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Supernova neutrino scattering rates reduced by nucleon spin fluctuations: Perturbative limit
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Max-Planck-Institut fu¨r Physik, Föhringer Ring 6, 80805 Mu¨nchen, Germany

David Seckel
Bartol Research Institute, University of Delaware, Newark, Delaware 19716

Günter Sigl
Department of Astronomy and Astrophysics, The University of Chicago, Chicago, Illinois 60637-1433

and NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500
~Received 4 December 1995; revised manuscript received 5 March 1996!

In a nuclear medium, spin-dependent forces cause the nucleon spins to fluctuate with a rateGs . We have
previously shown that as a consequence the effective axial-vector current neutrino-nucleon scattering cross
section is reduced. Here, we calculate this reduction explicitly in the perturbative limitGs!T. By virtue of an
exact sum rule of the spin-density structure function, we express the modified cross section in terms of the
matrix element for neutrino-nucleon scattering in the presence of a spin-dependent nuclear potential. This
representation allows for a direct comparison with, and confirmation of, Sawyer’s related perturbative result. In
a supernova core with a typical temperatureT510 MeV, the perturbative limit is relevant for densities
r&1013 g cm23 and thus applies around the neutrino sphere. There, the cross-section reduction is of order a
few percent and thus not large; however, a new mode of energy transfer between neutrinos and nucleons is
enabled which may be important for neutrino spectra formation. We derive an analytic perturbative expression
for the rate of energy transfer.@S0556-2821~96!00216-0#

PACS number~s!: 97.60.Bw, 13.15.1g, 14.60.Lm, 95.30.Cq
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I. INTRODUCTION

Neutrino scattering rates in a medium differ from tho
taking place in vacuum. It is well known that spatial corr
lations between the locations or spins of the target partic
can reduce or enhance the average effective scattering c
section. For example, the anticorrelations caused by the P
exclusion principle are straightforward to include. Even in
nondegenerate medium, correlations are induced by fo
between the targets such as the Coulomb force which the
causes electromagnetic screening effects@1#. Similarly, in a
nuclear medium the spin-dependent nature of the nucle
nucleon interaction may cause non-negligible ‘‘pairings’’
the nucleon spins and thus a reduction of the axial-vec
current neutrino-nucleon scattering rate@2#.

We presently study a less familiar cross-section modifi
tion which is caused by temporal fluctuations rather th
spatial correlations. The main idea is that the neutrino sc
tering process takes a certain amount of time. If the ene
transfer isv, the weak probe cannot ‘‘resolve’’ those tem
poral changes of the target configuration which take place
a time scale faster than about 1/v. For example, the targe
nucleon spin may flip ‘‘during’’ the neutrino-nucleon colli
sion and thus ‘‘cancel itself.’’ In linear-response theory, th
effect is formally described by the frequency dependence
the nucleon dynamical spin-density structure function, wh
in the relevant limit amounts to the Fourier transform of t
autocorrelation function of a single nucleon spin. In the a
sence of interactions, the nuclear spin and thus its autoco
lation function are constant. In the presence of a sp
dependent random force the initial spin direction is forgott
causing the spin autocorrelation function to decrease to z
54556-2821/96/54~4!/2784~9!/$10.00
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for large times. Loosely speaking, then, for smallv ~large
‘‘duration’’ of the collision!, the weak probe sees a reduce
average target spin and thus scatters less efficiently.

A complete treatment should simultaneously include sp
fluctuations and spin-spin correlations, and presumably s
waves as well. All these effects are embedded in the dynam
cal spin-density structure function, which, in general, ha
multiple isospin components. However, in contrast to spi
spin correlations, spin fluctuations occur even when there
only one nucleon, provided that its spin is jiggled aroun
This is a multiple-scattering effect, not a many-body ph
nomenon. In certain circumstances, a pion condensate@3# or
the walls in the nuclear bubble phase@4# may be the domi-
nant cause for nucleon spin fluctuations so that it is not e
tirely academic to study spin fluctuations independently fro
spin-spin correlations.

Collision-induced changes of particle velocities or spin
cause the bremsstrahlung emission of photons, neutr
pairs, or axions. According to the Landau-Pomeranchu
Migdal ~LPM! effect @5,6#, the low-energy part of the radia-
tion spectrum is suppressed if multiple interactions destr
the temporal coherence of the source. The spin-fluctuat
effects studied here are analogous, except that it is the n
trino scattering rate that is being reduced. While the LP
effect is usually discussed for vector-current processes a
thus for velocity fluctuations, in the case of axial-vecto
current processes in nonrelativistic nuclear matter the s
fluctuations are more significant. We note that temporal flu
tuations do not occur for a conserved quantity such as
charge of a particle. The vectorial nucleon quantity that do
fluctuate due to collisions is the velocity, which in the non
relativistic limit is small. Therefore, in this limit multiple-
2784 © 1996 The American Physical Society
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54 2785SUPERNOVA NEUTRINO SCATTERING RATES REDUCED . . .
scattering effects are not important for vector-current n
trino interactions @7#. Still, because in vacuum the
nonrelativistic neutral-current neutrino-nucleon scatter
cross section iss5(CV

213CA
2)GF

2En
2/4p, any modification

of the axial-vector-current part strongly affects the total ra
The importance of multiple scattering is quantified by t

spin-fluctuation rateGs which roughly represents the invers
of the time required for the nucleon to forget its initial sp
orientation. This effect is important ifGs is of order the
typical energy of the weakly interacting particles which sc
ter off, or are emitted from, the medium@8#, i.e., for
Gs*T. One can easily estimate@Eq. ~15! below# that in a
supernova~SN! core with a temperature of order 10 Me
this ‘‘high-density case’’ obtains forr*1013 g cm23. Be-
cause densities as large as 1015 g cm23 are encountered in an
SN core, quantities such as the neutrino opacity or the ax
emissivity are impossible to calculate in a purely perturb
tive way which is based on the assumption that average s
tering or emission rates are the incoherent sum of sing
scattering events. Interaction rates calculated in the ‘‘vacu
limit’’ are fundamentally flawed for the conditions of an S
core.

To extract meaningful estimates for weak interaction ra
one must take recourse to the more general principles
linear-response theory. With our collaborators we have
gun to develop this perspective in a series of pap
@7,9–11#. We have argued that the neutrino opacities or
ion emissivities can be estimated by virtue of a phenome
logical ansatz for the spin-density structure function whi
incorporates certain limiting cases, notably the low-dens
one, and which satisfies certain general principles, in part
lar a sum rule which can be derived independently of pert
bation theory. Specifically, we estimated the spin-dens
structure function for large energy transfersv using a quasi-
bremsstrahlung amplitude~Fig. 1!. For smallv, the corre-
sponding neutrino scattering rate diverges as 1/v2 due to the
intermediate nucleon going on shell. Because the true dif
ential scattering cross section must be finite for allv, and
motivated by considerations of multiple scattering, we ad
cated replacing 1/v2 by a Lorentzian 1/(v21G2/4) where
G is of orderGs , but is adjusted so that the structure fun
tion obeys the sum rule.

Meanwhile, Sawyer@12# has published an explicit treat
ment of the cross-section reduction based on more traditio
perturbative techniques. In addition to the qua
bremsstrahlung graphs of Fig. 1, he includes wave funct
and vertex renormalizations to elastic scattering. The lead
correction in the nucleon scattering potentialV is the inter-

FIG. 1. Neutrino-nucleon scattering in the presence of an ex
nal spin-dependent potential for the nucleons. The potential
arise from bystander nucleons, a pion condensate, the walls in
nuclear bubble phase, or some abstract external force.
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ference between zeroth and second order amplitudes, an ex
ample of which is shown in Fig. 2. These terms diverge,
behaving asd(v) in the absence of nuclear recoil. However,
Sawyer points out that the sum of all orderuVu2 contributions
yields a totalnN cross section which is finite, but reduced
from the vacuum value.

Motivated by Sawyer’s work, we show how the diver-
gence of the quasibremsstrahlung process represented b
Fig. 1 can be rigorously controlled by virtue of our exact
sum rule of the spin-density structure function without as-
suming any specific modification of its form, Lorentzian or
otherwise, and without calculating the renormalization terms
explicitly. However, even though our Lorentzian ansatz is
not needed to obtain the perturbative cross-section reductio
effect, it nevertheless yields the correct limiting value be-
cause this ansatz incorporates the sum rule explicitly. Pu
differently, we may implement the sum rule by an explicit
ansatz for the low-v behavior of the spin-density structure
function, or we may use the sum rule in an abstract sense
Either way, in the perturbative limit the final result agrees
with the one found by Sawyer@12# even though the path of
derivation is entirely different. Our novel technique has the
added benefit that after the nature of the perturbative region
has been understood, the nonperturbative regime may still b
studied using our proposed Lorentzian modification or some
other related ansatz.

In Sec. II we use the structure-function formalism to de-
rive the perturbative limit of the average axial-vector-current
neutrino-nucleon scattering cross section. In Sec. III we con-
sider nucleons interacting with an external classical poten-
tial. In this generic example, the relationship between the
perturbative bremsstrahlung matrix element~Fig. 1! and the
cross-section reduction becomes particularly transparent an
allows for a direct comparison with Sawyer’s@12# result.

In a dilute medium where the perturbative approximation
is justified, the most important practical consequence of
nucleon spin fluctuations may not be the mild cross-section
reduction, but a new mode of energy transfer between neu
trinos and the nuclear medium@10#. This energy exchange is
enabled by the nontrivial frequency dependence of the spin
density structure function and thus is specific to spin fluctua-
tions; spin-spin correlations do not contribute. Indeed, it is
plainly visible from the bremsstrahlung nature of the under-
lying matrix element~Fig. 1! that neutrinos can transfer en-
ergy to nucleons above and beyond the standard nucleo
recoil effect.

Complementing the numerical expression of Ref.@10#, we
derive in Sec. IV an analytic expression for the average en-
ergy transfer per collision. This perturbative result is relevant

ter-
can
the

FIG. 2. One diagram representing the interference between ze
roth and second-order scattering amplitudes that leads to a wave
function renormalization of the incident nucleon fornN scattering.
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for conditions around the neutrino sphere in an SN and th
for the formation of neutrino spectra. Section V is given ov
to discussion and a summary.

II. AVERAGE NEUTRINO SCATTERING RATE

A. Low-density limit

The impact of nucleon spin fluctuations on neutrino sca
tering rates is most easily understood in the long-wavelen
limit ~see Ref.@7# for a discussion! which has been employed
in virtually all previous papers dealing with neutrino opac
ties, or neutrino pair and axion emissivities, in SN cores
old neutron stars. In this limit, the momentum transfer b
tween neutrinos and nucleons is neglected. The axial-vec
current scattering cross section may then be written as

dsA

d«2
5
3CA

2GF
2

4p

«2
2S~«12«2!

2p
, ~1!

where«1 and«2 are the initial- and final-state neutrino en
ergies,GF is the Fermi constant, and the neutral-current ax
weak coupling constant in a dilute medium isCA'11.37
and21.15 for protons and neutrons, respectively@7#.

For simplicity, we focus on an isotropic, nonrelativistic
nondegenerate medium of baryon densitynB , temperature
T, and a single species of nucleons. In this case the funct
S(v) is the dynamical spin-density structure function in th
k→0 limit @7,13#:

S~v!5
4

3nB
E

2`

1`

dteivt^s~ t !• s~0!&, ~2!

where ^s(t)• s(0)& is the autocorrelation function for the
nucleon spin operators(t)5*d3x s(x) at time t. Here,
s(x)[ 1

2c
†(x) tc(x), c(x) is the nucleon field~a Pauli

two-spinor! and t is a vector of Pauli matrices. The expec
tation value^ . . . & is taken over a thermal ensemble so th
detailed balanceS(v)5S(2v)ev/T is satisfied. We note
that our definition of energy transfer is positive for energ
given to the medium.

In order to derive an average scattering cross section
consider nondegenerate thermal neutrinos which we take
follow a Maxwell-Boltzmann distribution; the difference to a
Fermi-Dirac distribution is inessential for the present discu
sion. Therefore, we consider the quantity

^sA&[
3CA

2GF
2

4p

*d3k1e
2«1 /T*0

`d«2«2
2S~«12«2!

2p*d3k1e
2«1 /T

. ~3!

With the dimensionless energy transferx[(«12«2)/T and
after one explicit integration one finds@7#

^sA&5sTE
0

` dx

2p
S̃~x!S 21x1

1

6
x2De2x. ~4!

Here, sT[(9/p) CA
2GF

2T2 while S̃(x)[TS(xT) is the di-
mensionless structure function. In vacuum the nucleon sp
do not evolve, yielding a constant autocorrelation functio
and thus S̃(x)52pd(x). Then, ^sA&5sT where
*0

`dxd(x)5 1
2 has been used.
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For reasons that will soon become apparent, we conc
trate not on a direct calculation of the average cross-sect
at finite density^sA&, but rather on its deviation from the
vacuum cross sectiond^sA&[^sA&2sT or

d^sA&
sT

5211E
0

` dx

2p
S̃~x!S 21x1

1

6
x2De2x. ~5!

The crucial step is to express the right-hand side~RHS! as a
common integral overS̃(x). To this end we use the normal-
ization *2`

1`S̃(x)dx/2p51 which obtains if the spins of dif-
ferent nucleons evolve independently; otherwise, an ad
tional correlation term would appear on the RHS@7,10,11#, a
possibility to be addressed in Sec. II B below. By virtue o
detailed balance, this sum rule is

E
0

` dx

2p
S̃~x!~11e2x!51. ~6!

Replacing21 in Eq. ~5! by the negative of Eq.~6!, yields

d^sA&
sT

52E
0

` dx

2p
S̃~x!G~x!, ~7!

whereG(x)[2@(21x1 1
6x

2)e2x2(11e2x)] or

G~x!512S 11x1
1

6
x2De2x. ~8!

This function is shown in Fig. 3. It expands asG(x)5
1
3 x

21O(x3) for small x, approaches 1 for largex, and is
always positive. BecauseS̃(x) is also a positive function, we
find that the average cross section in the medium is inde
always suppressed by spin fluctuations.

Thus far,S(v) has been the nonperturbative but unknow
structure function. However, what can be calculated in t
framework of perturbation theory is an expressio
Sbrems(v) based on the ‘‘bremsstrahlung’’ or ‘‘medium ex-
citation’’ amplitude~Fig. 1!. In our previous works@7,8#, we
showed thatSbrems(v) diverges for smallv asv22, a behav-
ior which is generic for all bremsstrahlung processes, for t
electromagnetic case see Jackson@14#. We may then write

FIG. 3. FunctionG(x) as defined in Eq.~8!.



,
a
e

-

t

-

m
d
on
ent
r-
um

in

ed

-

ial

ell

h
ium

zian

ent

r

c-
n-
ac-

r
t
me
e
ther

a

c
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Sbrems~v!5
Gs

v2 s~v/T!3H ev/T for v,0,

1 forv.0,
~9!

wheres(x) is a nonsingular even function withs(0)51. The
quantityGs , defined as the coefficient of thev

22 singularity
of Sbrems(v), is physically interpreted as the spin-fluctuatio
rate.1

It should now be clear why we have calculated the dev
tion d^sA& rather than̂ sA& itself, thex2 behavior ofG(x)
compensates for the singularity inSbrems. We are, therefore
free to substituteSbrems(v) for S(v) and are assured of
finite answer ford^sA&. Further, if we accept that in a dilut
medium the trueS(v) is well represented bySbrems(v) for
v@Gs, then

d^sA&
sT

52E
0

` dx

2p
S̃brems~x!G~x! ~10!

is the desired perturbative result.
With our representation Eq.~9! the cross-section reduc

tion is, to lowest order ings[Gs /T,

d^sA&
sT

52
gs

2pE0
`

dx
G~x!

x2
s~x!. ~11!

Taking for simplicity the classical limits(x)51, we find

d^sA&
sT

52
5

6

gs

2p
. ~12!

Once more, these results show thatgs is the expansion pa
rameter which defines the perturbative regime.

We may estimate the error due to usingS̃brems(x) in Eq.
~10! instead of the fullS̃(x) in Eq. ~7!. If the true S̃(x) is
given by S̃brems(x) to lowest order in gs so that
S̃(x)2S̃brems(x)5O(gs

2) for x@gs , then one finds tha
*0

`@S̃(x)2S̃brems(x)]G(x)dx/2p5O(gs
2).

This implies that the lowest-order cross-section reduct
effect represented by Eq.~11! will be found by any assumed
functional formSapprox(v) for the trueS(v) if Sapprox(v)
agrees withSbrems(v) to O(gs

2) for v@Gs . Any such func-
tion which is normalized can be inserted into Eq.~4! and will
then yield Eq.~11! up to an error ofO(gs

2). Further, any
such function, even if it is not normalized, will yield thi
result when inserted into Eq.~7! where the normalization

1One may consider the limit of a classical spin vectors(t) being
kicked by a random force at a rateGcoll . If the spin changes
abruptly by a random amountDs in a given collision~which is thus
assumed to be ‘‘hard’’! and if subsequent spin orientations are u
correlated, one finds Sbrems(v)5Gs /(v

21Gs
2/4) with Gs

5Gcoll^(Ds)
2&/^s2& @15,16#. This justifies identifyingGs with an

average spin rate of change or a spin-fluctuation rate. In the cl
cal limit of hard collisions, one hass(x)51, while for general
interaction potentialss(x) is more complicated. Quantum corre
tions introduce the detailed-balance factor, and causes(x) to be a
decreasing function for largex, as discussed for the case of electr
magnetic bremsstrahlung by Jackson@14#. The same conclusion is
inferred from thef -sum rule forS(v) @11#.
n
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s

condition has been reshuffled into the functionG(x). To
lowest order ings , the cross-section reduction effect is in
dependent of the detailed structure of the trueS(v) in the
neighborhood ofv50.

B. Spin-spin correlations

A crucial step in the above analysis was use of the su
rule in Eq. ~6!, appropriate for a medium of uncorrelate
nucleons. However, in a real nuclear medium the nucle
spin fluctuations are typically caused by a spin-depend
interaction among nucleons. Inevitably, this will cause co
relations between different spins so that the RHS of the s
rule @Eq. ~6!# is 11C(gs) where in a dilute medium
uC(gs)u!1. It follows thatG(x) receives an additional con-
tribution 2C(gs)(11e2x) and d^sA&/sT one of order
C(gs). Here, d^sA&/sT is to be calculated with the full
S̃(x) and notS̃brems(x). If C(gs) is of ordergs

n then the
correction to the cross-section shift from considering sp
correlations is also of ordergs

n .
We may next use the above estimate of the error incurr

by using S̃brems(x) rather than the trueS̃(x). Then, if
C(gs)}gs

n with n.1, the cross-section deviation calcu
lated fromS̃brems(x) in Eq. ~10! is to lowest order indepen-
dent of spatial spin-spin correlations.

For example, if the nucleon-nucleon interaction potent
is written as in Ref.@11#, and if the correlation length scales
as gs , then we expectC(gs) to be of ordergs

3 in which
case the low-density limit of the cross-section change is w
described by Eq.~10!.

C. Comparison with the high-density behavior

We next compare the low-density limit thus derived wit
our more general previous expression. In a dense med
(gs*1), the detailed structure ofS(v) for small energy
transfers matters. In the past we have advocated a Lorent
form

Sapprox~v!5
Gs

v21G2/4
s~v/T!3H ev/T for v,0,

1 forv.0,
~13!

where for a givenGs one choosesG such thatSapprox(v) is
normalized. This ansatz is motivated by a heuristic argum
@8# and by the classical limit which obtains forv!T @7,15#.
Equation~13! naturally approaches the appropriate limit fo
low densities.

In Fig. 4 we shoŵ sA&/sT for s(x)51 as a function of
gs . The dotted line marks the ‘‘naive’’ constant cross se
tion which obtains when spin fluctuations are ignored e
tirely. The dashed line represents the perturbative result
cording to Eq.~12!; for gs*7.5 it yields complete nonsense
~a negative scattering cross section!. The solid line marked
‘‘Lorentzian’’ was obtained with the above ansatz fo
Sapprox(v). The dashed line is its tangent at the poin
gs50 so that indeed the Lorentzian ansatz yields the sa
perturbative limit as the direct calculation in Sec. II A wher
the sum rule was implemented in an abstract sense ra
than by a specific ansatz for the low-v behavior ofS(v).
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The Lorentzian ansatz yields a plausible intermediate res
between the naive and lowest-order perturbative results.

The overall shape of the Lorentzian line in Fig. 4 is de
termined by the bremsstrahlung wings ofSapprox(v) together
with the sum rule. In order to test how sensitive it is to th
assumed low-v shape we have considered a second ansatz
the form

Sapprox~v!5Gs3H v0
22 for 0<v<v0,

v22 for v0,v.
~14!

Of course, forv,0 we have the detailed-balance facto
ev/T as in Eq. ~13!, and, in general, there is a function
s(v/T) which we take to be equal to 1 for the purpose o
illustration. For a given choice ofGs , the frequencyv0 is
determined such thatSapprox(v) satisfies the sum rule. The
cross-section reduction derived from this ‘‘top-hat’’ ansatz
shown in Fig. 4. It has a common tangent atgs50 with the
dashed line and the Lorentzian curve, again confirming th
in the perturbative limit the detailed low-v shape ofS(v)
does not matter. For largegs, the deviation from the Lorent-
zian curve is relatively small. Therefore, it appears that ev
in the nonperturbative regime the cross-section reduction
dominated by the bremsstrahlung calculation in conjunctio
with the sum rule, and not by fine points of the low-v shape
of S(v).

FIG. 4. Average axial-vector-current neutrino-nucleon scatte
ing cross section as a function of the spin-fluctuation rate in t
classical limit wheres(x)51. The dotted line refers to a naive
calculation where nucleon spin fluctuations are ignored entire
The dashed line refers to the low-density perturbative expans
which agrees with Sawyer’s@12# related result if one expresses the
spin-fluctuation rateGs in terms of the assumed nucleon interactio
potential ~Sec. III A!. The solid line marked ‘‘Lorentzian’’ arises
from the ansatz@Eq. ~13!# while the one marked ‘‘Top-Hat’’ arises
from Eq. ~14!. The second horizontal axis expressesgs in terms of
the physical densityr for T530 MeV, using the OPE interaction
potential according to Eq.~15!. The correspondence betweengs

and r is meaningful only in the perturbative regime where
gs, a few.
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In this discussion we have used the classical bremsstra
lung limit of hard collisions wheres(x)51. Quantum cor-
rections alone require thats(x) be a decreasing function of
x for largex, and the same conclusion is reached on the bas
of Sigl’s f -sum rule@11#. Further, the detailed large-x behav-
ior depends on the short-distance behavior of the assum
NN interaction potential. It is evident from Eq.~11! that the
detailed functional form ofs(x) will determine the slope of
the curves in Fig. 4 atgs50. However, any change in slope
is independent of the manner by whichS̃(x) has been ad-
justed to satisfy the sum rule. Thus, the three curves rema
tangent to each other, although their slopes will, in genera

be different from the value2 5
6 (gs/2p) p determined for

s(x)51.
To express the spin-fluctuation rate in terms of the physi

cal density and temperature we need to assume a spec
model for the cause of the spin fluctuations. Taking nucleon
nucleon interactions modeled by a one-pion exchange~OPE!
potential as in our previous papers, one finds for a singl
species of nucleons

Gs,OPE54Apap
2 nBT

1/2

mN
5/2 58.6 MeVr13T10

1/2, ~15!

where ap[( f2mN /mp)
2/4p'15 with f'1.0 is the pion

fine structure constant,r13[r/1013 g cm23, T10[T/10
MeV, andmN5940 MeV is the nucleon mass. The pion
mass has been neglected. TakingT'10 MeV as a typical
value for SN conditions, one concludes that the dividing line
between high and low density is roughly given by
1013 g cm23 or 3% nuclear density.

We stress thatGs,OPE is in itself a perturbative result and
thus will be a reasonable representation of the trueGs only if
Gs,OPE/T&1. Therefore, in the high-density regime, Eq.
~15! cannot be used to translate an assumed spin-fluctuati
rate into a corresponding physical density. We have prev
ously argued that the truegs in a nuclear medium never
exceeds a few@10,11#.

III. MATRIX-ELEMENT REPRESENTATION

A. Perturbative cross-section reduction

The perturbative structure functionSbrems(v) is calculated
from the quasibremsstrahlung process shown in Fig. 1 so th
one may represent the cross-section reductiond^sA& directly
in terms of its matrix elementM. The translation is most
easily achieved by considering the differential scattering
cross section. Denoting the four-momentum of the in- an
outgoing nucleon with (E1 ,p1) and (E2 ,p2), respectively,
we find

dsA

d«2
5
nc
nB

«2
2E dV2

~2p!3
d3p1

~2p!3
d3p2

~2p!3
d3k

~2p!3
f 1

3 (
spins

^uMu2&
2«12«22E12E2

~2p!3d3~p11k2p2!

32pd~E11«12E22«2!. ~16!
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Here,nc is the number density of classical scattering cente
f 1 is the occupation number of the initial-state nucleon, an
k is the momentum absorbed by the external potential, Pa
blocking factors are ignored for all particles because of th
assumed nondegeneracy, and the neutrinos have been
nored in the momentumd function because of the long-
wavelength approximation. The expectation value^uMu2& is
understood to include the averaging of classical ensem
variables on which the external potential might depend. T
perturbative structure functionSbrems(v) is obtained by com-
paring Eq.~16! with Eq. ~1!.

In order to derive the matrix element we use the axial pa
of the weak interaction Hamiltonian and an external classic
potential for the nucleon spins. The most general form f
the potential in Fourier space is@16#

V~k,s,s!5U0~k!1US~k! s•s

1UT~k!~3 s• k̂ s• k̂2 s•s!, ~17!

wherek5uku, k̂5k/k, s is a classical spin vector of length 1
associated with the external potential, ands is the nucleon
spin operator. Here,U0 is a spin-independent potential while
US andUT represent a spin-dependent scalar and a ten
force, respectively. After some algebra, one finds

(
spins

^uMu2&
2«12«12E12E2

5
GF
2CA

2

2v2 @ uUS~k!u2~12 1
3 c12!

2 2Re@UT~k!US* ~k!#~c1c22
1
3 c12!

1uUT~k!u2~22c1c22
1
3 c12!#, ~18!

whereci ( i51 or 2! is the cosine of the angle between th
direction of neutrinoi relative tok, while c12 refers to the
angle between the two neutrinos. We have averaged over
external spin directionsswith an assumed isotropic distribu-
tion.

The interactionU0(k) does not contribute because i
leaves the nucleon spins unchanged. This leaves us with
scalar and tensor forcesUS(k) andUT(k), respectively. If
the classical scatterers are substituted by the nucleons th
selves, only the tensor term survives because the scalar t
conserves the total spin of two colliding nucleons and th
does not cause spin fluctuations@11#.

Expression~18! reveals explicitly thev22 divergence of
Eq. ~16! which thus cannot be integrated to yield a total cros
section. However, following the steps of Sec. II A we ca
derive a convergent expression for the medium-induc
changeof s1 which denotes the total axial-vector-curren
scattering cross section for a fixed initial-state energy«1. In
the structure-function language it is thed«2 integral of Eq.
~1!, or equivalently,

s15
3CA

2GF
2

4p E
2`

1`dv

2p
S~v!~«12v!2Q~«12v!. ~19!

In vacuum s1,vac5(3CA
2GF

2/4p)«1
2 so that the medium-

induced changeds1[s1,med2s1,vac is
s,
d
uli
e
ig-

le
e

rt
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or

the

the

m-
rm
s

s
n
d
t

ds1

s1,vac
5211E

2`

1`dv

2p
S~v!

~«12v!2Q~«12v!

«1
2 . ~20!

Then, we may proceed as before and replace21 by an in-
tegral over the structure function by virtue of its normaliza
tion so that2

ds1

s1,vac
5E

2`

1`dv

2p
S~v!F ~«12v!2Q~«12v!

«1
2 21G . ~21!

As before, the integrand varies effectively asS(v)v2 for
small v because the term linear inv switches sign at the
origin. Therefore, to lowest order we may substitut
S(v)→Sbrems(v), provided we interpret the remaining inte-
gral by its principal part.

Sbrems(v) is obtained by comparing Eq.~1! with Eq. ~16!
and using Eq.~18!. After performing thedv, dp2, and
dV2 integrations, we arrive at

ds1

s1,vac
5
2

3

nc
nB
E d3p1

~2p!3
d3k

~2p!3
f 1

3
uUS~k!u212uUT~k!u2

v2 F ~«12v!2Q~«12v!

«1
2 21G ,

~22!

where the energy transfer isv52(2p1•k1k2)/2mN .

B. Comparison with Sawyer’s result

As mentioned in the Introduction, Sawyer@12# has dis-
cussed a cross-section reduction due to the interaction of
target nucleons with bystander particles. He does not provi
an immediate physical interpretation of his calculation, bu
we believe that in essence he has studied the same effect
is the topic of our paper, namely, the scattering version of th
Landau-Pomeranchuk-Migdal effect. However, his forma
approach is quite different from ours.

The optical theorem implies that calculating the total neu
trino scattering cross section amounts to a calculation of t
imaginary part of the neutrino forward-scattering amplitud
f 0 on nucleons. Sawyer uses analyticity constraints@17# for
f 0 to recognize that the total cross section should be fini
order by order in a perturbative expansion in powers of th
nucleon interaction potential. Further, he observes that th
result holds even though individual contributions tof 0 have
infrared singularities from on-shell intermediate states. On
type of V2 contribution to f 0 comes from interference be-
tween the zeroth and second order scattering amplitud
Figure 2 shows such a contribution which may be interprete
as a wave-function renormalization of the incoming nucleo
Similar terms would renormalize the outgoing nucleon wav
function, or provide a vertex correction. The other type o

2In this form one can easily see that for small«1 the cross section
actually increases. For example,«150 leads to a vanishing vacuum
cross section while in the medium it is
(3CA

2GF
2/4p)*2`

0 dvv2S(v)/2p or by detailed balance
(3CA

2GF
2/4p)*0

`dvv2S(v)e2v/T/2p.
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V2 contribution to Im(f 0) is given by a phase-space integr
over the square of the amplitudes shown in Fig. 1. Th
terms correspond to the quasibremsstrahlung inelastic s
tering process, and also diverge as discussed above. S
yer’s main point is that the divergences in these two types
terms must sum to a finite result.

Sawyer@12# has worked out several examples which
lustrate this approach. Specifically, the cross-section red
tion represented by his Eq.~10! is very similar to our Eq.
~22!. However, our Eq.~22! has not yet been averaged ov
initial-state neutrino energies, Sawyer has used bystan
nucleons to provide the potential so that his expression
the energy transfer takes account of the bystander recoil,
he has studiednn→pe2 scattering rather thannN→Nn so
that the proton-neutron mass difference appears. Furthe
has used a scalar potential which is explicitly isospin dep
dent so that the role of our spin fluctuations is played
isospin fluctuations in his case.

The main point of agreement is the structure of the te
in square brackets in Eq.~22!. Both Sawyer’s Eq.~10! and
our Eq.~22! diverge if one considers the first term in squa
brackets independently from the21. In our derivation, the
21 effectively represents the sum rule of the nonpertur
tive S(v) for which we have substitutedSbrems(v) after the
two terms have been combined. In Sawyer’s approach,
21 corresponds to the wave-function renormalization of
elastic scattering rate. Our interpretation of the agreem
between these results is as follows.

In effect, Sawyer has calculated the perturbative appro
mationS(2)(v) to second order inV. Recall that the zeroth-
order approximation isS(0)(v)52pd(v) because Sawye
also uses the long-wavelength limit where nucleon recoil
fects are ignored. In this limit, any nonvanishing power
S(2)(v) at vÞ0 must arise from the quasibremsstrahlu
amplitudes of Fig. 1 so that inevitablyS(2)(v)5Sbrems(v)
for vÞ0. Sawyer’s renormalization terms modify only th
elastic channelv50 so that his complete result amounts
S(2)(v)5Sbrems(v)2Ad(v) whereA is an infinite integral
expression. Of course,S(2)(v) is highly singular and thus
unphysical atv50 in the sense that in the neighborhood
v50 it does not provide a representation of the different
scattering cross section@Eq. ~1!#. However,S(2)(v) is legiti-
mate as an integral kernel to calculate the total cross sec
@Eq. ~4!#. The agreement between Sawyer’s and our res
shows that the second-order perturbative calculation yie
an expression forA such thatS(2)(v) satisfies our sum rule

In essence, then, Sawyer’s calculation amounts to sh
ing explicitly that the renormalization terms not only canc
the low-v divergence ofSbrems(v), but indeed also cancel i
in such a way thatS(2)(v) satisfies the sum rule. The reno
malization terms are an explicit second-order manifestat
of the information embodied in our sum rule. In our deriv
tion, we have shown the sum rule to be a general nonper
bative property ofS(v). Therefore, once we have calculate
Sbrems(v) we can handle its low-v divergence either by an
abstract application of the sum rule, or by an explicit ans
for the physical behavior of the trueS(v) nearv50. Either
way, we do not need to calculate the renormalziation ter
explicitly.
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Although Sawyer’s and our approaches are equivalent
the low-density limit, they are not equivalent when one con
siders the high-density case. There, a perturbative expansi
makes no sense as higher-order terms exceed the lower-or
ones. However, by making use of the sum rule, and exploi
ing the physical insight thatS(v) should have a width of
order Gs @11# and possess a hard bremsstrahlung tail fo
v@Gs , we have the basis for a reasonable model of th
high-density regime.

To summarize, our derivation is based on representin
interaction rates by virtue of current correlators which allow
for a direct transition to the classical limit. Therefore, our
approach allows for an intuitive interpretation of the cross
section reduction as a temporal spin-averaging effect. Mor
over, because we know, on general grounds, that the su
rule @Eq. ~6!# must be satisfied, we do not need to worry
about a calculation of the various infinite second-order cor
rections to the elastic scattering rate. In our derivation, th
only required Feynman-graph evaluation is that of the ‘‘me
dium excitation term’’ of Fig. 1. Finally, our derivation al-
lows for a clear and physical identification of the dimension
less parametergs which defines the perturbative expansion
Sawyer’s technique, on the other hand, represents a mo
familiar methodology if one approaches the problem as
perturbative expansion in powers ofV.

IV. ENERGY TRANSFER

As stressed in Ref.@10#, the most important effect of
nucleon spin fluctuations may be that they allow for a new
mode of energy transfer by the quasibremsstrahlung proce
shown in Fig. 1. The relevant figure of merit is the averag
energy transfer per collision̂D«&bremsor

*0
`d«1«1

2e2«1 /Tn*0
`d«2«2

2~«22«1!S~«12«2!

*0
`d«1«1

2e2«1 /Tn*0
`d«2«2

2S~«12«2!
. ~23!

Here,Tn is the temperature of the neutrinos which are as
sumed to follow a Maxwell-Boltzmann distribution while the
nucleons are characterized byT. In Ref. @10# this expression
was evaluated numerically on the basis of the Lorentzia
ansatz for the structure function.

However, in the dilute-medium limit one can also derive
an explicit expression. We first note that in the numerato
and denominator one can each perform one integration e
plicitly so that

^D«&brems
T

5

E
0

`

dxS̃~x!xFb~x!~e2x2e2bx!

E
0

`

dxS̃~x!Fb~x!~e2x1e2bx!

~24!

with Fb(x)[11 1
2 bx1 1

12 b2x2 andb[T/Tn .
In the dilute-medium limit we may use to lowest order

S̃(x)→S̃brems(x) in the numerator, while in the denominator
S̃(x)→2pd(x) because the medium-induced change of th
cross section is itself of ordergs . With the representation
Eq. ~9!, we find
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^De&brems5GsE
0

` dx

2p
s~x!

Fb~x!

x
~e2x2e2bx!. ~25!

For the classical limit of hard collisions wheres(x)51, this
is

^De&brems5Gs

2716b1b2112lnb

24p
. ~26!

This is to be compared with the average energy trans
by nucleon recoils,̂ De& recoil530 (b21)b22T2/mN @18#.
Therefore, the ratio between the two is

^De&brems
^De& recoil

5
GsmN

T2
b2

2716b1b2112lnb

720p~b21!

5
GsmN

T2 S 1

36p
1
7~b21!

144p
1 • • • D . ~27!

Therefore, the importance of the ‘‘inelastic’’ mode of energ
transfer exceeds that of recoils ifgs.36pT/mN .

We note that the quasibremsstrahlung process of Fig
has a standard counterpart where neutrino pairs are abso
or emitted. We define a rate of energy transfer in this cha
nel, normalized to the average neutrino scattering rate
analogy to the above discussion. By virtue of Ref.@7#, the
result can be expressed such as Eq.~25! with Fb(x)
5b5x5/1440. The efficiency of energy transfer relative t
recoil effects is

^De&pair
^De& recoil

5
GsmN

T2
b2

~b211!~b11!

3600p
. ~28!

Therefore, the quasibremsstrahlung process of Fig. 1 is
proximately a factor of 25 more important than pair pro
cesses.

V. DISCUSSION AND SUMMARY

To summarize, we have studied the neutrino-nucleon sc
tering cross section taking into account nucleon spin fluctu
tions. The effect of random spin fluctuations is to reduce t
cross section in a manner similar to the LPM reduction
photon bremsstrahlung by multiple-scattering effects. W
have derived perturbative results in terms of a lowest-ord
spin-density structure function, and also in terms of t
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squared matrix element of neutrino-nucleon scattering in the
presence of bystander nucleons or more general externa
spin-dependent potentials. In this form, our result agrees
with Sawyer’s@12# related finding. The low-density limit is
unique unless there are unexpectedly strong spin-spin corre
lations.

While we have focused on neutral-current processes
similar conclusions would obtain for charged-current colli-
sions as stressed in Refs.@9,12#.

The explicit low-density results are theoretically interest-
ing, but their practical significance is limited. It is obvious
from Fig. 4 that a plausible extrapolation into the high-
density regime vastly differs from the perturbative result for
gs5Gs /T*1 which implies that the perturbative result can-
not be trusted for densities greater than a few percen
nuclear. WhileGs,OPE overestimates the trueGs at nuclear
density, in an SN core one has values for the truegs of order
a few, perhaps as large as 10@10,11#. Therefore, the neutrino
opacities in the inner SN core cannot be treated by perturba
tion theory alone. Near the neutrino sphere, corresponding to
gs'1, a perturbative treatment is roughly justified, but the
cross-section reduction is small~a few percent! and thus not
overly significant.

Near the neutrino sphere, the most important practical
consequence of nucleon spin fluctuations is likely to be the
inelastic or quasibremsstrahlung mode of energy transfer
With Eq. ~27! and takingT55 MeV as a typical neutrino-
sphere temperature, it is found to compete with standard re
coils for gs*0.5. As this value is representative for condi-
tions around the neutrino sphere, we confirm that the
inelastic mode of energy transfer is about as efficient as re
coils and thus may be important for the formation of neutrino
spectra@10#.
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