape point moves further away from
trivial vacuum. We see that both quantities are roughly l
early related tor, and, as anticipated, the dependence of
results on the Higgs mass is rather weak.

The suppression factore22Sinst'102153 of the tunneling
rate forr50 becomes less strong foruru.0, but significant
tunneling amplitudes can only be obtained for chemical
tentials as high asuru*0.9 ~for r520.9 andn51 we ob-
tained SE /Sinst50.06 andNCS

esc50.17). Oneneeds, how-
ever, a matter density which is about 106 times larger than
the photon density in the early universe at the electrow
phase transition, or about 1018 nuclear matter density, in or
der to correspond to such a large chemical potential. P
ently it is not known if a matter density of this order has ev
existed in the early universe. Even if this is not the case,
results still have some physical significance because the
neling rate may be related to the rate of fermion num
violation at high particle energies@14#. Hence, taking our
ne
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results one might be able to deduce the probability to ob
serve such a process at a supercollider.

B. Real time evolution

Next we will describe how the system evolved in rea
time after the barrier penetration. We solved the equations
motion basically as it was done, e.g., in@21,22#. In order to
check the numerics, we first used the sphaleron as starti
configuration, and our results agreed with those of@21,22#.
Then we replaced the sphaleron by the configuration at th
escape point of the barrier penetration process. By perform
ing the gauge transformation withDNCS521 to ensure that
the fields fluctuate about thetrivial vacuum~see Sec. IV! the
potential energy of the starting configurationVpot

m is in-
creased from 0 toumu @in units of (8p2/g2)mW5mcrit/2 this
means it is increased from 0 to 2uru]. The Chern-Simons
number is lowered by one unit and starts between21 and 0.

In Fig. 4 we present the behavior ofVpot
m , Tkin , and

NCSas a function of timet.0 after the tunneling process for
r520.6 andr520.9. The Higgs boson mass isn51. We
find that for timest&10 the behavior of the system in the

FIG. 4. The potential energyVpot
m , the kinetic energyTkin ~in

units of 8p2mW /g
2, and the Chern-Simons numberNCS versus

time t ~in units ofmW
21) for chemical potentialsr5m/mcrit520.6

~solid lines! and20.9 ~dashed lines!, and the Higgs boson mass
n5mH /mW51.
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two cases is quite similar: The system starts to move, i.e.,
kinetic energy increases, while the potential energy
creases. Energy conservation is satisfied very accurately
ing the whole process. The Chern-Simons number increa
quickly to values around 0, which means the system com
close to the trivial vacuum.

In the caser520.6 the energy dissipates into small flu
tuations about the vacuum. We checked that the ene
Vpot

m(2) in second order of the fluctuations agrees up to a
viation of less than 1% withVpot

m , moreover we see in Fig. 4
that potential and kinetic energy both become constant at
value of umu/2 in accordance with the viral theorem. Th
Chern-Simons number takes a constant value slightly be
zero. Hence the system has settled to small oscillations a
the trivial vacuum and will stay in this topological secto
forever ~apart from possible tunneling later on!. Later we
will analyze the particle content of this state.

In the caser520.9, however, we observe a complete
different behavior for timest*10. HereNCS suddenly in-
creases from values around 0 to about 1, later even to
Hence the system does not stay in the topological secto
the trivial vacuum but moves classically over the next barr
to the sector withNCS51. Here it also stays only for a shor
period before it moves to the next sector withNCS52. This
behavior is also demonstrated by the plot of the poten
energy which shows the successive falls of the system lik
cascade towards configurations with increasing wind
number and decreasing energy. Once the first tunneling
cess has happened, the system moves classically over a
following barriers so that the whole fermion matter deca
rapidly and sets free an enormous amount of energy.
mentioned above, the tunneling amplitude is not extrem
small for r520.9 (1029 instead of 102153), but in order to
generate such a large chemical potential a huge fermion d
sity is required ('1018 nuclear matter density!.

It is a property of the periodic plus linear potential th
even at smallm, the energy barriers become lower than t
local minimum atNCS50, if one goes far enough inNCS.
Therefore, if the systems tunnels directly to that far-aw
sector~which would require multi-instanton-like bounce so
lutions!, the avalanche would probably develop, too. O
course, the multi-instanton tunneling probability is ev
smaller than for a single bounce, but it should grow fas
with m. It would be interesting to estimate the total dec
probability as a function ofm, with tunneling to different
topological sectors summed up.

Energetically, this behavior of a classical rapid decay
allowed if the top of the barrier between the sectors w
NCS50 and 1 is lower than the chemical potentialumu. For
n51, this is the case already foruru*0.2, but we found that
only for uru*0.9 it actually happens. For chemical potentia
between 0.2 and 0.9 the system could in principle cross
next barrier, but the energy is dissipated among the mode
small oscillations and not concentrated on the direction to
next minimum so that the system does not find the collect
path over the barrier. Forn50, we have found that the ava
lanche starts developing already aturu*0.8. We think we
have observed an interesting phenomenon of how an ex
nentially suppressed spontaneous decay triggers off a c
strophic avalanche which never stops until the fermion s
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originally filled up to the Fermi surfacem, is completely
‘‘splashed.’’

In Fig. 5 we show forn51 andr520.6 how the density
of the total energy, defined by Etot5Tkin1Vpot

m

[mW*0
`dr etot(r ), evolves in time. Our plot is similar to the

one given in@21,22#, where one starts with a slightly dis-
turbed sphaleron instead of the configuration at the esca
point of the bounce. As was found in@21,22#, the outgoing
wave moves with almost the speed of light and shows som
dispersion, but in our case the dispersion is less strong. F
the sphaleron, aftert525mW

21 the height of the pulse has
decreased to about 30% of its original value att50, while
for the bounce configuration it drops only to about 65% o
the value att50.

Next we wish to analyze the particle content of the stat
after the tunneling. This is only possible if the system stay
in the topological sector of the trivial vacuum and does no
move classically over the next barrier. In this case after som
time ~typically ;10mW

21) the system has settled to small
oscillations about the trivial vacuum so that one can perform
the Fourier decomposition~4.8!. Figure 6 shows how the
total energy (5umu) is distributed among the Higgs boson
and gauge boson modes. Integration of the curves yields t
total energy of the Higgs (EH) and gauge (EW) bosons@see
Eq. ~4.9!#; we have found that the sumEH1EW is equal to
umu up to a deviation of usually less than 2%, which is an
other check of our numerics.

In Table III we show how much of the energy is taken by
the Higgs bosons~in percent!. This number is generally in
the range up to 10%; it increases slightly withuru. If we
increase the Higgs boson mass fromn50 to n51 ~and keep
r fixed!, the Higgs boson particles gain some energy on th
expense of the gauge bosons, but forn510 the share of the
Higgs bosons is almost zero. In this last case the Higg
bosons are too heavy to be produced at all, for small mass
their total energy is basically correlated to the individua
energy of each particle, i.e., it rises with the mass.

Figure 6 demonstrates that the spectrum is shifted t
larger k when n is increased. This effect is particularly
strong in the case of the Higgs bosons. Forn510 the energy
density takes its maximum at aboutk'5 while for n&1 it is

FIG. 5. The densityetot of the total energy versus radial distance
r for various timest (r and t in units ofmW

21). The parameters are
r5m/mcrit50.6 andn5mH /mW51.
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only at k'1.5, for n50 very light Higgs bosons with mo-
menta aroundk50 are produced in a large number.

Table IV shows the total particle numbersNW andNH of
the gauge and Higgs bosons, respectively. In the casen50
the determination ofNH is not possible because the numbe
densitynH(k) is strongly peaked close tok50 so that the
numerical error of the integration is uncontrollable. This is
course an artifact of the unphysical choicen50, however,
also for finite, but small masses one would have to ta
many values in thek lattice around 0 and perform the inte
gration carefully to get a reasonable result. We find that t
particle numbers rise withuru, because the released energ
increases and allows the production of more particles. T
number of Higgs boson particles is much smaller than t
number of gauge bosons, again we see that in case of a l
Higgs boson mass no Higgs bosons are produced.

Finally we comment on the numerical uncertainty of th
data in Tables III and IV. The error can be estimated
increasing the numerical parameters of the Runge-Kutta ti
integration and the number ofk values in the Fourier trans-
formation. Moreover, one can choose different timestosc @see
explanation after Eq.~4.8!# where we start to fit the ampli-

TABLE III. The ratio of the energy of the Higgs bosons to th
total energyEH /(EW1EH) in percent after the system settles t
small oscillations about the trivial vacuum. The results are given
various values of the chemical potentialr and the Higgs boson
massn.

r5m/mcrit

m5
mH

mW
0.2 20.4 20.6 20.8

0 3.8/3.1a 4.9/4.2a 6.4/6.3a b

1 5.1 7.6 8.5 11.3
10 0.0 0.0 2.3 1.3/1.5a

aResults of two different trajectories with the same action.
bSystem does not oscillate about trivial vacuum but moves clas
cally to next sector.

FIG. 6. The energy densitieseW andeH of the gauge and Higgs
bosons versus momentumk ~in units of mW) for Higgs boson
massesn5mH /mW50 ~solid lines!, n51 ~dashed lines!, and
n510 ~dotted lines!. The chemical potential isr520.6.
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tudes of the modes in momentum space. We find that th
error of the data is in general less than 2%. We have to kee
in mind, however, that the bounce trajectory, and hence th
starting configuration, is not unique, but in some cases ther
are different solutions with almost the same tunneling prob
ability. These different starting configurations yield results
for the particle content which can deviate up to 20%, as can
be seen from the data in Table III and IV. Therefore, the
probability density for the particle content of the final state is
spread over a range of numbers about610% around the
value given in the tables.

VI. SUMMARY

In this work we have presented a method to find the
bounce trajectory in the electroweak theory and calculate
the probability for the decay of high density fermionic mat-
ter.

The bounce trajectory is obtained by minimization of the
Euclidean action as a function of the discretized Higgs boso
and gauge boson fields. At each step of the procedure th
action is regarded as a function of only one parameter, i.e.,
is minimized with respect to the value of one field profile
function at a certain point in the lattice while the values of
the other fields and at the other points are kept fixed. Afte
finishing one step of the minimization one moves to the nex
field or next point until each field at each point of the lattice
has been considered. Many of such ‘‘sweeps’’ through the
lattice ~of the order of 10 000! have to be performed until a
stable configuration is reached which does not change any
more if it undergoes further sweeps. From time to time the
user has to interfere into the process of minimization. The
program contains several options to manipulate the field con
figuration, partially in order to keep the fields in a continuous
and smooth shape, partially in order to accelerate the conve
gence. It has been checked that the final configuration alway
fulfills the Euclidean equations of motion with sufficient ac-
curacy.

The determination of the bounce has been carried out fo
several choices of the Higgs boson massn5mH /mW and the
chemical potentialr5m/mcrit of the fermionic matter. We

e
o
for

si-

TABLE IV. The number of gauge bosonsNW ~upper numbers!
and Higgs bosonsNH ~lower numbers! after the system settles to
small oscillations about the trivial vacuum. The results are given for
various values of the chemical potentialr and the Higgs boson
massm.

r5m/mcrit

n5
mH

mW
20.2 20.4 20.6 20.8

0 24.5/22.7a 49.0/45.5a 74.2/69.3a c

b b b c

1 22.9 46.2 67.1 102.6
1.9 5.9 9.6 16.8

10 20.8 40.3 64.3 117.2/112.4a

0.0 0.0 0.4 0.3/0.4a

aResults of two different trajectories with the same action.
bDetermination impossible due to infrared behavior.
cSystem does not oscillate about trivial vacuum but moves class
cally to next sector.
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find that the actionSE of the bounce drops from the instanto
action Sinst at r50 to zero aturu51 roughly linearly and
depends only weakly onn. A similar behavior is found for
the Chern-Simons number of the escape point of the bou
NCS
esc which decreases from 1 to 0. The actionSE is the ex-

ponent of the tunneling rate which itself is correlated to
probability of the fermion number violation at high partic
energies. It might therefore be possible to use our results
SE in order to predict the cross section of the high ene
process.

For several sets of parameters we found that the bou
solution is not unique; instead there exist several soluti
with different escape points, but with the same action~in the
given frame of accuracy!. Since after the barrier penetratio
each of these escape points will be taken with the same p
ability, for some results of this work we can only give
range of values instead of a definite number.

After the tunneling process, the bosonic fields can evo
in real time Minkowskian space since they have obtained
energy of the annihilated fermions as potential energy. T
equations of motion can be solved by some time integra
method rather than a minimization of the action.

For chemical potentialsuru&0.8 the system stays in th
topological sector where it came to after the tunneling a
settles to small oscillations about the minimum. The osci
tions correspond to the radiation of Higgs and gauge bos
and we have analyzed the particle content of this state
Fourier transformation. We find that usually less than 10%
the energy is absorbed by the creation of the Higgs bos
and correspondingly the total number of produced ga
bosons is also about 10 times greater than the numbe
Higgs bosons. The results depend strongly onr and partially
also on the Higgs boson massn. For large chemical poten
tials uru*0.9 the system has enough energy and cohere
after the tunneling to move classically over the next barrie
This corresponds to an avalanche decay of the fermio
matter and to the production of an enormous amount
Higgs and gauge bosons.
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APPENDIX

To investigate the real time behavior after tunneling o
only needs the field configuration at the escape point of
bounce ~which we fix at t50) rather than the function
A(t,r ), . . . ,G(t,r ) in the whole two-dimensional spacet,r .
Hence it is useful to have a parametrization of the functio
A(0,r ), . . . ,G(0,r ) so that one can take them as input f
further calculations without having the necessity to recal
late the complete bounce trajectory. In this appendix we g
an analytic fit which matches the numerically determin
functionsA(0,r ), . . . ,G(0,r ) very accurately. The potentia
energy and the Chern-Simons number of the fit agree w
the corresponding values of the numerical configuration
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to a deviation of about 1%. Following the real time behavior
of the fit and the numerical fields we find that the particle
numbersNW , NH and the energiesEW , EH are reproduced
up to a deviation less than 3%.

The parameterization is chosen so that it includes the pos
sibility to describe both the trivial vacuum withNCS50 and
the nontrivial vacuum withNCS51. For this reason the fit is
performed in a gauge where the fieldD(r )[0 everywhere.
We denote the other fields in this gauge by
A0(r ), B0(r ), H0(r ), G0(r ). ~Here and in the following
the argumentt50 is dropped.! The gauge transformation
which transformsA0(r ), . . . ,G0(r ) to the field configuration
A(r ), . . . ,G(r ) at the escape point of the bounce is de-
scribed by some functionP(r ) according to Eq.~2.12!.

For the functionsP(r ), D(r ), A0(r ), B0(r ), H0(r ),
G0(r ) we use the ansatz

P~r !52ldFd0S 11
r

2ld
D 1d2S 11

r

ld
1

r 2

2ld
2D

13d3S 11
r

ld
1

r 2

2ld
21

r 3

6ld
3D Ge2r /ld,

D~r !52P8~r !5Fd0S 11
r

ld
D 1d2

r 2

ld
2 1d3

r 3

ld
3Ge2r /ld,

A0~r !5a0S 11
r

la
1a2

r 2

la
2 1a3

r 3

la
3De2r /la11,

TABLE V. The parameters of the fitting functions for the con-
figuration at the escape point of the bounce trajectory according to
Eq. ~A1! for several values of the chemical potentialr and the
Higgs boson massn5mH /mW51.

r5m/mcrit 20.2 20.4 20.6 20.8 20.9

a0 21.166 21.873 21.957 21.379 20.685
a2 20.123 20.183 20.108 10.358 11.100
a3 20.042 20.006 20.020 20.084 20.144

b0 10.986 10.487 20.290 20.925 20.949
b2 20.738 20.472 21.008 20.138 10.326
b3 10.180 10.270 20.303 20.224 20.349

ld 10.258 10.320 10.343 10.528 10.705
d0 25.514 23.165 22.224 21.001 20.501
d2 23.298 22.524 21.926 21.341 20.740
d3 10.001 20.005 10.000 10.162 10.118

h0 20.674 20.976 20.957 20.625 20.299
h1 10.663 10.974 10.963 10.538 10.228
h2 10.153 10.129 10.118 10.031 20.011
h3 20.025 20.016 20.015 20.005 10.000

g0 10.389 10.092 20.285 20.561 20.506
g1 20.556 20.254 10.145 10.360 10.315
g2 20.141 20.104 20.043 10.009 10.011
g3 10.134 10.117 10.066 20.027 20.057
g4 20.019 20.013 20.004 10.010 10.018
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B0~r !5b0S 11
r

lb
1b2

r 2

lb
2 1b3

r 3

lb
3De2r /lb,

H0~r !5Fh0S 11
r

lh
D 1h1r1h2

r 2

lh
21h3

r 3

lh
3Ge2r /lh11,

G0~r !5Fg0S 11
r

lg
D 1g1r1g2

r 2

lg
21g3

r 3

lg
31g4

r 4

lg
4Ge2r /lg.

~A1!

The procedure how we obtain the parameters in Eq.~A1! is
the following: To ensure the correct behavior of the fittin
functions at r50 @Eq. ~2.13!# we first take d05B8(0)
~evaluated by a quadratic fit ofB at r50), use a suitable
fitting algorithm forD(r ) to determineld , d2 , andd3, and
set

a05cos@2ld~d01d213d3!#21,

b05sin@2ld~d01d213d3!#,

h05H~0!cos@ld~d01d213d3!#21,

g05H~0!sin@ld~d01d213d3!#,
g

h15SH~0!
d0
2

2G8~0! D sin@ld~d01d213d3!#,

g152SH~0!
d0
2

2G8~0! D cos@ld~d01d213d3!#, ~A2!

where we have usedP(0)52ld(d01d213d3). The pa-
rametersla ,lb ,lh ,lg , are held fixed:

la5lb50.8, lh5lg50.6. ~A3!

Then we perform a gauge transformation on the fields
A(r ), . . . ,G(r ), using the functionP(r ) of Eq. ~A1! to ob-
tainA0(r ), . . . ,G0(r ). These functions are fitted to yield the
remaining parametersa2 ,a3 ,b2 ,b3 ,h2 ,h3 ,g2 ,g3 , and g4.
Altogether, our fits contain 12 parameters determined by the
fitting algorithm plus 7 parameters depending on the three
valuesB8(0), H(0), andG8(0). So intotal the number of
free parameters is 15.

In Table V the results of the parameters are given for
several values of the chemical potentialr and the fixed
Higgs boson massn5mH /mW51. For this Higgs boson
mass we always obtain a unique field configuration at the
escape point, i.e., it does not depend on the initial configu-
ration before the minimization of the action starts.
.
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