
PHYSICAL REVIEW D 15 AUGUST 1996VOLUME 54, NUMBER 4

0556
Inner structure of an evaporating charged black hole with ingoing charged null fluid

Orit Levin and Amos Ori
Department of Physics, Technion–Israel Institute of Technology, 32000 Haifa, Israel

~Received 1 April 1996!

We consider a charged black hole irradiated by a charged null fluid with negative energy density. As a
consequence of this influx, the black hole’s mass and charge shrink to zero after some finite retarded time. This
model was previously proposed as a toy model for an evaporating charged black hole. Here we modify the
model by changing one of the assumptions made concerning the orbits of the null fluid. This leads to a very
different internal structure of the black hole.@S0556-2821~96!03116-5#

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

It is widely believed today that asymptotically flat blac
holes eventually evaporate due to the emission of Hawk
radiation @1#. In spite of much effort, however, little is
known about the back reaction effects of the quantum o
flux. Of special interest is the following question: In wh
way does the evaporation process affect the inner structur
the black hole?

As is usual in the investigation of black holes’ interior
we shall consider here a charged black hole, and regard
a toy model for a realistic, spinning black hole. The inn
structure of a charged black hole is very similar to that
Kerr, which suggests that it could serve as a useful
model.

It has been suggested by Kaminaga@2# that the evapora-
tion process~or, more particularly, the internal aspects of th
process! may be modeled by a flux of null fluid that flow
into the black hole.~A null fluid can be thought of as a
stream of massless particles that flows along null orbi!
This null fluid carries negative-energy density, so it cau
the event horizon’s area~and the black hole’s mass! to shrink
to zero. ~The negativity of the energy influx follows from
simple energy-conservation considerations, as the Hawk
radiation carries away positive energy to the external u
verse.! Also, in order to model the complete evaporation
the charged black hole, we must assume that the null flui
charged too~otherwise the black hole will not be able to g
rid of its electric charge! @3#. Motivated by these consider
ations, Kaminaga@2# considered the following simple mode
Initially, we have a Reissner-Nordstro¨m black hole. Then, at
some particular retarded moment, a spherically symme
flux of charged null fluid starts flowing into the black ho
along ingoing radial null orbits. Consequently, the black ho
shrinks~‘‘evaporates’’!, until the mass and charge vanish
some finite retarded time. This model is described by
exact solution of the Maxwell-Einstein equations—the s
called charged Vaidya solution@4#. Kaminaga then used this
model as a background geometry, in an attempt to study
quantum-field effects~Hawking radiation! on a dynamical
~classical! background corresponding to an evaporati
black hole.

The inner structure of the evaporating black hole in t
above model differs from that of the nonevaporating charg
black hole~the Reissner-Nordstro¨m geometry! in a very im-
54-2821/96/54~4!/2746~7!/$10.00
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portant respect: In the Reissner-Nordstro¨m black hole, the
singularities are timelike, and there is a ‘‘tunnel’’ leading to
other asymptotically flat universes. In the above model of a
evaporating charged black hole, the ‘‘tunnel’’ is sealed by
null singularity ~see Fig. 1!.1

One of the basic assumptions in Kaminaga’s model is tha
the ingoing charged particles go straight on radial ingoin
null geodesics, all the way up to the central singularity a
r50. This assumption, however, is not so obvious: The sel
consistent equation of motion for a charged null fluid~on a
background with a nonvanishing electric field! must include
a Lorentz-force term@5#. When this term is taken into ac-
count, the solutions describing radial orbits will typically
have a branching point at some critical radiusr c . Beyond
this critical point, there exist two possible continuations o
the orbit ~both are consistent with the equation of motion!:
(A) the simple continuation, according to which the massles
particles continue along the sameingoing radial null direc-
tion, and (B) the nontrivial continuation, according to which
the particles switch to theoutgoing radial null direction.
From a naive point of view, possibilityA looks like the more
natural one. In Ref.@5#, however, a stability analysis is car-
ried out, with respect to small deviations from the strict ra
dial direction of motion~and also with respect to the pres-
ence of an arbitrarily small nonvanishing rest mass!. In the
perturbed orbits, no branching points exist, and it is therefor
possible to study the limit of vanishing perturbations withou
any ambiguity. This analysis gives a very definitive result: In
the limit in which the small perturbations are taken to vanish
one obtains continuationB uniquely. This analysis, there-
fore, signifies continuationB as the more physical one.

In this paper, we modify Kaminaga’s model by consider
ing continuationB ~instead ofA). That is, we assume that at
the critical radius, the particles switch to outgoing null orbits
Since the null fluid is self-gravitating, this change in the flow
pattern results in a modification of the spacetime geometr
As we shall show below, this leads to a very different causa
structure. In particular, there is no null singularity~the only
singularity is timelike!, and the Reissner-Nordstro¨m tunnel,
leading to other asymptotically flat universes, remains ope

1In Ref. @2# Kaminaga introduced a cutoff just before the null
curvature singularity. In our discussion here we refer to the caus
structure corresponding to the full geometry, without the cutoff.
2746 © 1996 The American Physical Society
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54 2747INNER STRUCTURE OF AN EVAPORATING CHARGED . . .
We emphasize that no attempt is made here to analyze
true self-consistent geometry of a realistic black hole th
evaporates due to the Hawking effect. Rather, our goal he
is to explore the causal structure corresponding to some p
ticular toy model, the Kaminaga’s model, if one replace
continuationA by continuationB ~which we regard as the
more physical one!. The investigation of the true inner struc-
ture of a realistic evaporating black hole will probably awa
the formulation of the self-consistent theory of quantum
gravity.

In Sec. II we construct the metric of the spacetime corr
sponding to continuationB. Then, in Sec. III, we analyze its
causal structure.

II. THE LINE ELEMENT

The spacetime of a charged black hole is described by
Reissner-Nordstro¨m geometry. In Schwarzschild coordi-
nates, it takes the form

ds252F~r !dt21F~r !21dr21r 2dV2, ~1!

where

F~r ![12
2M0

r
1
Q0
2

r 2
, ~2!

anddV25du21sin2(u)df2. Here,M0 andQ0 are the mass
and the charge of the black hole, respectively. Using an
going Eddington coordinate, the line element becomes

ds252F~r !dv212dvdr1r 2dV2. ~3!

FIG. 1. The global structure of the spacetime corresponding
extensionA. The broken line is the event horizon, and the dotte
line is the apparent horizon. The outgoing lines with arrows outsi
the black hole represent the Hawking radiation emitted to the e
ternal universe. The ingoing lines with arrows represent the orb
of the ingoing null fluid.
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Assume now that at a certain retarded momentv5v0 a
charged null fluid of negative-energy-density starts falling
into the black hole~corresponding to the beginning of the
evaporation process!. This situation is described by the
charged Vaidya solution@4#, a generalization of the line ele-
ment ~3!, in which the mass and charged are allowed to
depend onv:

ds252dvdr2S 12
2M ~v !

r
1
Q2~v !

r 2 Ddv21r 2dV2. ~4!

Let a[M0 /Q0, and assumea.1 ~otherwise there would be
no black hole!. Following Ref. @2#, we takeM and Q to
depend linearly onv, and we also assume that the mass to
charge ratio remains fixed during the evaporation process:

M ~v !5M02m~v2v0!,

Q~v !5Q02m~v2v0!/a5M ~v !/a,

wherem is a constant parameter. This simplifies the analysis,
as it makes the geometry self-similar@6,7#. The parameter
m represents the evaporation rate, and we assume
0,m!1. ~In realistic evaporation scenarios, this is indeed
the case as long as the black hole’s mass is very large com
pared to the Planck mass.! As for the parametera, in addi-
tion to the demanda.1, we assume thata is of order unity,
but not too close to 1.

For convenience, we shall transformv to a new null co-
ordinate:

v8[v2v02M0 /m.

In this new coordinate we haveM5m8v8 andQ5m8v8/a,
wherem8[2m. The line element is now given explicitly by

ds252drdv82S 12
2m8v8

r
1

m82v82

a2r 2 Ddv821r 2dV2.

~5!

In the charged Vaidya solution the local energy density of
the null fluid is proportional tor[(4pr 2)21(Ṁ2Q̇Q/r ),
where a dot denotes]/]v8 @8,5#. At eachv8, there is a criti-
cal r value,r c5QQ̇/Ṁ , where the local energy density van-
ishes. In our case,

r c~v8!5M ~v8!/a25m8v8/a2.

This line is located well inside the black hole. The massless
particles are presumably falling into the black hole, at
r.r c , along ingoing radial null orbits. However, for radial
orbits the equation of motion has a branching point at
r5r c , and there are two possible continuations of the orbits
beyond that point: continuationA, the orbits continue along
the same ingoing null direction; continuationB, the orbits
switch to theoutgoingnull direction. As was discussed in the
previous section, we regard continuationB as the more
physical one.~The reasons are explained in detail in Ref.
@5#.!

Since the null fluid is self-gravitating, the two different
continuations of the null fluid’s worldlines naturally lead to
two different extensions of the geometry beyondr5r c , to
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which we shall refer as extensionsA and B, respectively.
The causal structure corresponding to extensionA was inves-
tigate by Kaminaga@2#. The corresponding Penrose diagra
is shown in Fig. 1. In this diagram, a nullr50 singularity
forms atv850. This null singularity then intersects the time
like r50 singularity and completely seals the ‘‘tunnel.’’

In what follows we investigate the causal structure cor
sponding to extensionB. We denote the hypersurfacer5r c
by S. From the line element~5! it follows thatS is spacelike
as long asm,(a221)a2/2. We shall assume that this in
equality indeed holds~it is consistent with our assumption
about m and a), and henceS is spacelike. Since at this
hypersurface the null fluid switches from ingoing to outgoi
null orbits, to the future ofS there will be a piece ofoutgo-
ing charged Vaidya solution~see Fig. 2!. The line element
has the same form as that of the ingoing charged Vai
solution, except that nowv8 is replaced byu (u is an out-
going null coordinate!:

ds252drdu2F~u,r !du21r 2dV2, ~6!

where

F~u,r !512
2M ~u!

r
1
Q2~u!

r 2
. ~7!

FIG. 2. This figure shows the transition from the ingoin
charged Vaidya solution to the outgoing charged Vaidya soluti
and the causal structure of the latter. The null fluid’s orbits in bo
regions are denoted by arrows. The matching hypersurfaceS is the
horizontal line denotedyc . The point P corresponds tor50,
v850, andu50 ~and alsow50 andW50). The vertical singular
line denotes the curvature singularity atr50, u>0. The dotted line
is the spacelike hypersurfacey5y1, the ‘‘inner apparent horizon.’’
The broken line is the null hypersurfacey5y1 , the Cauchy hori-
zon. The part of the diagram corresponding to the future ofyc can
also be viewed as built of two patches ofu2w coordinates in the
two side of y1 . These two patches are matched
w50 (y5y1).
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The matching of the ingoing charged Vaidya solution to
the piece of outgoing charged Vaidya solution throughS
was analyzed in Ref.@5#. Assuming aC1 matching, one finds
that r , M , andQ are all continuous atS. That is,

M ~v8!5M „u~v8!…, Q~v8!5Q„u~v8!…, ~8!

and the matching is uniquely determined by the function
u(v8) that relatesu to v8 at S. This function is obtained by
comparing the proper distance alongr5r c , as measured in
both sides ofS. One finds that2

du~v8!

dv8
5

1

F~v8,r ! S 2drcdv8
2F~v8,r ! D

5
1

12a2 S a2212
2m

a2 D,0. ~9!

Therefore, we can takeu(v8) to be

u5F2m2a2~a221!

a2~a221! Gv8. ~10!

This specific choice of the constant for the integration of Eq.
~9! is convenient, because it assigns the valueu50 to the
special point (v850,r50) ~the pointP in Fig. 2!. Note that
in the region of interestu is positive, because bothv8 and
the term in brackets are negative. From Eq.~8! we now ob-
tain

M ~u,r !5m̄u, ~11!

where

m̄5
a2~a221!

a2~a221!22m
m.0. ~12!

Note that in the casem!1, which we assume, we also find

m̄>m!1. ~13!

III. THE CAUSAL STRUCTURE

Equations~6!, ~7!, ~11!, and ~12! completely satisfy the
metric at the future ofS ~i.e., r,r c). In what follows we
shall analyze the causal structure of this region. To that end
we shall use methods similar to those developed in Refs
@6,7#.

For outgoing (u5const) radial null geodesics in the ge-
ometry ~6!, the geodesic equation reads

d2r

dl2 50,

wherel is the affine parameter~which we choose so as to
increase in the future direction!. Therefore,r is a linear func-

2The demand for a continuous matching atS yields a quadratic
equation, one of whose roots corresponds to Eq.~9!. The other root
leads to extensionA, and will not concern us here.
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tion of l. In particular,r must decrease monotonously~in the
future direction! along the linesu5const.3

We introduce a new variabley[u/r . Note thaty.0, be-
cause bothu andr are positive. From the above discussion
is obvious thaty increases monotonously along the line
u5const. Therefore, the piece of spacetime which concer
us here~the one covered by the outgoing charged Vaidy
solution! is the regiony.yc , where

yc[u/r c5a2/m̄.0.

The functionF can be written as

F~y!5
m̄2y2

a2
22m̄y11, ~14!

and the roots ofF50 are

y15
a2

m̄
1
aAa221

m̄
, y25

a2

m̄
2
aAa221

m̄
.

Sincey2,yc,y1, the liney5y1 exists in our spacetime, but
not the liney5y2. The hypersurfacey5y1 is spacelike. This
follows from the line element ~6!, as F50 and
du/dr5y1.0. This hypersurface is the ‘‘inner apparent ho
rizon.’’

The orbits of ingoing (v5const) radial null geodesics in
the geometry~6! are described by the equation

dr

du
5 1

2 F~u/r !. ~15!

Of special importance are solutions of Eq.~15! of the form
u5yr, with constanty. For this special kind of solution, Eq.
~15! reduces to the algebraic equation

F~y!22/y50. ~16!

This yields the following cubic equation fory:

m̄2y3

a2
22m̄y21y2250. ~17!

It is easy to see that, for sufficiently smallm̄, this cubic
equation has three different real roots; and from Eq.~13! we
see that this is indeed the case. To the leading order in
small parameterm̄!1, the three roots are

y0>2, y6>
a2

m̄
6
aAa221

m̄
. ~18!

Since 0,m̄!1, we haveyc5a2/m̄@1. It is then obvious
that y0 andy2 are smaller thanyc , and therefore, the lines
y5y0 andy5y2 do not exist in the relevant piece of space

3That this function must be decreasing~rather than increasing!,
follows from the fact thatr decreases along geodesicsv5const that
approachS from the past.@Recall also that~i! the matching atS is
C1, and ~ii ! in the neighborhood of the spacelike hypersurfaceS,
¹r is timelike.#
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time (y.yc). On the other hand, the hypersurfacey5y1

does exist in our spacetime, becausey1.yc . This line is a
null hypersurface.

As was mentioned above, along the linesu5const.0, r
is decreasing~and, correspondingly,y is increasing! monoto-
nously. Therefore, all these lines will inevitably terminate, in
the future, at a curvature singularity atr50, after finite af-
fine time. This singularity, which corresponds toy→1`, is
located to the future of the null hypersurfacey5y1 . In or-
der to uncover the causal structure, we shall construct a
ingoingnull coordinatew, and transform the line element~6!
to double-null coordinates (u,w):

ds25guwdudw1r 2dV2. ~19!

We shall further demand that the functionw(u,r ) will be of
the form

w~u,r !5uh~u/r !, ~20!

whereh is a function ofy5u/r only. To constructw, we
start from the requirement thatw will be null, i.e.,gww50:

05gww5grrw,r
2 12gurw,uw,r ,

which implies

F~y!w,r12w,u50 ~21!

~note that in the original coordinatesu and r , the inverse
metric functions aregrr5F, gur51, guu50). Substituting
now Eq. ~20! in Eq. ~21!, one obtains the following differ-
ential equation forh:

dh

dy
5K~y!h, ~22!

where

K~y![
2

y2
@F~y!22/y#21. ~23!

For any solutionh(y) of this equation,w(u,r ) defined by
Eq. ~20! will satisfy the requirement of being null~i.e.,
gww50). Since Eq.~22! is linear and homogeneous, we can
immediately write down its general solution:

h~y!5h0exp@G~y!#, ~24!

where

G~y![E
yi

y

K~y8!dy8, ~25!

h0 andyi being arbitrary constants.4

It is not difficult to calculate the integral~25! and to get an
explicit expression forh(y), see the Appendix. For our pur-
poses, however, it is sufficient to look at the behavior o

4Although Eq.~22! only has a one-parameter family of solutions,
we prefer here to keep both parameters,h0 andyi , for later conve-
nience.
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K(y), and to deduce the features ofh from it. From Eq.~23!
it is obvious that the only possible singularities ofK are the
three roots of Eq.~16!, i.e.,y1 , y2 , andy5y0. However, in
the region of interest (y.yc) we have only one of these
roots, namelyy1 . The divergence ofK at y5y1 forces us
to treat the two regionsy.y1 andy,y1 separately. In par-
ticular, we shall have to analyze the behavior ofh at
y5y1 ~and to check that it does not diverge there!.

We shall now analyze the causal structure of the regi
y.y1 , using the coordinates (u,w). To that end, we shall
choose yi.y1 and h051. The regularity of K(y) at
y.y1 implies the regularity ofG andh at y1,y,`. Also,
sinceK has no roots iny1,y,`, it is positive definite
throughout this range.@The sign ofK in that range can be
easily obtained from its asymptotic behavior aty→1`, see
Eq. ~29! below.# Now, a straightforward calculation yields

guw5gurw,r52y2dh/dy52y2Kh. ~26!

Thus, guw is smooth and nonvanishing aty1,y,`, and
consequently, the line element~19! is well defined and regu-
lar throughout that range.

We shall also need the asymptotic behavior ofh at both
limits, y→y1 and y→1`. To that end, it is sufficient to
consider the behavior ofK at both limits.

~i! The limit y→y1 . It is straightforward to show that the
asymptotic behavior ofK at this limit is

K5K0~y2y1!211O@~y2y1!0# ~y→y1!, ~27!

whereK0 is a positive constant,

K05
2a2

m̄2y1~y12y0!~y12y2!
.

~In the limit m!1 one finds

K0>@aAa221~a1Aa221!2#21m,

so 0,K0!1.! Correspondingly,G→2`, andh vanishes:

h}~y2y1!K0. ~28!

Thus, the liney5y1 corresponds tow50 ~with w.0 at
y.y1).

~ii ! The limit y→`. Here the asymptotic behavior is

K5
2a2

m̄2
y241O~y25! ~y→1`!, ~29!

soG is finite, andh approaches a finite limith`.0. We find
that in (u,w) coordinates the singularity atr50 (y51`)
is located at the linew5h`u. This line is timelike, because
h`.0 ~andguw,0).

In a similar way, we can use the coordinates (u,w) to
analyze the regionyc,y,y1 . Now we take the constant
yi to lie inside the range@yc ,y1#, andh0521. Again, the
important point is thatK has no singularities and no root
inside the relevant range~recall that bothy0 and y2 are
smaller thanyc). Therefore the line element~19! is regular
throughout this range. Also, one finds thath vanishes aty1
on

and is negative aty,y1 . This means that the null line
y5y1 corresponds tow50 ~with w,0 at y,y1).

The two patches,y.y1 and y,y1 , match together at
the hypersurfacew50. At this hypersurface, however, the
metric ~19! becomes singular, as

guw}uy2y1u12K0

@cf. Eqs.~26!–~28!#, so det(g)50. This is obviously a coor-
dinate singularity, because in the original coordinates (u,r )
the metric is manifestly regular aty5y1 . This singularity
may be removed by transformingw into a new null coordi-
nateW(w), defined by

W5c6uwua,

where a51/K0.0, and c6 stands for two constants:
c1.0 for y.y1 andc2,0 for y,y1 . The line element in
the new double-null coordinates (u,W) can be shown to be
regular in the entire range covered by the outgoing charge
Vaidya solution, i.e.,yc,y,`. Figure 2 displays the causal
structure of this range.5

The overall causal structure of the spacetime correspon
ing to extensionB is displayed in Fig. 3. The differences

5For simplicity, in Figs. 2 and 3 ther50 singularity and the other
linesy5const are displayed as straight lines. These lines are indee
straight as long as the coordinates (u,w) are used. After we trans-
form to the regular double-null coordinates (u,W), however, these
lines are no longer straight.

FIG. 3. The global structure of the spacetime corresponding t
extensionB. As in Fig. 1: The broken line is the event horizon. The
dotted lines are the outer and inner apparent horizons. The outgoi
lines with arrows outside the black hole represent the Hawkin
radiation emitted to the external universe. The ingoing lines with
arrows that change to outgoing lines aty5yc , represent the orbits
of the null fluid.
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between the two extensions is remarkable: In extensionA,
there is a nullr50 singularity which intersects the ‘‘left
hand’’ timelike r50 Reissner-Nordstro¨m singularity, and
blocks the tunnel~see Fig. 1!. In extensionB, the singularity
is timelike, and the ‘‘Reissner-Nordstrom tunnel’’ remai
open and traversable~Fig. 3!.
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APPENDIX

In this appendix we shall give an explicit expression
h(y) and analyze its asymptotic behavior at the lim
y→y1 andy→1`.

The functionK(y) is just 2/y divided by the left side of
Eq. ~17!. Therefore, we can rewriteK(y) as

K~y!5
2

F~y!y222y

5
2a2

m̄2y~y2y1!~y2y0!~y2y2!

5
A

y2y1
1

B

y2y0
1

C

y2y2
1
D

y
, ~A1!

where

A52a2m̄22y1
21~y12y0!

21~y12y2!21,

B52a2m̄22y0
21~y02y1!21~y02y2!21,

C52a2m̄22y2
21~y22y0!

21~y22y1!21,

D522a2m̄22~y1y0y2!21.
-

ns

nce
ces
rch

for
its

These constants satisfy the equations

D~2y1y0y2!52a2m̄22,

A1B1C1D50,

~y11y01y2!D1A~y01y2!

1B~y11y2!1C~y01y1!50,

~y1y01y0y21y1y2!D1y0y2A1y1y2B1y1y0C50.

The functionK(y) is drawn in Fig. 4.
K(y) diverges aty5y1. Therefore, we must treat the

regionsy.y1 andy,y1 separately. Then the value ofh at
y>y1 is given by Eqs.~24! and ~25!:

FIG. 4. The functionK(y) near y5y1 . The values ofK(y)
were calculated for the parametersa52 andm50.01, which yield
m̄50.010 016 6.
h~y!5h0exp$ ln@yD~y2y1!A~y2y0!
B~y2y2!C#uyi

y %

5h0expH lnF yA1B1C1DS 12
y1

y D AS 12
y0
y D BS 12

y2

y D CG
yi

y J . ~A2!
t

Using the equalityA1B1C1D50 mentioned above, we
get a finite value forh`[h(y5`):

h` 5h0yi
2D~yi2y1!2A~yi2y0!

2B~yi2y2!2C. ~A3!

Special choosing ofh0 will give h(`)51 which will corre-
spond to Fig. 2. It is very clear from Eq.~A2! that the value
of h at y5y1 is zero no matter whichh0 we choose, because
A.0.

We move our attention now to the regiony1>y>yc . By
integratingK(y) from y5yi (y1.yi.yc) to y5y1 we
find thatG(y1) is 2` ~no matter which integration constant
we choose, see Fig. 4!, thereforeh is zero aty5y1 , the
same result that we got from the other region. We found tha
h is continued aty5y1 and has a finite valueh` at the
singularity, which is given by Eq.~A3!.
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