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Supernova neutrino scattering rates reduced by nucleon spin fluctuations: Perturbative limit
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In a nuclear medium, spin-dependent forces cause the nucleon spins to fluctuate with' a.réi¥e have
previously shown that as a consequence the effective axial-vector current neutrino-nucleon scattering cross
section is reduced. Here, we calculate this reduction explicitly in the perturbativd 1xdfT. By virtue of an
exact sum rule of the spin-density structure function, we express the modified cross section in terms of the
matrix element for neutrino-nucleon scattering in the presence of a spin-dependent nuclear potential. This
representation allows for a direct comparison with, and confirmation of, Sawyer’s related perturbative result. In
a supernova core with a typical temperatdre 10 MeV, the perturbative limit is relevant for densities
p=10" g cm 2 and thus applies around the neutrino sphere. There, the cross-section reduction is of order a
few percent and thus not large; however, a new mode of energy transfer between neutrinos and nucleons is
enabled which may be important for neutrino spectra formation. We derive an analytic perturbative expression
for the rate of energy transfdiS0556-282(96)00216-0

PACS numbgs): 97.60.Bw, 13.15+g, 14.60.Lm, 95.30.Cq

[. INTRODUCTION for large times. Loosely speaking, then, for small(large
“duration” of the collision), the weak probe sees a reduced
Neutrino scattering rates in a medium differ from thoseaverage target spin and thus scatters less efficiently.
taking place in vacuum. It is well known that spatial corre- A complete treatment should simultaneously include spin
lations between the locations or spins of the target particleBuctuations and spin-spin correlations, and presumably spin
can reduce or enhance the average effective scattering croasves as well. All these effects are embedded in the dynami-
section. For example, the anticorrelations caused by the Pawal spin-density structure function, which, in general, has
exclusion principle are straightforward to include. Even in amultiple isospin components. However, in contrast to spin-
nondegenerate medium, correlations are induced by forcespin correlations, spin fluctuations occur even when there is
between the targets such as the Coulomb force which therelpnly one nucleon, provided that its spin is jiggled around.
causes electromagnetic screening eff¢tis Similarly, in a  This is a multiple-scattering effect, not a many-body phe-
nuclear medium the spin-dependent nature of the nucleormomenon. In certain circumstances, a pion conderjSter
nucleon interaction may cause non-negligible “pairings” of the walls in the nuclear bubble phagg may be the domi-
the nucleon spins and thus a reduction of the axial-vectornant cause for nucleon spin fluctuations so that it is not en-
current neutrino-nucleon scattering ragd. tirely academic to study spin fluctuations independently from
We presently study a less familiar cross-section modificaspin-spin correlations.
tion which is caused by temporal fluctuations rather than Collision-induced changes of particle velocities or spins
spatial correlations. The main idea is that the neutrino scattause the bremsstrahlung emission of photons, neutrino
tering process takes a certain amount of time. If the energpairs, or axions. According to the Landau-Pomeranchuk-
transfer isw, the weak probe cannot “resolve” those tem- Migdal (LPM) effect[5,6], the low-energy part of the radia-
poral changes of the target configuration which take place otion spectrum is suppressed if multiple interactions destroy
a time scale faster than aboutwl/For example, the target the temporal coherence of the source. The spin-fluctuation
nucleon spin may flip “during” the neutrino-nucleon colli- effects studied here are analogous, except that it is the neu-
sion and thus “cancel itself.” In linear-response theory, thistrino scattering rate that is being reduced. While the LPM
effect is formally described by the frequency dependence oéffect is usually discussed for vector-current processes and
the nucleon dynamical spin-density structure function, whichthus for velocity fluctuations, in the case of axial-vector-
in the relevant limit amounts to the Fourier transform of thecurrent processes in nonrelativistic nuclear matter the spin
autocorrelation function of a single nucleon spin. In the ab{luctuations are more significant. We note that temporal fluc-
sence of interactions, the nuclear spin and thus its autocorrédations do not occur for a conserved quantity such as the
lation function are constant. In the presence of a spincharge of a particle. The vectorial nucleon quantity that does
dependent random force the initial spin direction is forgottenfluctuate due to collisions is the velocity, which in the non-
causing the spin autocorrelation function to decrease to zenelativistic limit is small. Therefore, in this limit multiple-
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FIG. 1. Neutrino-nucleon scattering in the presence of an exter- F|G. 2. One diagram representing the interference between ze-
nal spin-dependent potential for the nucleons. The potential caroth and second-order scattering amplitudes that leads to a wave-

arise from bystander nucleons, a pion condensate, the walls in th@nction renormalization of the incident nucleon feN scattering.
nuclear bubble phase, or some abstract external force.

ference between zeroth and second order amplitudes, an ex-
scattering effects are not important for vector-current NeUample of which is shown in Fig. 2. These terms diverge,
trino interactions [7]. Still, because in vacuum the pehaving asi(w) in the absence of nuclear recoil. However,
nonrelativistic neutral-current neutrino-nucleon scatteringsawyer points out that the sum of all ordet? contributions
cross section isr=(C{+3C})GZEZ/4m, any modification  yields a totalvN cross section which is finite, but reduced
of the axial-vector-current part strongly affects the total ratefrom the vacuum value.

The importance of multiple scattering is quantified by the  Motivated by Sawyer's work, we show how the diver-
spin-fluctuation raté’ , which roughly represents the inverse gence of the quasibremsstrahlung process represented by
of the time required for the nucleon to forget its initial spin Fig. 1 can be rigorously controlled by virtue of our exact
orientation. This effect is important i, is of order the sum rule of the spin-density structure function without as-
typical energy of the weakly interacting particles which scat-suming any specific modification of its form, Lorentzian or
ter off, or are emitted from, the mediurf8], i.e., for  otherwise, and without calculating the renormalization terms
I',=T. One can easily estimafé&q. (15 below] that in a  explicitly. However, even though our Lorentzian ansatz is
supernovaSN) core with a temperature of order 10 MeV not needed to obtain the perturbative cross-section reduction
this “high-density case” obtains fop=103gcm 3. Be- effect, it nevertheless yields the correct limiting value be-
cause densities as large ag’gcm 3 are encountered in an cause this ansatz incorporates the sum rule explicitly. Put
SN core, quantities such as the neutrino opacity or the axiodifferently, we may implement the sum rule by an explicit
emissivity are impossible to calculate in a purely perturba-ansatz for the lows behavior of the spin-density structure
tive way which is based on the assumption that average scafunction, or we may use the sum rule in an abstract sense.
tering or emission rates are the incoherent sum of singleEither way, in the perturbative limit the final result agrees
scattering events. Interaction rates calculated in the “vacuunwith the one found by Sawyéd 2] even though the path of
limit” are fundamentally flawed for the conditions of an SN derivation is entirely different. Our novel technique has the
core. added benefit that after the nature of the perturbative region

To extract meaningful estimates for weak interaction ratesias been understood, the nonperturbative regime may still be
one must take recourse to the more general principles dftudied using our proposed Lorentzian modification or some
linear-response theory. With our collaborators we have besther related ansatz.
gun to develop this perspective in a series of papers In Sec. Il we use the structure-function formalism to de-
[7,9-17. We have argued that the neutrino opacities or axtive the perturbative limit of the average axial-vector-current
ion emissivities can be estimated by virtue of a phenomenoreutrino-nucleon scattering cross section. In Sec. Il we con-
logical ansatz for the spin-density structure function whichsider nucleons interacting with an external classical poten-
incorporates certain limiting cases, notably the low-densitytial. In this generic example, the relationship between the
one, and which satisfies certain general principles, in particuperturbative bremsstrahlung matrix eleméfig. 1) and the
lar a sum rule which can be derived independently of pertureross-section reduction becomes particularly transparent and
bation theory. Specifically, we estimated the spin-densityallows for a direct comparison with Sawyef's2] result.
structure function for large energy transferaising a quasi- In a dilute medium where the perturbative approximation
bremsstrahlung amplitudd=ig. 1). For smallw, the corre- is justified, the most important practical consequence of
sponding neutrino scattering rate diverges as’due to the  nucleon spin fluctuations may not be the mild cross-section
intermediate nucleon going on shell. Because the true differreduction, but a new mode of energy transfer between neu-
ential scattering cross section must be finite forajland  trinos and the nuclear mediuft0]. This energy exchange is
motivated by considerations of multiple scattering, we advo-€enabled by the nontrivial frequency dependence of the spin-
cated replacing 1° by a Lorentzian 1ip?+1?/4) where density structure function and thus is specific to spin fluctua-
I' is of orderI",,, but is adjusted so that the structure func-tions; spin-spin correlations do not contribute. Indeed, it is
tion obeys the sum rule. plainly visible from the bremsstrahlung nature of the under-

Meanwhile, Sawyef12] has published an explicit treat- lying matrix elementFig. 1) that neutrinos can transfer en-
ment of the cross-section reduction based on more tradition&rgy to nucleons above and beyond the standard nucleon
perturbative techniques. In addition to the quasi-recoil effect.
bremsstrahlung graphs of Fig. 1, he includes wave function Complementing the numerical expression of R&€], we
and vertex renormalizations to elastic scattering. The leadinderive in Sec. IV an analytic expression for the average en-
correction in the nucleon scattering potentials the inter-  ergy transfer per collision. This perturbative result is relevant
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for conditions around the neutrino sphere in an SN and thus L O O A
for the formation of neutrino spectra. Section V is given over 11— -
to discussion and a summary. - ]
B —

II. AVERAGE NEUTRINO SCATTERING RATE ~ & C ]

3 C .

A. Low-density limit T C .

The impact of nucleon spin fluctuations on neutrino scat- A —
tering rates is most easily understood in the long-wavelength - ]
limit (see Ref[7] for a discussiopwhich has been employed R —_
in virtually all previous papers dealing with neutrino opaci- A
ties, or neutrino pair and axion emissivities, in SN cores or OO 5 4 6 8

old neutron stars. In this limit, the momentum transfer be-
tween neutrinos and nucleons is neglected. The axial-vector-

current scattering cross section may then be written as FIG. 3. FunctionG(x) as defined in Eq(8).

doa 3C3G2 £5S(e1— &)
de, 4w 2 '

1) For reasons that will soon become apparent, we concen-
trate not on a direct calculation of the average cross-section
at finite density(co,), but rather on its deviation from the

wheree, ande, are the initial- and final-state neutrino en- \
vacuum cross sectiof{op)=(opa)— o7 Or

ergies,Gg is the Fermi constant, and the neutral-current axial

weak coupling constant in a dilute medium @~ +1.37

and — 1.15 for protons and neutrons, respectivigly. Xaa) =—1+ fw%’é(x)
For simplicity, we focus on an isotropic, nonrelativistic, oT 02w

nondegenerate medium of baryon density, temperature

T, and a single species of nucleons. In this case the functiolhe crucial step is to express the right-hand $RES) as a

S(w) is the dynamical spin-density structure function in thecommon integral oves(x). To this end we use the normal-

1
2+x+ gxz)ex. (5)

k—0 limit [7,13]: ization [ *“S(x)dx/2m= 1 which obtains if the spins of dif-
4 (i ferent nucleons evolve independently; otherwise, an addi-
S(w)= _f dte“(o(t) a(0)), (2)  tional correlation term would appear on the RHS10,11, a
3ngJ - possibility to be addressed in Sec. Il B below. By virtue of

detailed balance, this sum rule is

where (a(t)- o(0)) is the autocorrelation function for the
nucleon spin operatoro(t)=[d®x o(x) at time t. Here, © X~
o(X)=3y7(x) 7p(x), ¥(x) is the nucleon field(a Pauli J ES(X)(lJre_X):l- (6)
two-spinoy and 7 is a vector of Pauli matrices. The expec- 0
tation value( . . .) is taken over a thermal ensemble so that
detailed balanceS(w)=S(— w)e®T is satisfied. We note
that our definition of energy transfer is positive for energy
given to the medium. Xon) _ J'w%’é(x)G(x) @

In order to derive an average scattering cross section we oT 02w ’
consider nondegenerate thermal neutrinos which we take to
follow a Maxwell-Boltzmann distribution; the difference to a whereG(x)=—[(2+x+ éXZ)e—X_ (1+e ] or
Fermi-Dirac distribution is inessential for the present discus-
sion. Therefore, we consider the quantity

Replacing—1 in Eqg. (5) by the negative of Eq6), yields

1
G(x)=1—|1+x+ 5x2 e X (8

< 3CAG2 [d3k.e *1/T[5de,e5S(e1— &) .

op)= p— .

A 4m 2m[d*kee T This function is shown in Fig. 3. It expands &(x)=

3X2+0(x%) for small x, approaches 1 for large, and is

always positive. Becaus®(x) is also a positive function, we

find that the average cross section in the medium is indeed
1 always suppressed by spin fluctuations.

2+ x+ —x2> e X, 4) Thus far,S(w) has been the nonperturbative but unknown
6 structure function. However, what can be calculated in the

~ framework of perturbation theory is an expression

Here, or=(9/m) CZGZT? while S(x)=TS(xT) is the di- S, _ (w) based on the “bremsstrahlung” or “medium ex-

mensionless structure function. In vacuum the nucleon spingitation” amplitude(Fig. 1). In our previous work$7,8], we

do not evolve, yielding a constant autocorrelation functionshowed thas,,.,{ @) diverges for smalk asw 2, a behav-

and thus S(x)=2wd(x). Then, (oa)=oc; where iorwhich is generic for all bremsstrahlung processes, for the

J5dx8(x) =3 has been used. electromagnetic case see JackEb#]. We may then write

With the dimensionless energy transfee(s,—¢,)/T and
after one explicit integration one findig]

©dX~
<0'A>:0'Tjo ES(X)
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e’'T  for <O, condition has been reshuffled into the functi@{x). To
©) lowest order iny,, the cross-section reduction effect is in-
dependent of the detailed structure of the t&{@) in the
wheres(x) is a nonsingular even function wi{0)=1. The  neighborhood otw=0.
quantityT" ., defined as the coefficient of the 2 singularity
of Syremd @), is physically interpreted as the spin-fluctuation
ratel B. Spin-spin correlations
It should now be clear why we have calculated the devia- a crycial step in the above analysis was use of the sum
tion &(oa) rather than(a) itself, thex” behavior ofG(x)  ryle in Eq. (6), appropriate for a medium of uncorrelated
compensates for the singularity 8y.ms. We are, therefore, nycleons. However, in a real nuclear medium the nucleon
free to substituteSyem{w) for S(w) and are assured of a gpin fluctuations are typically caused by a spin-dependent
finite answer ford(o ). Further, if we accept that in a dilute jnteraction among nucleons. Inevitably, this will cause cor-
medium the trueS(w) is well represented b$yem{ ) for  relations between different spins so that the RHS of the sum
w>T,, then rule [Eg. (6)] is 1+C(y,) where in a dilute medium
6(0 > |C_(y(_,)|<1. It follows thatG(x) receives an additional con-
A f Sbrem@()G(X) (10)  tribution —C(y,)(1+e*) and &(oa)/or one of order
C(y,). Here, 5<O'A>/0'T is to be calculated with the full
S(x) and notSbrems(x) If C(y,) is of ordery! then the
correction to the cross-section shift from considering spin
correlations is also of ordey! .
We may next use the above estimate of the error incurred
&op) Yo [ G( ) by using S,emd{X) rather than the trueS(x). Then, if
— == f (1) C(y,)xys with n>1, the cross-section deviation calcu-
lated from S, X) in Eq. (10) is to lowest order indepen-

Sorem§ @) = (a)/T)X 1 for @>0,

is the desired perturbative result.
With our representation Eq9) the cross-section reduc-
tion is, to lowest order iny,=I"_/T,

gT 2 0

Taking for simplicity the classical limis(x)=1, we find dent of spatial spin-spin correlations.
For example, if the nucleon-nucleon interaction potential
5<0A> S Y is written as in Ref[11], and if the correlation length scales
oT 621 (12 asvy,, then we expec€C(y,) to be of orderyi in which

case the low-density limit of the cross-section change is well
Once more, these results show thgtis the expansion pa- described by Eqg(10).
rameter which defines the perturbative regime.

We may estimate the error due to usiigen,{x) in Eq. C. Comparison with the high-density behavior

(10 instead of the fullS(x) in Eq. (7). If t.he true §(x) is We next compare the low-density limit thus derived with
given by SyemdX) to lowest order iny, so that our more general previous expression. In a dense medium
S(x) Sb,ems(x) O(yU) for x>vy,, then one finds that (y,=1), the detailed structure d(w) for small energy
) O[S(x) Sbrems(X)] G(X)dx/27m=0(»?2). transfers matters. In the past we have advocated a Lorentzian
This implies that the lowest-order cross-section reductiorform
effect represented by E¢L1) will be found by any assumed
functional form S, @) for the true S(w) if Syppol @)
agrees withSemd ) to O(yg) for o>T"_,. Any such func-
tion which is normalized can be mserted into E4).and will
then yield Eqg.(11) up to an error ofO(y‘Z,). Further, any
such function, even if it is not normalized, will yield this where for a giverl', one choose$’ such thatS,,po( @) is
result when inserted into Eq7) where the normalization normalized. This ansatz is motivated by a heuristic argument
[8] and by the classical limit which obtains far<T [7,15].
Equation(13) naturally approaches the appropriate limit for
'One may consider the limit of a classical spin veci(i) being  low densities.
kicked by a random force at a rate,,. If the spin changes In Fig. 4 we show(oa)/ o7 for s(x)=1 as a function of
abruptly by a random amourts in a given collision(which is thus  v,,. The dotted line marks the “naive” constant cross sec-
assumed to be “hard’and if subsequent spin orientations are un-tion which obtains when spin fluctuations are ignored en-
correlated, one finds Syem{®)=T,/(w?+T?%/4) with T, tirely. The dashed line represents the perturbative result ac-
=T i((A9)?)/() [15,16. This justifies identifyingl', with an  cording to Eq.(12); for y,=7.5 it yields complete nonsense
average spin rate of change or a spin-fluctuation rate. In the class{@ negative scattering cross secjiofihe solid line marked
cal limit of hard collisions, one has(x)=1, while for general “Lorentzian” was obtained with the above ansatz for
interaction potentials(x) is more complicated. Quantum correc- Syppro{ @). The dashed line is its tangent at the point
tions introduce the detailed-balance factor, and casgto be a  y,=0 so that indeed the Lorentzian ansatz yields the same
decreasing function for large as discussed for the case of electro- perturbative limit as the direct calculation in Sec. Il A where
magnetic bremsstrahlung by Jackgdd]. The same conclusion is the sum rule was implemented in an abstract sense rather
inferred from thef-sum rule forS(w) [11]. than by a specific ansatz for the law-behavior ofS(w).

r, e”T  for w<O0,
Saowrol )= pz SO 1 forgz0, 1Y
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In this discussion we have used the classical bremsstrah-
lung limit of hard collisions wheres(x) =1. Quantum cor-
rections alone require tha(x) be a decreasing function of
x for largex, and the same conclusion is reached on the basis
of Sigl's f-sum rule[11]. Further, the detailed largebehav-
ior depends on the short-distance behavior of the assumed
NN interaction potential. It is evident from E@L1) that the
—] detailed functional form of(x) will determine the slope of

. the curves in Fig. 4 ay,=0. However, any change in slope
. - is independent of the manner by whi&(x) has been ad-

. justed to satisfy the sum rule. Thus, the three curves remain
tangent to each other, although their slopes will, in general,

be different from the value- 2(y,/27) = determined for
s(x)=1.
Lo o b v by a by To express the spin-fluctuation rate in terms of the physi-
5 1 1.5 cal density and temperature we need to assume a specific
p [10'* g/cm?] model for the cause of the spin fluctuations. Taking nucleon-
(for T=30MeV) nucleon interactions modeled by a one-pion exchd@jeg)
potential as in our previous papers, one finds for a single

) ) species of nucleons
FIG. 4. Average axial-vector-current neutrino-nucleon scatter-

ing cross section as a function of the spin-fluctuation rate in the

(ap)/o7
o)

~
Perturbative ~« .

III|III|III|IIIIIII

o
N
s
o]
o]

classical limit wheres(x)=1. The dotted line refers to a naive ng T2
calculation where nucleon spin fluctuations are ignored entirely. Fo.’op|::4\/;ai. =5 =8.6 MeVp13T%2, (15
The dashed line refers to the low-density perturbative expansion my

which agrees with Sawyer{d.2] related result if one expresses the

spin-fluctuation ratd’,, in terms of the assumed nucleon interaction h — (F2me M2/ A~ ith f~ is the D
potential (Sec. Il A). The solid line marked “Lorentzian” arises WHNereé a,=(f2my/m;)/4m~15 with f~1.0 is the pion

from the ansatfEq. (13)] while the one marked “Top-Hat" arises i€ structure CO”StantP;szllolB gem?, T1=T/10
from Eq.(14). The second horizontal axis expressesin terms of ~ MeV, and my=940 MeV is the nucleon mass. The pion
the physical density for T=30 MeV, using the OPE interaction Mass has been neglected. Takifig10 MeV as a typical
potential according to Eq(15). The correspondence betwegy  Vvalue for SN conditions, one concludes that the dividing line

and p is meaningful only in the perturbative regime where between high and low density is roughly given by
¥,< afew. 10'* gcm 3 or 3% nuclear density.
We stress thal', opeis in itself a perturbative result and

The Lorentzian ansatz yields a plausible intermediate resuthus will be a reasonable representation of the Irpenly if
between the naive and lowest-order perturbative results. I'; ope/ T<1. Therefore, in the high-density regime, Eq.

The overall shape of the Lorentzian line in Fig. 4 is de-(15) cannot be used to translate an assumed spin-fluctuation
termined by the bremsstrahlung wingsSyf,,.{ w) together  rate into a corresponding physical density. We have previ-
with the sum rule. In order to test how sensitive it is to theously argued that the trug, in a nuclear medium never
assumed lows shape we have considered a second ansatz afxceeds a feW10,11.
the form

waz for 0= w=<w,, Ill. MATRIX-ELEMENT REPRESENTATION
S, w)=T, X 14
woprod @) =1y 0 ? forwy<o. (a4 A. Perturbative cross-section reduction
The perturbative structure functi®,{ w) is calculated
from the quasibremsstrahlung process shown in Fig. 1 so that
one may represent the cross-section reducsign,) directly

Of course, foro<0 we have the detailed-balance factor
e”’T as in Eq.(13), and, in general, there is a function

S(w/T) which we take to be equal to 1 for the purpose ofj, tarms of its matrix element. The translation is most

illustration. For a given choice df ,, the frequencyw iS  gasijly achieved by considering the differential scattering
determined such tha,ppofw) satisfies the sum rule. The ¢oss section. Denoting the four-momentum of the in- and

cross-section reduction derived from this “top-hat” ansatz isoutgoing nucleon with E;,p;) and (E,,p,), respectively
shown in Fig. 4. It has a common tangentyat=0 with the ;e find ' e '

dashed line and the Lorentzian curve, again confirming that

in the perturbative limit the detailed low-shape ofS(w) doa ng ,[ dQ, d; d®p, d%k

does not matter. For largg,, the deviation from the Lorent- d_82: n_B82 (2m)% (2m)% (2m)% (2m)3 't

zian curve is relatively small. Therefore, it appears that even

in the nonperturbative regime the cross-section reduction is (IM|?) 3.3
dominated by the bremsstrahlung calculation in conjunction Spinsm(zw) 6°(p1tk—p2)

with the sum rule, and not by fine points of the lewshape
Of S(w) X27T§(E1+81_E2_82). (16)
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Here,n. is the number density of classical scattering centers, S0y +odw (61— 0)°0(g,— w)
f is the occupation number of the initial-state nucleon, and ~ —— =- J 7. 3@) 2 . (20
k is the momentum absorbed by the external potential, Pauli Lvac 1

blocking factors are ignored for all particles because of therpan we may proceed as before and replace by an in-
assumed nondegeneracy, and the neutrinos have been {gura| over the structure function by virtue of its normaliza-
nored in the momentund function because of the long- ton so that

wavelength approximation. The expectation valu&1|?) is

—o0

understood to include the averaging of classical ensemble Soq +odw (gl_w)Z@(gl_w)
variables on which the external potential might depend. The o1 =J o 8% —-1]. (21
,vac -

perturbative structure functid®,,.,{ @) is obtained by com-

paring Eq.(16) with Eq. (1). _ As before, the integrand varies effectively S6w)w? for
In order to derive the matrix element we use the axial partmail »» because the term linear i@ switches sign at the
of the weak interaction Hamiltonian and an external classicag)rigin' Therefore, to lowest order we may substitute

potential fpr t_he nuc_Ieon spins. The most general form forS(w)HSbrems(w), provided we interpret the remaining inte-
the potential in Fourier space [i46] gral by its principal part.

Spremd @) is obtained by comparing E@l) with Eq. (16)
V(k,0,5)=Uq(k) +Ugk) o-s and using Eq.(18). After performing thedw, dp,, and
UL (K)(3 oK sk o9, 17 dQ), integrations, we arrive at
R 50’1 2 nc d3pl d3k
wherek= k|, k=k/k, sis a classical spin vector of length 1 m: 3 n_Bf (2m)3 (2m)3 't
associated with the external potential, amds the nucleon

spin operator. Herd), is a spin-independent potential while « [Ug(k) [ +2[Ur(K)|?[ (61~ ©)*O(e1—w)
Ug and Ut represent a spin-dependent scalar and a tensor w? s% '
force, respectively. After some algebra, one finds (22)
(IM?  Gick or 1 ,
£ 2612612E,2E, 207 [[Us(k)|*(1= 3 ¢19) where the energy transfer is= — (2p; - k+k?)/2my.
— 2R U(K)UE(K)](C1Co— 3 C1p) B. Comparison with Sawyer’s result

As mentioned in the Introduction, Sawygt2] has dis-
cussed a cross-section reduction due to the interaction of the
target nucleons with bystander particles. He does not provide
wherec; (i=1 or 2 is the cosine of the angle between the an immediate physical interpretation of his calculation, but
direction of neutrina relative tok, while c,, refers to the we believe that in essence he has studied the same effect that
angle between the two neutrinos. We have averaged over thethe topic of our paper, namely, the scattering version of the
external spin directions with an assumed isotropic distribu- Landau-Pomeranchuk-Migdal effect. However, his formal
tion. approach is quite different from ours.

The interactionUy(k) does not contribute because it  The optical theorem implies that calculating the total neu-
leaves the nucleon spins unchanged. This leaves us with theno scattering cross section amounts to a calculation of the
scalar and tensor forcddg(k) and U(k), respectively. If imaginary part of the neutrino forward-scattering amplitude
the classical scatterers are substituted by the nucleons therf; on nucleons. Sawyer uses analyticity constrajatg for
selves, only the tensor term survives because the scalar terfy to recognize that the total cross section should be finite
conserves the total spin of two colliding nucleons and thusorder by order in a perturbative expansion in powers of the
does not cause spin fluctuatiofisl]. nucleon interaction potential. Further, he observes that this

Expression(18) reveals explicitly thew 2 divergence of result holds even though individual contributionsftphave
Eq. (16) which thus cannot be integrated to yield a total crossinfrared singularities from on-shell intermediate states. One
section. However, following the steps of Sec. Il A we cantype of V2 contribution tof, comes from interference be-
derive a convergent expression for the medium-inducedween the zeroth and second order scattering amplitudes.
changeof o, which denotes the total axial-vector-current Figure 2 shows such a contribution which may be interpreted
scattering cross section for a fixed initial-state energyln as a wave-function renormalization of the incoming nucleon.
the structure-function language it is tde, integral of Eq.  Similar terms would renormalize the outgoing nucleon wave

+|Ur(k)[A(2—cic— 5¢19], (18)

(1), or equivalently, function, or provide a vertex correction. The other type of
3C4G? [+=dw ) .
o= —S(w)(e1—w)°O(e1—w). (19 2In this form one can easily see that for smejlthe cross section
4 ) .27 . - -
actually increases. For exampig,= 0 leads to a vanishing vacuum
Cross section while in the medium it is

In vacuum oy .= (3C4G%4m)e3 so that the medium- (3C2G%/47)[° dww?S(w)/2m or by detailed balance
induced chang@o 1= 01 med 01.vaciS (3CaGH4m) [5dww?S(w)e™ /21



2790 GEORG RAFFELT, DAVID SECKEL, AND GWTER SIGL 54

V2 contribution to Imf,) is given by a phase-space integral  Although Sawyer’s and our approaches are equivalent in

over the square of the amplitudes shown in Fig. 1. Thes&e low-density limit, they are not equivalent when one con-

terms correspond to the quasibremsstrahlung inelastic scatiders the high-density case. There, a perturbative expansion

tering process, and also diverge as discussed above. salpakes no sense as higher-order terms exceed the lower-order

, . int is that the di in th nes. Howev_er, b_y making use of the sum rule, and exploit-
¥;§smrsL2tp§Lr;;Itsotaalfirgiti CriIe\;‘eurlgt](-:‘nceS n these two types OIfl)’lg the physical insight tha8(w) should have a width of

Sawyer[12] has worked out several examples which il- orderI', [11] and possess a hard bremsstrahlung tail for

. o : o>I",, we have the basis for a reasonable model of the
lustrate this approach. Specifically, the cross-section redu?iigh-density regime
tion represented by his Eq10) is very similar to our Eq. :

29 H Ea(22) h b q To summarize, our derivation is based on representing
(22). However, our Eq(22) has not yet been averaged over interaction rates by virtue of current correlators which allow

initial-state neutrino energies, Sawyer has used bystandgg, 5 girect transition to the classical limit. Therefore, our
nucleons to provide the potential so that his expression fopnnroach allows for an intuitive interpretation of the cross-
the energy transfer takes account of the bystander recoil, angction reduction as a temporal spin-averaging effect. More-
he has studiedn—pe"~ scattering rather thanN—Nv so  gver, because we know, on general grounds, that the sum
that the proton-neutron mass difference appears. Further, hgle [Eq. (6)] must be satisfied, we do not need to worry
has used a scalar potential which is explicitly isospin depenabout a calculation of the various infinite second-order cor-
dent so that the role of our spin fluctuations is played byrections to the elastic scattering rate. In our derivation, the
isospin fluctuations in his case. only required Feynman-graph evaluation is that of the “me-
The main point of agreement is the structure of the terndium excitation term” of Fig. 1. Finally, our derivation al-
in square brackets in Eq22). Both Sawyer's Eq(10) and lows for a clear and physical identification of the dimension-
our Eq.(22) diverge if one considers the first term in squareless parametey, which defines the perturbative expansion.
brackets independently from thel. In our derivation, the Sawyer's technique, on the other hand, represents a more
—1 effectively represents the sum rule of the nonperturbafamiliar methodology if one approaches the problem as a
tive S(w) for which we have substitute§,.{ ) after the Perturbative expansion in powers ¢f
two terms have been combined. In Sawyer’'s approach, the
—1 corresponds to the wave-function renormalization of the IV. ENERGY TRANSFER
elastic scattering rate._Our interpretation of the agreement aq siressed in Ref[10], the most important effect of
between these results is as follows. _ ‘nucleon spin fluctuations may be that they allow for a new
In effect, Sawyer has calculated the perturbative approximode of energy transfer by the quasibremsstrahlung process
mationS®)(w) to second order iV. Recall that the zeroth- shown in Fig. 1. The relevant figure of merit is the average
order approximation isS‘*)(w)=278(w) because Sawyer energy transfer per colliSiofA e )pemsOr
also uses the long-wavelength limit where nucleon recoil ef-
fects are ignored. In this_ limit, any nonvan_ishing power of JZde,e2e 1/ Tof 2 de,e2(ey—£1)S(e1— &)
S®@(w) at w#0 must arise from the quasibremsstrahlung — R >
amplitudes of Fig. 1 so that inevitabl§®)(w) = Syremd ) Jodeisie "1 fodese3S(e1—e2)
for w#0. Sawyer’'s renormalization terms modify only the
elastic channeb=0 so that his complete result amounts to Here, T, is the temperature of the neutrinos which are as-
S(w) =Syremd @) —AS(w) WhereA is an infinite integral sumed to follow a MaxvyeII-BoItzmann dlstrlb_utlon Wh||§ the
expression. Of cours&s®(w) is highly singular and thus nucleons are charactepzed By In Ref. [1Q] this expression
unphysical aw=0 in the sense that in the neighborhood of Was evaluated numerically on the basis of the Lorentzian
w=0 it does not provide a representation of the differentia/@nsatz for the structure function. _
scattering cross sectidieq. (1)]. However,S?(w) is legiti- How<_av_er, in the .dllute-mefmum limit one can also derive
mate as an integral kernel to calculate the total cross sectidif? €xPlicit expression. We first note that in the numerator
[Eq. (4)]. The agreement between Sawyer's and our resulté“?d. denominator one can each perform one integration ex-
shows that the second-order perturbative calculation yieldBlicitly so that
an expression foA such thatS®®)(w) satisfies our sum rule.
In essence, then, Sawyer’s calculation amounts to show- ® o~ -
ing explicitly that the renormalization terms not only cancel f dxSx)xFg(x)(e *—e ")
] . - <A8>brems 0
the low-w divergence ofS,.{ @), but indeed also cancel it =
in such a way thas®)(w) satisfies the sum rule. The renor- T
malization terms are an explicit second-order manifestation
of the information embodied in our sum rule. In our deriva-
tion, we have shown the sum rule to be a general nonpertur- . . 1 1 202 .
bative property oS(w). Therefore, once we have calculated with FB(X).=1+ 2 ﬁxf E.'B X and =TT,
Syrem{ @) We can handle its lowe divergence either by an _ In thS d|Iute-med|um limit we may u'se to Iowest.order
abstract application of the sum rule, or by an explicit ansat2>(X) = Sprem{X) in the numerator, while in the denominator
for the physical behavior of the trU& w) nearw=0. Either = S(x)—2m7d(x) because the medium-induced change of the
way, we do not need to calculate the renormalziation termsross section is itself of ordey,. With the representation
explicitly. Eq. (9), we find

(23)

= (24
f dXSX)F 4(x) (e *+e A%
0
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F 5(X) squared matrix element of neutrino-nucleon scattering in the
(e7*—e Y. (25  presence of bystander nucleons or more general external
spin-dependent potentials. In this form, our result agrees
with Sawyer’'s[12] related finding. The low-density limit is

unigue unless there are unexpectedly strong spin-spin corre-

= dx
<A6>brems: Fofo ES(X) X

For the classical limit of hard collisions wheséx) =1, this
is

lations.
—7+6B+B%+12InB While we have focused on neutral-current processes,
(A€)brems=1'» > hm : (26)  similar conclusions would obtain for charged-current colli-

sions as stressed in Ref9,12].
This is to be compared with the average energy transfer The explicit low-density results are theoretically interest-

by nucleon recoils,{A €)ecoi= 30 (B—1)B~2T?/my [18]. ing, but their practical significance is limited. It is obvious
Therefore, the ratio between the two is from Fig. 4 that a plausible extrapolation into the high-
density regime vastly differs from the perturbative result for

(A€)prems oMy, —7+68+B2+12In8 v»=1,/T=1 which implies that the perturbative result can-
<A6>recoiI: T2 720m(B—1) not be trusted for densities greater than a few percent

nuclear. WhileI', opg Overestimates the trug, at nuclear
Iemy( 1 7(8-1) density, in an SN core one has values for the tyy@f order
TZ | 367 T 144n ) @) a few, perhaps as large as [1®,11]. Therefore, the neutrino
opacities in the inner SN core cannot be treated by perturba-
Therefore, the importance of the “inelastic” mode of energy tion theory alone. Near the neutrino sphere, corresponding to
transfer exceeds that of recoilsy,>367T/my. v,~1, a perturbative treatment is roughly justified, but the
We note that the quasibremsstrahlung process of Fig. &ross-section reduction is smé few percentand thus not
has a standard counterpart where neutrino pairs are absorbggerly significant.
or emitted. We define a rate of energy transfer in this chan- Near the neutrino sphere, the most important practical
nel, normalized to the average neutrino scattering rate igonsequence of nucleon spin fluctuations is likely to be the
analogy to the above discussion. By virtue of R@f, the  inelastic or quasibremsstrahlung mode of energy transfer.
result can be expressed such as EB5) with Fz(X)  With Eq. (27) and takingT=5 MeV as a typical neutrino-
= 3°x°/1440. The efficiency of energy transfer relative to sphere temperature, it is found to compete with standard re-
recoil effects is coils for y,=0.5. As this value is representative for condi-
5 tions around the neutrino sphere, we confirm that the
(A €)pair _ omy ,(B7+1)(B+1) (28) inelastic mode of energy transfer is about as efficient as re-
(A€)recol T? 3600m ' coils and thus may be important for the formation of neutrino

; . . spectrg 10].
Therefore, the quasibremsstrahlung process of Fig. 1 is ap-

proximately a factor of 25 more important than pair pro- ACKNOWLEDGMENTS
cesses.
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