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One-loop quantum corrections to the thermodynamics of charged black holes

Valeri P. Frolov
CIAR Cosmology Program, Theoretical Physics Institute, Department of Physics, University of Alberta,

Edmonton, Alberta, Canada T6G 2J1
and P.N. Lebedev Physics Institute, Leninskii Prospect 53, Moscow 117924, Russia

Werner Israel
CIAR Cosmology Program, Theoretical Physics Institute, Department of Physics, University of Alberta,

Edmonton, Alberta, Canada T6G 2J1

Sergey N. Solodukhin
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Head Post Office, P.O. Box 79, Moscow, Russia

~Received 21 February 1966!

Quantum corrections are studied for a charged black hole in a two-dimensional~2D! model obtained by
spherisymmetric reduction of the 4D Einstein-Maxwell theory. The classical~tree-level! thermodynamics is
reformulated in the framework of the off-shell approach, considering systems at arbitrary temperature. This
implies a conical singularity at the horizon and modifies the gravitational action by terms defined on the
horizon. A consistent variational procedure for the action functional is formulated. It is shown that the free
energy reaches an extremum on the regular manifold withT5TH . The one-loop contribution to the action in
the Liouville-Polyakov form is reexamined. All the boundary terms are taken into account and the dependence
on the state of the quantum field is established. The modification of the Liouville-Polyakov term for a 2D space
with a conical defect is derived. The back reaction of the Hawking radiation on the geometry is studied and the
quantum-corrected black hole metric is calculated perturbatively. Within the off-shell approach the one-loop
thermodynamical quantities, energy, and entropy, are found. They are shown to contain a part due to hot ga
surrounding the black hole and a part due to the hole itself. It is noted that the contribution of the hot gas can
be eliminated by appropriate choice of the~generally, nonflat! reference geometry. The deviation of the
‘‘entropy - horizon area’’ relation for the quantum-corrected black hole from the classical law is discovered
and possible physical consequences are discussed.
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I. INTRODUCTION

That black holes possess some properties of a thermo
namical system characterized by appropriately defined
ergy, temperature, and entropy was first considered as jus
analogy@1# between black hole physics and the laws of th
modynamics. However, the remarkable discovery by Haw
ing of radiation from a black hole which looks thermal
large distances@2# strongly supported this analogy an
forced physicists to think of a black hole as a real therm
dynamical object like a heated blackbody. One of the
markable predictions of the analogy is that one can assoc
entropy with a hole which in the Einstein theory of gravity
proportional to the area of the horizon. Moreover, in pr
cesses involving a hole its entropy plays a role on an eq
footing with the entropy of conventional matter. In partic
lar, only their sum is the quantity which is nondecreasi
@1,3#. However, it is a mysterious and intriguing puzzle ju
what states of the hole are counted by the Bekenst
Hawking entropy. As a possible answer one can relate i
states of quantum fields which are hidden by the horizon a
consequently, remain invisible to an outside observer. T
present status of the problem and numerous attempts tow
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its resolution have been recently reviewed in@4,5#.
The role of quantum effects in black hole physics is two

fold. Semiclassically, a hole can be considered as surroun
by the quantum Hawking radiation which becomes therm
~heat bath! far away from the hole. Since this radiation pos
sesses a nontrivial stress-energy tensor its back reaction le
to deformation of the classical black hole geometry. On t
other hand, the quantum corrections lead to modifications
the gravitational effective action. This results in changes
the formulas for calculating the energy and entropy of th
hole. As an example of such a modification it was recen
observed, in two@6,7# and in four @8# dimensions, that the
classical Bekenstein-Hawking expression might be correc
by terms logarithmically dependent on the mass of a bla
hole. The calculations apply the conformal anomaly arg
ment and take a fixed classical black hole background. Ho
ever, the quantum deformation of the geometry affects t
black hole parameters, like the radius of horizon, introduci
some corrections. These also turn out to be of the ord
; lnM and cannot be neglected. Hence, the back react
effects necessarily must be included when considering
quantum thermodynamics of the black hole@9,10#.

Two-dimensional physics gives us an arena~see Refs.
2732 © 1996 The American Physical Society
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@11–13#! where the above-noted problems can find a preci
solution. The two-dimensional~2D! nonlocal Liouville-
Polyakov action@14# incorporates both the Hawking radia-
tion @15# and its back reaction on the geometry~see, e.g.,
Ref. @16#!. Therefore, its inclusion in the gravitational action
on an equal footing with the classical counterpart gives t
complete semiclassical description for the black hole. It
known but not always stressed that the Liouville-Polyako
action contains some ambiguity which is eliminated b
specification of the state of the quantum field. In the case
a black hole in equilibrium with thermal radiation this spec
fication must include the heat bath at large distances from
black hole. As a result, the effective action becomes depe
dent on the thermal state of the quantum field. In principl
this state can be characterized by a temperature differ
from the Hawking one. It is a remarkable and long-standin
fact that such a state can effectively be described as a qu
tum field on a singular instanton~i.e., on the Euclidean black
hole instanton with conical singularity on the horizon!. This
probably explains why the Euclidean conical singularit
method @17,18,8,7# gives a sensible formulation of black
hole thermodynamics. In this method one takes the Gibbon
Hawking @20# Euclidean approach and closes Euclidean tim
with arbitrary periodb, related to the temperatureT of the
system asb51/T. Evaluating the free energyF of the sys-
tem for arbitraryb, differentiatingF(b) with respect tob
and finally puttingb equal to the Hawking valueb5bH ,
one obtains the thermodynamical quantities~energy and en-
tropy! of the black hole@7,8,10#.

Recently, there was great interest in the study of diverge
quantum corrections to the entropy@19#. It was realized that
these divergences can be absorbed in the renormalization
gravitational couplings in the tree-level gravitational action
In two dimensions this results in a constant~not dependent
on the space-time geometry! addition to the entropy origi-
nated from the 2D Einstein term in the quantum effectiv
action ~see @7#!. This term is topological invariant in two
dimensions, does not affect the field equations, and it is
relevant to the analysis of the back reaction problem. Bei
mainly interested in the UV finite quantum corrections t
black hole thermodynamics we will assume throughout th
paper that the necessary renormalization was already d
and we deal with the renormalized quantum effective actio

In this paper we use the two-dimensional model to stud
the one-loop quantum effects in the thermodynamics of
charged black hole. We start in Sec. II with the 4D Einstein
Maxwell theory with boundary terms included appropriatel
@20#. Then, considering only spherically symmetric metrics
this model reduces to an effectively two-dimensional one
the dilaton type. The classical solution describes the we
known Reissner-Nordstro¨m charged black hole. The thermo-
dynamics of the classical black hole is reformulated in Se
III in the framework of the conical singularity method. We
especially notice the role of both the terms defined on t
external boundary and on the conical singularity in the we
defined variational procedure. The choice of state of th
quantum field and the corresponding form of the Liouville
Polyakov action are discussed in Sec. IV. In particular, w
take care of the boundary terms and derive the modifi
Liouville-Polyakov action for a space with a conical defec
The deformation of the geometry of a charged black hole d
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to Hawking radiation is calculated perturbatively in Sec. V.
The energy and entropy of the quantum-corrected black hole
are calculated in Sec. VI. The deviations from the classical
Bekenstein-Hawking form are obtained and the possible role
of these corrections is discussed.

II. SPHERICALLY SYMMETRIC REDUCTION OF 4D
EINSTEIN-MAXWELL THEORY

Let us consider 4D Einstein gravity coupled with a Max-
well field described by the action~we use the Euclidean sig-
nature!

Wcl52
1

16pGEM4
R~4!Agd4x1

1

16pGEM4
Fmn
2 Agd4x

2
1

8pGE]M4
K ~4!Ahd3x, ~2.1!

whereR(4) is the 4D scalar curvature. We have added in Eq.
~2.1! the boundary term according to@20#. K (4) is the trace of
the extrinsic curvature of the boundary]M4. If nm is the
outward unit vector normal to]M4, then we have

K ~4!5¹mn
m. ~2.2!

The action~2.1! is known to be divergent when the boundary
]M goes to infinity. The same presumably happens for the
one-loop effective action and requires some subtraction pro
cedure. Generally, one proceeds by comparing the divergen
quantity with that defined for a specially chosen background.
If gmn

0 is the background metric, then we define the sub-
tracted expression as@21#

Wsub5W@gm#2W@gmn
0 #, ~2.3!

where W includes both the classical~2.1! and one-loop
gravitational action. Presumably, in the quantum case we
would have to subtract the contribution of the nonflat refer-
ence metric of the asymptotic geometry~see Ref.@10# for
such an example!. Therefore, we shall consider an arbitrary
reference~background! metric hereafter.

Our first goal is to make the reduction of the general
action ~2.1! to the special case of spherically symmetric
space times. Spherically symmetric metrics are of the form

ds25gab~z!dzadzb1r 2~z!~du21sin2udw2!. ~2.4!

Herea,b, . . .50,1, gab(z) is the 2D metric on the effec-
tive two-dimensional spaceM2 covered by coordinates
za5(t,x), andr 2(z) is the scalar field onM2. We have, for
the scalar curvature of the metric~2.4!,

R~4!5R~2!1
2

r 2
~¹r !22

2

r 2
hr 21

2

r 2
, ~2.5!

where all the geometrical objectsR(2),¹,h are defined with
respect to 2D metricgab(z).

For the spherical reduction of the action it is sufficient to
consider boundaries]M4 of the spherically-symmetric space
M4 with metric ~2.4! that are a direct product
]M45]M23S2, where ]M2 is a boundary of 2D space
M2; S2 is a 2D sphere. A normal vectornm to this boundary
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has nonzero components only in the direction tangent to t
spaceM2, nm5(na,0,0). Hence, we obtain, for the trace o
the extrinsic curvature of the boundary~2.2!,

K ~4!5k12na
]ar

r
,

k[¹an
a[

1

Ag
]a~Agna!5]an

a1
1

2g
]agna, ~2.6!

whereg5detgab . If the metric is static and spherisymmet
ric it can be written in the Schwarzschild form:

ds25g~x!dt21g21~x!dx21r 2~x!~du21sin2udw2!.
~2.7!

Then we havena5(0,g1/2) and, hence,

K ~4!5k1
2

r
r 8g1/2, k5~g1/2!8.

In accordance with our assumption about spherical sy
metry the Maxwell fieldAm is tangent to the spaceM2, i.e.,
the only nonzero component of the gauge curvature isFtr
Þ0.

Taking into account that the integration over angle
(u,w) in Eq. ~2.1! induces the measure

E Agdudw54pr 2Ag,

we finally get that the action~2.1! for the spherically sym-
metric metric~2.4! reduces to the effective two-dimensiona
theory

Wcl52
1

4GEM2
@r 2R12~¹r !212#Agd2z

1
1

4GEM2
r 2Fab

2 Agd2z2
1

2GE]M2
r 2k. ~2.8!

In two dimensionsFab has only one component

Fab5eabF, ~2.9!

whereeab is the antisymmetric Levi-Civita tensor. It follows
from the equations of motion for the Maxwell field,

¹a~r 2Fab!50,

that

F5
Q

r 2
, Q5 const, ~2.10!

whereQ is the electric charge.
Inserting Eqs.~2.9! and ~2.10! into the action~2.8! we

find that the whole theory reduces to some type of 2D dilato
gravity:
he

-

s

l

n

Wcl52
1

4GEM2
@r 2R12~¹r !212U~r !#Agd2z

2
1

2GE]M2
r 2k, ~2.11!

with the fieldr 2(z) playing the role of the dilaton field. The
dilaton potential reads

U~r !512
Q2

r 2
. ~2.12!

Wick’s rotation to the Euclidean metric is typically accom-
panied by the corresponding complexification of the charge
Q→ iQ assuming that after all calculations we make the con
tinuation back to the realQ @22#. Having this in mind we use
the expressions~2.11! and ~2.12! whereQ is already real.
Variation of the action~2.11! with respect to the dilatonr 2

gives the dilaton equation of motion

rR22hr1Ur850, ~2.13!

while the variation with respect to the metricgab gives

Gab[22r¹a¹br1gab@hr 22~¹r !22U#50.
~2.14!

Equation~2.14! implies that the vectorja5ea
b]br is a Kill-

ing vector. In the region where (¹r )2Þ0 the Killing time t
(ja]a5] t) and r can be used as coordinates onM2. The
equationGt

t2Gr
r50 implies that the metric is of the form

ds25g~r !dt21
1

g~r !
dr2. ~2.15!

The trace of Eq.~2.14! is

hr 252U~r !. ~2.16!

This relation gives

g~r !5gcl~r !5
1

r E
r

U~r 8!dr8512
2MG

r
1
Q2

r 2

5
~r2r1!~r2r2!

r 2
, ~2.17!

whereM is an integration constant to be identified with the
Arnowitt-Deser-Misner ~ADM ! mass, and r65MG
6A(MG)22Q2 are the radii of the outer and inner horizons.

III. TREE-LEVEL BLACK HOLE THERMODYNAMICS

The Euclidean action~2.11! is the starting point for the
formulation of the classical thermodynamics of the black
hole. The standard procedure for describing the thermody
namical properties of a field system is to go to the Euclidean
space by a Wick’s rotationt5 i t and to close thet direction
with period 2pb5T21, whereT is the temperature of the
system. The system is assumed to be contained in a box
sizeL. In principle, the field configuration does not neces-
sarily satisfy any field equations. The latter arise as a require
ment of extremality of the free energy functional under ap-
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propriately defined boundary conditions.
Analogously the thermodynamics of black holes can

formulated off-shell. We discuss now this formulation i
more detail. Consider the Euclidean static metric of the ge
eral type

ds25g~x!dt21
e22l~x!

g~x!
dx2, ~3.1!

written in the fixed coordinate system (t,x) where the coor-
dinates range between the limits 0<t<2pb̄; x1<x<L. In
what follows we assume that an external boundary is loca
at x5L, while x5x1 is the location of the horizon of the
black hole.

The temperatureT of the system is fixed at the boundar
and can be invariantly defined asT215*dtg00

1/2(x5L). The
system is also characterized by the value of the dilaton fi
r B at the boundary,r B5r (x5L). The fact that the system
includes a nonextremal black hole means that at some p
x5x1 ~horizon! the function g(x) has a simple zero,
g(x1)50. In this case the Euler characteristic of the spa
described by Eq.~3.1! is fixed to bex51. Thus the system is
specified by~i! fixing temperatureT and value of the ‘‘ra-
dius’’ r B on the external boundary, and by~ii ! fixing black-
hole topology. The statistical ensemble consists of all t
functions (g,l,r ) satisfying these conditions. For an arb
trary metric from this class the quantity
bH[(2e2l/g8)x5x1

is a functional of the metric and it is
not fixed by the above conditions. In the general case suc
metric describes the Euclidean space with conical singula
at the point x5x1 ~horizon! with angle deficit
d5(12a)2p, wherea5b̄/bH . This implies that the scalar
curvature has ad-like contribution coming from the tip of
the cone~see details in Ref.@23#!:

R~2!52S 12a

a D d~x2x1!1R̄~2!, a5
b̄

bH
, ~3.2!

whereR̄(2) is the regular part of the curvature. The conic
singularity vanishes whena51. Note that only combination
a5b̄/bH has an invariant meaning whilebH and b̄ are co-
ordinate dependent.

In many respects, the approach which we use here is si
lar to the approach developed by York and collaborato
@24#. The essential difference, however, is that in@24# only
regular metrics are considered. In our approach the statist
ensemble specified by conditions~i! and ~ii ! includes both
the regular metrics and metrics with conical singularities. F
a metric of general type~with an arbitrarya) the classical
action ~2.11! due to Eq.~3.2! takes the form

Wcl52
1

4GEM̄ @r 2R̄12~¹r !212U~r !#Agd2z

2
1

2GE]M̄
r 2k~2!2

pr1
2

G
~12a!. ~3.3!

For the static metric~3.1!, action,~3.3! is
be
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Wcl52
~2pb̄!

4G E
x1

L

@~r 2!8elg812gel~r x8!212Ue2l#

2
pr1

2

G
. ~3.4!

One can define the free energyF, entropyS, and energy
E associated withWcl as

F5~2pb!21Wcl , S5~b]b21!Wcl , E5
1

2p
]bWcl ,

~3.5!

where 2pb5T21 and b5b̄gB
1/2. Applying these formulas

to Eq. ~3.4! we obtain that the energyE is given by the
expression

E52
1

4GgB
1/2E

x1

L

@~r 2!8elg812gel~r x8!212Ue2l#,

~3.6!

and the entropy

SBH5
pr1

2

G
~3.7!

takes the standard Bekenstein-Hawking form. In the calcula-
tions made up to this point we did not assume thata51, in
other words the calculations were done off-shell. Now, we
fix the temperatureT5(2pb)21 and consider the extremum
of the free energyF5E2TS or equivalently the extremum
of the actionWcl . Remarkably, such an equilibrium configu-
ration automatically satisfies the second law of black hole
thermodynamics:

dE5TdS ~3.8!

for small variations around the equilibrium state.
It should be noted that onlyT andr B at x5L and condi-

tion g(x1)50 at the horizon are assumed to be fixed. The
functionsg(x), g8(x), r (x) and the values on the horizon
of r15r (x1), g8(x1) ~or bH) are variable. The total varia-
tion of the actionWcl is dWcl5d rWcl1dgW cl1dlWcl . For
partial variations we have

d rWcl52
2pr ~x1!

G
~12a!dr ~x1!2

~2pb̄!

4G

3E
x1

L

dr @22r ~elg8!824~gelr 8!812Ur8e
2l#dx,

~3.9!

dgWcl52
~2pb̄!

4G E
x1

L

dg@2„el~r 2!8…812elr x8
2#dx,

~3.10!

dlWcl52
~2pb̄!

4G E
x1

L

dl@el~r 2!8g812elg~r x8!2

22Ue2l#dx. ~3.11!
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We see that variation ofWcl contains terms due to variations
of the functions (r ,g,l) inside the regionx1<x<L that
leads to the equations of motion

22r ~elg8!824~gelr 8!812Ur8e
2l50,

2„el~r 2!8…812elr x8
250,

el~r 2!8g812elg~r x8!222Ue2l50, ~3.12!

which of course coincide with Eqs.~2.13! and~2.14! written
for the metric~3.1!. Variationsdg8(x1) anddg8(L) on the
boundaries (x1 ,L) are canceled in Eqs.~3.9!–~3.11!. This
happens because of the presence of the ‘‘surface’’ terms
Eq. ~3.3! located on the external boundary and on the sing
lar point ~the cone tip!.

In some sense, the tipS of the cone can be considered a
some kind of boundary additional to]M of the spaceM . It
is the presence of the additional term located onS in the
gravitational action~3.3! that makes the variational proce
dure on the conical space well defined. The term connec
with the tip of the cone compensates variations of the norm
derivatives of the metric atS in the same manner as the
standard Gibbons-Hawking terms does at the external bou
ary ]M . The variation of the action contains also a ter
proportional to the variation of the ‘‘radius’’r1 of the hori-
zon, dr1 . The requirementd rWcl50 gives the condition
a51. This is the expected result. It means that the equil
rium state is reached on a regular manifold without conic
singularity ~Gibbon-Hawking instanton!.

Equations~3.12! imply that we may chooser5x. The
metric functiong(r ) takes the form~2.17!

g~r !5
1

r Er1

r

U~r!dr. ~3.13!

In particular, we have

g~L !5
1

LEr1

L

U~r !dr, gr8~L !5L21U~L !2L21g~L !.

~3.14!

On the other hand, on the horizon we have

2

bH
[gr8~r1!5

U~r1!

r1
. ~3.15!

The energy functionalE, Eq. ~3.6!, takes the form

E5
1

2GgB
1/2E

x1

L

G0
0dx1Esurf,

Esurf52
1

2G
„el~r 2!8g1/2…x5L , ~3.16!

and modulo the constraintG0
050 it reduces to the surface

terms only. Equivalently, we obtain a coordinate invaria
expression for the energy~3.16!:

E52
1

2pb

1

GE]M
rna]ar . ~3.17!
in
u-
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-
ted
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The quantity~3.17! is divergent if]M goes to infinity. The
subtraction procedure described in Sec. II leads to the res

E5E@g#2E@g0#

5
1

G S 1

2pb0
E

]M
rn0

a]ar2
1

2pbE]M
rna]ar D ]ar

5
1

G
@r ~g0

1/22g1/2!# r5L . ~3.18!

Here we have chosenr 05r for the reference metric. Note
that the natural condition to be imposed on the background
that in the limit L→` the background temperature
T5(2pb0)

21 coincides with the black hole temperature
measured at infinity. This is satisfied ifg05 limL→`g(L).
For an asymptotically flat metric,

g~L !512
2MG

L
1OS 1L D ,

we haveg051. Hence for the energy

E5
L

G
@12g1/2~L !# ~3.19!

we find in the limitL→` that

E5M . ~3.20!

It should be noted that formulating the variational procedur
for the charged metric we typically need to augment quant
ties fixed at the boundary by a quantity characterizing th
Maxwell sector of the model: chargeQ or potentialA0 @24#.
The variation with respect toAm would give us the Maxwell
equations. Instead of this we first solved the Maxwell secto
exactly and all the information about it was collected in the
‘‘dilaton’’ potential U(r ), then we formulated the variational
problem only for the gravitational sector. These two way
obviously lead to the same results.

The above consideration is valid for an arbitrary potentia
U(r ) provided its form is fixed. For the variations that
change the form of the potentialU(r ) we obtain, from
~3.19!,

dE5dM2
1

2GEr1

L

dU~r !dr. ~3.21!

For the special choice of the potentialU(r ) defined by Eq.
~2.12! we reproduce the known form of the second law for a
charged black hole

dM5TdS1
Q

Gr1
dQ. ~3.22!

However, the specific form of the potentialU(r ) is not es-
sential for the above consideration. It can be shown@25# that
the quantum corrections change the form of the potentia
U(r ) and result in the deformation of the black hole metric
~3.13!. Though our methods can deal with such a possibilit
as well, we do not consider this here.
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Special consideration is needed for an extremal bla
hole. In this case we have

U~r1!50, g8~r1!50. ~3.23!

The geometry of an extremal black hole instanton is ve
different from the nonextremal one. In the metric

ds25g~r !dt21g21~r !dr2 ~3.24!

t can be closed with arbitrary period 2pb not forming any
singularity. The horizon lies now at an infinite distance fro
any other point of the instanton manifold. Near the horiz
the extremal instanton resembles a constant curvature s
with metric

ds25
r1
2

z2
~dt21dz2!, ~3.25!

wherez→2` if r→r1 . The extremal black hole instanto
can be considered as conformally related to a flat cylindri
space.

These features of the extremal geometry are crucial
the formulation of the thermodynamics of the extremal ho
@26#. Since there is no conical singularity on the horizon w
do not have the additional term in the action and it reads

W52pbE, ~3.26!

where the energyE takes the form~3.19!. We obtain from
Eq. ~3.26! for the free energy of the systemF5E, and hence
the entropy of the extremal hole is formally zero:

Sext50. ~3.27!

Moreover, since the free energy does not depend on the
peratureb21, the requirement of extremality of the free e
ergy underb fixed does not give a relation between para
eters of the hole geometry (r1) andb as we found for the
nonextremal case. This can be interpreted as implying
the extremal black hole can be in equilibrium at arbitra
temperature@26#. However, the physical meaning of this fo
mal result is not clear. In particular, quantum effects m
change this conclusion. We are going to consider this i
separate publication.

IV. LIOUVILLE-POLYAKOV ACTION AND CHOICE
OF THE THERMAL STATE OF THE QUANTUM FIELD

In order to include one-loop quantum effects in the ana
sis, consider a two-dimensional quantum conformal mass
scalar field. This produces the following contribution to t
partition function:

Z5e2G, G5 1
2 ln deth, ~4.1!

whereh5¹m¹m is the two-dimensional Laplacian. The ca
culation of the effective actionG is usually made by integrat
ing the conformal anomaly. The result is well known@14#:

GPL@g#5
1

96pE Rh21R. ~4.2!
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However, if we wish to work with Eq.~4.2! we are con-
fronted with at least two problems. First, the action~4.2!
does not transform properly under a constant~global! con-
formal transformation,gmn→Lgmn . ~This was noted by
Dowker @27#.! Second, when applying Eq.~4.2! to a flat
space~whereR50), we get that the corresponding mean
value of the stress-energy tensor^Tmn& obtained by the varia-
tion of Eq. ~4.2! vanishes. This is certainly valid for the
vacuum state, but not for other possible states. In particular
it is not clear how Eq.~4.2! can reproduce the effective ac-
tion for a thermal radiation. So, writing the effective action
in the form ~4.2! one loses the information on the concrete
choice of the state of the quantum field. We demonstrate tha
the information about the state of a quantum field is directly
connected with the boundary terms which are to be added to
Eq. ~4.2!. Therefore, we begin our consideration of one-loop
quantum effects with a more careful treatment of the
Liouville-Polyakov action, taking into account all the bound-
ary terms.

It should be emphasized that the integration of the con-
formal anomaly which is used to derive Eq.~4.2! does not
give the absolute value of the effective actionG@g#, but
rather the difference between the effective actions for two
conformally related (gmn5e2sĝmn) manifolds@28#:

G@g#5G@ ĝ#2
1

24p S E
M

~¹̂s!21E
M
R̂s12E

]M
dŝk̂s D

2
1

8pE]M
dŝn̂m]ms. ~4.3!

Here n̂m is the outward vector normal to the boundary]M ,
andk̂5¹mn̂

m is the trace of the second fundamental form of
the boundary.

One can writeG@g# in terms of quantities defined only
with respect to metricgmn if we introduce an additional field
c defined as a solution of the equation

hc5R. ~4.4!

For conformally related metricsgmn5e2sĝmn the respective
quantities are related as

R5e22s~R̂22ĥs!, c5ĉ22s,

k5e2s~ k̂1n̂m]ms!, nm5e2sn̂m. ~4.5!

Using these relations, one can show that the effective action
G@g# of Eq. ~4.1!, conformally transforming according to Eq.
~4.3!, takes the form

G@g#5
1

48pEM @ 1
2 ~¹c!21cR#1

1

24pE]M
kcds1G0 ,

~4.6!

where all the quantities are defined with respect togmn and
the ‘‘integration constant’’G0 is a conformally invariant
functional.

Let us now consider the conformal massless fieldw in a
thermal state with temperatureT in a space time with hori-
zon. The relevant static Euclidean metric reads
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ds25g~x!dt21
1

g~x!
dx2, ~4.7!

or

ds25g~r!dt21dr2, ~4.8!

wheret lies in the range 0<t<2pb̄ and 0<r<Lr . As-
sume thatg(x) has a zero of first order at the pointx5r1 .
This is the Killing horizon. Near the horizon we hav
g(r)5r2/bH

2 , wherebH52/gx8(r1). For b̄5bH , Eq. ~4.8!
describes a regular black hole instanton. Ifb̄ÞbH the metric
has a conical singularity atr50 with angle deficit
d52p(12a),a5b̄/bH . The metric~4.8! can be written in
the conformal form

ds25e2sds0
2 , ds0

25~dz21a2z2dt̃ 2!,

e2s5bH
2 g

z2
, z5z0expF 1

bH
E
Lr

r dr

AgG , ~4.9!

wherea5b̄/bH , t5b̄ t̃, and 0<t̃<2p, 0<z<z0 . Note
that near the horizonz'r and hence the conformal factor i
regular on the horizon.

For b̄5bH Eq. ~4.9! conformally relates the metric of the
black hole instanton with the metric on the flat diskD of
radius z0 . For conformally related metrics,gmn5e2sĝmn ,
the stress-energy tensors are related as follows:

Tmn@g#5Tmn@ ĝ#1
1

48p
$24¹̂m¹̂ns14]ms]ns

1gmn@4ĥs22~¹̂s!2#%. ~4.10!

Thus, for Eq.~4.9! we have

Ttt5Ttt
~0!1

1

48p S 2

bH
2 12gr92

3

2

~gr8!2

g D , ~4.11!

whereTtt
(0) is energy density of the quantum field on the fl

diskD. At infinity r5`, g51, so we have

Ttt5Ttt
~0!1

1

24pbH
2 . ~4.12!

Assume that the quantum field onD is in the state for which
Ttt
(0)50. We call this state ‘‘vacuum on the disk.’’ Physicall

this state is just the usual Minkowski~or Hartle-Hawking!
vacuum state in the Rindler space.

For this choice we find that the quantum field on the bla
hole instanton is in the state of the Hartle-Hawking vacuu
with Hawking temperatureTH51/2pbH since Eq.~4.12! co-
incides with the energy density of a thermal bath with te
peratureTH . Hence, starting with the ‘‘vacuum on the disk
state on the flat disk and making the regular conformal tra
formation~4.9!, we obtain the quantum field in the state wi
Hawking temperature on the regular black hole instanton
we start with the state at finite temperatureT05(2pb0)

21

on the diskD we obtain the state with the temperatu
e

s

at

y

ck
m

m-
’’
ns-
th
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T5(2pb)215(2p)21@b0
221bH

22#21/2 on the black hole
instanton, which differs from the Hartle-Hawking state.

After these general remarks consider now a singular bla
hole instantonMa with 0<t<2pb̄ (b̄ÞbH). Then Eq.
~4.9! conformally relates it to the flat coneCa (a5b̄/bH),
andz0 is the proper length of the cone’s generator. The con
formal factors is an everywhere regular function, and we
find that the stress-energy tensorsTmn on the two spaces are
related by the same expression~4.10! and~4.11!, where now
Ttt
(0) is the energy density on the flat coneCa ~ @29#, see also

@30#!:

Tt
t~0!5

1

24p

1

z2 S 12a2

a2 D , a5
b̄

bH
. ~4.13!

At infinity, the energy density

Ttt→
1

24pb̄2

takes the thermal form with temperatureT`52pb̄21. Hence
we may conclude that the thermal state of the quantum fie
with TÞTH in the gravitational field of a black hole can be
effectively described as a quantum field on a singular insta
ton ~i.e., on the instanton with a conical singularity on the
horizon!.

One can calculateTmn directly in terms of the metric on
the black hole instantonMa with a conical singularity (b̄
ÞbH) ~see@7#!. Equation~4.4! for the metric~4.8! has the
solution

c52 lng1bExdx

g
1C52 lng1bErdr

Ag
1C.

~4.14!

In order to fix constantb in Eq. ~4.14! consider the renor-
malized stress-energy tensor which is expressed viac as@31#

Tmn5
1

48p
$2¹m¹nc2]mc]nc1gmn@22R1 1

2 ~¹c!2#%.

~4.15!

The conformal transformation of Eq.~4.15! is given by Eq.
~4.10!. Insertingc @Eq. ~4.14!# into Eq. ~4.15! we obtain

Ttt5
1

48p S 2gr92
3

2

~gr8!2

g
1
b2

2 D . ~4.16!

In order to have at infinity thermal behavior with
T5(2pb̄)21 we must fix the constantb52/b̄ in Eq. ~4.14!.

This identification automatically gives us that in the limit
r→0 the functionc @Eq. ~4.14!#,

c→cc522S 12
bH

b̄
D lnr, ~4.17!

coincides with the solution of the cone equation:

hccc5Rc , Rc52S 12a

a D d~r!, ~4.18!
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wherehc is the Laplacian on the flat coneCa . Thus, the
stress-energy tensorTmn for the state with temperature
T5(2pb̄)21 at infinity coincides with theTmn of a quantum
field on the black hole instanton~4.9! with conical singular-
ity on the horizon (b̄ÞbH).

In order to fix the constantC in Eq. ~4.14!, which in fact
can depend on the characteristics of the system, conside
conformal transformation determined bys(x) @Eq. ~4.9!#:

2s~x!5 lng~x!1
2

bH
E
x

L dx

g~x!
12ln

bH

z0
, ~4.19!

which relates@see Eq.~4.9!# our singular black hole instan
ton with a flat coneCa with radiusz0 . Then we have that the
functionsc(x) on these spaces are related as follows:

cMa~x!5cCa
~z!22s~x!, ~4.20!

wherez(x) is given by Eq.~4.9!. On the other hand, for eac
functioncMa andcCa

we have the representation~4.14!:

cMa~x!52 lng~x!2
2

b̄
E
x

L dx

g~x!
1C,

cCa
~z!522S 12

1

a D ln zz0 1C~a,z0!. ~4.21!

HereC(a,z0) is a function of onlya andz0 .
Plugging Eqs.~4.19! and ~4.21! into Eq. ~4.20!, we find

for the constantC522ln(bH /z0)1C(a,z0). Really, there is
no dependence ofC onz0 since under rescalingz0→egz0 we
haveC(a,z0)→C(a,z0)22lng. Thus, finally we have

cMa~x!52 lng~x!2
2

b̄
E
x

L dx

g~x!
22ln

bH

z0
1C~a,z0!.

~4.22!

In order to write down the Polyakov-Liouville action fo
this case it should be noted that in the presence of the con
singularity the conformal transformation of the effective a
tion ~4.1! must be modified. If two conical spacesMa and
M̂a with the angle deficitd52p(12a) and a tipS are
related by a regular conformal transformatio
gmn5e2sĝmn , then the corresponding effective actions a
related as follows@32#:

G@g#5G@ ĝ#2
1

24p S E
M̂a

~¹̂s!21E
M̂a
R̂s12E

]M̂a
dŝk̂s D

2
1

8pE]M̂a
dŝn̂m]ms2

1

12

~12a2!

a
sh , ~4.23!

wheresh is the value at the tipS of the cone.
Taking into account the transformation law~4.5! of c, the

effective action onMa, transforming according to Eq
~4.23!, can be written in the form
r the

-

h

r
ical
c-

n
re

.

G@Ma#5
1

48pEMa
@ 1
2 ~¹c!21cR̄#1

1

24

~12a2!

a
ch

1
1

24pE]Ma
kcds1G0 . ~4.24!

HereR̄ is the regular part of the scalar curvature, andc(x) in
Eq. ~4.24! is the solution of the equation
hc5R[2@(12a)/a#dS1R̄. For a static metric~4.7! c
takes the form~4.22!.

We denote bych5c(S) the value ofc on the horizon
~tip of the cone! and byG0 a conformally invariant func-
tional.

It is worthwhile to note that the expression~4.24! can be
rewritten in two equivalent forms. The first one,

G@Ma#5
1

48pEMa
@ 1
2 ~¹c!21cR#1

~12a!2

24a
ch

1
1

24pE]Ma
kcds1G0 , ~4.25!

involves quantities defined on the full conical spaceMa:
R[2(a2121)dS1R̄, hc5R.

Another way to present the effective action on the conica
spaceMa is to write it by using quantities defined only on
the regular partMa\S:

G@Ma#5
1

48pEMa\S
@ 1
2 ~¹c̄!21c̄R̄#1 1

12 ~12a!c̄h

1
1

24pE]Ma
k̄c̄ds1O„~12a!2…, ~4.26!

where c̄5ca51 ,hc̄5R̄. The effective action in this form
was written in@10#.

V. QUANTUM-CORRECTED BLACK HOLE GEOMETRY

In the semiclassical approximation~when the metric is not
quantized! the one-loop quantum effects are taken into ac
count by adding to the classical gravitational action the quan
tum counterpart obtained by integrating out the matter fields

W5Wcl1G. ~5.1!

Following our spherically symmetric considerations we take
the classical partWcl to have the form~2.11! ~with correct
subtraction of the contribution due to the reference metric, a
has been explained in Sec. III! while the one-loop contribu-
tion G is the Polyakov-Liouville action~4.24!. Of course, in
a self-consistent treatment the quantum effective actionG
must be obtained by the same spherically symmetric redu
tion of the 4D matter fields as has been done for the grav
tational partWcl . However, the effective action becomes a
rather complicated quantity which makes the analysis diffi
cult. Therefore, we consider here the simplest case when t
effective 2D matter is conformal andG is the nonlocal
Polyakov-Liouville functional.

We begin our consideration of one-loop quantum effect
by studying the corrections to the classical geometry of th
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black hole induced by quantum corrections to the act
~5.1!. Variation of Eq.~5.1! with respect to the metric give
the equations

Gab52Tab , ~5.2!

Tab5
G

24p
$2¹a¹bc2]ac]bc2gab@2R2 1

2 ~¹c!2#%,

~5.3!

whereGab is given by Eq.~2.14!. The variation with respec
to the dilaton fieldr 2(x) gives the same equation as in th
classical case:

2R22hr1Ur850. ~5.4!

An important consequence of Eqs.~5.2! and~5.4! is that the
space-time singularity now is placed at finite radius~value of
the dilaton! r 25r cr

2 [G/12p. This typically happens in two-
dimensional models of gravity, as has been previously
served in the string context@33# and for the theory unde
consideration in@34,25#. For this value of the dilaton the
kinetic term in Eq.~5.1! becomes degenerate. On the oth
hand, taking the trace of Eq.~5.2! we have

hr 222U~r !5
G

12p
R. ~5.5!

Combining this relation with Eq.~5.4! we obtain, for the
curvature,

R5
2U2rU 822~¹r !2

r 22r cr
2 , ~5.6!

which implies a singularity atr5r cr . We do not investigate
here the behavior of the solution of Eqs.~5.2! and~5.4! near
this point. Instead, we assume that the outer horizon lie
r1@r cr . Then, in the regionr>r1 we may solve Eqs.~5.2!
and~5.4! perturbatively~with respect tor cr /r1) considering
Tab in the right-hand side~r.h.s.! of Eq. ~5.2! as a small
perturbation. This gives the correction to the black hole
ometry to first order in the Planck constant\.

As earlier we consider a static solution. We define fun
tions f andM as

f5~¹r !2, M5 1
2 r @12~¹r !2#1

Q2

r
, ~5.7!

and chooser as one of the coordinates, while the Killin
time t as the other coordinate. For this choice of the coor
nates we get

ds25 f ~r !e2F~r !dt21
1

f ~r !
dr2, ~5.8!

f ~r !512
2M ~r !

r
1
Q2

r 2
. ~5.9!

Equation~5.2! takes the form
ion
s

t
e

ob-
r

er

s at

ge-

c-

g
di-

2r¹a¹br5gab

2M

r
2gabT1Tab , T5gabT

ab.

~5.10!

Differentiating Eq.~5.7! and using Eq.~5.10! we obtain

2]aM5]br ~da
bT2Ta

b!. ~5.11!

This equation is identically satisfied for the value of index
a50, while for a51 it gives

] rM5 1
2Tt

t . ~5.12!

By taking the trace of Eq.~5.10! we obtain the equation for
the functionF(r ):

] rF5
1

2r f
~Tt

t2Tr
r !. ~5.13!

We consider the r.h.s. of Eqs.~5.12! and ~5.13! as a pertur-
bation. Then, solving these equations perturbatively, we
must take their right-hand sides on the classical background
At the classical level we haveF(r )50 andM5 const, and
for the static metric~5.8! the stress-energy tensorTab @Eq.
~5.2!# reads

Tt
t5kF12 f 92

1

2 f S f 822 4

bH
2 D G ,

Tr
r5kF 12 f S f 822 4

bH
2 D G . ~5.14!

Herek5G/24p, bH52/f 8(r1). We must put the classical
metric ~2.17! with f5gcl(r )5r22(r2r1)(r2r2),
r65MG6A(MG)22Q2 into Eq. ~5.14!.

It should be noted thatTab given by Eq.~5.14! is diver-
gent at the inner horizonr5r2 . This is the well-known
divergence@35# which makes the perturbation scheme non-
applicable nearr5r2 . To derive the conditions of applica-
bility of the perturbation scheme considerTb

a first at the
outer horizonr5r1 and then taker2;r1 . Then we ob-
serve that bothTt

t andTr
r defined by Eq.~5.14! remain finite

in this limit, while the combinationf21(Tt
t2Tr

r) appearing
in Eq. ~5.13! diverges ask@(r12r2)r1#21. The perturba-
tion analysis works if the parametersr1 ,r2 are such that
this dangerous term is eliminated by the condition
k@(r12r2)r1#21!1 which implies that
k@r1#22!12r2 /r1 . Thus, takingr1 to be large enough
we always can come arbitrarily close to extremality
r2;r1 . This important circumstance allows us to apply our
consideration to charged black holes withQ;M , which
guarantees stability of the thermodynamical ensemble for an
arbitrary large ‘‘radius’’r B of the external boundary.

Equations~5.12! and ~5.13! are easily integrated. Denote

m~r !52k21@M2M ~r !#. ~5.15!

Then the integration of Eq.~5.12! gives
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m~r !52
1

kE
r

Tt
t~r !dr5C~r !1Aln

~r2r2!

l
1Bln

r

l
,

C~r !52
2

bH
2 r2

~r12r2!2

2r1r2r
2
2~r11r2!

r 2
1
10r1r2

3r 3
,

A52
~r12r2!2~r11r2!~r1

2 1r2
2 !

2r1
4 r2

2 ,

B5
~r12r2!2~r11r2!

2r1
2 r2

2 . ~5.16!

As earlier,r6 denotes the ‘‘radius’’ of the classical inner an
outer horizons. The following useful identity between co
stantsA andB is worth noting:A1B524MGbH

22 . In Eq.
~5.16! we have introduced a distancel in order to have di-
mensionless quantities under the logarithms. The final res
for the energy and entropy calculated in Sec. VI do not
pend on this parameter. It seems natural to assumel to be of
order of the Planckian lengthl;r cr . However, this point is
not essential for our further considerations.

Similarly the integration of Eq.~5.13!,

F~r !5 1
2 E

r

L 1

r f
~Tr

r2Tt
t!dr, ~5.17!

for f5gcl(r ) with the imposed conditionF(L)50 gives

F~r !5 1
2 k@F~L !2F~r !#,

F~r !52
~r1

4 2r2
4 !

r1
4 r2~r2r2!

1
4

r 2
1
4~r11r2!

r1r2r

1D ln@~r2r2!/ l #1Eln~r / l !,

D5
1

r1
4 r2

2 ~3r1
4 12r1

3 r212r1
2 r2

2 12r1r2
3 2r2

4 !,

E5
1

r1
2 r2

2 ~23r1
2 22r1r223r2

2 !. ~5.18!

Consider now the special case of theuncharged black
hole (Q50). The classical metric function is
gcl(r )512r1 /r , r152MG, bH52r1 . For the quantum-
corrected metric we get

f ~r !512
2MG

r
1

km~r !

r
, ~5.19!

m~r !52
7r1

4r 2
1

1

2r
2
2r

bH
2 2

1

2r1
ln
r

l
~5.20!

and

F~r !5 1
2k@F~L !2F~r !#,

F~r !5
3

2r 2
1

2

r1r
2

1

r1
2 ln

r

l
. ~5.21!

For a large sizeL of the box we have
d
n-

ults
de-

exp„2F~r !…5S rL D k/r1
2

expF2kS 3

2r 2
1

2

r1r
D G . ~5.22!

One of the important characteristics of a black hole is the
radius of its horizon. In our model its role is played by the
value r̄1 of the dilaton field on the horizon. For the
quantum-corrected solution~5.15! it is shifted with respect to
the classical valuer1 . To see this, take the condition
f ( r̄1)50, which is solved as r̄15M ( r̄1)G
1A„M ( r̄1)G…

22Q2.
Expanding this with respect tok we finally have

r̄15r12kbHm(r1)/(2r1), where the quantitiesr1 ,bH
are classical quantities calculated for massM and charge
Q. From this it immediately follows that

r̄1
2 5r1

2 2kbHm~r1!. ~5.23!

This identity can be interpreted as the deformation of the
‘‘horizon area’’ because of the quantum corrections.

VI. QUANTUM CORRECTIONS TO BLACK-HOLE
THERMODYNAMICS

Our approach to the one-loop thermodynamics describe
by the actionW @Eq. ~5.1!# is essentially the same as in the
tree-level approximation considered in Sec. III. We fixr B ,
the temperatureT5(2pb)21 on the boundaryx5L of the
system and the black hole topology of the space-time geom
etry, and define the off-shell entropy and energy by the rela
tions

S5~b]b21!W, E5
1

2p
]bW. ~6.1!

Then, taking the Euclidean static metric in the form~3.1!
with arbitrary functionsg(x),l(x) satisfying the above con-
ditions @g(x) has simple zero atx5x1#, we find the equilib-
rium state of the system described by the extremum of th
functionalW@g(x),r (x),l(x)#:

dW[d rW1dgW1dlW50. ~6.2!

For our choice of the action for the quantum field the one-
loop partG does not depend on the dilaton fieldr (x). There-
fore, a variation ofW with respect tor (x) is exactly the
same as for the classical actionWcl , d rW5d rW cl @see Eq.
~3.9!#, where nowr (x1)5 r̄1 is the quantum value of the
dilaton field on the horizon. This means that the extremum
configuration satisfies the condition

2

g8~x1!
[bH5b̄, ~6.3!

i.e., the extremum as in the classical case is attained on th
regular manifold without conical singularity1. The extremum

1Note that in principle the one-loop effective actionG can be a
functional of bothg(x) and r (x) leading to a more complicated
equation than Eq.~6.3!. In consequence, the extremum configura-
tion can be singular (bÞbH). We do not consider this possibility
here.
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of functionalW describes the quantum-corrected black ho
configuration, the perturbative form of which we found in
Sec. V@Eqs.~5.8!, ~5.9!, and~5.15!#.

In variation with respect to metric,dgW, the terms de-
pending ondg8(x1) and dg8(L) are absent in the same
manner as in the classical case@see Eq.~3.10!#. Thus, for the
one-loop effective actionW we also have a well-defined
variational procedure when the contribution of variations o
the normal derivatives of metric at the external bounda
(x5L) and at the tip of the cone (x5x1) are compensated
by the corresponding boundary terms.

Calculating the off-shell quantities~6.1! it is convenient
to write metric in the Schwarzschild-like form:

ds25g~x!dt21g21~x!dx2, ~6.4!

where 0<t<2pb̄. This can always be done using the re
sidual gauge freedom in Eq.~3.1! allowing us to choose the
coordinate system wherel(x)50. This change of coordi-
natesx→*xe2l(x)dx must be accompanied by the corre
sponding change of the integration limits (x1 ,L). On-shell
they become dependent onr B andbH . However, for calcu-
lation of coordinate-invariant off-shell quantities~like effec-
tive action!, the using of Eq.~6.4! instead of the general form
~3.1! is just a convenient choice of the coordinate system
The corresponding Polyakov-Liouville actionG reads

G@g#5 1
24E

x1

L S 2

b̄g
2

b̄

2

g82

g D dx1
1

12S a1
~12a2!

2a D c~x1!

2
b̄

8
g8~L !1G0 , ~6.5!

wherea5b/bH ; bH52@g8(x1)#
21, and c(x) is defined

by Eq.~4.22!. It should be noted that Eq.~6.5! is divergent at
the lower limit. Taking the regularizationx1→x11e we
have, for the divergent part of Eq.~6.5!,

Gdiv5 lne
~12a!2

24a2 . ~6.6!

This is the physical divergence due to the infinity of th
renormalizedTmn @Eqs. ~4.15! and ~4.16!# at the tip of the
cone ~for b̄ÞbH). Note that Gdiv is proportional to
(12a)2 . Hence the divergence does not affect physic
quantities calculated at the Hawking temperature (b̄5bH).
In principle, one can regularize this divergence by subtrac
ing in Eq. ~6.5! the Polyakov action calculated for the
Rindler space with metric functiongR(x)5(2/bH)(x2x1).
But we do not do this here.

Equation~6.3! allows us to calculate the energyE for the
equilibrium state~for b̄5bH)

E5Ecl1Eq ,

where the classical partEcl takes the form~4.5! while the
quantum part reads
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Eq5
1

2pg1/2~L !
] b̄Gu b̄5bH

5
1

96pEx1

L 1

g S 4

bH
2 2g82~x! Ddx

2
1

16pg1/2~L !
g8~L !.

~6.7!

For the quantum-corrected metric obtained in the previou
sectiong8(L) vanishes in the limitL→`. Therefore, we will
neglect such a term below.

Analogously, we have for the entropy in the equilibrium
state

S5
p r̄ 1

2

G
1Sq , ~6.8!

where

Sq5~b]b21!Gub5bH
52 1

12c~x1!

5 1
12E

x1

L dx

g~x! S 2

bH
2g8~x! D1 1

6 ln
bHg

1/2~L !

z0
1c~z0!.

~6.9!

In Eqs. ~6.8! and ~6.9!, r̄1 andbH are quantum position of
the horizon and quantum inverse Hawking temperature, re
spectively, andg(x) is the metric of the quantum black hole.
Note that bothEq andSq are free of divergences at the lower
limit. For a metric written in the conformally flat form
gmn5e2sdmn , we havec(x)522s(x) and the entropy
~6.9! coincides with that previously obtained in@36,6,23#.

For the energy functional we have

E5
1

2Gg1/2~L !
E
x1

L

~G0
01T0

0!dx1
1

12pbHg
1/2~L !

1Esurf,

~6.10!

where the surface termEsurf is the same as in Eq.~3.16!.
Remembering that the temperature

T5@2pbHg
1/2(L)#21 is fixed on the external boundary we

obtain that when the equations of motion~5.2! hold E re-
duces to

E5Esurf1
T

6
, ~6.11!

or, in invariant form,

E5
T

GE]M
rna]ar1

T

6
52

1

G
~rg1/2!r5L1

T

6
. ~6.12!

Note that both the terms in Eq.~6.12! are defined on the
external boundaryr5L.

Subtracting now the energy of the backgroundg0 we ob-
tain

E@g#2E@g0#5
L

G
@r ~g0

1/22g1/2!# r5L1 1
6 ~T2T0!,

~6.13!
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whereT05@2pbH
0 g0

1/2(L)#21 is the temperature of the back-
ground metric. The temperatureT which enters Eqs.~6.11!
and ~6.12! is measured at the external boundary. Neverth
less the terms which contain it originated from the horizo
when one integrates by parts in passage from Eq.~6.7! to Eq.
~6.10!. Thus,T/6 in Eqs.~6.11! and ~6.12! is a consequence
of the black hole topology. In the non-black-hole case~hot
space! this term is absent. TakingT05T, the second contri-
bution in Eq.~6.13! due to differences of temperatures van
ishes and we get the classical expression~4.9! for the energy.
But now g andg0 are the corresponding quantum correcte
metrics.

The above expressions for the energy and entropy we
given for the static metric in the form~6.4!. The quantum-
corrected metric found in Sec. V takes this form by means
the coordinate transformationr→x(r ),] rx5eF(r ), and iden-
tification g(x)5 f e2F. SinceF(L)50, near the boundary
r5L we havex'r andg(L)5 f (L).

A. Mass of the quantum-corrected black hole

The quantum-corrected solution~5.15! and ~5.16! found
in the previous section behaves for large sizeL of the box as

g~L !'12
2MG

L
2
2k

bH
2 2

4MGk

LbH
2 ln

L

l
1OS 1L D .

~6.14!

We see that in the limitL→` the metric function on the
boundary of the boxg(L) goes to the constant value
g(L)→g05122k/bH

2 rather than to 1. Introducing the
Planck temperatureTPl5(2pr cr)

21 this can be rewritten as
g0512(T/TPl)

2. We see that the modification of the as
ymptotic behavior ofg and of the background is essentially
due to temperature effects. Indeed, if we would take bac
ground g051 as in classics and apply Eq.~6.13! for the
metric ~6.14! we would obtain for the energy the divergen
termEth5(p/6)T2L which is the energy of the hot gas sur
rounding the black hole.

We can interpret this as follows. The system under co
sideration represents a rather complicated interaction of t
objects: black hole and hot gas. Far from the horizon th
effect of the gas is more important, while near the horizo
the hole dominates. Therefore, extensive characterist
~such as energy or entropy! of the system presumably con-
tain different contributions due to these two subsystems. T
contribution of the hot gas can be identified and eliminate
through its dependence on the size of the systemL. On the
other hand, the contribution of the hole itself does not d
pend onL.

It is a remarkable fact that the contribution of the hot ga
can be subtracted and the contribution of the hole itself e
tracted by an appropriate choice of the reference metric2 in

2This has been demonstrated for the string-inspired 2D model
@10#.
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the expression~6.13!. Indeed, let us chooseg05122kbH
22

for the reference metric. Then we get for the energy3

E5M1
kM

bH
2 h, ~6.15!

whereh5112ln(L/l). As we can see the partEth disap-
peared in Eq.~6.15!, however the logarithmically divergent
term is still present. We think that this divergence is due to
the infrared behavior typical of massless fields. One migh
expect that it is absent when massive matter is considere
Therefore, we will keep the size of the boxL regularizing
this infrared behavior to be finite though large enough with
respect to the characteristic size of the hole,L@r1 . We can
rewrite Eq.~6.15! in the form

E5M F11
1

2 S T

TPl
D 2h G . ~6.16!

Comparing expressions~6.15! and ~6.16! we can conclude
that the@first-order~in G)# quantum corrections are identical
to the temperature corrections to the mass of the hole.

B. Entropy of the quantum-corrected black hole

Substituting the classical metric function
gcl(r )5(r2r1)(r2r2)r

22 into the expression forSq we
find that

Sq5
p

3
TH~L2r1!2

1

12S r2

r1
D 2lnS L2r2

r12r2
D1 1

12 lnS L2r1

r12r2
D

1 1
6 ln

r1

z0
, ~6.17!

wherez0 is the proper cone generator length appearing in Eq
~4.9!. Again, as for the calculation of the energy, we observe
that Sq is divergent in the limitL→`. The first, linearly
divergent, term on the r.h.s. of Eq.~6.17! coincides with the
entropy of the 2D hot gas contained in the box with size
(L2r1) and temperatureTH , Sth5(p/3)TH(L2r1). We
may subtract the hot gas contributionSth from the expression
of the entropy since we are interested in the entropy of th
hole itself.

In Eq. ~6.8! the first term is defined with respect to the
quantum-corrected radius of the horizon,r̄1 . Near the outer
horizon r5r1 the quantum-corrected metric~5.15! and
~5.16! reads as f (r )5(r2 r̄1)(r2 r̄2)r

22, where
r̄65r66kr6

q , and r6 are classical values. Therefore, in
Sq ~which is really proportional to\) we may take the
quantum-corrected valuesr̄6 instead of the classical one.
Then, taking the limitL→`, we derive the complete quan-
tum entropy of the hole in terms of the quantum-correcte
horizon valuesr̄6 :

in

3Applying formula~6.13! to calculate the energyE we must take
into account two different regimes: the perturbative expansion i
k and the limitL→`. Therefore, our steps are the following: we
first expand the expression~6.12! with respect tok for L fixed and
then take the limitL→`.
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S5
p r̄ 1

2

G
1

1

12F12S r̄2

r̄1
D 2G ln L

~ r̄12 r̄2!
1 1

6 ln
r̄1

z0
.

~6.18!

This illustrates the modification of the classical‘‘entropy -
horizon area’’ relation at the quantum level.4

A few regimes are of special interest. The first one is t
extremal limit,r̄1→ r̄2 . Note that the correction to the mas
~6.15! and ~6.16! vanishes then. On the other hand,Sq @Eq.
~6.17!# has the well-defined limit

Sq
ext5 1

6 ln
r̄1

z0
5 1

12 lnS A1

pz0
2D ~6.19!

giving the logarithmic correction to the entropy. In the oth
regime we taker̄250 ~uncharged hole! and get for the en-
tropy

S5
A1

4G
1 1

24 ln
A1

pz0
2 , ~6.20!

whereA15p r̄ 1
2 is the area of the horizon and we omitted

term; lnL/z0. This result is similar to that obtained in@8# for
the four-dimensional Schwarzschild black hole.

It is not quite clear in which phenomena involving blac
holes the logarithmic corrections to the entropy~6.17!–
~6.20! might be important. We may speculate that they p
some role in the final stage of black hole evaporation. Ho
ever, this problem needs further investigation.

4One can expect that the geometry drastically changes near
inner horizonr2 due to quantum corrections as was previous
indicated in@37#. As a result, the inner horizon area probably b
comes a nonanalytical function of the quantum perturbation par
eter k. Therefore,r̄2 in the expression~6.18! is not a real inner
horizon radius but as it is seen from the form of the metric in t
region r>r1 .
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VII. CONCLUSION

In concluding, several remarks are in order. The entrop
of a black hole in classical theory is determined by data o
the horizon surfaceS. In four-dimensional Einstein gravity
it is just the area ofS. In anR2 theory of gravity the entropy
is given by an integral overS of the curvature tensors pro-
jected onto the subspace normal toS @38,23#. When the
quantum matter contribution is taken into account we find, a
least in the 2D case, that the correction to the entropy is als
given by some data on the horizon, namely bycuS5c(x1)
@see Eqs.~6.8! and ~6.9!# @36,23#. In fact, the quantum cor-
rection contains the contribution of the hot gas surroundin
the hole and a correction to the entropy of the hole itself. Th
value ofc(x1) involves both of them@see Eqs.~6.17! and
~6.18!#. It may be unexpected that information on the hot ga
is encoded in data at the horizon located far from the regio
where the gas really contributes. But this becomes less su
prising if we recall that the functionc(x) is in fact a nonlo-
cal object@c5h21R, see Eq.~4.4!# and its value at one
point can, in principle, contain information on the whole
space. It is not clear whether this is a general rule, applicab
to the four-dimensional case as well. In the two-dimensiona
model, which is a reduction of the 4D theory, we obtain the
one-loop entropy of the hole~6.18! which is a rather com-
plicated function of the quantum-corrected geometry. Prob
ably, there must be an equivalent derivation of the formul
~6.18! in terms of the 4D geometric~presumably nonlocal!
invariants integrated overS.

Also it is of interest to make the derivation of entropy
presented in this paper directly in four dimensions. This is
much more complicated problem. However, some scalin
arguments such as that given in@8# might be helpful in this
project.
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