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We find that the fundamental quadratic form of classical string propagation+irij2dimensional constant
curvature spacetimes solves the sinh-Gordon equation, the cosh-Gordon equation, or the Liouville equation.
We show that in both de Sitter and anti—de Sitter spacetiaesvell as in the 2 1 black hole anti—de Sitter
spacetimg all three equations must be included to cover the generic string dynamics. The generic properties
of the string dynamics are directly extracted from the properties of these three equations and their associated
potentials(irrespective of any solutionThese results complete and generalize earlier discussions on this topic
(until now, only the sinh-Gordon sector in de Sitter spacetime was kndWa also construct new classes of
multistring solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti—de Sitter
spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary
dimension, by replacing the sinh-Gordon equation, the cosh-Gordon equation, and the Liouville equation by
their higher dimensional generalizatioh$0556-282(196)03616-9

PACS numbgs): 11.27+d, 11.10.Lm

I. INTRODUCTION AND RESULTS In Sec. Il we set up the general formalism for classical
strings in de Sitter and anti—de Sitter spacetimes, and we
In this paper we discuss the dynamics of a relativisticderive the equations fulfilled by the fundamental quadratic
string in constant curvature spacetimes, using a combinatioform for a generic string configuration. The fundamental
of geometrical methods and physical insight. The kind ofquadratic forma(r,o) is a measure of the invariant string
problems we are interested in here and the way of reasoningijze. We show that it solves the sinh-Gordon equation, the
historically, had the origin in investigations of the motion of cosh-Gordon equation, or the Liouville equation. We find
vortices in a superfluifi1,2]. Interestingly enough, the latter hat in order to cover the generic string dynamiat,three
problem, which is equivalent to a theory of dual strings in-equations must be taken into account. Associated potentials
teracting in a particular way through a scalar figld?], re- (+2coshy, +2sinhy, €% to these equations can be, re-

duces_ to solving two _couple_d nonlinear p_artlal q'ﬁerem'alspectwely, defined (+) sign for anti—-de Sitter spacetime
equations, one of which being a generalized sine-Gordon ; . : . .

. . and (—) sign for de Sitter spacetinheGeneric properties of
equation. It was soon realized that exactly the same equ

tions appear when considering a two-dimensiomanodel ?ﬁe string _dynamics are then directly extra_lcted at the level of
corresponding to @) [3—5]. This model, on the other hand, the equatlons_of motion from_the properties of these poten-
describes a relativistic string in (Euclidean signatujecon-  tiais (irespective of any solution The three equations cor-
stant curvature space. rgspond to three d.|fferent sectors of the string dynarﬁuos

For the theory of fundamental strings, it is important totil nNow only the sinh-Gordon sectdrcorresponding to the
consider formulations in curved spacetimes, also, essentiall§eshx potentia) in de Sitter spacetime was knoyviThe dif-
as descriptions of one string in the background created by thi€rences between the three sectors in each spacetime appear
others. The string equations of motion in curved spacetimegainly for small strings [strings with proper size
are generally highly nonlinear in any gauge, which in most< 1/(y2H)].
cases means that the system is nonintegrable. Exceptional In de Sitter spacetime, the sinh-Gordon sector character-
cases are, among others, strings in maximally symmetriizes the evolution in which small strings necessarily collapse
spacetime$6,7]. From the physical point of view, de Sitter into a point, while in the cosh-Gordon sector, strings never
spacetime plays a particular role in this family of spacetimescollapse but reach a minimal size. In anti—de Sitter space-
since it describes an inflationary universe. String theory in déime, the situation is exactly the opposite: The cosh-Gordon
Sitter spacetime is therefore also of interest from the point oector characterizes the evolution in which strings necessar-
view of cosmic strings and cosmology and for the open quesly collapse into a point, while in the sinh-Gordon sector,
tion of string self-sustained inflatidi8,9]. Specific problems strings never collapse but reach a minimal size. On the other
concerning the integrability of the equations describing thehand, the dynamics of large strings is rather similar in the
dynamics of classical strings in de Sitter spacetime were dighree sectors in each spacetifisee Figs. (@ and Xb), for
cussed in[10,11]. The present work is a completion and instance.
generalization of the results presented in those papers. The dynamics of small strings is rather similar in de Sitter
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FIG. 1. The potential§2.25 and(2.26 deter-
mining the dynamics of strings ife) de Sitter
spacetime andb) anti—de Sitter spacetime, re-
spectively. For each spacetime, the differences
between the three sectorK € =1, 0) appear for
negative o [i.e., for strings with proper size
<1/(y2H)]. The differences between de Sitter
and anti—de Sitter potentials are for positiwe
V(a) [i.e., for strings with proper size 1/(y2H)]. For
small strings(large negativer) the dynamics is
similar in both de Sitter and anti—de Sitter space-
times, while for large string8arge positivea) it
is completely different in the two spacetimes.

(b)

-10 F

and anti—de Sitter spacetimes, while for large strirgsngs Il. GENERAL FORMALISM

For simplicity, the following analysis is performed for
iE'2+ 1)-dimensional spacetimes. However, it is straightfor-
ward to generalize the results to arbitrary dimensions, fol-
lowing the lines off 11].

We can treat de Sitter and anti—de Sitter spacetimes si-

ence of potentials unbounded from below for positivein
all three sectors, makes string instabilitpdefinetely grow-
ing stringg unavoidable(in anti—-de Sitter spacetime, the

positive potential barriers for positive prevents the strings multaneously by introducing the following notation. We con-

from growing indefinetely . . . sider a flat spacetime with line elements’., where
In Sec. Il we present new classes of explicit solutions in 1 (€)

both de Sitter and anti—de Sitter spacetimes, which cover afi ~ —
the three sectors. These solutions exhibit the multistring
property[12—15; namely, one single world sheet describes a
finite or infinite number_ of.differ_ent and indepgnc_jent strings.and restrict ourselves to the submanifold
The presence of multistrings is a characteristic feature in
spacetimes with a cosmological constésanstant curvature 7€g"q" =, (2.2)
or asymptotically constant curvature spacetimes mr

In Sec. IV, we show that our results also hold for thewhere
(2+1)-dimensional black-hole anti—de Sitter spacetime
[16], and we complete earlier investigation on the dynamics 7\5)= diag —1.€,1,) (2.3
of circular string configurations in this spacetirfrier].

Finally, in Sec. V we give our conclusions. andg* is in the form of

ds, = —dt?+ edu?+dx*+dy?, (2.3)
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g“=H(t,u,x,y). (2.9 gty =a P94 +ulL, gt _=al99t +o 9L,
That is, e=+1 corresponds to de Sitter spacetime while qﬁfze“(s)qﬂ, (2.19
e=—1 corresponds to anti—de Sitter spacetime knig the _ S _
Hubble constant of de Sittéanti—de Sitter spacetime. where the functionsi(® andv (¢ are implicitly defined by
Let us now consider a bosonic string embedded in the (O (s |7 (O (s (v
spacetime(2.1)—(2.4). In the conformal gauge, where the u =708 0, v9=9n.504 10, (219
string world-sheet metric is diagonal, the classical string d sati
equations of motion and constraints take the form and satisty
. (i u@=v'9=0. (2.16
0“—q"*+en,;(a’9°~q'’q'7)g*=0, (2.9
Then, by differentiating Eq(2.8) twice, we get
(E)'/,L rv_ (€) ',(,L'V+ rue! v :O 26 . .
77,uvq q 7],“,((1 q a~q ) ( ) a(f),—ee“( )+U(E)((T+)U(E)(O',)eia( ):O. (217)

Here an overdot and a prime denote differentiation with re
spect to the world-sheet coordinatesind o, respectively.

The induced line element on the string world sheet i
given by

1
dS%, =z 7indardg’

—_—_ (e

2H2 77//,1/

(349" —q'#q"")(—dr*+do?).

(2.7

Since we consider only timelike world sheets, we can define

a real functiona(® by

a'®_ €)( NNV ' vy € v
e " =— 9 qra" —a'*q'") = - 794", (2.9

S

In the previous discussionl0,11], it was implicitly as-
sumed that the produat? (o, )v(9(o_) is positive definite.

In that case the conformal transformation on the world-sheet
metric (2.7),

o0 )=a'9 0, ,0_ )+ Infu@a)||lv )],

cAr+=f \/|u(€)(0'+)|d0'+, (}_=f \/|v(€)(0'_)|d0'_,
(2.18
reduces Eq(2.17 to the equation

a(f), - ee“m—i- e “(E>=O. (2.19
This equation is the sinh-Gordon equation in the case of de
Sitter spacetimed=+1) and the cosh-Gordon equation in

the case of anti—de Sitter spacetime=(—1).

and we have introduced world-sheet light-cone coordinates It must be noticed, however, that for a generic string

o.=(7*0)/2, that is to saygh =g*+q’#, etc.

The fundamental quadratic fore(® is a measure of the
invariant string sizeS,,, as follows from Eqgs(2.7) and
(2.9):

_ 1 ea(f)/2

)_\/EH

The string equations of motion and constraints, EGsH
and(2.6), can now be written in the more compact form

(2.9

M=

g4 _=ee” g, (2.10

70044 =0. (2.11

It is convenient to introduce the basj40,11] (see also
[1-5,18-20)

| 4
(€)

—al® F)
e " e(gpse97a50%

(2.12

Ueo=19"9% ,9% 1{}

7

Ié”e)l(ye):l, (2.13)
and e(;, ., is the completely antisymmetric four-tensor in
the spacetimé2.1). The second derivatives gf*, expressed

in the basid{, are given by

world sheet, the produai(?(o,)v 9(o_) is neither posi-
tive nor negative definite. In fact, in the next section we shall
construct explicit solutions to the string equations of motion
and constraints(2.10 and (2.11) corresponding tou(®
X(o)v9(o_) positive, u¥(o,)v@(o_) negative, and
u@(o,)v@(o_) identically zero, inboth de Sitter and
anti—de Sitter spacetimes.

In the case that(® (o, )v(9(o_) is negative, the confor-
mal transformation(2.18 reduces Eq(2.17) to

(€)
—e

o' — e —e o=, (2.20

and including also the case wheff) (o, )v(9(0_)=0, we
conclude that the most general equation fulfilled by the fun-
damental quadratic form(® is

(€)

@@ —ee??+Ke 2'7=0, (2.21)
where
+1, u90, )9 e )>0,
K={ -1, u9o)v90e_)<0, (2.22
01 u(E)(O-‘F)U(E)(O-*):Ov
and
+1 de Sitter spactime,
€= ) . . (2.23
—1 anti—de Sitter spacetime.
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Equation (2.21) is either
(e=K==1), the cosh-Gordon equatior{ —K==*=1), or

the Liouville equation K=0), and all three equations appear
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the sinh-Gordon equation Sitter spacetimes, while for large stringiarge positivea) it

is completely different in the two spacetimes.
Notice that thee in Eq. (2.21), which distinguishes be-

in both de Sitter and anti—de Sitter spacetimes. This does ntiveen de Sitter and anti—de Sitter spacetimes, corresponds to
mean, of course, that the string dynamics is the same in dine ‘K’ in the notation of Ref.[10]. OurK in Eq. (2.21)

Sitter and anti—de Sitter spacetimes.
Let us define a potential(9(a(?) by

dVi9(a'9)
ol + 2

-0 (2.24)

was missed in Ref§10,11]; only the solutions correspond-
ing to K= +1 were found there.

IIl. EXPLICIT EXAMPLES

(€)
da The exact(“global,” i.e., the whole world shegtsolu-

tions to the string equations of motion and constraints in de
Sitter and anti—de Sitter spacetimes considered in the litera-
ture until now[12-15,17,21-2Bdescribe different classes

of string solutions of generic shape, circular strings, and sta-

[so that ifa(9=a((7), theni(a!9)2+ V() (a(9)= consi.
Then, it follows that, in the case of de Sitter spacetime,

—2coshy, K=+1, tionary strings. These solutions exhibit the multistring prop-
VD (a)=1{ —2sinhy, K=-1, (2.25  erty [12-15; namely, one single world sheet describes a
—e® K=0 finite or infinite number of different and independent strings.
' ' The presence of multistrings is a characteristic feature in
while, in the case of anti—de Sitter spacetime, spacetimes ywth a cosmological constarunstant curvature
or asymptotically constant curvature spacetimesl these
; _ solutions fall in theK=+1 sector, i.e., are solutions to the
2sinhe, K=+1, ) o . :
sinh-Gordon equation in the case of de Sitter spacetime and
VD(@)=4 2coshy, K=-1, (2.2  to the cosh-Gordon equation in the case of anti—de Sitter
e*, K=0, spacetime. We shall now construct larger families of exact

solutions which fall intoall three sector&=+*1, 0.
and we have skipped the() index one. Notice that the Consider first the following algebraic probllem: to finq the
cosh & potential corresponds to the sinh-Gordon equatiodMOoSt general ansatz which reduces the string equations of
and vice versa. motion and constraints tordinary differential equations in

The results2.24—(2.26) are represented in Fig. 1, show- SPacetimes of the form
ing the different potentials in the cases of de Sitter and
anti—de Sitter spacetimes, respectively. Until now only the
K=+1 sector in de Sitter spacetime was known. The new
features introduced by the new sectrs 0 (corresponding
to the Liouville equationandK= —1 (corresponding to the
cosh-Gordon equation in the case of de Sitter spacetime and
to the sinh-Gordon equation in the case of anti—de Sitter
spacetimg appear for negativer (“small” strings). Small
strings with proper size<1/(y2H) in the K=—1 sector a aa
(inside the horizon in the case of de Sitter spacetidtenot F—r"— = (12—1')+ —2(12—t')) —ar(p2— ¢'2) =0,
collapse into a pointas is the case in thé =+ 1 sectoy but 2a 2
have a minimal size.

The main differences between de Sitter and anti—de Sitter
potentials are for positivea [strings with proper size
>1/(\2H]. In the case of de Sitter spacetififég. 1(a)], the
potentials are unbounded from below for large striflgsge
positive ), while for small strings(large negativex) they
are either growing indefinetely, flat, or unbounded from be-
low. In the case of anti—de Sitter spacetifitég. 1(b)], on
the other hand, the potentials grow indefinitely for large
strings(large positivea), while for small stringglarge nega-
tive a) they are either growing indefinitely, flat, or un-
bounded from below. . . .

From these results we can deduce the generic features §ﬂ;(§zt?se Christoffel symbols depend only nthe desired
strings propagating in de Sitter and anti—de Sitter space-
times:' Large stringslqrge pqsitivea) [n de Sitter s_pacetime r=r(&Y), t=t(H+c,82 b=d(eY)+c, 2
generically expand indefinitely, while small stringlarge (3.9
negative «) either bounce or collapse. In anti—de Sitter
spacetime, large strings generically contract, while smallvhere ¢*,&2) are the two world-sheet coordinatésne of
strings either bounce or collapse. For small strifigsge  which is timelike, the other spacelikeand (c,,c,) are two
negativea) the dynamics is similar in de Sitter and anti—de arbitrary constants. With this ansatz, EG&2) are solved by

ds’= dt? dr’ 2dp?
——a(r) t+%+r P°.

The string equations of motion are given by

(3.9

f—t7+ 2 (i —t'r)=0
a(r r)_1

; 2 .
= ¢"+ - (gr—¢'r")=0, (3.2

while the constraints take the form

. 1. .
—a(tP )+ (1242 (424 ¢'%) =0,

. 1. .
—att’+5rr’+r2¢>q{>’zo. (3.3
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dt  ky d¢ Kk, da9\? o 8
d—éﬂZW, d—gl:rj (3.5 (dT —2ee® +m[cicg—(cg+eH2C§)
_ (e
dr\? a(r X (k2+ eH?k2)]e™ @
(d_gl) =—a(r)rics— —:2)k§+k§+az(r)c§, (3.6) ! ?
4
=—m(c§—eH2c§). (3.12)

where (;,k,) are two integration constants. For the con-

straints, Eqs(3.3), to be satisfied we must have Now, by tuning the constants of motion to fix the sign of the

square brackets, and by performing conformal transforma-

tions of the form(2.18, we can, after differentiation with

In particular, circular string dynamics as consideredrespect tor, reduce this equation to either the sinh-Gordon

in [12-15,17,21,2B corresponds to ¢,=k,=0 and equation, the cosh-Gordon equation, or the Liouville equa-
PN tion:

klclzkzcz. (37)

(&%, =(r,0), while the infinitely long stationary strings
considered in[15] correspond to the “dual” choice
c,=k;=0 and ¢, =(o,7).

The induced line element on the string world sheet is e[cicg—(cng eHch)(kwa Eszg)]>O:> cosh-Gordon,

e[ c2ca— (ca+ eH?c?) (k3 + eH?k3)]< 0= sinh-Gordon,

dS=[r’c;—a(cil[—(d&")*+(de)%), (38 [C2c2— (c2+ eH?c?)(K2+ eH2kZ)]= 0= Liouville.

such that the fundamental quadratic form is given by Thus, we have constructed explicit solutions to the string
equations of motion and constraints associated to the sinh-
Gordon equation, the cosh-Gordon equation, or the Liouville
equation and all three equations appear in both de Sitter and

Let us now return to our main interest here: strings in deanti—de Sitter spacetimes.

Sitter and anti—de Sitter spacetimes. In this case, the function .. ose this section with the following remark. The an-
a(r) is given by satz(3.4) is a generalization of both the circular string ansatz
[c;=0, ¢(&Y)= const, &' timelike] and the stationary
string ansatq c,=0, t(¢Y)= const, ¢ spacelikg. In both
these cases, it was shown in Rdfs2—15 that the resulting

coordinates t,r,¢) cover the complete manifold, while for _solutlons in de Slttgr a_nd antl—(_je Sitter spacetimes ShOUId be
interpreted as multistring solutions, that is to say, string so-

de Sitter spacetimee& +1), they cover only the region ; . : -
inside the horizon; the complete de Sitter manifold can, how!Utlons where one single world sheet describes finitely or

ever, b covered b four coordnate paches of e i e "arY dferent and dependent sngs The exst
and (3.10; see, for instanc§24],. Notice that Eq(3.6) for 9 PP q 9

the radial coordinate can be solved explicitly in terms of theeral feature in constant curvatufand asymptotically con-

Weierstrass elliptigp function[25]. The other two equations stant curvaturespacetimes.
(3.5 can then be integrated, the results being expressed in
terms of the Weierstrass elliptie and ¢ functions[25]. We IV. 2+1 BH-ADS SPACETIME

have thus solved completely the string equations of motion As another example to illustrate our general results of
and constraints using the ans&®4) in both de Sitter and gec. |1, we now consider the (21)-dimensional black hole
anti—de Sitter spacetimes, but the explicit expressions of thgnti—de SitteBH-AdS) spacetime.

solutions are not important here. It should be also stressed The metric of the 21 dimensional BH-ADS spacetime
that in general the ansat8.4) does not lead to solutions p jts standard form is given bjL6]

automatically satisfying the standard closed or open string
boundary conditions; see, for instan¢@6]. However, im-

posing the boundary conditions does not arise any problem. ds’= (EZ_A

e*=2|r?c5—a(r)c?|. (3.9

ag=1-eH?r? (3.10

In the case of anti—de Sitter spacetime=(—1), the static

2 2

dr
dt?+ — —Jdtdgp+r2de¢?, (4.1

In some cases the ans#&84) actuallydoeslead to solutions A

satisfying the standard boundary conditions; an example ighere

c1=k,=0, in which case the solution describes dynamical

circular stringd12-15,17,21,2B Finally, we are often inter- r2 J?

ested in string solutions that do not satisfy the standard A:|_2_M+W' (4.2

closed or open string boundary conditions; this is, for in-

stance, the case for infinitely long string®5,27] or finite  HereM represents the maskjs the angular momentum, and
open strings with external forces acting on the end points ofne cosmological constant is= —1/12. The causal structure
the stringq28,29. is similar to that of the four-dimensional Kerr spacetime.

Let wus consider the spacetime region whereThere is no strong curvature singularity rat 0; however,

(c3+ eH?c3)r?=c? (similar conclusions are reached in the R,,=2Ag,,. This is a constant curvature spacetime locally
other region. In this caset? is the timelike world-sheet co- and asymptotically isometric to (21)-dimensional anti—de
ordinate,é'=7/H. Then, Eqs(3.6) and(3.9) lead to Sitter spacetime; this is of course why it is also relevant for
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our purposes here. For more details on the local and global V. CONCLUDING REMARKS
geometry of the BH-ADS spacetime, see, for instance, Refs.
[16,30-32. In conclusion, we have shown that the fundamental qua-

The problem of the string propagation in the BH-ADS dratic form of classical string propagation in
spacetime was completely analyzed and the circular string2 + 1)-dimensional constant curvature spacetimes solves the
motion was exactly solved, in terms of elliptic functions, by sinh-Gordon equation, the cosh-Gordon equation, or the
the present authors ifiL7]. The equation determining the | joyyille equation. We have shown that in both de Sitter and

string loop radius as a function of time is anti—de Sitter spacetimdas well as in the 2 1 BH-ADS
spacetimg all three equations must be included to cover the
dr\? ) r2 J? ) generic string dynamics. This is particularly enlightening,
(d_r iz -M+ 7 —E°=0, (4.3 since generic features of the string propagation in these

spacetimes can be read off directly at the level of the equa-
tions of motion from the properties of the sinh, cosh, and
Liouville potentials, without need of solving the equations.
We also constructed new classes of explicit solutionalto
three equations in both de Sitter and anti—de Sitter space-
times, exhibiting the multistring property.

where E? is a non-negative integration constant, while the
fundamental quadratic form, which determines the invari-
ant size of the string, is given by

e?=2r?I2, (4.4 Finally it is worth observing that our results suggest the
) ) existence of various kinds of dualities relating the different
It is then straightforward to show that E@t.3) becomes string solutions in de Sitter and anti—de Sitter spacetimes.
From the potentials, Eq€2.25 and (2.26), it follows, in
da\? _ 8(_, | particular, that small strings are dual-&—a) to large
o) t2et- | B e r=am, (49 strings in thek=+1 (K=—1) sector of de Sittefanti—de

Sitter) spacetime. Furthermore, smalarge strings in the

After performing a conformal transformation of the form K=—1 sector in de Sitter spacetime are dual
(2.18 and differentiating with respect te, this equation (a——a, é——¢) to large(smal) strings in theK=+1
reduces to thdi) sinh-Gordon equation iE2<J?/4, (i) to  Sector in anti—de Sitter spacetime.

the cosh-Gordon equation E?>J%/4, and(iii) to the Liou-

ville equation if E>=J%/4; thus, all three equations are

present. Notice finally that the three different types of al- ACKNOWLEDGMENTS
lowed dynamics as reported [a7], essentially whether the
circular string collapses into=0 [case&(ii)] or not[case(i)], The work by A.L. Larsen was supported by NSERG-

precisely correspond to these different equatignghe lim-  tional Sciences and Engineering Research Council of
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