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Quantum corrections are studied for a charged black hole in a two-dimengRiblamodel obtained by
spherisymmetric reduction of the 4D Einstein-Maxwell theory. The classitzg-leve] thermodynamics is
reformulated in the framework of the off-shell approach, considering systems at arbitrary temperature. This
implies a conical singularity at the horizon and modifies the gravitational action by terms defined on the
horizon. A consistent variational procedure for the action functional is formulated. It is shown that the free
energy reaches an extremum on the regular manifold WatfT, . The one-loop contribution to the action in
the Liouville-Polyakov form is reexamined. All the boundary terms are taken into account and the dependence
on the state of the quantum field is established. The modification of the Liouville-Polyakov term for a 2D space
with a conical defect is derived. The back reaction of the Hawking radiation on the geometry is studied and the
guantum-corrected black hole metric is calculated perturbatively. Within the off-shell approach the one-loop
thermodynamical quantities, energy, and entropy, are found. They are shown to contain a part due to hot gas
surrounding the black hole and a part due to the hole itself. It is noted that the contribution of the hot gas can
be eliminated by appropriate choice of thgenerally, nonflat reference geometry. The deviation of the
“entropy - horizon area”relation for the quantum-corrected black hole from the classical law is discovered
and possible physical consequences are discussed.
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[. INTRODUCTION its resolution have been recently reviewed 4n5].
The role of quantum effects in black hole physics is two-
That black holes possess some properties of a thermodyeld. Semiclassically, a hole can be considered as surrounded
namical system characterized by appropriately defined erby the quantum Hawking radiation which becomes thermal
ergy, temperature, and entropy was first considered as just dheat bath far away from the hole. Since this radiation pos-
analogy[1] between black hole physics and the laws of ther-sesses a nontrivial stress-energy tensor its back reaction leads
modynamics. However, the remarkable discovery by Hawkio deformation of the classical black hole geometry. On the
ing of radiation from a black hole which looks thermal at other hand, the quantum corrections lead to modifications of
large distanceq2] strongly supported this analogy and the gravitational effective action. This results in changes to
forced physicists to think of a black hole as a real thermo+the formulas for calculating the energy and entropy of the
dynamical object like a heated blackbody. One of the rehole. As an example of such a modification it was recently
markable predictions of the analogy is that one can associatgbserved, in twd6,7] and in four[8] dimensions, that the
entropy with a hole which in the Einstein theory of gravity is classical Bekenstein-Hawking expression might be corrected
proportional to the area of the horizon. Moreover, in pro-by terms logarithmically dependent on the mass of a black
cesses involving a hole its entropy plays a role on an equdiole. The calculations apply the conformal anomaly argu-
footing with the entropy of conventional matter. In particu- ment and take a fixed classical black hole background. How-
lar, only their sum is the quantity which is nondecreasingever, the quantum deformation of the geometry affects the
[1,3]. However, it is a mysterious and intriguing puzzle justblack hole parameters, like the radius of horizon, introducing
what states of the hole are counted by the Bekensteirsome corrections. These also turn out to be of the order
Hawking entropy. As a possible answer one can relate it to-InM and cannot be neglected. Hence, the back reaction
states of quantum fields which are hidden by the horizon andsffects necessarily must be included when considering the
consequently, remain invisible to an outside observer. Thguantum thermodynamics of the black hf®10].
present status of the problem and numerous attempts towards Two-dimensional physics gives us an arefsae Refs.
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[11-13) where the above-noted problems can find a preciséo Hawking radiation is calculated perturbatively in Sec. V.
solution. The two-dimensional(2D) nonlocal Liouville- The energy and entropy of the quantum-corrected black hole
Polyakov action[14] incorporates both the Hawking radia- are calculated in Sec. VI. The deviations from the classical
tion [15] and its back reaction on the geometsee, e.g., Bekenstein-Hawking form are obtained and the possible role
Ref.[16]). Therefore, its inclusion in the gravitational action Of these corrections is discussed.

on an equal footing with the classical counterpart gives the

complete semiclassical description for the black hole. It is [l. SPHERICALLY SYMMETRIC REDUCTION OF 4D

known but not always stressed that the Liouville-Polyakov EINSTEIN-MAXWELL THEORY

action contains some ambiguity which is eliminated by Let us consider 4D Einstein gravity coupled with a Max-

specification of the state of the quantum field. In the case %ell field described by the actiofwe use the Euclidean sig-
a black hole in equilibrium with thermal radiation this speci- nature

fication must include the heat bath at large distances from the
black hole. As a result, the effective action becomes depen- 1 1
dent on the thermal state of the quantum field. In principle, Wo== 75—~ 4R(4)\/§d4x+ 16 Gf 4F,2W\/§d4x

. . . T M T M
this state can be characterized by a temperature different
from the Hawking one. It is a remarkable and long-standing 1 @) 3
fact that such a state can effectively be described as a quan- T 847G []M4K Vhex, (2.7)
tum field on a singular instantdine., on the Euclidean black
hole instanton with conical singularity on the horizofihis  whereR® is the 4D scalar curvature. We have added in Eq.
probably explains why the Euclidean conical singularity (2.1) the boundary term according fa0]. K is the trace of
method[17,18,8,7 gives a sensible formulation of black the extrinsic curvature of the boundamu®. If n“ is the
hole thermodynamics. In this method one takes the Gibbonsgytward unit vector normal téM?#, then we have
Hawking[20] Euclidean approach and closes Euclidean time
with arbitrary period, related to the temperatufe of the K@=V, n~ (2.2
system ag83=1/T. Evaluating the free enerdy of the sys- ) ) )
tem for arbitrary, differentiatingF(8) with respect to3 The act|0n(2.'1) !s.known to be divergent when the boundary
and finally putting3 equal to the Hawking valug= 8y, dM goes to |nf!n|ty. T_he same pre_sumably happens_for the
one obtains the thermodynamical quantitiesergy and en- one-loop effective action and requires some_subtractl_on pro-
tropy) of the black hold7,8,10. cedurg. ngerally, one proceeds by comparing the divergent

Recently, there was great interest in the study of divergen@luagt't}’ with that defined for a ;pemally chosen_background.
quantum corrections to the entrofdQ]. It was realized that If 9, is the background metric, then we define the sub-
these divergences can be absorbed in the renormalization fcted expression 421]
gravitational couplings in the tree-level gravitational action.
In two dimensions this results in a constdnbt dependent Wsup= W[gﬂ]—\/\/[gfw], 2.3

onttréefspacti—tm;eD géorrle)rng|tlon t?hthe enttropy %”g't'. where W includes both the classicaR.1) and one-loop
nated from the Instein term in the guantum etiec IVegravitational action. Presumably, in the quantum case we

3pt|on (§ee [73)' This tterén Its tkt]op?k?dglcal |r][yar|ant 'Q .E[V\.IO . would have to subtract the contribution of the nonflat refer-
Imensions, does not afiect the Tield equations, and it 1S 1ep .0 metric of the asymptotic geomeiisee Ref[10] for

rele_vant_ to the anqusis of the _back reaction pfOb'e”F- Beingéuch an examp)e Therefore, we shall consider an arbitrary
mainly interested in the UV finite quantum corrections toreference(backgrounﬁi metrié hereafter

black hole thermodynamics we will assume throughout the Our first goal is to make the reduction of the general

paper that the. necessary renprmalization was a'Teady qo'?st%tion (2.1) to the special case of spherically symmetric
and We.deal with the renormallzeq quantum effective aCtlon's.pace times. Spherically symmetric metrics are of the form
In this paper we use the two-dimensional model to study

the one-loop quantum effects in the thermodynamics of a dsz=7aﬂ(z)dz“dzﬁ+ r2(z)(d6?+sirfode?). (2.4
charged black hole. We start in Sec. Il with the 4D Einstein-

Maxwell theory with boundary terms included appropriatelyHere «,8, .. .=0,1, y,4(2) is the 2D metric on the effec-
[20]. Then, considering only spherically symmetric metrics,tive two-dimensional spacéM? covered by coordinates
this model reduces to an effectively two-dimensional one oz®=(r,x), andr?(z) is the scalar field oM?2. We have, for
the dilaton type. The classical solution describes the wellthe scalar curvature of the metri2.4),

known Reissner-Nordstno charged black hole. The thermo-
dynamics of the classical black hole is reformulated in Sec.
[l in the framework of the conical singularity method. We
especially notice the role of both the terms defined on the
external boundary and on the conical singularity in the well-where all the geometrical objed®&?,V,[J are defined with
defined variational procedure. The choice of state of theéespect to 2D metrigy,5(2).

guantum field and the corresponding form of the Liouville- For the spherical reduction of the action it is sufficient to
Polyakov action are discussed in Sec. IV. In particular, weconsider boundarieaM* of the spherically-symmetric space
take care of the boundary terms and derive the modified* with metric (2.4 that are a direct product
Liouville-Polyakov action for a space with a conical defect. IM*=9M?x S?, where 9M? is a boundary of 2D space
The deformation of the geometry of a charged black hole dud?; S is a 2D sphere. A normal vector* to this boundary

2 2 2
R(4):R(2)+r—2(Vr)2—r—2Dr2+ r—z, (2.9
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has nonzero components only in the direction tangent to the 1 ) ) )
spaceM?, n*=(n%0,0). Hence, we obtain, for the trace of We=— ﬁf JLPR+2(Vr) +2U(r)]yd?z
the extrinsic curvature of the bounda(3.2), M

1J %k 2.1
%aMzr, (2.11

with the fieldr?(z) playing the role of the dilaton field. The
dilaton potential reads

ol
K<4>:k+2na%,

k=V 1(f)a +1a (2.6)
=V n=— n%)=4¢,n%+ — n<, .
@ \/; @ Y @ 2,}/ a? QZ
U(r)= 1— — (2.12
where y=dety,z. If the metric is static and spherisymmet- _ ) o ]
ric it can be written in the Schwarzschild form: Wick’s rotation to the Euclidean metric is typically accom-
panied by the corresponding complexification of the charge
ds2=g(x)d72+ g~ L(x)dx2+r2(x)(d 6+ sirfad p?). Q—1iQ assuming that after all calculations we make the con-

(2.7)  tinuation back to the redd [22]. Having this in mind we use
the expression$2.11) and (2.12 whereQ is already real.
Then we haven®=(0,g*? and, hence, Variation of the action(2.11) with respect to the dilaton?
gives the dilaton equation of motion

2
K<4>=k+rr’g1’2, k=(g¥?)’. rR—20r+U, =0, (2.13

while the variation with respect to the metrig,; gives
In accordance with our assumption about spherical sym-

metry the Maxwell fieldA , is tangent to the spadd?, i.e., Gup=—2rV, Vgr+ yaﬁ[DrZ—(Vr —-U]=0.
the only nonzero component of the gauge curvaturg js (2.14
#0.

Equation(2.14) implies that the vectofa—eﬁaﬁr is a Kill-
ing vector. In the region whereV()2+0 the Killing timet
(¢%9,=0,) andr can be used as coordinates bff. The
equationG’— G| =0 implies that the metric is of the form

Taking into account that the integration over angles.
(0,¢) in Eg. (2.1 induces the measure

f Jgdode=4mr2\/y,

1
ds?>=g(r)dr?+ —dr2. (2.19
we finally get that the actiofi2.1) for the spherically sym- 9(r)
metric metric(2.4) reduces to the effective two-dimensional The trace of Eq(2.14) is
theory '
Or?=2U(r). (2.1
1
Wei=— EJWUZRJF 2(Vr)?+2]\yo?z This relation gives
2F2 (a2 2 —gu(n=+ [ Uirar=1 M6, S
TS F ﬁ\/—d 2= 56 ) i k. (2.8 9(N=gu(r)=+] UrHdr'=1-——+
In two dimensiond=,; has only one component = “‘_“)(;‘_r—) (2.17

;
Fap=eapF, 2.9 whereM is an integration constant to be identified with the
Arnowitt-Deser-Misner (ADM) mass, and r.=MG

wheree, ; is the antisymmetric Levi-Civita tensor. It follows (MG)Z—QZ are the radii of the outer and inner horizons

from the equations of motion for the Maxwell field,

2FaBy — Il. TREE-LEVEL BLACK HOLE THERMODYNAMICS
V. (r2F*#)=0,

The Euclidean actiori2.1)) is the starting point for the
that formulation of the classical thermodynamics of the black
hole. The standard procedure for describing the thermody-
2 Q= const 2.10 namical properties of a field system is to go to the Euclidean
2 ' ' space by a Wick’s rotatiot=i 7 and to close the direction
with period 278=T"1, whereT is the temperature of the
whereQ is the electric charge. system. The system is assumed to be contained in a box of
Inserting Egs.(2.9 and (2.10 into the action(2.8) we  sizeL. In principle, the field configuration does not neces-
find that the whole theory reduces to some type of 2D dilatorsarily satisfy any field equations. The latter arise as a require-
gravity: ment of extremality of the free energy functional under ap-

F=

-
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propriately defined boundary conditions. (2775 L
Analogously the thermodynamics of black holes can be Wy=— G f [(rz)’e*g’+29e”(r)’()2+ 2Ue ]
formulated off-shell. We discuss now this formulation in X
more detail. Consider the Euclidean static metric of the gen- w2
eral type - . (3.9
G
—2)\(X) .
_ 2 2 One can define the free enerfy entropyS, and energy
ds’=g(x)dr*+ g(x) o, @D E associated withW, as

written in the fixed coordinat_e '_systemr,&)_where the coor-  F=(278) 1wy, S=(Bdz—1)Wy, E= Ziaﬁwcla
dinates range between the limitssG=<2#g3; x, =<x<L. In m
what follows we assume that an external boundary is located 3.9
at x=L, while x=x_ is the location of the horizon of the

where 2rB=T"! and 8= BgL?. Applying these formulas
to Eqg. (3.4 we obtain that the energi is given by the
expression

black hole.

The temperaturd@ of the system is fixed at the boundary
and can be invariantly defined @s *= fdrg34(x=L). The
system is also characterized by the value of the dilaton field 1 L
rg at the boundaryrg=r(x=L). The fact that the system E=— 4(3—1’4 [(r?)'erg’ +2g€er(r,)?+2Ue ],
includes a nonextremal black hole means that at some point 98 Jx.

x=X, (horizon the function g(x) has a simple zero, (3.6
g(x;)=0. In this case the Euler characteristic of the sPacenq the entro

described by Eq3.1) is fixed to bey= 1. Thus the system is Py

specified by(i) fixing temperaturel and value of the “ra- 7-rr2+

dius” rg on the external boundary, and ky) fixing black- Sgy= G (3.7

hole topology. The statistical ensemble consists of all the

functions @,A,r) satisfying these conditions. For an arbi- 1,6 the standard Bekenstein-Hawking form. In the calcula-
trary [nketrllc fr(_)m th|§ class the. quant[ty tions made up to this point we did not assume ihatl, in
Brn=(2e */g’)x=x, is & functional of the metric and it is er words the calculations were done off-shell. Now, we
not fixed by the above conditions. In the general case such f the temperatur@ = (278) ~* and consider the extremum
metric describes the Euclidean space with conical singularityf the free energf =E— TS or equivalently the extremum
at the point x=x, _(horizon with angle deficit of the actionW,. Remarkably, such an equilibrium configu-
6=(1—a)2m, wherea= B/ By . This implies that the scalar ration automatically satisfies the second law of black hole
curvature has a-like contribution coming from the tip of thermodynamics:
the cone(see details in Ref.23)):

SE=Té4S (3.8

R<2>:2(1__a) S(x—x.)+R?, a= ﬁ (3.20  for small variations around the equilibrium state.
a Bu It should be noted that only andrg atx=L and condi-
tion g(x,)=0 at the horizon are assumed to be fixed. The

whereR® is the regular part of the curvature. The conicalfunctionsg(x), g’(x), r(x) and the values on the horizon
singularity vanishes whea=1. Note that only combination ©0f r.=r(x), g'(x;) (or By) are variable. The total varia-
a= B/ By has an invariant meaning whig,, and 8 are co-  tion of the actionWy is 6Wy= 6 We+ 5gW ¢+ 6,We - For
ordinate dependent. partial variations we have

In many respects, the approach which we use here is simi- —
lar to the approach developed by York and coIIaborators§W _ 27”(X+)(1_a)5r(x )— (2mB)

+

[24]. The essential difference, however, is thaf{24] only rid G 4G

regular metrics are considered. In our approach the statistical L

ensemble specified by conditioriy and (ii) includes both Xf Sr[—2r(e’g’) —4(geMr’)’ +2U e Mdx,
the regular metrics and metrics with conical singularities. For X

a metric of general typéwith an arbitrarya) the classical 3.9

action(2.11) due to Eq.(3.2) takes the form

(ZWE - \YVANAY Np’2
Wo= 3 [T R 2(¥0)2 200 1z PWa= " g [, L ae
4G Jwm (3.10
I (2mB) (L
26 a6 1T 39 BWe=— 5| ONENr)g +2eNg(r))?
+

For the static metri¢3.1), action,(3.3) is —2Ue Mdx. (3.11)
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We see that variation iV, contains terms due to variations The quantity(3.17) is divergent ifdM goes to infinity. The
of the functions (,g,\) inside the regionx, <x<L that subtraction procedure described in Sec. Il leads to the result
leads to the equations of motion

E=E[g]—E[go]

1 1 j o 1 j arls
=—|z—5| rNgd—=5—=| rn%,r|d,r
Gl2mBy)m ° 2B ) am

1
= Slr(eb™ g3,

—2r(erg’) —4(ger’) +2U/e *=0,
—(eNr?)") +2eM =0,

eM(r?)'g’ +2etg(ry)?—2Ue =0, (3.12
which of course coincide with Eq§2.13 and(2.14) written
for the metric(3.1). Variationség’(x,) anddg’(L) on the  Here we have chosery=r for the reference metric. Note
boundaries X, ,L) are canceled in Eq$3.9—(3.11). This that the natural condition to be imposed on the background is
happens because of the presence of the “surface” terms ithat in the limit L—o the background temperature
Eq. (3.3 located on the external boundary and on the singuT=(278,) ! coincides with the black hole temperature
lar point (the cone tip. measured at infinity. This is satisfied gf,=lim __..g(L).

In some sense, the tip of the cone can be considered as For an asymptotically flat metric,

1

gravitational action(3.3) that makes the variational proce- [)’
dure on the conical space well defined. The term connected

some kind of boundary additional &M of the spaceM. It
is the presence of the additional term locatedbrnin the

with the tip of the cone compensates variations of the normalve haveg,= 1. Hence for the energy
derivatives of the metric ak in the same manner as the

(3.18

2MG
g(L)=1-~——+0

standard Gibbons-Hawking terms does at the external bound- L 12

ary dM. The variation of the action contains also a term EZE[l_g (L] (3.19
proportional to the variation of the “radiust', of the hori-

zon, ér, . The requirements,W,=0 gives the condition we find in the limitL—c that

a=1. This is the expected result. It means that the equilib-

rium state is reached on a regular manifold without conical E=M. (3.20

singularity (Gibbon-Hawking instantgn
Equations(3.12 imply that we may choose=x. The
metric functiong(r) takes the form2.17)

1(r
g<r>=—fr U(p)dp. (313

r

+

In particular, we have

1t ' -1 -1
o= umdr, g/w)-L UL L),

+

(3.19
On the other hand, on the horizon we have
2, B U(ry)
E=gr(r+)— o (3.19

The energy functionaE, Eq. (3.6), takes the form

1 L
E= KggﬁthgdHEsm,

1
Esu= — %(e)\(rz) ,gllz)x:L ) (3.16

It should be noted that formulating the variational procedure
for the charged metric we typically need to augment quanti-
ties fixed at the boundary by a quantity characterizing the
Maxwell sector of the model: chard@ or potentialA, [24].
The variation with respect t4,, would give us the Maxwell
equations. Instead of this we first solved the Maxwell sector
exactly and all the information about it was collected in the
“dilaton” potential U(r), then we formulated the variational
problem only for the gravitational sector. These two ways
obviously lead to the same results.

The above consideration is valid for an arbitrary potential
U(r) provided its form is fixed. For the variations that
change the form of the potentidl(r) we obtain, from

(3.19,

L
SU(r)dr.

+

1
5E=5M—% )

(3.21
For the special choice of the potentldlr) defined by Eq.
(2.12 we reproduce the known form of the second law for a
charged black hole

SM =T8S+ Q Q. 3.22
Gr,

s 0 H g . .
and modulo the constrair®,=0 it reduces to the surface However, the specific form of the potentidl(r) is not es-
terms only. Equivalently, we obtain a coordinate invariantsential for the above consideration. It can be shf25] that

expression for the energ.16):

1 1

E=—mafmrn ol (317)

the quantum corrections change the form of the potential
U(r) and result in the deformation of the black hole metric
(3.13. Though our methods can deal with such a possibility
as well, we do not consider this here.
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Special consideration is needed for an extremal blaciHowever, if we wish to work with Eq(4.2) we are con-

hole. In this case we have fronted with at least two problems. First, the actigh2)
does not transform properly under a constagiobal) con-
U(ry)=0, g'(r,)=0. (323  formal transformation,g,,—Ag,,. (This was noted by

Dowker [27].) Second, when applying Ed4.2) to a flat
different from the nonextremal one. In the metric value of the stress-energy ten€@#") obtained by the varia-
_ tion of Eg. (4.2 vanishes. This is certainly valid for the
ds’=g(r)d7*+g~*(r)dr? (329 vacuum s?ate, but not for other possible sta%es. In particular,
it is not clear how Eq(4.2) can reproduce the effective ac-
. ; X . AR tion for a thermal radiation. So, writing the effective action
singularity. The horizon lies now at an infinite distance fromin the form (4.2) one loses the information on the concrete

?hng e();:]rggwg?linr:s?aflrﬂwoen I?j;gmz?e;ngn&oggia’j]tei;:\r/]aet:r()erléonCQOice of the state of the quantum field. We demonstrate that
P information about the state of a guantum field is directly

7 can be closed with arbitrary periods3 not forming any

with metric connected with the boundary terms which are to be added to
;2 Eq. (4.2). Therefore, we begin our consideration of one-loop
dszz_;_(de_,_dZZ), (3.25 quantum effects with a more careful treatment of the
z

Liouville-Polyakov action, taking into account all the bound-
) ) ary terms.
wherez— —o if r—r, . The extremal black hole instanton "yt should be emphasized that the integration of the con-
can be considered as conformally related to a flat cylindricajy,mg) anomaly which is used to derive E@.2 does not
space. give the absolute value of the effective actibifig], but

These features of the extremal geometry are crucial fofather the difference between the effective actions for two
the formulation of the thermodynamics of the extremal h°|econf0rmally related ¢, = €27g,,,) manifolds[28]:
v % .

[26]. Since there is no conical singularity on the horizon we
do not have the additional term in the action and it reads

1 ~ ~ N
F[g]=F[@]—E( JM(VU)2+jMRU+2ngd§k0)

W=27gE, (3.26
where the energ¥ takes the form3.19. We obtain from — i dgﬁ“a#g’_ 4.3
Eq. (3.26 for the free energy of the systef=E, and hence 87 Jom

the entropy of the extremal hole is formally zero: .
Heren* is the outward vector normal to the boundaiyl,

Sex=0. (3.27  andk=V n* is the trace of the second fundamental form of
the boundary.

Moreover, since the free energy does not depend on the tem- One can writel'[g] in terms of quantities defined only
peratureB 1, the requirement of extremality of the free en- with respect to metrig,,, if we introduce an additional field
ergy underp fixed does not give a relation between param-¢ defined as a solution of the equation
eters of the hole geometry () and 8 as we found for the
nonextremal case. This can be interpreted as implying that Uyg=R. (4.4
the extremal black hole can be in equilibrium at arbitrary . oA i
temperatur§26]. However, the physical meaning of this for- FOr conformally related metriog,,=€°’g,, the respective
mal result is not clear. In particular, quantum effects mayduantities are related as
change this conclusion. We are going to consider this in a - ~ -
separate publication. R=e ?(R-200), ¢=¢—20,

IV. LIOUVILLE-POLYAKOV ACTION AND CHOICE k=e 7(k+n*d,0), n*=e “n* (4.5

OF THE THERMAL STATE OF THE QUANTUM FIELD . . . .
Using these relations, one can show that the effective action

In order to include one-loop quantum effects in the analyI'[g] of Eqg.(4.1), conformally transforming according to Eq.
sis, consider a two-dimensional quantum conformal masslegg.3), takes the form
scalar field. This produces the following contribution to the
artition function: 1 1
P F[g]=—f [%(V¢)2+¢R]+—f kyds+T,
481 I m 241 ) om
zZ=e ', T=3Indeq, (4.1 (4.6)

where(]=V V* is the two-dimensional Laplacian. The cal- where all the quantities are defined with respecyjj¢ and
_culatlon of the effective actioh is usually made by integrat- the “integration constant’I'y is a conformally invariant
ing the conformal anomaly. The result is well knoywi¥]: functional.

Let us now consider the conformal massless figlth a
thermal state with temperatufiein a space time with hori-

1
_ -1
Telg] 96/1TJ' ROR. (4.2 zon. The relevant static Euclidean metric reads
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1 T=2#B) *=(27) Y By %+ B, 2 on the black hole
d’=g(x)d7*+ ——dx?, (4.7 instanton, which differs from the Hartle-Hawking state.
9(x) ; :
After these general remarks consider now a singular black
or hole instantonM“ with O<7<2#wB (B#By). Then Eq.
(4.9 conformally relates it to the flat con@, (a=8/84),
ds’=g(p)dr*+dp?, (4.8)  andz, is the proper length of the cone’s generator. The con-
_ formal factoro is an everywhere regular function, and we
where 7 lies in the range & 7<278 and O<p<L,. As-  find that the stress-energy tensdrs, on the two spaces are
sume thag(x) has a zero of first order at the poixtr, . related by the same expressi@ghl0 and(4.11), where now
This is the Killing horizon. Near the_horizon we have T(O) is the energy density on the flat cofig ( [29], see also
d(p) = p?/ B . WhereB,=2/gy(r ). For B=By, Eq.(4.8  [30)):
describes a regular black hole instantorg3it gy the metric

has a conical singularity ap=0 with angle deficit o 1 1(1—02) azﬁ_ 4.13
L B . .

0 —_—
6=2m(1-a),a= B/ By . The metric(4.8) can be written in Tr 247 22\ o?

the conformal form

d?=e?7ds}, dsi=(dZ+ a?Z?d7?),

g rdp
2= B2, z=z4exX f
B, 0 ;{BH r—

where a=8/B,, 7=f7, and 0<7<2m, O<z<z,. Note

At infinity, the energy density

1

T —_—
24732

T

, 4.9

takes the thermal form with temperatife= 278" 1. Hence

we may conclude that the thermal state of the quantum field
) . with T#Ty in the gravitational field of a black hole can be
that near the horizoz~p and hence the conformal factor is gftectively described as a quantum field on a singular instan-

regular on the horizon. . ton (i.e., on the instanton with a conical singularity on the
For 8= By Eq. (4.9 conformally relates the metric of the horizon.

) .  on

radius z,. For conformally related Metrcy,,,=e%gus,  the black hole instantoM® with a conical singularity g

the stress-energy tensors are related as follows: #By) (see[7]). Equation(4.4) for the metric(4.8) has the
solution

T.l9]= Tuv[g]+ { Ay V,,0'+4(9M0'c7,,0'
A +bfxdx+c | +bfpdp+c
——Ing+b | —+C=—Ing+b | —+C.
9 Vg
(4.14

In order to fix constanb in Eq. (4.14) consider the renor-
malized stress-energy tensor which is expresseg\da[31]

+g,,[400-2(Va)?]). (4.10

Thus, for Eq.(4.9 we have

1 (2 3(9,)?
_ (0) ” p
T =T+ 70— 7z t20;-5 =

, (411 1
TWFE{ZVMV,M— a;dwvlﬁ‘F g,uv[ —2R+ %(V ¢)2]}
WhereT(Tg) is energy density of the quantum field on the flat (4.15

disk D. At infinity p=0o, g=1, so we have
The conformal transformation of E¢.15 is given by Eq.

0 1 (4.10. Insertingy [Eq. (4.14] into Eq. (4.15 we obtain
T,=TO+ —r (4.12
1 3(g,)° b
T,,=—|2¢9"— = + = (4.1
Assume that the quantum field @is in the state for which 48m 2 g 2

T(O)—O We call this state “vacuum on the disk.” Physically In order
thls state is just the usual Minkowskor Hartle-Hawking
vacuum state in the Rindler space.

For this choice we find that the quantum field on the black
hole instanton is in the state of the Hartle-Hawking vacuun’
with Hawking temperatur&y = 1/27 8, since Eq(4.12 co-
incides with the energy qlensity of a ‘tlhermal bath With- te,r'n- Y ho= _2( 1— &) Inp, (4.17
peratureT . Hence, starting with the “vacuum on the disk
state on the flat disk and making the regular conformal trans-
formation(4.9), we obtain the quantum field in the state with coincides with the solution of the cone equation:
Hawking temperature on the regular black hole instanton. If
we start with the state at finite temperatdrg= (27 8,) *
on the diskD we obtain the state with the temperature

to have at infinity thermal behavior with
T=(27B) ! we must fix the constarit=2/8 in Eq. (4.14).

This identification automatically gives us that in the limit
—0 the functiony [Eq. (4.14)],

8(p), (4.18

1
Uehe=Rc, Rc= 2(



54 ONE-LOOP QUANTUM CORRECTIONS TO THE ... 2739

where [ is the Laplacian on the flat corn@,. Thus, the 1 ) —— 1 (1-a?)

stress-energy tensof,, for the state with temperature I'[M“]= @fw[i (Vi)™ yR]+ o5

T=(2mp) ! at infinity coincides with the ,, of a quantum

field on the black hole instanta@.9) with conical singular-

ity on the horizon B+ By). + ELWK‘NS"'FO' (4.24
In order to fix the constartt in Eq. (4.14), which in fact o

can depend on the characteristics of the system, consider tiMereR is the regular part of the scalar curvature, arfe) in

n

o

conformal transformation determined byx) [Eq. (4.9)]: Eq. (4249 is the solution of the equation
O¢=R=2[(1-a)/a]ds+R. For a static metrid4.7) ¢
2 (L dx Bu takes the form(4.22.
20(x)=Ing(x)+ EJX W*’ZI”Z_O' (4.19 We denote byy,=#(2) the value ofy on the horizon
(tip of the cong and byI'y a conformally invariant func-
tional.

which relateqd see Eq.4.9)] our singular black hole instan-
ton with a flat coneC, with radiusz,. Then we have that the
functions ¢#(x) on these spaces are related as follows:

It is worthwhile to note that the expressi¢h.24) can be
rewritten in two equivalent forms. The first one,

! ) ) (1-a)?
Pma(X)= thc (2)—20(X), (4.20 I'IM ]—@fw[z(vw) YR+ — =

wherez(X) is given by Eq(4.9). On the other hand, for each

_ " +— kyds+T, (4.29
function ¢y« and¢c we have the representatic¢a.14): 241t ) jme

5 L g involves quantities defined on the full conical spade:
L X R=2(a"1-1)6s+R, Oy=R

o(X)=—1 —-=] —+C 2T : . . .
Yme(X) ng(x) BJx 9(X) ' Another way to present the effective action on the conical
spaceM“ is to write it by using quantities defined only on
the regular parM \X:

1
zpca(z):—z(l—E)Inz—z()+C(a,zo). (4.21

1 - _
LIMT= =] [3(V)?+ YR+ 15(1— ) gy
487 Jmes
Here C(a,z) is a function of onlya andz;.
Plugging Eqgs(4.19 and (4.2]) into Eq. (4.20, we find N 2
for the constanC= —2In(B,/7)+C(«,%). Really, there is * 241 8Mak¢ds+0((1 @), (4.26
no dependence @& on z, since under rescaling,— ez, we L L
haveC(«,zy)— C(a,zp) — 2Iny. Thus, finally we have where y=¢,_,,0¢¥=R. The effective action in this form
was written in[10].
2 (L dx By
ma(X)=—Ing(x) — E L3900 2|HZ+C(a,Zo)- V. QUANTUM-CORRECTED BLACK HOLE GEOMETRY
(4.22 In the semiclassical approximati¢when the metric is not

guantized the one-loop quantum effects are taken into ac-
In order to write down the Polyakov-Liouville action for count by adding to the classical gravitational action the quan-
this case it should be noted that in the presence of the conictim counterpart obtained by integrating out the matter fields:
singularity the conformal transformation of the effective ac-
tion (4.1) must be modified. If two conical spacés® and W=Wy+T. (5.9

M< with the angle deficitd=2#(1—a) and a tip> are ] , ) ) )
related by a regular conformal transformation Following our spherically symmetric considerations we take

ngeza@#w then the corresponding effective actions arethe classical partV to_hav_e the form(2.11) (with correc_t
related as follow$32]: subtraction of the contribution due to the reference metric, as
has been explained in Sec.)lihile the one-loop contribu-
1 tion I' is the Polyakov-Liouville actiori4.24). Of course, in
I'[g]=T[g]- _( f (Vo)2+ f |330+2f ) dASk()') a self-consistent treatment the quantum effective aclion
24\ J\e M M« must be obtained by the same spherically symmetric reduc-
tion of the 4D matter fields as has been done for the gravi-

2
—— | _ dsh*9, o— 1 (1-a )Uh, (4.23  tational partW,. However, the effective action becomes a
87 ) me 12 «a rather complicated quantity which makes the analysis diffi-
cult. Therefore, we consider here the simplest case when the
whereo, is the value at the tix. of the cone. effective 2D matter is conformal anfl is the nonlocal
Taking into account the transformation lé5) of , the  Polyakov-Liouville functional.
effective action onM¢, transforming according to Eg. We begin our consideration of one-loop quantum effects

(4.23, can be written in the form by studying the corrections to the classical geometry of the
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black hole induced by quantum corrections to the action 2M

(5.1). Variation of Eq.(5.1) with respect to the metric gives 20V =Yap—— " YapT t Tap, T= YapT.

the equations (5.10
Gap=—Tag, (5.2 Differentiating Eq.(5.7) and using Eq(5.10 we obtain

G = BT T8
Tap= 572V U= 009U = vopl 2R 3(V )71}, 20aM = 05" (9T~ To)- 619

(53 This equation is identically satisfied for the value of index

. . _ a=0, while fora=1 it gives
whereG .z is given by Eq.(2.14). The variation with respect

to the dilaton fieldr?(x) gives the same equation as in the

_ 1Tt
classical case: HM=3T;. (5.12

2R—200r +U! =0. (5.4) By taking the trace of Eq5.10 we obtain the equation for
the function®(r):

An important consequence of Ed5.2) and(5.4) is that the
space-time singularity now is placed at finite radiualue of 5P = i(Tt_Tr)' (5.13
the dilaton r?=r2,=G/12s. This typically happens in two- oarfrt o
dimensional models of gravity, as has been previously ob-
served in the string conteXB3] and for the theory under We consider the r.h.s. of Eq&.12 and(5.13 as a pertur-
consideration in34,25. For this value of the dilaton the bation. Then, solving these equations perturbatively, we
kinetic term in Eq.(5.1) becomes degenerate. On the othermust take their right-hand sides on the classical background.
hand, taking the trace of E¢5.2) we have At the classical level we hav®(r)=0 andM = const, and

for the static metrid5.8) the stress-energy tensar,; [Eq.

) G (5.2)] reads
Or2-2u(n=-R (5.5
Tim| 4267 | 2=
Combining this relation with Eq(5.4 we obtain, for the K 2f B4 1"
curvature,
2U—-ruU’'—2(Vr)? Tr=Ki(f'2—i) (5.14
R (5.6 ol i |

r~—reg

S . . . . . Here k=G/24m, By=2/f"(r,). We must put the classical
which implies a singularity at=r.,. We do not investigate metric  (2.17  with  f=g.(r)=r 2(r—r.)(r—r_),

here the behavior of the solution of E¢5.2) and(5.4) near - VTSvar=v

this point. Instead, we assume that the outer horizon lies a{ti_MGi (MG)"=Q" into EQ'(S‘M)' -

r,>r¢ . Then, in the regiom=r_, we may solve Eqg5.2) It should be noted t.haT“ﬁ given t?y I_Eq.(5.14) is diver-
e ' N " gent at the inner horizom=r_. This is the well-known

and(5.4) perturbatively(with respect ta,/r ;) considering divergencd 35] which makes the perturbation scheme non-

Tap in the right-hand siddr.n.s) of Eq. (5.2 as a small applicable near=r_. To derive the conditions of applica-
perturbation. This gives the correction to the black hole geb.rl).? of the pert rBaf'on scheme considaf first a?rzhe
ometry to first order in the Planck constant ity perturbatl 1ael Tl

As earlier we consider a static solution. We define func-24te" hOI’IZOhI’:tr+ anrd thgn take _~r, . Then we ‘?b'
tions f andM as serve that botfT; andT, defined by Eq(5.14 remain finite
in this limit, while the combinatiorf ~1(T;—T[) appearing
2 in Eq. (5.13 diverges as<[(r,—r_)r.] % The perturba-
f=(Vr)2, M=3%r[1—(Vr)?]+—, (5.7 tion analysis works if the parameters ,r _ are such that

' this dangerous term is eliminated by the condition

- -lg - imoli
and choosea as one of the coordinates, while the Killing zHri*Zré)lr—Jrr] /r<1 Thuswtgll((:irr:gr tolrgghf';ge enézgth
+ A ’ +

timet as the other coordinate. For this choice of the coordl—We always can come arbitrarily close to extremality
nates we get

r_~r_, . This important circumstance allows us to apply our
consideration to charged black holes wifi~M, which

ds?=f(r)e2®"d2+ idrz, (5.8  Quarantees stability of the thermodynamical ensemble for an
f(r) arbitrary large “radius’rg of the external boundary.
Equations(5.12 and(5.13 are easily integrated. Denote
2
2M(r) Q
f(ry=1- +—. (5.9

m(r)=2« {M—M(r)]. (5.15

Equation(5.2) takes the form Then the integration of Eq5.12 gives
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o1 3 (r=r_) r p\ s 3 2
m(r)——;J Tt(r)dr—C(r)+AIn|—+BIn|—, exp2d(r))= E) ex;{—x(?er . (5.22
c(r) = 2 (ry=r)? 2(ry+ro) 10rr_ One of the important characteristics of a black hole is the
(N=- ﬁ_ar_ 2rorr 2 33 radius of its horizon. In our model its role is played by the
value r, of the dilaton field on the horizon. For the
(ry—r_)%r. Jrrf)(rZ+ +r2) quantum-corrected solutigh.15 it is shifted with respect to
A=— 212 ) the classical valuer,. To see this, take the condition
t- f(r;)=0, which is solved as r . =M(r,)G
Zr )2 +V(M(r;)G) - Q.
(re—ro)(ro+ro) - ; . .
B= — ) (5.16 _ Expanding this with respect toc we finally have
2rire ro=r.—«Bym(r.)/(2r.), where the quantities_ ,By

are classical quantities calculated for madsand charge

As earlier,r . denotes the “radius” of the classical inner and Q. From this it immediately follows that

outer horizons. The following useful identity between con-
stantsA andB is worth noting:A+B=—4M GBL%. In Eq. T2 =12 —kBum(r,). (5.23
(5.16 we have introduced a distantan order to have di-

mensionless quantities under the logarithms. The final resultshis identity can be interpreted as the deformation of the
for the energy and entropy calculated in Sec. VI do not de*horizon area” because of the quantum corrections.

pend on this parameter. It seems natural to asdutnée of

order of the Planckian length~r ... However, this point is VI. QUANTUM CORRECTIONS TO BLACK-HOLE

not essential for our further considerations. THERMODYNAMICS

Similarly the integration of Eq(5.13), ] ]
Our approach to the one-loop thermodynamics described

L S by the actionW [Eq. (5.1)] is essentially the same as in the
(r)= iﬁ (T Tydr, (517 tree-level approximation considered in Sec. Ill. We ffix,
the temperaturd=(278) ! on the boundarx=L of the
for f=g(r) with the imposed conditiod®(L)=0 gives system and the black hole topology of the space-time geom-
etry, and define the off-shell entropy and energy by the rela-
(r)=3 «[F(L)=F(n)], tions
R ol 2 R O A S=(Bo;—1IW, E=~—agW. 6.
(= rir_(r—r_) r27 ryr_r 2m
+DIN[(r—r )/1T+EIn(r/1), Then, taking the Euclidean static metric in the fofB11)

with arbitrary functiongy(x),\ (x) satisfying the above con-

1 ditions[g(x) has simple zero at=x_ ], we find the equilib-
D=——3r*+2r3r_+2r2r2+2r,r® —r), rium state of the system described by the extremum of the
rer- functional W[ g(x),r (x),\(X)]:
1 = =
B o (—3r2—2r,r~3r2), (5.18 SW= 5, W-+ 5,;W-+ 5,W=0. 6.2
+ -

For our choice of the action for the quantum field the one-
Consider now the special case of thacharged black loop partl’ does not depend on the dilaton figlgk). There-
hole (Q=0). The classical metric function is fore, a variation ofW with respect tor(x) is exactly the
go(r)=1—r,/r, r.=2MG, By=2r, . For the quantum- same as for the classical actidv,, 6, W=5W [see Eq.

corrected metric we get (3.9], where nowr (x,)=r, is the quantum value of the
MG ) dilaton field on the horizon. This means that the extremum
km(r i i isfi iti

f(ry=1— r n r( , (5.19 configuration satisfies the condition

2 J—

————=By= 6.3
7r 1 2r 1 (X Bu=A8, (
m(r)=——++—————ln— (5.20 g'(x+)

4r2 " 2r 2 2r, ) ) ) . .
B * i.e., the extremum as in the classical case is attained on the

and regular manifold without conical singularityThe extremum

INote that in principle the one-loop effective actibhcan be a

F(r)= i+ i_ il r (5.21) functional of bothg(x) andr(x) leading to a more complicated
(r)= 2r2 r,r ri n| ) ) equation than Eq(6.3). In consequence, the extremum configura-

tion can be singular£+ B4). We do not consider this possibility
For a large size of the box we have here.
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of functional W describes the quantum-corrected black hole 1 1 L1/ 4
configuration, the perturbative form of which we found in Efmf?EﬂpZBHZ @f a(—;—g’z(x))dx
Sec. V[Egs.(5.8), (5.9), and(5.15)]. X+ FH
In variation with respect to metricj,W, the terms de-
pending ondg’'(x.) and &g’(L) are absent in the same
manner as in the classical cdsee Eq(3.10]. Thus, for the
one-loop effective actioWW we also have a well-defined (6.7)
variational procedure when the contribution of variations of , ) i ,
the normal derivatives of metric at the external boundary©" the guanturn_-corre_cted metric obtained in the previous
(x=L) and at the tip of the conexx ) are compensated sectiong’ (L) vanishes in the limit. —oo. Therefore, we will
by the corresponding boundary terms. neglect such a term below. _ o
Calculating the off-shell quantitie5.1) it is convenient Analogously, we have for the entropy in the equilibrium

to write metric in the Schwarzschild-like form: state

" Tomg™n) ¢

s

dg?2=g(x)dr?+g L(x)dx?, (6.4) S=—5 +S.

(6.8
where O<7<2#B. This can always be done using the re- where

sidual gauge freedom in E¢B.1) allowing us to choose the

coordinate system wherng(x)=0. This change of coordi- qu(,Baﬁ—l)HB:BH:—ﬁ://(xQ
natesx— [*e *®dx must be accompanied by the corre-

sponding change of the integration limits,(,L). On-shell N jL dx

~ 2900

2 Brg¥4(L)
V4

i £ _y 1
they become dependent op and 8, . However, for calcu- T g9'(x) ]+l +(zo).

Bu
lation of coordinate-invariant off-shell quantitiéiike effec-
tive action, the using of Eq(6.4) instead of the general form (6.9
(3.1 is just a convenient choice of the coordinate system

The corresponding Polyakov-Liouville actidhreads In Egs.(6.8) and(6.9), 1, and B are quantum position of

the horizon and quantum inverse Hawking temperature, re-
spectively, andy(x) is the metric of the quantum black hole.

L2 ,3—9'2 (1-a?) Note that botlE, andS, are free of divergences at the lower
I'lgl= % —— = —|dx+ —| a+ J p
[9]= 2 «\Bg 29 Xt | @t =5, |¥(X4)  |imit. For a metric written in the conformally flat form
" gMV=er’5HV, we have lﬂ(X).:—ZO'(X) gnd the entropy
B (6.9 coincides with that previously obtained [i@6,6,23.
— g9 (L)+T, (6.9 For the energy functional we have

1 L 1
where a= /8y Bu=2[g'(x;)]"%, and ¢(x) is defined  E= 2Ggl 2(L)f (GY+ T dx+ TomBagPL)  Esurt
by Eq.(4.22. It should be noted that E¢6.5) is divergent at X+ H

the lower limit. Taking the regularizatiorn™ —x*+¢€ we 6.10
have, for the divergent part of E6.5), where the surface terfag, is the same as in E¢3.16).
Remembering that the temperature
- (1-w)? T=[27BugY¥L)] ! is fixed on the external boundary we
Fgy=Ine 2402 (6.6) obtain that when the equations of moti@.2) hold E re-
duces to
This is the physical divergence due to the infinity of the T
renormalizedT ,, [Egs. (4.19 and (4.16] at the tip of the E=Eg,t 5 (6.11
cone (for B#pBy). Note that I'y, is proportional to
_ 2 . .
(1 a.). . Hence the dlvergence'does not affect physmalor’ in invariant form,
guantities calculated at the Hawking temperatyse=(83y,).
In principle, one can regularize this divergence by subtract- T T 1 T
ing in Eq. (6.5 the Polyakov action calculated for the E=5 rn“&ar+g=—6(rgl’2)r=L+ 5 (6.12
M

Rindler space with metric functiogr(x) = (2/84)(X—X,).
But we do not do this here.

Equation(6.3) allows us to calculate the energyfor the
equilibrium state(for 8= B)

Note that both the terms in E46.12 are defined on the
external boundary=L.

Subtracting now the energy of the backgrowgdwe ob-
tain
E=Eq+Eg,

L
. _= 12 112 1T
where the classical paE takes the form(4.5 while the ELg]~Elgol= Glr(go™ =g 1=t 5 (T To),
guantum part reads (6.13
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whereTy=[278%g5%L)] ! is the temperature of the back- the expressiori6.13. Indeed, let us choosg,=1—2«f3;;>
ground metric. The temperatuiile which enters Egs(6.11)  for the reference metric. Then we get for the endrgy
and (6.12) is measured at the external boundary. Neverthe-

less the terms which contain it originated from the horizon EoM4 ﬂn 6.15
when one integrates by parts in passage from(&q) to Eq. ﬁ '

(6.10. Thus,T/6 in Egs.(6.11) and(6.12) is a consequence

of the black hole topology. In the non-black-hole cédeet  where =1+ 2In(L/l). As we can see the paH,, disap-
space this term is absent. Takin§,=T, the second contri- peared in Eq(6.15, however the logarithmically divergent
bution in Eq.(6.13 due to differences of temperatures van-term is still present. We think that this divergence is due to
ishes and we get the classical expressi#) for the energy. the infrared behavior typical of massless fields. One might
But nowg andg, are the corresponding quantum corrected€XPect that it is absent when massive matter is considered.
metrics. Therefore, we will keep the size of the baxregularizing

The above expressions for the energy and entropy werlhis infrared behavior to' bg finite though large enough with
given for the static metric in the forrt6.4). The quantum- 'eSPect to the characteristic size of the halg;r, . We can
corrected metric found in Sec. V takes this form by means of€W'ite Eq.(6.19 in the form
the coordinate transformation-x(r),d,x=e®, and iden-
tification g(x)=fe?®. Since ®(L)=0, near the boundary E=M
r=L we havex~r andg(L)="f(L).

J’__
12

T 2
T_p|> 7]} (616)

Comparing expression&.15 and (6.16 we can conclude
that the[first-order(in G)] quantum corrections are identical

A. Mass of the quantum-corrected black hole .
to the temperature corrections to the mass of the hole.

The quantum-corrected solutighs.15 and (5.16 found
in the previous section behaves for large dizef the box as B. Entropy of the quantum-corrected black hole

Substituting the classical metric function

IMG  2¢ AMGK L 1 ga(r)=(r—r,)(r—r_)r 2 into the expression fos, we
g(L)ml_T——z—Wnl—nLO Nk find that
H H
(6.14 c Tl 1(r_ 2| i IR Ll
=3 Th(L—T)— 75 Ak ey R ciL pry

We see that in the limit —o the metric function on the r,
boundary of the boxg(L) goes to the constant value +%Inz_’ (6.17
g(L)—>gO=1—2K/,8fl rather than to 1. Introducing the 0

Planck temperatur@p=(27r,) " * this can be rewritten as herez, is the proper cone generator length appearing in Eq.
go=1—(T/Tp)?. We see that the modification of the as- (4.9). Again, as for the calculation of the energy, we observe
ymptotic behavior ofy and of the background is essentially that S, is divergent in the limitL—o. The first, linearly
due to temperature effects. Indeed, if we would take backdivergent, term on the r.h.s. of E5.17) coincides with the
groundgo=1 as in classics and apply E¢.13 for the  entropy of the 2D hot gas contained in the box with size
metric (6.14) we would obtain for the energy the divergent (L—r,) and temperaturfy, S,=(7/3)Ty(L—r,). We
term E,,= (7/6)T?L which is the energy of the hot gas sur- may subtract the hot gas contributig, from the expression
rounding the black hole. of the entropy since we are interested in the entropy of the
We can interpret this as follows. The system under conhole itself.
sideration represents a rather complicated interaction of two In Eq. (6.8) the first term is defined with respect to the
objects: black hole and hot gas. Far from the horizon théuantum-corrected radius of the horizen,. Near the outer
effect of the gas is more important, while near the horizophorizon r=r, the quantum-corrected metri(5.15 and
the hole dominates. Therefore, extensive characteristic®.16 reads as f(r)=(r—ry)(r—r_)r 2, where
(such as energy or entropgf the system presumably con- r.=r.*=«rl, andr. are classical values. Therefore, in
tain different contributions due to these two subsystems. Th&, (which is really proportional toi) we may take the
contribution of the hot gas can be identified and eliminatecdquantum-corrected values. instead of the classical one.
through its dependence on the size of the sydteron the  Then, taking the limil.—oo, we derive the complete quan-
other hand, the contribution of the hole itself does not detum entropy of the hole in terms of the quantum-corrected
pend onL. horizon values - :
It is a remarkable fact that the contribution of the hot gas
can be subtracted and the contribution of the hole itself ex=——
tracted by an appropriate choice of the reference nfeilic  3Applying formula(6.13 to calculate the energl we must take
into account two different regimes: the perturbative expansion in
x and the limitL—. Therefore, our steps are the following: we
2This has been demonstrated for the string-inspired 2D model iffirst expand the expressidf.12) with respect tax for L fixed and
[10]. then take the limil.— .
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This illustrates the modification of the classicantropy -
horizon area” relation at the quantum levél.
A few regimes are of special interest. The first one is th

(6.18

FROLOV, ISRAEL, AND SOLODUKHIN

VII. CONCLUSION

In concluding, several remarks are in order. The entropy
of a black hole in classical theory is determined by data on
the horizon surfac&. In four-dimensional Einstein gravity
it is just the area oF . In anR? theory of gravity the entropy
is given by an integral ove¥, of the curvature tensors pro-
jected onto the subspace normal ¥0[38,23. When the

uantum matter contribution is taken into account we find, at

extremal limit,r . —r _ . Note that the correction to the mass |east in the 2D case, that the correction to the entropy is also

(6.19 and(6.16 vanishes then. On the other har®), [Eq.
(6.17] has the well-defined limit

(6.19

giving the logarithmic correction to the entropy. In the other
regime we take _ =0 (uncharged holeand get for the en-

tropy

Ay

G (6.20

N
+ HIn—,
24 ’ﬂ'ZO

S=

whereA , = 7t 2 is the area of the horizon and we omitted a
term ~InL/z,. This result is similar to that obtained (i8] for
the four-dimensional Schwarzschild black hole.

It is not quite clear in which phenomena involving blac
holes the logarithmic corrections to the entroff.17)—

k

given by some data on the horizon, namely gy = (x ;)
[see Egs(6.8) and (6.9)] [36,23. In fact, the quantum cor-
rection contains the contribution of the hot gas surrounding
the hole and a correction to the entropy of the hole itself. The
value of 4(x,) involves both of thenjsee Eqs(6.17) and
(6.18]. It may be unexpected that information on the hot gas
is encoded in data at the horizon located far from the region
where the gas really contributes. But this becomes less sur-
prising if we recall that the functiog/(x) is in fact a nonlo-
cal object[y=0"'R, see Eq.(4.4)] and its value at one
point can, in principle, contain information on the whole
space. It is not clear whether this is a general rule, applicable
to the four-dimensional case as well. In the two-dimensional
model, which is a reduction of the 4D theory, we obtain the
one-loop entropy of the hol&.18 which is a rather com-
plicated function of the quantum-corrected geometry. Prob-
ably, there must be an equivalent derivation of the formula
(6.18 in terms of the 4D geometrigpresumably nonlocal
invariants integrated ovex.

Also it is of interest to make the derivation of entropy

(6.20 might be important. We may speculate that they p|aypresented in this paper directly in four dimensions. This is a

some role in the final stage of black hole evaporation. How-

ever, this problem needs further investigation.

“One can expect that the geometry drastically changes near the

inner horizonr _ due to quantum corrections as was previously
indicated in[37]. As a result, the inner horizon area probably be-

much more complicated problem. However, some scaling
arguments such as that given[#] might be helpful in this

project.
ACKNOWLEDGMENTS

The authors thank D. Fursaev for fruitful discussions. The
work of V. Frolov and W. Israel was partly supported by the

comes a nonanalytical function of the quantum perturbation paramNatural Sciences and Engineering Research Council of

eter k. Therefore,r_ in the expressior{6.18 is not a real inner

Canada. The research of S. Solodukhin was supported by

horizon radius but as it is seen from the form of the metric in theNATO and in part by the Natural Sciences and Engineering

regionr=r, .

Research Council of Canada.

[1] J. D. Bekenstein, Lett. Nuovo Cimenty 737 (1972; Phys.
Rev. D7, 2333(1973; 9, 3292(1974.

[2] S. W. Hawking, Commun. Math. Phy43, 199 (1975.

[3] J. M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math.
Phys.31, 181(1973.

[4] J. D. Bekenstein, itGeneral RelativityProceedings of the 7th

Marcel Grossmann Meeting, Stanford, California, 1994, edited

by R. Ruffini and M. Keiser(World Scientific, Singapore,
1995, Report No. gr-qc/940901&inpublished

[5] V. P. Frolov(unpublished

[6] T. M. Fiola, J. Preskill, A. Strominger, and S. P. Trivedi, Phys.
Rev. D50, 3987(19949.

[7] S. N. Solodukhin, Phys. Rev. B1, 609(1995.

[8] D. V. Fursaev, Phys. Rev. B1, 5352(1995.

[9] O. Zaslavski, Phys. Rev. B3, 4691(1996.

[10] S. N. Solodukhin, Phys. Rev. B3, 824(1996.
[11] J. A. Harvey and A. Strominger, iRecent Directions in Par-
ticle Theory—From Superstrings and Black Holes to the Stan-
dard Mode] Proceedings of the Theoretical Advanced Study
Institute in Elementary Particle Physics, Boulder, Colorado,
1992, edited by J. Harvey and J. Polchingkiorld Scientific,
Singapore, 1993 Report No. hep-th/920905&inpublishedt
S.B. Giddings, inString Quantum Gravity and Physics at the
Planck Energy ScaleProceedings of the International Work-
shop, Erice, Italy, 1992, edited by N. Sanch#&¥orld Scien-
tific, Singapore, 1993 Report No. hep-th/920911@&inpub-
lished; R.B. Mann(unpublished
[12] V. P. Frolov, Phys. Rev. 6, 5383(1992.
[13] R. B. Mann, A. Shiekh, and L. Tarasov, Nucl. Phg841, 134
(1992.



54 ONE-LOOP QUANTUM CORRECTIONS TO THE ... 2745
[14] A. M. Polyakov, Phys. Lett103B, 207 (1981). [25] D. I. Kazakov and S. N. Solodukhin, Nucl. Phyg429 153
[15] V. P. Frolov and G. A. Vilkovisky, Phys. Lett106B, 307 (1994.
(1981); V.P. Frolov and G.A. Vilkovisky, irQuantum Gravity  [26] S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D
(Proceedings of the Second Moscow Quantum Gravity Semi- 51 4302(1995; G. W. Gibbons and R. E. Kallosfibid. 51,
nar, Moscow, 1981)edited by M.A. Markov and P.C. West 2839(1995; C. Teitelboim,ibid. 51, 4315(1995.
(Plenum Press, New York, 1983 [27] J. S. Dowker, Class. Quantum Gra, L7 (1994.
[16] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved [28] O. Alvarez, Nucl. PhysB216 125 (1983.
Space(Cambridge Univ. Press, Cambridge, 1982 [29] V.P. Frolov and A.l. Zelnikov, irQuantum Gravity: Proceed-

[17] L. Suss_kind(unpublis_heai _ ings of the Fourth Seminar on Quantum Grayityloscow,
[18] S. Carlip and C. Teitelboim, Class. Quantum Grag2, 1699 1987, edited by M.A. Markov, V.A. Berezin, and V.P. Frolov

(1999; C. Teitelboim (unpublishegt M. Banados, C. Teitel- (World Scientific, Singapore, 1988p. 568.

boim, and J. Zanelli, Phys. Rev. Le#2, 957 (1994. .
[19] L. Susskind and J Uglur}rg Phys. RevaD 2780(1294)_ Al [30] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phigg.24, 443
' : ! ' ’ o (1994.

Barvinsky, V. P. Frolov, and A. |. Zelnikovipid. 51, 1741 .

(1999; D. V. Fursaev and S. N. Solodukhin, Phys. Lett. B [31] A. H. Chamseddine and M. Reuter, Nucl. Ph@817, 757
365 51(1996; J.-G. Demers, R. Lafrance, and R. C. Myers, (1988.

Phys. Rev. 052, 2245(1995; F. Larsen and F. Wilczek, Nucl. [32] J. S. Dowker, Phys. Rev. B0, 6369(1994.

Phys.B458, 249 (1996. [33] B. Birnir, S. B. Giddings, J. A. Harvey, and A. Strominger,
[20] G. W. Gibbons and S. W. Hawking, Phys. Revi® 2752 Phys. Rev. D46, 638(1992; S. W. Hawking, Phys. Rev. Lett.

(1977. 69, 406(1992; T. Banks, A. Dabholkar, M. Douglas, and M.
[21] S. W. Hawking and G. T. Horowitz, “The gravitational Hamil- O. 'Loughlin, Phys. Rev. D45, 3607(1992.

tonian, action, entropy and surface terms,” Report No.[34] D. Lowe, Phys. Rev. B}7, 2446(1993.

DAMTP-R-94-52, gr-qc/9501014unpublishedl [35] W. Israel, Int. J. Mod. Phys. B, 71(1994; D. J. Loranz, W.
[22] S.W. Hawking, inGeneral Relativityedited by S.W. Hawking A. Hiscock, and P. R. Anderson, Phys. Rev. 32, 4554

and W. Israe[Cambridge University Press, Cambridge, 1979 (1999; D. Markovic and E. Poisson, Phys. Rev. L&, 1280
[23] D. V. Fursaev and S. N. Solodukhin, Phys. Rev5p) 2133 (1995.

(1995. [36] R. C. Myers, Phys. Rev. B0, 6412(1994.

[24] 3. W. York, Jr., Phys. Rev. 33, 2092(1986; B. F. Whiting  [37] S. P. Trivedi, Phys. Rev. @7, 4233(1993.

and J. W. York, Jr., Phys. Rev. Leil, 1336(1988; H. W.  [38] T. Jacobson, G. Kang, and R. C. Myers, Phys. Re¢9[6587
Braden, J. D. Brown, B. F. Whiting, and J. W. York, Jr., Phys. (1994.

Rev. D42, 3376(1990.



