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Inner structure of an evaporating charged black hole with ingoing charged null fluid
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We consider a charged black hole irradiated by a charged null fluid with negative energy density. As a
consequence of this influx, the black hole’s mass and charge shrink to zero after some finite retarded time. This
model was previously proposed as a toy model for an evaporating charged black hole. Here we modify the
model by changing one of the assumptions made concerning the orbits of the null fluid. This leads to a very
different internal structure of the black ho[&0556-282(196)03116-5

PACS numbes): 04.70.Dy

[. INTRODUCTION portant respect: In the Reissner-Nordsirdlack hole, the
singularities are timelike, and there is a “tunnel” leading to
It is widely believed today that asymptotically flat black other asymptotically flat universes. In the above model of an
holes eventually evaporate due to the emission of Hawkingvaporating charged black hole, the “tunnel” is sealed by a
radiation [1]. In spite of much effort, however, little is null singularity (see Fig. 1"
known about the back reaction effects of the quantum out- One of the basic assumptions in Kaminaga’'s model is that
flux. Of special interest is the following question: In what the ingoing charged particles go straight on radial ingoing
way does the evaporation process affect the inner structure &till geodesics, all the way up to the central singularity at
the black hole? r=0. This assumption, however, is not so obvious: The self-
As is usual in the investigation of black holes’ interiors, consistent equation of motion for a charged null flaih a
we shall consider here a charged black hole, and regard it d&%ckground with a nonvanishing electric figliust include
a toy model for a realistic, spinning black hole. The inner& Lorentz-force terni5]. When this term is taken into ac-
structure of a charged black hole is very similar to that ofcount, the solutions describing radial orbits will typically
Kerr, which suggests that it could serve as a useful toyrave a branching point at some critical radiys Beyond
model. this critical point, there exist two possible continuations of
It has been suggested by Kaming@a that the evapora- the orbit(both are consistent with the equation of mojion
tion processor, more particularly, the internal aspects of this (A) the simple continuation, according to which the massless
process may be modeled by a flux of null fluid that flows particles continue along the sarimgoing radial null direc-
into the black hole(A null fluid can be thought of as a tion, and @) the nontrivial continuation, according to which
stream of massless particles that flows along null opbits.the particles switch to th@utgoing radial null direction.
This null fluid carries negative-energy density, so it causegrom a naive point of view, possibilit looks like the more
the event horizon’s argand the black hole’s mast shrink  natural one. In Refl5], however, a stability analysis is car-
to zero.(The negativity of the energy influx follows from ried out, with respect to small deviations from the strict ra-
simple energy-conservation considerations, as the Hawkingial direction of motion(and also with respect to the pres-
radiation carries away positive energy to the external unience of an arbitrarily small nonvanishing rest mass the
verse) Also, in order to model the complete evaporation of perturbed orbits, no branching points exist, and it is therefore
the charged black hole, we must assume that the null fluid igossible to study the limit of vanishing perturbations without
charged toqotherwise the black hole will not be able to get any ambiguity. This analysis gives a very definitive result: In
rid of its electric charge[3]. Motivated by these consider- the limit in which the small perturbations are taken to vanish,
ations, Kaminag#2] considered the following simple model: one obtains continuatioB uniquely. This analysis, there-
Initially, we have a Reissner-Nordstroblack hole. Then, at fore, signifies continuatioB as the more physical one.
some particular retarded moment, a spherically symmetric In this paper, we modify Kaminaga’'s model by consider-
flux of charged null fluid starts flowing into the black hole ing continuatiorB (instead ofA). That is, we assume that at
along ingoing radial null orbits. Consequently, the black holethe critical radius, the particles switch to outgoing null orbits.
shrinks(“evaporates’), until the mass and charge vanish at Since the null fluid is self-gravitating, this change in the flow
some finite retarded time. This model is described by ampattern results in a modification of the spacetime geometry.
exact solution of the Maxwell-Einstein equations—the so-As we shall show below, this leads to a very different causal
called charged Vaidya solutidd]. Kaminaga then used this structure. In particular, there is no null singularithe only
model as a background geometry, in an attempt to study theingularity is timelik¢, and the Reissner-Nordstrotunnel,
guantum-field effect{Hawking radiation on a dynamical leading to other asymptotically flat universes, remains open.
(classical background corresponding to an evaporating
black hole.
The inner structure of the evaporating black hole in the in Ref. [2] Kaminaga introduced a cutoff just before the null
above model differs from that of the nonevaporating chargedurvature singularity. In our discussion here we refer to the causal
black hole(the Reissner-Nordstno geometry in a very im-  structure corresponding to the full geometry, without the cutoff.
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D

Assume now that at a certain retarded momesntv, a
charged null fluid of negative-energy-density starts falling
into the black hole(corresponding to the beginning of the
evaporation procegs This situation is described by the
charged Vaidya solutiopd], a generalization of the line ele-
ment (3), in which the mass and charged are allowed to
depend orv:

2M 2
ds?=2dvdr—| 1— r(v)+Qr(zv) dv2+r2d02. (4)

Leta=Mg/Qg, and assuma>1 (otherwise there would be
no black holg. Following Ref.[2], we takeM and Q to
depend linearly o, and we also assume that the mass to
charge ratio remains fixed during the evaporation process:

<

M(v)=Mq—u(v—vo),

Q(v)=Qo~ u(v—vo)/a=M(v)/a,

whereyu is a constant parameter. This simplifies the analysis,

as it makes the geometry self-similgs,7]. The parameter

M represents the evaporation rate, and we assume

FIG. 1. The global structure of the spacetime corresponding t&<<u<1. (In realistic evaporation scenarios, this is indeed

extensionA. The broken line is the event horizon, and the dottedthe case as long as the black hole’s mass is very large com-
line is the apparent horizon. The outgoing lines with arrows outsidepared to the Planck magds for the parametea, in addi-
the black hole represent the Hawking radiation emitted to the extion to the demand>1, we assume that is of order unity,
ternal universe. The ingoing lines with arrows represent the orbitdut not too close to 1.

of the ingoing null fluid. For convenience, we shall transformto a new null co-
ordinate:
We emphasize that no attempt is made here to analyze the
true self-consistent geometry of a realistic black hole that v'=v—vg—My/pu.

evaporates due to the Hawking effect. Rather, our goal here _
is to explore the causal structure corresponding to some pat? this new coordinate we havd =u'v’ andQ=u'v'/a,
ticular toy model, the Kaminaga’s model, if one replaceswheren’=— . The line element is now given explicitly by
continuationA by continuationB (which we regard as the 2wy’ 2 2

i i i i i - MU MU
more physical one The investigation of the true inner struc d<2=2drdv’ —| 1— do'2+r2dQ2.

ture of a realistic evaporating black hole will probably await r a’r?
the formulation of the self-consistent theory of quantum %)
gravity.

In Sec. Il we construct the metric of the spacetime corre- N the charged Vaidya solution the local energy density of
sponding to continuatioB. Then, in Sec. Ill, we analyze its the null fluid is proportional top=(4mr?)~*(M—QQ/r),

causal structure. where a dot denote#dv’ [8,5]. At eachv’, there is a criti-
calr value,r.=QQ/M, where the local energy density van-
Il. THE LINE ELEMENT ishes. In our case,
The spacetime of a charged black hole is described by the rd(v)=M(v')la?=pu'v'la’.
Reissner-Nordsfrm geometry. In Schwarzschild coordi-
nates, it takes the form This line is located well inside the black hole. The massless
particles are presumably falling into the black hole, at
ds?’=—F(r)dt?®+F(r) " tdr?+r2dQ? (1) r>r., along ingoing radial null orbits. However, for radial
orbits the equation of motion has a branching point at
where r=r., and there are two possible continuations of the orbits
beyond that point: continuatiof, the orbits continue along
. 2Mg QG the same ingoing null direction; continuatid® the orbits
Fn=1- - Tz @ switch to theoutgoingnull direction. As was discussed in the

previous section, we regard continuati@ as the more
anddQ2=d @2+ sir?(8)d¢2. Here,M, andQ, are the mass physical one.(The reasons are explained in detail in Ref.
and the charge of the black hole, respectively. Using an inf5].)
going Eddington coordinate, the line element becomes Since the null fluid is self-gravitating, the two different
continuations of the null fluid’s worldlines naturally lead to
ds?=—F(r)dv?+2dvdr+r2dQ?2. (3)  two different extensions of the geometry beyandr, to
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The matching of the ingoing charged Vaidya solution to
the piece of outgoing charged Vaidya solution throdgh

was analyzed in Ref5]. Assuming aC* matching, one finds
thatr, M, andQ are all continuous at. That is,

M(v" )=M(u(v')), Q(v")=Q(u(v")), 8

and the matching is uniquely determined by the function
u(v') that relatesu to v’ at3. This function is obtained by
comparing the proper distance alongr., as measured in
both sides off.. One finds that

duv’) 1 2dr, .
Yo dv’  F(',r)| dv’ (w'r)

1 2un

= 21
1-a2 a—1 a2)<0' 9

Therefore, we can take(v') to be

2pu—a*(a®-1)] |

az(a—z—l) v . (10)

FIG. 2. This figure shows the transition from the ingoing Thijs specific choice of the constant for the integration of Eq.

charged Vaidya solution to the outgoing charged Vaidya solution(g) is convenient, because it assigns the valse0 to the
and the causal structure of the latter. The null fluid’s orbits in bOthspeCiaI point ¢’ =0,r=0) (the pointP in Fig. 2. Note that

regions are denoted by arrows. The matching hypersufaisethe in the region of interestl is positive, because both and

horizontal line denotedy.. The point P corresponds tar =0, . .
: . the term in brackets are negative. From E).we now ob-
v’'=0, andu=0 (and alson=0 andW=0). The vertical singular 9

line denotes the curvature singularityrat 0, u=0. The dotted line tain
is the spacelike hypersurfage=y,, the “inner apparent horizon.” _—
The broken line is the null hypersurfage=y . , the Cauchy hori- M(u.r)=pu, (1D
zon. The part of the diagram corresponding to the futurg.afan Where
also be viewed as built of two patches wf w coordinates in the
two side of y,. These two patches are matched at 2,2
w=0 (y=y.). — _a@-l >0 (12)
T a2(22_1\_o,, :
k=3 (ac—1)— 2,u,’u

which we shall refer as extensios and B, respectively. _ _ _
The causal structure corresponding to extensiavas inves- ~ Note that in the casp <1, which we assume, we also find
tigate by Kaminag42]. The corresponding Penrose diagram _

is shown in Fig. 1. In this diagram, a nul=0 singularity pu=p<l. (13
forms atv’ =0. This null singularity then intersects the time-
like r=0 singularity and completely seals the “tunnel.” Il. THE CAUSAL STRUCTURE

In what follows we investigate the causal structure corre- ) .
sponding to extensioB. We denote the hypersurface=r Equations(6), (7), (11), and (12) completely satisfy the

by 3. From the line elemer(s) it follows thats is spacelike ~Metric at the future of. (i.e., r<rc). In what follows we

as long asu<(a?—1)a2/2. We shall assume that this in- shall analyze the causal s_strl_Jcture of this region. To t_hat end,
equality indeed holdsit is consistent with our assumptions W& shall use methods similar to those developed in Refs.
about . and a), and hence, is spacelike. Since at this [6,7]. ) , L
hypersurface the null fluid switches from ingoing to outgoing FOF 0utgoing (i=const) radial null geodesics in the ge-
null orbits, to the future of. there will be a piece obutgo-  °Metry (6), the geodesic equation reads

ing charged Vaidya solutiofisee Fig. 2 The line element
has the same form as that of the ingoing charged Vaidya
solution, except that now’ is replaced by (u is an out-
going null coordinate

2

A

o

r

=0,

o
N

where\ is the affine parametdmhich we choose so as to
ds?=2drdu—F(u,r)du®+r2dQ? (6) increase in the future directipriThereforey is a linear func-

where
5 2The demand for a continuous matching3atyields a quadratic
F(ur)=1- 2M(u) Q (2U) _ @) equation, one of whose roots corresponds to(Eq.The other root
' r r leads to extensioA, and will not concern us here.
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tion of \. In particularr must decrease monotonougiy the  time (y>y.). On the other hand, the hypersurfagey .

future direction along the linesu=const® does exist in our spacetime, becayse>y.. This line is a
We introduce a new variablg=u/r. Note thaty>0, be-  null hypersurface.

cause botlu andr are positive. From the above discussion it As was mentioned above, along the lines const-0, r

is obvious thaty increases monotonously along the linesis decreasingand, correspondingly; is increasing monoto-

u=const. Therefore, the piece of spacetime which concernsously. Therefore, all these lines will inevitably terminate, in

us here(the one covered by the outgoing charged Vaidyathe future, at a curvature singularity it 0, after finite af-

solution is the regiony>y., where fine time. This singularity, which correspondsyte» + o, is
b — located to the future of the null hypersurfagey, . In or-
ye=ulrc=a/u>0. der to uncover the causal structure, we shall construct an

ingoing null coordinatew, and transform the line eleme(®)

The functionF can be written as to double-null coordinatesu(w):

2,2 o _ 2 2
F(y)=MaZ —ouy+1, (14) ds’=g,,dudw+r2dQ?. (19
We shall further demand that the functiarfu,r) will be of
and the roots ofF =0 are the form
a2 aa’-1 a2 ava’i—-1 w(u,r)=uh(u/r), (20
Vi=—Ft ——, Yop=—— ——.
' M M ? M M whereh is a function ofy=u/r only. To constructw, we

) ) o ) start from the requirement that will be null, i.e.,g""¥=0:
Sincey,<y.<y., the liney=y, exists in our spacetime, but

not the liney=y,. The hypersurfacg=Yy, is spacelike. This 0:g""""=g”wyerrZQU’wyuw'r ,
follows from the line element(6), as F=0 and S
du/dr=y,>0. This hypersurface is the “inner apparent ho- which implies
rizon.”

The orbits of ingoing ¢ = const) radial null geodesics in
the geometry(6) are described by the equation

F(y)w,+2w ,=0 (21

(note that in the original coordinatas and r, the inverse

dr metric functions areg’"=F, g'"=1, g"'=0). Substituting

o= LF(ulr). (15 now Eq.(20) in Eqg. (21), one obtains the following differ-
ential equation foh:

Of special importance are solutions of E@5) of the form dh
u=yr, with constanty. For this special kind of solution, Eq. —=K(y)h, (22

(15) reduces to the algebraic equation dy
F(y)—2/y=0. (16 Where
This yields the following cubic equation for: K(y)= %[F(y)—Z/y]‘l. (23)
R y
7 —2uy’+y-2=0. (17)  For any solutionh(y) of this equationw(u,r) defined by

a Eq. (20) will satisfy the requirement of being nulli.e.,

It is easy to see that, for sufficiently smal, this cubic 9" =0). Since Eq(22) is linear and homogeneous, we can

equation has three different real roots; and from @§) we  Mmmediately write down its general solution:
see that this is indeed the case. To the leading order in the

small parametep <1, the three roots are h(y)=hoexi G(y)], (24
where
a’® aya’-1
Yo=2, Yy.=—Ft——. (18 ,
weoow 6= kyay. (29
i

Since 0<u<1, we havey.=a%/ u>1. It is then obvious

thaty, andy_ are smaller thary,, and therefore, the lines h, andy; being arbitrary constanfs.

y=Yyo andy=y_ do not exist in the relevant piece of space- Itis not difficult to calculate the integr&R5) and to get an
explicit expression foh(y), see the Appendix. For our pur-
poses, however, it is sufficient to look at the behavior of

3That this function must be decreasifigither than increasing

follows from the fact that decreases along geodesics const that

approact®, from the past[Recall also thati) the matching a®, is 4Although Eq.(22) only has a one-parameter family of solutions,

C!, and(ii) in the neighborhood of the spacelike hypersurfage we prefer here to keep both parametéxgandy; , for later conve-

Vr is timelike] nience.
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K(y), and to deduce the featurestofrom it. From Eq.(23)

it is obvious that the only possible singularitieskofare the
three roots of Eq(16), i.e.,y, , y_, andy=y,. However, in
the region of interesty(>y.) we have only one of these
roots, namelyy, . The divergence oK aty=y, forces us
to treat the two regiong>y, andy<y. separately. In par-
ticular, we shall have to analyze the behavior lofat
y=y. (and to check that it does not diverge there

We shall now analyze the causal structure of the region

y>y,, using the coordinatesu(w). To that end, we shall
choosey;>y, and hy=1. The regularity of K(y) at
y>y. implies the regularity oG andh aty , <y< . Also,
since K has no roots iny, <y<o, it is positive definite
throughout this rangd.The sign ofK in that range can be
easily obtained from its asymptotic behavioryat: + 0, see
Eq. (29) below] Now, a straightforward calculation yields
g"=g""w,=—y?dh/dy= —y?Kh. (26)

Thus, g"V is smooth and nonvanishing &t <y<, and
consequently, the line elemefit9) is well defined and regu-
lar throughout that range.

We shall also need the asymptotic behaviohdadit both
limits, y—y, andy— +®. To that end, it is sufficient to
consider the behavior d at both limits.

(i) The limity—y, . Itis straightforward to show that the
asymptotic behavior oK at this limit is

K=Ko(y—y+) 4+ 0[(y—y:)°]

whereKg is a positive constant,

(y_>y+)! (27)

B 2a?

Ko= .
Y (YY) (YY)

(In the limit ©<1 one finds

Ko=[aya’~1(a+ya*~1)*] *p,
s0 0<Ky<1.) CorrespondinglyG— —, andh vanishes:

hoc(y—y_ )Xo (28)

Thus, the liney=y_ corresponds tev=0 (with w>0 at
y>y<).
(ii) The limit y—oo. Here the asymptotic behavior is
2a?

szi;y‘4+cxy_5) (y—+), (29)

soG is finite, andh approaches a finite limh,,>0. We find
that in (u,w) coordinates the singularity at=0 (y= +)
is located at the linev=h,u. This line istimelike because
h,.>0 (andg,,<0).

In a similar way, we can use the coordinatesw) to
analyze the regioy.<y<y. . Now we take the constant
y; to lie inside the ranggy.,y. ], andhy,=—1. Again, the
important point is thaK has no singularities and no roots
inside the relevant rang&ecall that bothy, andy_ are
smaller thany.). Therefore the line elemeriL9) is regular
throughout this range. Also, one finds thatvanishes ay ,
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FIG. 3. The global structure of the spacetime corresponding to
extensiorB. As in Fig. 1: The broken line is the event horizon. The
dotted lines are the outer and inner apparent horizons. The outgoing
lines with arrows outside the black hole represent the Hawking
radiation emitted to the external universe. The ingoing lines with
arrows that change to outgoing linesyaty,, represent the orbits
of the null fluid.

and is negative ay<y,. This means that the null line
y=y, corresponds tov=0 (with w<0 aty<y,).

The two patchesy>y, andy<y,, match together at
the hypersurfacev=0. At this hypersurface, however, the
metric (19) becomes singular, as

Guw|y—y [t
[cf. Egs.(26)—(28)], so detfy)=0. This is obviously a coor-
dinate singularity, because in the original coordinates X
the metric is manifestly regular 3t=y. . This singularity
may be removed by transforming into a new null coordi-
nateW(w), defined by

W:Ci|w|a1

where a=1/Ky>0, and c. stands for two constants:
c,>0 fory>y, andc_<0 fory<y, . The line element in
the new double-null coordinatesl,(W) can be shown to be
regular in the entire range covered by the outgoing charged
Vaidya solution, i.e.y . <y<. Figure 2 displays the causal
structure of this range.

The overall causal structure of the spacetime correspond-
ing to extensionB is displayed in Fig. 3. The differences

SFor simplicity, in Figs. 2 and 3 the=0 singularity and the other
linesy=const are displayed as straight lines. These lines are indeed
straight as long as the coordinatesw) are used. After we trans-
form to the regular double-null coordinates,{V), however, these
lines are no longer straight.
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between the two extensions is remarkable: In extengipn 10°
there is a nullr=0 singularity which intersects the “left- 3
hand” timelike r=0 Reissner-Nordsira singularity, and

blocks the tunne(see Fig. 1 In extensiorB, the singularity a}

is timelike, and the “Reissner-Nordstrom tunnel” remains
open and traversablgig. 3.
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APPENDIX

. . . - . Yaa 7245 745 7455 746 7465 747
In this appendix we shall give an explicit expression for v

h(y) and analyze its asymptotic behavior at the limits
y—y, andy— +oo, )
The functionK (y) is just 24 divided by the left side of ~ FIG. 4. The functionK(y) neary=y, . The values of(y)

Eq. (17). Therefore, we can rewrit(y) as were calculated for the parameters-2 andw=0.01, which yield
’ =0.010 016 6.
2
K(y)= Ely)y>—2y These constants satisfy the equations
_ 2a? D(-y.Yoy )=2au"?
LYY =Y )(Y=Yo) (y—Y-)
A+B+C+D=0,
A B C D
= + +—, (A1)
Y=Y+ Y=Yo YTY- Y (Y++Yoty-)D+A(yot+y-)
where +B(y++ty-)+C(yo+y+)=0,

A=2a%u 2y Yy —Yo) My, —yo) 7Y
AR (Y+YotYoy-+Y+y-)D+Yoy A+y,y_B+y,y,C=0.
B=2a%1" %y, '(Yo—y+) Hyo—y-) L , _ o
The functionK(y) is drawn in Fig. 4.

C=2a%u 2y-Ny_—yo) My_--y.) % K(y) diverges aty=y+. Therefore, we must treat the
o regionsy>y, andy<y, separately. Then the value bfat
D=-2a%u" 2(y,yoy-) L y=vy, is given by Eqs(24) and(25):

h(y)=hoexp{In[y®(y =y )A(y—yo)2(y—y ) IR}

A B C
=hoexp{ln yA+B+C+D<1—y—+> (1—&) (1_y__>

y y y
Using the equalityA+B+ C+D=0 mentioned above, we ofh aty=y. is zero no matter whichy we choose, because
get a finite value foh.,=h(y=x): A>0.
We move our attention now to the regign=y=y.. By
integrating K(y) from y=y; (y,>y;>y.) to y=y, we
h. =hoy; P(yi—y.) A(yi—yo) B(yi—y_)"C. (A3) find thatG(y.) is — (no matter which integration constant
we choose, see Fig.) Athereforeh is zero aty=y, , the
same result that we got from the other region. We found that
Special choosing olfiy will give h(e)=1 which will corre- h is continued aty=y, and has a finite valud,, at the
spond to Fig. 2. It is very clear from E¢A2) that the value singularity, which is given by EqA3).

y
] | (A2)
Y




2752 ORIT LEVIN AND AMOS ORI 54

[1] S. W. Hawking, Commun. Math. Phy43, 199(1975. Maxwell-Einstein field equations occurs.
[2] Y. Kaminaga, Class. Quantum Grag;. 1135(1990. [4] W. B. Bonnor and P. C. Vaidya, Gen. Relativ. Grawit.127
[3] From the field-theory point of view, one may worry about the (1970.

consistency of a massless field with electric charge. Still, this [5] A, Ori, Class. Quantum Gra®, 1559(1997).

model may be useful as an approximation for a massive [g] A. Ori and T. Piran, Phys. Rev. B2, 1068(1990.

charged field in the ultrarelativistic limit. In any event, we only  [7] K. Lake and T. Zannias, Phys. Rev.43, 1798(1991).

use this formalism as ®y model At least in the spherically  [g] B, T. Sullivan and W. Israel, Phys. Le@7A, 371(1980.
symmetric model studied here, no inconsistency of the



