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sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings
in constant curvature spacetimes
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We find that the fundamental quadratic form of classical string propagation in (211)-dimensional constant
curvature spacetimes solves the sinh-Gordon equation, the cosh-Gordon equation, or the Liouville equation.
We show that in both de Sitter and anti–de Sitter spacetimes~as well as in the 211 black hole anti–de Sitter
spacetime!, all three equations must be included to cover the generic string dynamics. The generic properties
of the string dynamics are directly extracted from the properties of these three equations and their associated
potentials~irrespective of any solution!. These results complete and generalize earlier discussions on this topic
~until now, only the sinh-Gordon sector in de Sitter spacetime was known!. We also construct new classes of
multistring solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti–de Sitter
spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary
dimension, by replacing the sinh-Gordon equation, the cosh-Gordon equation, and the Liouville equation by
their higher dimensional generalizations.@S0556-2821~96!03616-8#

PACS number~s!: 11.27.1d, 11.10.Lm
o
r

i
d

i

i

e

t

t
d

l
e
ic
l

e
d

als

of
n-

pear

er-
e
r
e-
n
ar-
,
er
e

r

I. INTRODUCTION AND RESULTS

In this paper we discuss the dynamics of a relativis
string in constant curvature spacetimes, using a combina
of geometrical methods and physical insight. The kind
problems we are interested in here and the way of reason
historically, had the origin in investigations of the motion
vortices in a superfluid@1,2#. Interestingly enough, the latte
problem, which is equivalent to a theory of dual strings i
teracting in a particular way through a scalar field@1,2#, re-
duces to solving two coupled nonlinear partial different
equations, one of which being a generalized sine-Gor
equation. It was soon realized that exactly the same eq
tions appear when considering a two-dimensionals model
corresponding to O~4! @3–5#. This model, on the other hand
describes a relativistic string in a~Euclidean signature! con-
stant curvature space.

For the theory of fundamental strings, it is important
consider formulations in curved spacetimes, also, essent
as descriptions of one string in the background created by
others. The string equations of motion in curved spacetim
are generally highly nonlinear in any gauge, which in mo
cases means that the system is nonintegrable. Except
cases are, among others, strings in maximally symme
spacetimes@6,7#. From the physical point of view, de Sitte
spacetime plays a particular role in this family of spacetim
since it describes an inflationary universe. String theory in
Sitter spacetime is therefore also of interest from the poin
view of cosmic strings and cosmology and for the open qu
tion of string self-sustained inflation@8,9#. Specific problems
concerning the integrability of the equations describing
dynamics of classical strings in de Sitter spacetime were
cussed in@10,11#. The present work is a completion an
generalization of the results presented in those papers.
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In Sec. II we set up the general formalism for classica
strings in de Sitter and anti–de Sitter spacetimes, and w
derive the equations fulfilled by the fundamental quadrat
form for a generic string configuration. The fundamenta
quadratic forma(t,s) is a measure of the invariant string
size. We show that it solves the sinh-Gordon equation, th
cosh-Gordon equation, or the Liouville equation. We fin
that in order to cover the generic string dynamics,all three
equations must be taken into account. Associated potenti
(62cosha, 62sinha, 6ea) to these equations can be, re-
spectively, defined@(1) sign for anti–de Sitter spacetime
and (2) sign for de Sitter spacetime#. Generic properties of
the string dynamics are then directly extracted at the level
the equations of motion from the properties of these pote
tials ~irrespective of any solution!. The three equations cor-
respond to three different sectors of the string dynamics@un-
til now only the sinh-Gordon sector~corresponding to the
cosha potential! in de Sitter spacetime was known#. The dif-
ferences between the three sectors in each spacetime ap
mainly for small strings @strings with proper size
,1/(A2H)].

In de Sitter spacetime, the sinh-Gordon sector charact
izes the evolution in which small strings necessarily collaps
into a point, while in the cosh-Gordon sector, strings neve
collapse but reach a minimal size. In anti–de Sitter spac
time, the situation is exactly the opposite: The cosh-Gordo
sector characterizes the evolution in which strings necess
ily collapse into a point, while in the sinh-Gordon sector
strings never collapse but reach a minimal size. On the oth
hand, the dynamics of large strings is rather similar in th
three sectors in each spacetime@see Figs. 1~a! and 1~b!, for
instance#.

The dynamics of small strings is rather similar in de Sitte
2801 © 1996 The American Physical Society
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FIG. 1. The potentials~2.25! and~2.26! deter-
mining the dynamics of strings in~a! de Sitter
spacetime and~b! anti–de Sitter spacetime, re-
spectively. For each spacetime, the differences
between the three sectors (K561, 0) appear for
negative a @i.e., for strings with proper size
,1/(A2H)#. The differences between de Sitter
and anti–de Sitter potentials are for positivea
@i.e., for strings with proper size.1/(A2H)#. For
small strings~large negativea) the dynamics is
similar in both de Sitter and anti–de Sitter space-
times, while for large strings~large positivea) it
is completely different in the two spacetimes.
and anti–de Sitter spacetimes, while for large strings@strings
with proper size.1/(A2H)] the dynamics is drastically dif-
ferent in the two spacetimes. In de Sitter spacetime, the p
ence of potentials unbounded from below for positivea, in
all three sectors, makes string instability~indefinetely grow-
ing strings! unavoidable~in anti–de Sitter spacetime, th
positive potential barriers for positivea prevents the strings
from growing indefinetely!.

In Sec. III we present new classes of explicit solutions
both de Sitter and anti–de Sitter spacetimes, which cove
the three sectors. These solutions exhibit the multistr
property@12–15#; namely, one single world sheet describes
finite or infinite number of different and independent string
The presence of multistrings is a characteristic feature
spacetimes with a cosmological constant~constant curvature
or asymptotically constant curvature spacetimes!.

In Sec. IV, we show that our results also hold for th
(211)-dimensional black-hole anti–de Sitter spacetim
@16#, and we complete earlier investigation on the dynam
of circular string configurations in this spacetime@17#.

Finally, in Sec. V we give our conclusions.
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II. GENERAL FORMALISM

For simplicity, the following analysis is performed for
(211)-dimensional spacetimes. However, it is straightfor-
ward to generalize the results to arbitrary dimensions, fol-
lowing the lines of@11#.

We can treat de Sitter and anti–de Sitter spacetimes si-
multaneously by introducing the following notation. We con-
sider a flat spacetime with line elementds(e)

2 where
e561,

ds~e!
2 52dt21edu21dx21dy2, ~2.1!

and restrict ourselves to the submanifold

hmn
~e!qmqn5e, ~2.2!

where

hmn
~e!5 diag~21,e,1,1! ~2.3!

andqm is in the form of
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qm5H~ t,u,x,y!. ~2.4!

That is, e511 corresponds to de Sitter spacetime whil
e521 corresponds to anti–de Sitter spacetime andH is the
Hubble constant of de Sitter~anti–de Sitter! spacetime.

Let us now consider a bosonic string embedded in th
spacetime~2.1!–~2.4!. In the conformal gauge, where the
string world-sheet metric is diagonal, the classical strin
equations of motion and constraints take the form

q̈m2q9m1ehrs
~e!~ q̇rq̇s2q8rq8s!qm50, ~2.5!

hmn
~e!q̇mq8n5hmn

~e!~ q̇mq̇n1q8mq8n!50. ~2.6!

Here an overdot and a prime denote differentiation with re
spect to the world-sheet coordinatest ands, respectively.

The induced line element on the string world sheet
given by

dS~e!
2 5

1

H2hmn
~e!dqmdqn

52
1

2H2hmn
~e!~ q̇mq̇n2q8mq8n!~2dt21ds2!.

~2.7!

Since we consider only timelike world sheets, we can defin
a real functiona (e) by

ea~e!
[2hmn

~e!~ q̇mq̇n2q8mq8n!52hmn
~e!q1

m q2
n , ~2.8!

and we have introduced world-sheet light-cone coordinat
s65(t6s)/2, that is to say,q6

m 5q̇m6q8m, etc.
The fundamental quadratic forma (e) is a measure of the

invariant string sizeS(e) , as follows from Eqs.~2.7! and
~2.8!:

S~e!5
1

A2H
ea~e!/2. ~2.9!

The string equations of motion and constraints, Eqs.~2.5!
and ~2.6!, can now be written in the more compact form

q12
m 5eea~e!

qm, ~2.10!

hmn
~e!q6

m q6
n 50. ~2.11!

It is convenient to introduce the basis@10,11# ~see also
@1–5,18–20#!

U~e!5$qm,q1
m ,q2

m ,l ~e!
m %, l ~e!

m [e2a~e!
e~e!rsd

m qrq1
s q2

d ,
~2.12!

hmn
~e!l ~e!

m l ~e!
n 51, ~2.13!

and e(e)rsd
m is the completely antisymmetric four-tensor in

the spacetime~2.1!. The second derivatives ofqm, expressed
in the basisU(e) , are given by
e

g

-

s

e

s

q11
m 5a1

~e!q1
m 1u~e!l ~e!

m , q22
m 5a2

~e!q2
m 1v ~e!l ~e!

m ,

q12
m 5ea~e!

qm, ~2.14!

where the functionsu(e) andv (e) are implicitly defined by

u~e![hmn
~e!q11

m l ~e!
n , v ~e![hmn

~e!q22
m l ~e!

n , ~2.15!

and satisfy

u2
~e!5v1

~e!50. ~2.16!

Then, by differentiating Eq.~2.8! twice, we get

a12
~e! 2eea~e!

1u~e!~s1!v ~e!~s2!e2a~e!
50. ~2.17!

In the previous discussions@10,11#, it was implicitly as-
sumed that the productu(e)(s1)v

(e)(s2) is positive definite.
In that case the conformal transformation on the world-shee
metric ~2.7!,

a~e!~s1 ,s2!5â~e!~ ŝ1 ,ŝ2!1 1
2 lnuu~e!~s1!uuv ~e!~s2!u,

ŝ15E Auu~e!~s1!uds1 , ŝ25E Auv ~e!~s2!uds2 ,

~2.18!

reduces Eq.~2.17! to the equation

a12
~e! 2eea~e!

1e2a~e!
50. ~2.19!

This equation is the sinh-Gordon equation in the case of d
Sitter spacetime (e511) and the cosh-Gordon equation in
the case of anti–de Sitter spacetime (e521).

It must be noticed, however, that for a generic string
world sheet, the productu(e)(s1)v

(e)(s2) is neither posi-
tive nor negative definite. In fact, in the next section we shal
construct explicit solutions to the string equations of motion
and constraints~2.10! and ~2.11! corresponding tou(e)

3(s1)v
(e)(s2) positive, u(e)(s1)v

(e)(s2) negative, and
u(e)(s1)v

(e)(s2) identically zero, inboth de Sitter and
anti–de Sitter spacetimes.

In the case thatu(e)(s1)v
(e)(s2) is negative, the confor-

mal transformation~2.18! reduces Eq.~2.17! to

a12
~e! 2eea~e!

2e2a~e!
50, ~2.20!

and including also the case whenu(e)(s1)v
(e)(s2)50, we

conclude that the most general equation fulfilled by the fun-
damental quadratic forma (e) is

a12
~e! 2eea~e!

1Ke2a~e!
50, ~2.21!

where

K5H 11, u~e!~s1!v ~e!~s2!.0,

21, u~e!~s1!v ~e!~s2!,0,

0, u~e!~s1!v ~e!~s2!50,

~2.22!

and

e5H 11 de Sitter spactime,

21 anti2de Sitter spacetime.
~2.23!
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Equation ~2.21! is either the sinh-Gordon equation
(e5K561), the cosh-Gordon equation (e52K561), or
the Liouville equation (K50), and all three equations appea
in both de Sitter and anti–de Sitter spacetimes. This does
mean, of course, that the string dynamics is the same in
Sitter and anti–de Sitter spacetimes.

Let us define a potentialV(e)(a (e)) by

a12
~e! 1

dV~e!~a~e!!

da~e! 50 ~2.24!

@so that ifa (e)5a (e)(t), then 1
2(ȧ

(e))21V(e)(a (e))5 const#.
Then, it follows that, in the case of de Sitter spacetime,

V~11!~a!5H 22cosha, K511,

22sinha, K521,

2ea, K50,

~2.25!

while, in the case of anti–de Sitter spacetime,

V~21!~a!5H 2sinha, K511,

2cosha, K521,

ea, K50,

~2.26!

and we have skipped the (6) index ona. Notice that the
cosh a potential corresponds to the sinh-Gordon equatio
and vice versa.

The results~2.24!–~2.26! are represented in Fig. 1, show
ing the different potentials in the cases of de Sitter an
anti–de Sitter spacetimes, respectively. Until now only th
K511 sector in de Sitter spacetime was known. The ne
features introduced by the new sectorsK50 ~corresponding
to the Liouville equation! andK521 ~corresponding to the
cosh-Gordon equation in the case of de Sitter spacetime a
to the sinh-Gordon equation in the case of anti–de Sitt
spacetime! appear for negativea ~‘‘small’’ strings!. Small
strings with proper size,1/(A2H) in the K521 sector
~inside the horizon in the case of de Sitter spacetime! do not
collapse into a point~as is the case in theK511 sector! but
have a minimal size.

The main differences between de Sitter and anti–de Sit
potentials are for positivea @strings with proper size
.1/(A2H#. In the case of de Sitter spacetime@Fig. 1~a!#, the
potentials are unbounded from below for large strings~large
positivea), while for small strings~large negativea) they
are either growing indefinetely, flat, or unbounded from b
low. In the case of anti–de Sitter spacetime@Fig. 1~b!#, on
the other hand, the potentials grow indefinitely for larg
strings~large positivea), while for small strings~large nega-
tive a) they are either growing indefinitely, flat, or un-
bounded from below.

From these results we can deduce the generic features
strings propagating in de Sitter and anti–de Sitter spac
times: Large strings~large positivea) in de Sitter spacetime
generically expand indefinitely, while small strings~large
negativea) either bounce or collapse. In anti–de Sitte
spacetime, large strings generically contract, while sm
strings either bounce or collapse. For small strings~large
negativea) the dynamics is similar in de Sitter and anti–d
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Sitter spacetimes, while for large strings~large positivea) it
is completely different in the two spacetimes.

Notice that thee in Eq. ~2.21!, which distinguishes be-
tween de Sitter and anti–de Sitter spacetimes, corresponds
the ‘‘K ’ ’ in the notation of Ref.@10#. Our K in Eq. ~2.21!
was missed in Refs.@10,11#; only the solutions correspond-
ing to K511 were found there.

III. EXPLICIT EXAMPLES

The exact~‘‘global,’’ i.e., the whole world sheet! solu-
tions to the string equations of motion and constraints in de
Sitter and anti–de Sitter spacetimes considered in the litera
ture until now @12–15,17,21–23# describe different classes
of string solutions of generic shape, circular strings, and sta
tionary strings. These solutions exhibit the multistring prop-
erty @12–15#; namely, one single world sheet describes a
finite or infinite number of different and independent strings.
The presence of multistrings is a characteristic feature in
spacetimes with a cosmological constant~constant curvature
or asymptotically constant curvature spacetimes!. All these
solutions fall in theK511 sector, i.e., are solutions to the
sinh-Gordon equation in the case of de Sitter spacetime an
to the cosh-Gordon equation in the case of anti–de Sitte
spacetime. We shall now construct larger families of exac
solutions which fall intoall three sectorsK561, 0.

Consider first the following algebraic problem: to find the
most general ansatz which reduces the string equations
motion and constraints toordinary differential equations in
spacetimes of the form

ds252a~r !dt21
dr2

a~r !
1r 2df2. ~3.1!

The string equations of motion are given by

ẗ2t91
a,r
a

~ ṫ ṙ2t8r 8!50,

r̈2r 92
a,r
2a

~ ṙ 22r 82!1
aa,r
2

~ ṫ22t82!2ar~ḟ22f82!50,

f̈2f91
2

r
~ḟ ṙ2f8r 8!50, ~3.2!

while the constraints take the form

2a~ ṫ21t82!1
1

a
~ ṙ 21r 82!1r 2~ḟ21f82!50,

2aṫt81
1

a
ṙ r 81r 2ḟf850. ~3.3!

Since the Christoffel symbols depend only onr , the desired
ansatz is

r5r ~j1!, t5t~j1!1c1j
2, f5f~j1!1c2j

2,
~3.4!

where (j1,j2) are the two world-sheet coordinates~one of
which is timelike, the other spacelike!, and (c1 ,c2) are two
arbitrary constants. With this ansatz, Eqs.~3.2! are solved by
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dt

dj1
5

k1
a~r !

,
df

dj1
5
k2
r 2
, ~3.5!

S drdj1D
2

52a~r !r 2c2
22

a~r !

r 2
k2
21k1

21a2~r !c1
2 , ~3.6!

where (k1 ,k2) are two integration constants. For the co
straints, Eqs.~3.3!, to be satisfied we must have

k1c15k2c2 . ~3.7!

In particular, circular string dynamics as consider
in @12–15,17,21,23# corresponds to c15k250 and
(j1,j2)5(t,s), while the infinitely long stationary strings
considered in @15# correspond to the ‘‘dual’’ choice
c25k150 and (j1,j2)5(s,t).

The induced line element on the string world sheet is

dS25@r 2c2
22a~r !c1

2#@2~dj1!21~dj2!2#, ~3.8!

such that the fundamental quadratic form is given by

ea52ur 2c2
22a~r !c1

2u. ~3.9!

Let us now return to our main interest here: strings in
Sitter and anti–de Sitter spacetimes. In this case, the func
a(r ) is given by

a~e!512eH2r 2. ~3.10!

In the case of anti–de Sitter spacetime (e521), the static
coordinates (t,r ,f) cover the complete manifold, while fo
de Sitter spacetime (e511), they cover only the region
inside the horizon; the complete de Sitter manifold can, ho
ever, be covered by four coordinate patches of the form~3.1!
and ~3.10!; see, for instance@24#,. Notice that Eq.~3.6! for
the radial coordinate can be solved explicitly in terms of t
Weierstrass elliptic̀ function @25#. The other two equations
~3.5! can then be integrated, the results being expresse
terms of the Weierstrass elliptics andz functions@25#. We
have thus solved completely the string equations of mot
and constraints using the ansatz~3.4! in both de Sitter and
anti–de Sitter spacetimes, but the explicit expressions of
solutions are not important here. It should be also stres
that in general the ansatz~3.4! does not lead to solutions
automatically satisfying the standard closed or open str
boundary conditions; see, for instance,@26#. However, im-
posing the boundary conditions does not arise any probl
In some cases the ansatz~3.4! actuallydoeslead to solutions
satisfying the standard boundary conditions; an exampl
c15k250, in which case the solution describes dynamic
circular strings@12–15,17,21,23#. Finally, we are often inter-
ested in string solutions that do not satisfy the stand
closed or open string boundary conditions; this is, for
stance, the case for infinitely long strings@15,27# or finite
open strings with external forces acting on the end points
the strings@28,29#.

Let us consider the spacetime region whe
(c2

21eH2c1
2)r 2>c1

2 ~similar conclusions are reached in th
other region!. In this casej1 is the timelike world-sheet co-
ordinate,j1[t/H. Then, Eqs.~3.6! and ~3.9! lead to
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S da~e!

dt D 222eea~e!
1

8

H2 @c1
2c2

22~c2
21eH2c1

2!

3~k1
21eH2k2

2!#e2a~e!

52
4

H2 ~c2
22eH2c1

2!. ~3.11!

Now, by tuning the constants of motion to fix the sign of the
square brackets, and by performing conformal transforma-
tions of the form~2.18!, we can, after differentiation with
respect tot, reduce this equation to either the sinh-Gordon
equation, the cosh-Gordon equation, or the Liouville equa-
tion:

e@c1
2c2

22~c2
21eH2c1

2!~k1
21eH2k2

2!#,0⇒ sinh-Gordon,

e@c1
2c2

22~c2
21eH2c1

2!~k1
21eH2k2

2!#.0⇒ cosh-Gordon,

@c1
2c2

22~c2
21eH2c1

2!~k1
21eH2k2

2!#50⇒ Liouville.

Thus, we have constructed explicit solutions to the string
equations of motion and constraints associated to the sinh
Gordon equation, the cosh-Gordon equation, or the Liouville
equation and all three equations appear in both de Sitter an
anti–de Sitter spacetimes.

We close this section with the following remark. The an-
satz~3.4! is a generalization of both the circular string ansatz
@c150, f(j1)5 const, j1 timelike# and the stationary
string ansatz@c250, t(j1)5 const, j1 spacelike#. In both
these cases, it was shown in Refs.@12–15# that the resulting
solutions in de Sitter and anti–de Sitter spacetimes should b
interpreted as multistring solutions, that is to say, string so-
lutions where one single world sheet describes finitely or
infinitely many different and independent strings. The exist-
ence of such multistring solutions appears to be a quite gen
eral feature in constant curvature~and asymptotically con-
stant curvature! spacetimes.

IV. 211 BH-ADS SPACETIME

As another example to illustrate our general results of
Sec. II, we now consider the (211)-dimensional black hole
anti–de Sitter~BH-AdS! spacetime.

The metric of the 211 dimensional BH-ADS spacetime
in its standard form is given by@16#

ds25S J24r 2 2D Ddt21 dr2

D
2Jdtdf1r 2df2, ~4.1!

where

D5
r 2

l 2
2M1

J2

4r 2
. ~4.2!

HereM represents the mass,J is the angular momentum, and
the cosmological constant isL521/l 2. The causal structure
is similar to that of the four-dimensional Kerr spacetime.
There is no strong curvature singularity atr50; however,
Rmn52Lgmn . This is a constant curvature spacetime locally
and asymptotically isometric to (211)-dimensional anti–de
Sitter spacetime; this is of course why it is also relevant for
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our purposes here. For more details on the local and glo
geometry of the BH-ADS spacetime, see, for instance, Re
@16,30–32#.

The problem of the string propagation in the BH-ADS
spacetime was completely analyzed and the circular stri
motion was exactly solved, in terms of elliptic functions, b
the present authors in@17#. The equation determining the
string loop radius as a function of time is

S drdt D 21r 2S r 2l 2 2M D1
J2

4
2E250, ~4.3!

whereE2 is a non-negative integration constant, while th
fundamental quadratic forma, which determines the invari-
ant size of the string, is given by

ea52r 2/ l 2. ~4.4!

It is then straightforward to show that Eq.~4.3! becomes

S da

dt D 212ea2
8

l 2 SE22
J2

4 De2a54M . ~4.5!

After performing a conformal transformation of the form
~2.18! and differentiating with respect tot, this equation
reduces to the~i! sinh-Gordon equation ifE2,J2/4, ~ii ! to
the cosh-Gordon equation ifE2.J2/4, and~iii ! to the Liou-
ville equation if E25J2/4; thus, all three equations are
present. Notice finally that the three different types of a
lowed dynamics as reported in@17#, essentially whether the
circular string collapses intor50 @case~ii !# or not @case~i!#,
precisely correspond to these different equations@in the lim-
iting case~iii !, the string contracts from the static limit to
r50#.
bal
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V. CONCLUDING REMARKS

In conclusion, we have shown that the fundamental qua
dratic form of classical string propagation in
(211)-dimensional constant curvature spacetimes solves th
sinh-Gordon equation, the cosh-Gordon equation, or th
Liouville equation. We have shown that in both de Sitter and
anti–de Sitter spacetimes~as well as in the 211 BH-ADS
spacetime!, all three equations must be included to cover the
generic string dynamics. This is particularly enlightening,
since generic features of the string propagation in thes
spacetimes can be read off directly at the level of the equa
tions of motion from the properties of the sinh, cosh, and
Liouville potentials, without need of solving the equations.
We also constructed new classes of explicit solutions toall
three equations in both de Sitter and anti–de Sitter space
times, exhibiting the multistring property.

Finally it is worth observing that our results suggest the
existence of various kinds of dualities relating the different
string solutions in de Sitter and anti–de Sitter spacetimes
From the potentials, Eqs.~2.25! and ~2.26!, it follows, in
particular, that small strings are dual (a→2a) to large
strings in theK511 (K521) sector of de Sitter~anti–de
Sitter! spacetime. Furthermore, small~large! strings in the
K521 sector in de Sitter spacetime are dual
(a→2a, e→2e) to large ~small! strings in theK511
sector in anti–de Sitter spacetime.
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