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Different methods of calculation of quantum corrections to the thermodynamical characteristics of a black
hole are compared. The general relation between on-shell and off-shell approaches is discussed. We consider
the simplified 2D model with the dilaton gravity and show in its framework that the observable thermody-
namical black hole entropy can be presented in the formSTD5p r̄ 1

2 1SSM2SRindler
SM . Here,r̄1 is the radius of

the horizon shifted because of the quantum back reaction effect,SSM is the statistical-mechanical entropy,
determined asSSM52 Tr( r̂Hlnr̂H) for the density matrixr̂H of a black hole, andSRindler

SM is the analogous
entropy in the Rindler space.@S0556-2821~96!00516-4#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

According to the thermodynamical analogy in black hol
physics, the entropy of a black hole in the Einstein theory
gravity is

SBH5AH/~4lP
2!, ~1.1!

where AH is the area of a black hole horizon and
l P5(\G/c3)1/2 is the Planck length@1–4#. In black hole
physics the Bekenstein-Hawking entropySBH plays basically
the same role as in the usual thermodynamics. It can
determined by the response of the free energy of a syst
containing a black hole to the change of the temperature
the system.

In the Euclidean approach@5–9# the free energyF is di-
rectly related to the Euclidean action calculated for the reg
lar Euclidean solution of the vacuum Einstein equations~the
Gibbons-Hawking instanton!. According to the first law of
thermodynamics, the thermodynamical entropy of a bla
holeSTD is defined by the relation

dF52STDdT, ~1.2!

whereT is the temperature of the system containing a bla
hole. The free energyF, in addition to the classical~tree-
level! contribution, includes quantum~one-loop! corrections.

*Electronic address: frolov@phys.ualberta.ca
†Electronic address: dfursaev@phys.ualberta.ca
‡Electronic address: zelnikov@phys.ualberta.ca
540556-2821/96/54~4!/2711~21!/$10.00
e
of

be
em
of

u-

ck

ck

For this reason the thermodynamical entropy, in addition t
the classical~tree-level! part SBH, acquires also a quantum
correctionS1

TD:

STD5SBH1S1
TD. ~1.3!

To find STD one must compare two equilibrium configura-
tions. That is why all the calculations which are required to
determineSTD can be made by using the regular Gibbons
Hawking instanton as the background metric. One usual
refers to this type of calculations as to theon shellmethod.

The fundamental problem of black hole thermodynamic
is its statistical-mechanical foundation. The problem consis
of the following three parts:~1! a definition of internal de-
grees of freedom of a black hole;~2! the calculation of the
statistical-mechanical entropySSM of a black hole defined as
SSM52 Tr( r̂Hlnr̂H) by counting the dynamical degrees of
freedom described by the black hole density matrixr̂H; and
~3! establishing the relation between the statistical
mechanicalSSM and the thermodynamicalSTD entropies.

In order to escape possible misleadings, let us note th
we use the name ‘‘statistical-mechanical entropy’’ in order to
stress that the quantitySSM is calculated according to the
standard statistical-mechanical rules. As for the density m
trix r̂, its form and properties depend on the concrete mode
In the present paper we restrict ourselves by considering th
class of the models in which the internal degrees of freedo
of a black hole are identified with its quantum excitations
This idea has different realizations~see, e.g., Refs.@10,11#
and references therein! and it has been widely discussed re-
cently. The common feature of these models is that the co
responding density matrixr̂ which enters the consideration
is thermal. There is enormous number of papers, where th
2711 © 1996 The American Physical Society
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statistical-mechanical entropy has been calculated for dif
ent black hole models. The main purpose of our paper i
establish the relation between the results of these calc
tions and the observable thermodynamical black hole
tropy STD.

It should be stressed that the problem of relations betw
STD andSSM is very nontrivial for black holes. The quantitie
STD andSSM are equal for the usual thermodynamical sy
tems. Black holes possess a property which singles them
of the other thermodynamical systems. Namely, in a stat
thermal equilibrium a massm of a black hole is a universa
function of a temperatureT. But the mass uniquely deter
mines the geometry of a black hole, and hence the inte
parameters of the Hamiltonian describing its quantum e
tations. This property has two important consequences~i!
STD andSSM do not coincide for a black hole@12#, and ~ii !
calculation ofSSM and its comparison withSTD requireoff-
shellmethods. The latter means that one needs to cons
the temperatureT and the mass of a black holem as inde-
pendent parameters. The problem which arises is that w
TÞTBH[(8pm)21, there is no regular complete vacuu
Euclidean solutions. For this reason it is necessary eithe
consider the background metric which is not a solution of
vacuum gravitational equations, or to exclude some regio
spacetime near the horizon and to make a solution inc
plete. In both cases the calculation of the free energy m
problems. Moreover, the result may depend on the cho
concrete off-shell procedure@13#.

In this paper we obtain the relation between different d
nitions of the black hole entropy. We also discuss and co
pare different off-shell methods~brick wall, conical singular-
ity, blunt cone, and volume cutoff!, and their relations to the
on shell approach. We illustrate these relations for a sim
fied two-dimensional model, where all the calculations c
be performed exactly. It is explicitly demonstrated that t
thermodynamical entropySTD of a black hole differs from
the statistical-mechanical entropySSM. Although, the
statistical-mechanical interpretation of the tree-le
Bekenstein-Hawking entropy remains the problem for
models we are dealing with in the present paper, we can
the relations between one-loop correctedSTD andSSM. One
of the main results is the observation that in the conside
two-dimensional~2D! model the one-loop contributionS1

TD

of a quantum field to the thermodynamical entropy can
presented in the form

S1
TD5SSM2SRindler

SM 1DS. ~1.4!

Here,SRindler
SM is the statistical-mechanical entropy calculat

in the Rindler space, andDS is an additional, finite correc
tion caused by the shift of the black hole horizon becaus
quantum effects. The entropy calculated using the brick-w
and volume cutoff methods is directly related withSSM. This
quantity is divergent@in two-dimensional~2D! case# as lne,
wheree is the proper distance to the horizon. On the oth
hand, the entropy calculated using the conical singularity
blunt-cone methods coincides with the differen
SSM2SRindler

SM . It is finite because logarithmical divergence
SSM is exactly canceled by the divergence of the Rind
entropySRindler

SM .
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It is well known that one-loop effective action which de-
fines the free energy contains local ultraviolet divergences
In order to work with well-defined finite quantities it is nec-
essary to renormalize it. Usually, one assumes that the ba
classical action contains the same local structures that aris
in the one-loop calculations. In the procedure of the renor
malization one excludes the local one-loop divergences by
simple redefinition of coupling constants of the classical ac
tion. In our approach we assume that this renormalization
procedure has been done from the very beginning. We us
renormalized observable quantities as parameters of on she
solutions. In this case the renormalized one-loop effective
action is finite ~at least on shell!. Quantum effects which
change this solution can be considered as small perturbation
for black holes with mass much larger than the Planckian
mass. This also allows us to restrict ourselves by considerin
only those off-shell solutions which are close to the renor-
malized on-shell one@17#. As a result of our analysis we find
out that all thermodynamical characteristics of a black hole
expressed in terms of observable parameters are finite an
their definition does not require the knowledge of physics a
Planckian scales.

The paper is organized as follows. In Sec. II we remind
the main features of the Euclidean approach and give th
general definition of the thermodynamical entropy which is
used throughout this paper. The description of a two-
dimensional model is given in Sec. III. This section also
contains the derivation of the on shell free energy and the
thermodynamical entropy for this model. The general
scheme of the off-shell methods is discussed in Sec. IV. Th
off-shell effective action, free energy, and statistical-
mechanical entropy are exactly calculated for four, mos
common off-shell approaches: brick-wall~Sec. V!, conical
singularity~Sec. VI!, blunt-cone~Sec. VII!, and volume cut-
off ~Sec. VIII! methods. Section IX includes the comparison
of the off-shell expressions for free energy and entropy, a
well as the relation between statistical-mechanical and ther
modynamical entropies of a black hole. Section X contains
concluding remarks. Important results concerning conforma
transformations of the effective action in the presence o
conical singularities, derivation of the effective action on a
cylinder, and the role of the vacuum polarization effect in the
brick-wall model, which are used in the main text, are col-
lected in appendices.

II. EUCLIDEAN APPROACH
AND THERMODYNAMICAL ENTROPY

The starting point of the Euclidean approach to the black
hole thermodynamics is the partition functionZ(b) and the
effective actionW(b) which, for a canonical ensemble in the
presence of black holes, are defined by the path integral

e2W~b!5Z~b!5E @Df#e2I @f#. ~2.1!

Here,I @f# is the Euclidean classical action and all the physi-
cal variablesf, including the gravitational fieldgmn , are
assumed to be periodic or antiperiodic, depending on the
statistics, in the Euclidean timet with the periodb` . As
usual, the class of metrics involved in Eq.~2.1! is supposed
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to be asymptotically flat. The parameterb` has the meaning
of the inverse temperature measured at the spatial infinity
is also assumed that the integration measure@Df# is defined
as the covariant measure.

The standard way to calculateW is to use quasiclassica
approximation. Thus, iff0 is a stationary point ofI @f#,

dI

df U
f5f0

50, ~2.2!

then one has the decomposition

I @f01f̃#5I @f0#1I 2@f̃#1•••, ~2.3!

whereI 2 is a quadratic in fluctuationsf̃ part of the linearized
action and the ellipsis in the right-hand side denotes
terms of the higher order inf̃. Using this relation, one gets

Z~b!5e2I @f0#E @Df̃#e2I2@f̃#[e2I @f0#Z1~b!. ~2.4!

The result of the Gaussian integration overf̃ in Eq. ~2.4! can
be expressed in terms of the determinants of the corresp
ing wave operatorsDj for the different spinsj :

Z1~b![Z1@f0~b!#5)
j

$det@2m2Dj~f0!#%
71/2. ~2.5!

Operators Dj are determined by the quadratic pa

I 25
1
2 *dxAgf̃Dj f̃ of the action and their explicit form de

pends on the spinj . For instance, for the conformally invari
ant massless scalar field ind-dimensional space
D05n2(d22)@4(d21)#21R, where n5¹m¹m is the
Laplace operator andR is the scalar curvature. A constan
m2 in Eq. ~2.5! is an arbitrary renormalization paramet
with the dimension of the length. It does not depend on
field configurationf. Equation~2.5! enables one to represen
the effective action in the one-loop approximation as the s

W~b!5I @f0~b!#2 lnZ1~b![I @f0~b!#1W1@f0~b!#.
~2.6!

The one-loop contribution@20# W1@f0# to the effective ac-
tion is ultraviolet divergent and, as usual, the classical act
I is assumed to be chosen in such a way that the corresp
ing local divergences ofW1 can be removed by simple re
definition of the coupling constants inI . From now on we
suppose that it has been done and that the classical acti
written in terms of renormalized coefficients,f0 is its extre-
mum, andW1 is therenormalizedone-loop action@21#. The
ambiguity in the choice of the parameterm in Eq. ~2.5! cor-
responds to a freedom in the choice offinite counterterms
which can be added to the action after renormalization.

To apply this general scheme to a black hole we assu
that it is nonrotating, uncharged, and that there is no spo
neous symmetry breaking, so that average values of all fie
except the gravitational one vanish. Also, it is worth taki
the renormalized cosmological constant to be zero to prov
an asymptotically flat black hole solutiong0 of the ~vacuum!
gravitational equations. The solution represents a Gibbo
Hawking instanton which is regular at the Euclidean horizo
. It
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For the Einstein theory such an instanton is described by th
Schwarzschild metric and depends only on one constan
massm of a black hole. The condition of regularity of this
metric at the horizon implies thatb`5bH58pm.

When considering quantum corrections it is worth keep-
ing in mind that a system for the chosen boundary condition
~periodicity int) necessarily consists of a black hole in ther-
mal equilibrium with a surrounding thermal radiation which
also contributes into observable thermodynamical quantities
This contribution is infinite for the thermal bath of the infi-
nite size. Moreover, an equilibrium of a black hole with an
infinite bath is unstable. For this reason it is important from
the very beginning to consider a black hole surrounded by
boundary surfaceB of a finite size@7–9#. We assume this
surface cannot be penetrated by fields. This is provided b
the corresponding boundary conditions on it. For simplicity,
B is assumed to be spherical~of a radiusr B! and a hole to be
located in the center. For the Schwarzschild black hole, ther
mal stability is guaranteed ifr B,3m. Finally, in such a for-
mulation of the problem the parameterb is the inverse tem-
perature measured onB. Further, we suppose that all the
necessary requirements of this kind are satisfied and we om
their discussion.

Equation~2.6! contains the renormalized effective action
W calculated on a particular classical solution. This renor-
malized action itself is defined as a functional,

W@f#5I @f#1W1@f#, ~2.7!

for an arbitrary fieldf with appropriately chosen boundary
conditions. The extremumf̄ of this functional

dW

df U
f5f̄

50 ~2.8!

describes a modified field configuration which differs from a
classical solution by quantum corrections:f̄5f01\f1.
The important observation is that, if one is interested in the
one-loop effects, the difference between the values ofW on
f0 and f̄ turns out to be of the second order in the Planck
constant\:

W~b!5W@f0~b!#5W@f̄~b!#1O~\2!. ~2.9!

This follows from Eq.~2.8!, provided the quantum-corrected
and classical solutions obey the same boundary conditions

The thermodynamical entropyof a black holeSTD is de-
fined by the response of the free energyF(b)5b21W(b) to
the change of the inverse temperatureb for fixed r b :

STD~b!5b2
dF~b!

db
5S b

d

db
21DW~b!. ~2.10!

We remind that the renormalized effective actionW(b) is
calculated on shell, that is forb`58pm. The thermody-
namical entropySTD can be written as

STD5S0
TD1S1

TD. ~2.11!

It can be shown@7,9# that



-

e

-
n

2714 54V. P. FROLOV, D. V. FURSAEV, AND A. I. ZELNIKOV
S0
TD5S b

d

db
21D I @f0~b!# ~2.12!

coincides with the Bekenstein-Hawking entropySBH given
by Eq. ~1.1!, while

S1
TD~b!5S b

d

db
21DW1@f0~b!# ~2.13!

describes the quantum correction to it. This correction c
tains also the entropy of the thermal radiation outside
black hole as its part. By its construction the thermodyna
cal entropySTD is well defined and finite. All the calculation
required to obtain this quantity can be performedon shell,
that is, on a regular complete vacuum Euclidean solution
the gravitational equations. The parameters of this solu
are expressed only in terms of the renormalized coupl
constants.

III. DESCRIPTION OF THE MODEL:
ON-SHELL RESULTS

In four dimensions the calculation ofS1
TD is a quite com-

plicated problem. To discuss the properties ofS1
TD and its

relation toSSM, it is instructive to consider a simplified two
dimensional model where the calculations can be done
plicitly. Certainly, the explicit forms of these quantities i
two and in four dimensions are different. Nevertheless,
study of 2D model allows us to make definite conclusio
concerning the physically interesting case of a fou
dimensional spacetime. To preserve the maximal simila
with the four-dimensional case we consider a 2D dilat
gravity described by the action

I52
1

4EM2
@r 2R12~¹r !212#Agd2x

2
1

2E]M2
r 2~k2k0!dy1

1

2E Agw ,mw ,m. ~3.1!

The 2D metricg, dilaton field r , and a scalar fieldw are
dynamical variables of the problem. We denote byR the
curvature ofg, and byk the extrinsic curvature of]M2. This
model is similar to the one which has been extensively st
ied @22# as an example of a renormalizable exactly solva
theory of two-dimensional dilaton gravity coupled to matte
In the absence of the scalar fieldw, this action can be ob-
tained from the 4D Euclidean Einstein action

I ~4!52
1

16pEM4
R~4!Agd4x2

1

8pE]M4
~K ~4!2K0

~4!!Ahd3x,
~3.2!

by its reduction to the spherically symmetric metrics of t
form

ds25gabdx
adxb1r 2dv2. ~3.3!

Here,gab is a 2D metric,r is a scalar function on the two
dimensional manifold, anddv2 is the line element on the
unit sphere.K0

(4) is the standard subtraction term, an
k05K0

(4) .
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Since the 2D actionI is related with 4D actionI (4) by the
reduction procedure, the pair of fields (g0 ,w0), where
w050 andg0 is a 2D Schwarzschild metric

ds25 f dt21 f21dr2, f512r1 /r , ~3.4!

is evidently the extremum of the functionalI . The regularity
condition atr5r1 requirest to be periodic with the period
bH54pr1 . The Gibbons-Hawking instanton, i.e., the regu
lar complete Euclidean manifold with the metric~3.4!, is
shown in Fig. 1.

Consider a regionMB of the Gibbons-Hawking instanton
within the external boundarySB at r5r B ~see Fig. 2!. If the
boundary conditions are fixed on the surfaceSB , andb is
the proper length of the liner5r B , then the classical Euclid-
ean action calculated for the regionMB and expressed in
terms of the boundary conditions (b,r B) is

I ~b,r B!5I @g0 ,w0#53pr1
2 24pr1r B1br B , ~3.5!

wherer1 is defined by the equation

b54pr1~12r1 /r B!1/2, ~3.6!

and b is the inverse temperature atr5r B . In the limit
r B→`, when b54pr1 , the classical action takes the
simple form

I ~b!5
1

16p
b2. ~3.7!

In accordance with the general discussion of Sec. II, th
one-loop contribution to the effective action is

W1~b!5 1
2 ln det~2m2D!. ~3.8!

FIG. 1. Embedding diagram for a two-dimensional Gibbons
Hawking instanton. Regularity condition at the Euclidean horizo
r5r1 requiresb`5bH[8pm.

FIG. 2. A regionMB of the Gibbons-Hawking instanton with
the external boundarySB at r5r B . This region is conformal to the
2D flat unit diskD2.
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Here, the renormalized determinant is taken for the reg
MB of the 2D instanton~3.4!. To make discussion more con
crete we assume that the fieldw obeys the Dirichlet bound-
ary condition at the mirrorlike boundarySB surrounding the
black hole. The divergent part which has been removed fr
the action is

W1
div@MB#52

1

8pdEMB

Agd2x1
lnd

12
x@MB#, ~3.9!

x@MB#5
1

4p S E
MB

RAgd2x12E
SB

kAhdyD , ~3.10!

whered is the parameter of the ultraviolet regularization an
x@MB# is the Euler characteristic of the Gibbons-Hawkin
instantonMB , which is the same as for a diskx@MB#51. To
remove the volume divergence;*MB

, one must introduce in

the bare classical action a cosmological constantl, which
we put after renormalization to be21/2, see Eq.~3.1!. Re-
moving the other divergence in Eq.~3.9! requires introduc-
tion of the additional term in Eq.~3.1!, but because it is just
a topological invariant it can be neglected.

Using the conformal transformation, the one-loop effe
tive actionW1(b) can be found explicitly. Note that metric
~3.4! can be represented in the form

ds25S 12
r1

r Ddt21S 12
r1

r D 21

dr25e2sds̃ 2, ~3.11!

ds̃ 25m2~x2dt̃ 21dx2!. ~3.12!

Here,

t̃ 5
t

2r1
, 0<t̃<2p,

x5S r2r1

r B2r1
D 1/2e~r2r B!/2r1, 0<x<1, ~3.13!

and the conformal factors is defined as

s~r !5
1

2 F lnS r B2r1

r D1
r B2r

r1
12lnS 2r1

m D G . ~3.14!

In order to preserve the dimensionality, we introduce t
parameterm with the dimension of length into the flat spac
metric ~3.12!. The above conformal transformation

gmn→g̃mn5e22sgmn ~3.15!

is a map of the regionMB onto the flat 2D diskD2 of the
unit radius~measured in units ofm!, see Fig. 2. It will be
shown that the physical results do not depend on the part
lar choice ofm @23#.

For a conformal field the transformation law ofW1 under
this map can be obtained by an integration of a conform
anomaly. The corresponding formulas are collected in A
pendix A. Denote byC the renormalized one-loop effective
action for the unit diskD2, Eq.~3.12!, then using the relation
~A9!, we get
ion
-

om

d
g

c-

he
e

icu-

al
p-

W1~b,r B!5W̃1@b,y~b,r B!#, ~3.16!

wherey5r1 /r B and

W̃1~b,y!5
1

48F2
2

y
12lny11722y213y2G

2
1

6
ln

b

2pm
1C. ~3.17!

The relations~3.16! and ~3.17! require some explanations.
First of all, the one-loop effective actionW1(b,r B), in addi-
tion to the inverse temperatureb at the boundary, also de-
pends on its ‘‘radius’’r B . For givenb and r B , the gravita-
tional radiusr1 is defined by the relation~3.6!. To simplify
the expressions we use the dimensionless variab
y5r1 /r B instead ofr B . The relation~3.6! implies that this
dimensional variabley is the function ofb andr B defined by
the implicit relation

y~12y!1/25
b

4pr B
. ~3.18!

The one-loop contributions to the free energyF1 and to
the thermodynamical entropyS1

TD are defined by the formu-
las

F1~b,r B!5b21W1~b,r B!,

S1
TD5b

]W1~b,r B!

]b U
r B

2W1~b,r B!. ~3.19!

The derivative ofW1 can be expressed in terms of the partia
derivatives ofW̃1:

]W1~b,r B!

]b U
r B

5
]W̃1~b,y!

]b
U
y

1
]W̃1~b,y!

]y
U

b

]y

]b U
r B

,

~3.20!

where

]y

]bU
r B

5
2y~12y!

b~223y!
. ~3.21!

The latter equality results from Eq.~3.18!. Using the rela-
tions ~3.19!–~3.21!, we finally obtain

S1
TD~y,b!5

1

48~223y! F8y213y228y2113y3G
2

1

24
lny1

1

6
ln

b

2pm
2
17

48
2C. ~3.22!

This quantity is finite. The dimensionless constantC does
not depend on the parameters of the system and reflects
ambiguity in the definition of the entropy. For further con-
sideration this ambiguity is not important, so that this an
other similar constants can be omitted. For a large value
the radiusr B of the boundary (r B@r1 or y!1), the leading
term in S1

TD is (p/3) r Bb21. This leading term coincides
with the entropy of the one-dimensional thermal gas of mas
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less scalar quanta. It should be noted that we always cons
the case whenr B,3/2r1 , so that the limit discussed abov
has only formal meaning. The quantityS1

TD is infinite when
r B5 3

2r1 . This singularity also results in the infinite hea
capacity aty53/2. One can expect the same behavior
these quantities in four-dimensional case.

IV. OFF-SHELL METHODS

In the above consideration we used the relation~3.6!
which can be rewritten asb`5bH , where b`

5b(12r1 /r B)
21/2 denotes the inverse temperature on t

boundarySB as seen from infinity, and (12r1 /r B)
1/2 is the

redshift factor.bH is the inverse Hawking temperature~also
measured at infinity!. The relation b`5bH has evident
meaning of the equilibrium condition between the therm
radiation and the black hole and it is this relation which
assumed when we are speaking about the on-shell quant

In the next sections we consider different off-shell a
proaches in which the conditionb`5bH is violated for the
background geometries. The one-loop contribution to the
fective action in these cases is the function of the three v
ablesb,r B ,r1 : W1

• (b,r B ,r1 , . . . ). We use thesuperscript
• to indicate that this quantity depends on the chosen
shell procedure. The ellipsis in the argument ofW1

• indicates
that it may also depend on some additional paramet
which are different for different off-shell procedures. The
parameters are not important now and will be specified la

In the general case, the off-shell entropy is defined by
response of the off-shell free energyF •5b21W• on the
change of the temperature, under the condition that the o
parameters which specify the system (r B) as well as the
black hole (r1) are fixed. According to this definition, the
one-loop off-shell entropy is

S1
•5b

]W1
•

]b
U
r B ,r1 , . . .

2W1
• . ~4.1!

It is assumed that the on shell limit in Eq.~4.1! is taken at the
end of the computation. This means thatr1 which enters
S1
• is put equal to its on shell value, determined by solvi
the corresponding gravitational equations.

It occurs that the explicit formulas forW1
• and S1

• are
greatly simplified if, instead ofr B and r1, the following
dimensionless variables are used

y5y~r B ,r1!5
r1

r B
,

a5a~b,r B ,r1!5
b`

bH

5
b

4pr1A12
r1

r B

. ~4.2!

The variablea is theoff-shell parameterso that the condi-
tion that a system is on shell readsa51. The parametery is
the ratio of the values of the dilaton field on the extern
boundarySB and on the horizon. We shall use the notatio
ider
e

t
of

he

al
is
ities.
p-

ef-
ari-

off-

ers,
se
ter.
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ther

ng

al
n

W1~b,r B ,r1 , . . . !5W̃1„b,a~b,r B ,r1!,y~r1 ,r B!, . . . ….
~4.3!

For fixed values ofr1 andr B , the quantityy5r1 /r B is also
fixed, while Eq. ~4.2! implies thata is proportional tob.
Thus, one has

S1
•5b

]W̃1
• ~b,a,y, . . . !

]b
U

a,y, . . .

1a
]W̃1

• ~b,a,y, . . . !

]a
U

b,y, . . .

2W1
• . ~4.4!

As earlier, it is assumed that after the calculations, one mu
put a51 in the right-hand side of this relation. Then, the
corresponding on shell value ofS1

• depends only on the
boundary conditionsb and r B . After these general remarks
consider concrete off-shell methods.

V. BRICK-WALL MODEL

A. Effective action

As the first example of the off-shell procedure we con-
sider the so-calledbrick-wall model, proposed by ’t Hooft
@24# and discussed later in many subsequent pape
@25,18,26–28,30,19#. The basic idea of this method is to in-
troduce at some small proper distancee from the black hole
horizon an additional mirrorlike boundarySe . Denote by
MB,e the region located betweenSB andSe ~see Fig. 3!. To
be more specific, assume, following ’t Hooft, that the field
w obeys the Dirichlet condition on both boundariesSB and
Se . The starting point of the brick-wall model is the parti-
tion functionZ1

BW(b) of massless scalar field in the region
MB,e near the Schwarzschild black hole of the massm:

lnZ1
BW~b!52 1

2 ln det~2m2n !. ~5.1!

Here, b is the inverse temperature measured atSB ,
‘‘ln det’’ is understood as renormalized quantity, andn is
the Laplace operator for the scalar field in the regionMB,e
with the Dirichlet boundary conditions. Because of the pres

FIG. 3. Conformal maps of the regionMB,e of the Gibbons-
Hawking instanton onto the partKa,ex

of the coneCa , and of the
regionKa,ex

onto the cylinderQa,ez
. e is the proper distance of the

inner boundarySe of MB,e to the horizon. The parameterex is the
distance fromSB to the vertex of the cone along the cone generator
andez is the length of the cylinder generator~both measured in the
units ofm). The circumference length of the cylinder, as well as the
circumference length of of the external boundarySB of the cone,
measured in unitsm is 2pa.
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ence of the inner boundarySe , the region near the black
hole horizon where the thermal gas cannot penetrate is co
pletely excluded. For this reason the system is nonsingu
for any relation between the parametersb andm, and the
brick-wall model can be used for an off-shell extension. T
distinguish the quantities calculated in this off-shell proc
dure we use the abbreviation BW as the superscript. T
corresponding partition functionZ1

BW and actionW1
BW de-

pend, in addition tob andr B , on e and the valuer1 of the
dilaton field on the horizon. Our purpose, now, is to fin
W1

BW(b,r B ,r1 ,e).
Obviously, this problem can be reduced to the calculati

of the effective action for some ‘‘standard’’ 2D flat region
We choose a cylinder as such a region~see Fig. 3!.

It is convenient to make the conformal transformation in
two steps.

First, use the map Eq.~3.15! with s given by Eq.~3.14!.
Under this transformation, the metric takes the form

ds̃ 25m2~x2dt̃ 21dx2!, 0<t̃<2pa, ex<x<1.
~5.2!

The embedding diagram for this space is shown in Fig. 3
is a partKa,ex

of the coneCa between the surfacesSB lo-

cated atx51 andSe at ex . The value ofx5ex is related
with the proper distancee as

ex5e
2pa

b
AyexpS y21

2y D , ~5.3!

where the parametersy anda are defined in Eq.~4.2!.
Second, mapKa,ex

onto a cylinderQa,ez
with the metric

m2(dt̃ 21dz2):

ds̃ 25m2~x2dt̃ 21dx2!5x2@m2~dt̃ 21dz2!#, z52 lnx.
~5.4!

The cylinder has the circumference length 2pa and the
length of its generator isez52 lnex ~in them units! ~see Fig.
3!.

Thus, the effective actionW1
BW(b,r B ,r1 ,e) can be ob-

tained by conformal transformation, provided one knows t
actionW1@Qa,ez

# for the ‘‘standard’’ cylinderQa,ez
. It can

be shown~see Appendix B! that

W1@Qa,ez
#52 ln Tr e22pamĤ, ~5.5!

whereĤ is the Hamiltonian for the scalar massless field o
the interval (0,mez) with the Dirichlet boundary conditions
at the ends. Using this fact we get, forez@1 ~see Appendix
B!,

W1@Qa,ez
#52

1

12a
ez2

1

2
ln

pa

ez
1oS 1ezD . ~5.6!

The scale parameterm disappears from this expression be
cause of the scale invariance of the action on the cylind
The effective actionW1@Ka,ex

# for the regionKa,ex
obtained

fromW1@Qa,ez
# by conformal transformation has the form
m-
lar

o
e-
he

d

on
.

to

. It

he

n

-
er.

W1@Ka,ex
#5W1@Qa,ez

#2
a

12
ez ~5.7!

while the transformation~3.15! gives

W1@MB,e#5W1@Ka,ex
#1a f ~y!, ~5.8!

f ~y!52
1

48S 2
2

y
12lny12y113y2213D . ~5.9!

The final result is obtained by using the formulas~5.6!–~5.8!.
The effective actionW1

BW(b,r B ,r1 ,e), written as the func-
tion of (b,a,y,e), is

W1
BW~b,r B ,r1 ,e!5W̃1

BW
„b,a~b,r B ,r1!,y~r B ,r1!,e…,

~5.10!

W̃1
BW~b,a,y,e!5

1

12S a1
1

a D ln2pae

b
2
1

2
ln

pa

ln~b/2pae!

1
a

48
~1522y213y2!

1
1

24a S 12
1

y
1 lnyD1o„ln21~b/e!….

~5.11!

For a51, i.e., on shell this action can be represented as the
sum

W̃1
BW~b,a51,y,e!5W̃1~b,y!1

1

6
lne2

1

2
ln

p

ln~b/2pe!

1o„ln21~b/e!… ~5.12!

of the thermodynamical actionW̃1(b,y) for the regionMB
given by Eq.~3.17! and an additional term which arises be-
cause of the presence of the wall. The latter diverges loga
rithmically in the limit e→0 @29#.

B. Entropy

The entropyS1
BW for the brick-wall model is defined by

Eq. ~4.1! using W1
BW . Written in terms of (b,a,y,e), it

reads

S1
BW~b,a,y,e!5

1

12a S 2ln b

2pae
2 lny1

1

y
21D

1
1

2
ln

pa

ln~b/2pae!
1o„ln21~b/e!….

~5.13!

The on shell value ofS1
BW is obtained if one putsa51 in

this expression.
Note that the renormalization parameterm does not enter

Eqs. ~5.11! and ~5.13!, so that neither the brick-wall action
W1

BW nor the entropyS1
BW depends on it. It happens because

under a constant conformal transformation, the effective ac-
tion acquires an addition proportional to the Euler character-
istic of the manifold. But the topology ofMB,e is the topol-
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ogy of a cylinder and its Euler number is zero. Thus, th
effective action is invariant under the constant rescaling, a
it does not depend onm. On the other hand, the Euler char
acteristic of the complete regular instanton is the same as
of the diskD2, and it does not vanish. As a result, the inte
gral of the anomaly also does not vanish, andm appears in
the thermodynamical action and entropy as a paramete
the dimensional transmutation.

We show now that the brick-wall entropy~5.13! coincides
with the statistical-mechanical entropy and can be rep
sented in the form

S1
BW~b,a,y,e!52 Tr@ r̂e

H~b!lnr̂e
H~b!#. ~5.14!

Here, r̂e
H(b) is the thermal density matrix for the massles

gas in the regionMB,e near the black hole,b being the
inverse temperature measured atSB . In the ’t Hooft’s brick-
wall model this thermal gas is identified with internal de
grees of freedom of the black hole.

To prove Eq.~5.14! we obtain at first expression~5.13!
for S1

BW in a slightly different way. Equations~5.7! and~5.8!
show that

W1
BW~b,r B ,r1 ,e!5a f ~y!2

aez
12

1W1@Qa,ez
#. ~5.15!

To get S1
BW , we keep the variablesr B , r1 , and e fixed.

Under these conditions,y does not depend onb, while a is
proportional tob. As a result, the first two terms in Eq
~5.15! do not contribute intoS1

BW , so that

S1
BW5S a

]

]a
21DW1@Qa,ez

#5
1

6a
ez1

1

2
ln

pa

ez
1O~ez

21!.

~5.16!

It can be easily verified that this expression coincides w
Eq. ~5.13!. Note thatW1@Qa,ez

# is given by Eq.~5.5!. The

quantity„12b (]/]b)…ln Tr e2bĤL can be identically rewrit-
ten as2 Tr@ r̂L(b)lnr̂L(b)#, whereĤL is the Hamiltonian on

the interval of the lengthL, andr̂L(b)5r0e
2bĤL. Using this

relation, we can present Eq.~5.16! in the form

S1
BW52 Tr@ r̂mez

~2pma!lnr̂mez
~2pma!#. ~5.17!

This relation explicitly demonstrates thatS1
BW is the entropy

of the one-dimensional thermal gas on the intervalmez and
with the temperature (2pma)21. @The parameterm is absent
in Eq. ~5.16! for the reason explained above.#

This result can be used to prove the formula~5.14! be-
cause the density matrixr̂mez

(2pma) coincides with the

black hole density matrixr̂e
H(b). Indeed, we used conforma

transformations which preserve the symmetry~a Killing vec-
tor! and do not affect the boundary conditions. Under the
conditions the Hamiltonian of the conformal massless field
invariant, so that the density matrix is also invariant. Not
however, that scales we used to define the temperature
distance may change. In order to define energy, temperat
etc., we must fix the normalization of the Killing vector. Fo
the problem in question we chose the condition (j2)B51 at
the external boundarySB . If the conformal factors does not
e
nd
-
that
-

r of

re-

s

-

.

ith

l

se
is
e,
and
ure,
r

vanish on the boundary (sBÞ0), one must rescale
jm→ j̃m5exp(2sB)j

m to get j̃251 at the boundary after the
conformal transformation. We have

e2bĤL5e2b̃H̃ L̃, ~5.18!

where b̃5exp(2sB)b, Ĥ5exp(sB)Ĥ, and L̃ is the proper
length of the interval in the conformally related metricg̃mn

5e22sgmn .
In particular for the conformal maps Eqs.~3.11! and

~3.14! which we used as the first step, Eq.~5.18! implies

r̂e
H~b!5 r̂mex

R ~2pma!. ~5.19!

Here,r̂H is the original black-hole density matrix, andr̂R is
a thermal density matrix in a Rindler space with the metric

ds̃ 25m2@x2dt̃ 21dx2#5S Xm D 2dT21dX2. ~5.20!

The inverse temperature 2pma in the Rindler space is mea-
sured at the point of the boundaryX5m, where the
gTT51. The parametermex is the proper distance from the
inner boundary to the horizon, measured in the Rindler me
ric. Note, that the proper distance is not conformal invariant
Finally, by mapping Rindler space onto the flat one@the cor-
responding transformation of the effective action from
Ka,ex

toQa,ez
is given by Eq.~5.4!#, one receives the identity

r̂mex
R ~2pma!5 r̂mez

~2pma! ~5.21!

between the Rindler density matrix and that on the interva
The statistical-mechanical formula~5.14! for S1

BW follows
from the identities~5.17!, ~5.19!, and~5.21!.

VI. CONICAL SINGULARITY METHOD

Instead of excluding thee-domain near the horizon, one
can work directly on the complete black hole geometry
However, if b` differs from the Hawking valuebH , the
spacetime is not anymore regular because of the presence
the conical singularity with the angle deficit 2p(12a) at the
horizon r5r1 ~fixed point of the Killing vector!. Such a
space has thed-like curvature located on the cone vertex. For
this reason it is not a solution of the vacuum Einstein equa
tions. We call such a space asingular instantonand denote it
MB

a see Fig. 4.
It is possible to develop the one-loop calculations working

directly on the manifolds with this kind of singularities. We
refer to the corresponding approach as theconical singular-

FIG. 4. Conformal map of a singular instantonMb
a onto the

standard coneCa .
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ity method@18,31–33,35–40#. The difference between it and
quantum theory on the regular spaces is in the structure
the ultraviolet divergences@41,33,42#. Conical singularities
result in appearing, in the effective action, of additional d
vergent terms concentrated on the horizon surface and t
renormalization requires new counterterms. The import
property, however, is that these counterterms turn out to
of the order (b`2bH)

2;(12a)2 and hence, when taken o
shell, they contribute neither to the entropy, nor to the fr
energy of the black hole@32,34,19,37#.

In two dimensions, as follows from Eqs.~A2! and ~A3!,
the divergent part of the action on the singular instan
MB

a can be represented as

W1
div@MB

a#52
1

8pdEMB
a
Agd2x

1
lnd

12 S x@MB
a#1

1

2a
~12a!2D , ~6.1!

x@MB
a#5

1

4p S E
MB

a
Rd2x12E

SB

kdy14p~12a! D ,
~6.2!

where, as in Eq.~3.9!, d is the ultraviolet cutoff parameter
andR is the regular curvature. The quantityx@MB

a# is the
Euler characteristic ofMB

a and it is identical to that of the
Gibbons-Hawking instanton @43#: x@MB

a#5x@MB#51.
Thus, up to the terms (12a)2, the divergences on a regula
instanton and those on a singular one coincide@compare Eqs.
~3.9! and~6.1!# and the difference between them, being tak
on shell, does not affect the entropy. As earlier, we assu
that the renormalization has already been done and fur
we use only renormalized quantities.

Let us calculate the off-shell effective actionW1
CS and

entropyS1
CS by the conical singularity method.

As earlier, b is the inverse temperature onSB and
a5b` /bH is the off-shell parameter. We again use the co
formal transformation~3.11!, but now it maps a singular in-
stanton onto the standard coneCa with the unit~in the units
of m) length of the generator

ds̃ 25m2~x2dt̃ 21dx2!, 0<x<1, 0<t<2pa.
~6.3!

Equations~3.11!, ~3.14!, and ~A9! enable one to relate the
effective actionW1

CS to the action onCa . Written as earlier,
in terms of variables (b,a,y), this action takes the form

W1
CS~b,r B ,r1!5W̃1

CS
„b,a~b,r B ,r1!,y~r B ,r1!…,

~6.4!

W̃1
CS~b,a,y!52

a

48S 2y113y221514ln
b

2pma D
2

1

24a S 1y212 lny12ln
b

2pma D1C~a!.

~6.5!

Here,C(a) is the effective action for the unit cone which fo
a51, coincides with the effective action on the unit dis
of

i-
heir
ant
be
n
ee

ton

,

r

en
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r
k

D2 denoted earlier asC: C(a51)5C. The functionC(a)
does not depend onm and results in a numerical addition to
the entropy. Its form is not important for our consideration.

For the on shell limita51, the cone singularity disap-
pears, so that one has

W̃1
CS~b,a51,y!5W̃1~y,b!, ~6.6!

whereW̃1(y,b) is the on shell effective action given by Eq.
~3.17!.

The entropyS1
CS is defined fromW̃1

CS(b,a,y) by Eq.
~4.4!. The calculation gives

S1
CS~b,a,y!5

1

12a S 1y212 lny12ln
b

2pma D1CCS~a!,

~6.7!

where

CCS~a!5S a
]

]a
21DC~a! ~6.8!

is an irrelevant constant ata51. Note that in the conical
singularity approach both the renormalized actionW1

CS and
the entropyS1

CS are finite quantities.

VII. BLUNT-CONE METHOD

Consider, as earlier, the singular instantonMB
a shown in

Fig. 4 and a set of regular manifolds that modify its geom
etry in the narrow vicinity of the sharp cone vertex~see Fig.
5!. The Riemann curvature for such geometries is regula
everywhere and it differs from the Riemann curvature on
singular instanton only near the horizon. We call this geom
etry the ‘‘blunt instanton’’ and refer to this off-shell exten-
sion@32,43# as to theblunt-conemethod. In this approach we
can avoid the problems connected with the formulation o
the quantization and renormalization procedures on man
folds with infinite curvatures. The regularization of the cone
singularity is supposed to be removed at the very end o
calculations.

For simplicity of calculations we choose a special form o
the off-shell extension characterized by only two parameter

FIG. 5. Blunt instanton and its conformal transformation onto a
unit diskD2.
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an off-shell parametera5b` /bH and a new parameterh
which describes the width of the rounded tip of the blu
instanton. We choose the metric on a blunt instanton in
form

ds25S b

2p D 2~r2dt21b2dr2!, 0<t<2p, 0<r<1;

~7.1!

b5
1

~12r21yr2!2
r21ah2

ar21ah2 .

The boundarySB of the region under consideration is lo
cated atr51, and its length isb. The parameter of the black
hole mass enters, as earlier, through the dimensionless q
tity y5r1 /r B . The parameters that uniquely fix ablunt in-
stantonareb, r B , r1 , andh. Fora51, the metric is iden-
tical to the metric of the Gibbons-Hawking instanton.

To calculate the renormalized one-loop effective acti
on the blunt instanton we map the latter onto a unit d
D2. Consider, at first, an arbitrary static Euclidean 2D ma
fold with the line elementds2 that is conformally related to
the unit disk with the elementds̃ 2:

ds25S b

2p D 2@a2dt21b2dr2#5exp~2s!m2@x2dt̃ 21dx2#,

~7.2!

where 0<t<2p, 0<t̃<2p, 0<r<1, and 0<x<1. Then,
the metric coefficientsa,b, and the conformal factors,

s~r!5 ln
a~r!

a~1!
1E

r

1

dr
b

a
1 lnS b

2pm D , ~7.3!
nt
the

-

uan-

on
isk
ni-

depend only onr. The normalization ofs is fixed by the
requirementss(1)5 ln(b/2pm) and t̃5t.

Integration of the conformal anomaly~see Appendix A!,
when applied to the metric~7.2!, gives the one-loop effective
action

W1
BC52

1

6
lnS b

2pm D2
1

12E0
1

dr
~a82b!2

ab

2S a8

4bD
r51

1
1

4
1C. ~7.4!

Here,a85da/dr and the constantC is, as earlier, the effec-
tive action for the unit diskD2. To derive this formula, the
regularity condition (a8/b)ur5051 of the metric at the hori-
zon has been used. For the metric~7.1! of the blunt instan-
ton, one has

a5r, b5
1

~12r21yr2!2
r21ah2

ar21ah2 , ~7.5!

s5 lnr1
1

2Er2

1

dz
z1ah2

z~az1ah2!~12z1yz!2
1 lnS b

2pm D ,
and the blunt-cone effective actionW1

BC reads

W1
BC~b,r B ,r1 ,h!5W̃1

BC
„b,a~b,r B ,r1!,y~r B ,r1!,h…,

~7.6!
W̃1
BC~b,a,y,h!52

1

6
lnF b

2pm G2
~a21!

24a

1

~11h22yh2!2
lnU h2

11h2 U1 a21

24
~11ah22yah2!2lnU ah2

11ah2 U
1

1

24
lnuyu H 12

a21

a

1

~11h22yh2!2 J 1
1

24
~12y!H 2a2

11ah22yah2

ay~11h22yh2! J
2

1

48
a~12y!2$122~a21!h2%2

1

4

a1ah2

11ah2 y
21

1

4
1C. ~7.7!
The parameterh in the blunt-cone method plays the role
similar to the cutoff parametere in the brick-wall method.
When the regularization parameterh tends to zeroh→0, the
action becomes

W̃1
BC~b,a,y,h!52

1

6
ln

b

2pm
1

1

48F2
2

ay
1
2

a
lny22ay

213ay212~a21!lna1
2

a
13a112G

1C1
1

24a
~a21!2lnh21O~h2!. ~7.8!
The metric~7.1! on shell (a51) becomes the metric of the
Gibbons-Hawking instanton and the corresponding on shell
effective action reads

W̃1
BC~b,a51,y,h!52

1

6
ln

b

2pm
1

1

48F2
2

y
12lny22y

213y2117G1C. ~7.9!

It is identical to the on shell actionW̃1(b,y) given by ex-
pression~3.17!. The corresponding blunt-cone entropy re-
mains finite in the limith50 and reads
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S1
BC~b,1,y,0!5

1

12y
2

1

12
lny1

1

6
ln

b

2pm
2
1

2
2C.

~7.10!

This result coincides~up to an unimportant constant! with
the entropyS1

CS found by the conical singularity method.

VIII. METHOD OF THE VOLUME CUTOFF

Finally we discuss here one more method of the off-she
definition of the black hole effective actionW1. Note that
W1 can be represented as the volume integral over the ba
ground space of some Lagrange densityL1(x):

W15E AgdxL~x!. ~8.1!

The corresponding densityL1(x) can be written in terms of
the diagonal elements of the heat kernel operator in the c
ordinate representation

L1~x!52
1

2E0
`ds

s
^xuesnux&, ~8.2!

so that, for the action itself, one has the standard formula

W15
1

2
ln det~2m2n !52

1

2E0
`ds

s
Tresm

2n. ~8.3!

Consider now a singular instanton, and calculateL1(x)
for its regular pointsr.r1 . Denote bySe a surface located
at a small proper distancee from the horizon, and restrict the
integration in Eq.~8.3! by the regionMB,e located outside
Se , see Fig. 6. As a result, the actionW1 depends on a new
parametere. We call this off-shell procedure as thevolume
cutoffmethod and denote the corresponding quantities wi
the superscriptVC.

The volume~or spatial! cutoff method arises naturally in
the dynamical-interior approach to the black hole entrop
proposed in Ref.@44#. In this approach the internal degree
of freedom of a black hole are identified with the states o
fields propagating in its interior in the close vicinity to the
horizon. Because of the quantum fluctuations of the horizo
the separation of the modes into external~propagating out-
side the horizon! and internal~propagating inside the hori-
zon! becomes impossible for modes located closer to th
horizon than the amplitude of its quantum fluctuations. Fo
this reason the summation of the modes which contribute

FIG. 6. Volume cutoff.
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the statistical-mechanical entropy of a black hole in the ap
proach@44# is restricted only to the modes, which are located
outside the fluctuation region of the horizon. This is equiva
lent to the spatial cutoff in the volume integral for the effec-
tive action described above. The volume cutoff procedur
has been also used in many other papers@45–52#. In works
@46,48–52# the black hole metric has been mapped onto a
optical ~ultrastatic! metric. The horizon then maps to infinity
and the proper volume of the optical space becomes infinit
In order to deal with this divergence it is natural to restrict
the volume integration by a finite region. This approach en
ables one to get a number of interesting results for the en
tropy corrections even for the massive fields in spaces wit
the dimension larger than two@50,51# and for conformal
fields with nonzero spins@52#.

Up to a certain extent the volume cutoff method re-
sembles the brick-wall approach. However, they are certain
different because the volume cutoff method does not requir
any special boundary conditions onSe . It is also nonsensi-
tive to the behavior of the quantum field in the region lying
closer thanSe to the horizon.

The calculation of the LagrangianL1 on the off-shell
black hole solution can again be carried out with the help o
the conformal transformation to the conical space. Using Eq
~A9!, one can write the relation

L15e22sL1~Ca!2
1

24p

3@Rs2~¹s!21~2ks13s ,mn
m!d~r ,r B!# ~8.4!

betweenL1 and the LagrangianL1(Ca) on a unit coneCa
valid in the region outside the horizon. Here,d(r ,r B) is the
invariant delta function which is included to reproduce the
surface terms on the external boundary in the action. Th
factor s is given by Eq.~3.14!. Note that the terms in Eq.
~A9!, which are determined by the value of the conforma
parameters on the cone apex do not contribute toW1

VC in
Eq. ~8.4!.

To find L1(Ca), one can use the Sommerfeld representa
tion for the heat kernelKa(x,x8)5,xuesnux8. of the
Laplace operator on the conical space~6.3!

Ka~x,x8,t̃2 t̃8!5K~x,x8,t̃2 t̃8!1
i

4pa

3E
G
cotS w2a DK~x,x8,t̃2 t̃81w!dw

~8.5!

relating it to the heat kernelK(x,x8,t̃2 t̃8) on a unit disk
D2. Here, the integration contourG lies in the complex plane
and consists of two curves, going from7p2( t̃2 t̃8)6 i` to
7p2( t̃2 t̃8)6 i` and intersecting the real axis between the
poles of the integrand22pa, 0, and 2pa. A derivation
and discussion of this formula can be found in@54–57#. The
Lagrange density on a cone can be easily calculated if on
substitutes Eqs.~8.5! and~8.3!. The result has a simple form

L1~Ca!5L1~D2!2
1

24px2 S 1a2 21D . ~8.6!
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Here,L1(D2) is the Lagrange density on the unit diskD2. In
what follows we omitL1(D2) which results in an irrelevant
constant inW1

VC . The second term, vanishing ata51, arises
as the result of integration in Eq.~8.5!. In the calculations the
integral overs is taken first and then the formula

i

8paEG

cot~w/2a!

sin2w/2
dw5

1

6 S 1a2 21D ~8.7!

is used.
Let W1

VC@Ca# be the effective action on a coneCa ob-
tained by the integration of Eq.~8.6! till the point x5ex . As
earlier,ex is related with the invariant distancee to the ho-
rizon by Eq.~5.3!. This functional reads

W1
VC@Ca#5

1

12S a2
1

a D lnex
21 . ~8.8!

Then, by using Eqs.~8.6! and ~5.3!, one can write the com-
plete effective action in the volume cutoff method as

W1
VC~b,r B ,r1 ,e!5W1

VC@Ca#2
1

24p S E
MB,e

@Rs2~¹s!2#

1E
SB

~2Ks13s ,mn
m! D . ~8.9!

So eventually we have

W1
VC~b,r B ,r1 ,e!5W̃1

VC
„b,a~b,r B ,r1!,y~r B ,r1!,e…,

W̃1
VC~b,a,y,e!

5
1

12S a2
1

a D S lnm

e
2 ln

2pma

b
2
1

2
lny2

1

2
1

1

2yD
1

a

48p S 2
2

y
12lny22y213y211718ln

2pma

b D
1o~e!. ~8.10!

When taken on shell (a51), the divergence lne of this func-
tional disappears andW̃1

VCcoincides with the action~3.17! on
the regular space

W̃1
VC~b,a51,y,e!5W̃1~b,y!. ~8.11!

The entropy S1
VC(b,a,y,e), calculated from the action

~8.10!, reads

S1
VC~b,a,y,e!5

1

12a S 2lnm

e
12ln

b

2pa
2 lny211

1

yD .
~8.12!

On shell S1
VC differs from the conical singularity entropy

S1
CS only by a singular term depending one

S1
VC~b,a51,y,e!5S1

CS~b,a51,y!1
1

6
ln

m

e
. ~8.13!

The entropyS1
VC can be also written as
S1
VC~b,a,y,e!5

1

6a
lnex

21 . ~8.14!

So, this quantity coincides with the entropy computed from
the actionW1

VC(Ca). The coincidence takes place because
the anomaly, which differentiatesW1

VC(b,a,y,e) from
W1

VC(Ca), is proportional tob and does not contribute into
S1
VC .
Another observation is thatS1

VC coincides with the ther-
mal entropy of the quantum gas in the volume of the size
lnex

21 The volume cutoff entropy does not contain the term
lnlne21 which is present in the brick-wall entropyS1

BW since
the boundary condition on the quantum field atSe is not
imposed, and the field can freely fluctuate on this boundary
see Appendix C.

IX. OFF SHELL VERSUS ON SHELL

A. Off-shell and On-shell effective actions

In this section we discuss and compare the results of th
off-shell and on shell calculations of the thermodynamical
characteristics of a black hole. We begin by discussing the
obtained results for the effective action. It is convenient to
introduce the notation

U~b,a,y!52
1

6
lnF b

2pm G1
1

48F2
2

y
12lny11722y213y2G

1
a21

48a S 2y22lny22115a22ay213ay2D
2

~a21!2

12a
lnF b

2pmG1S a1
1

a D lna. ~9.1!

Then, the one-loop contributions to the effective action cal-
culated by different off-shell methods can be presented in th
form

W̃1
CS~b,a,y!5U~b,a,y!1C~a!, ~9.2!

W̃1
BW~b,a,y,e!5U~b,a,y!1

1

12S a1
1

a D lnS e

m D
2
1

2
ln

pa

ln~b/2pae!
, ~9.3!

W̃1
BC~b,a,y,h!5U~b,a,y!1

~a21!2

12a
lnF hb

2pam G
1

a21

24
lna2

a25

4
1C, ~9.4!

W̃1
VC~b,a,y,e!5U~b,a,y!2

1

12S a2
1

a D lne

m
. ~9.5!

Here, we again use the notationsy5r1 /r B and
a(b,r B ,r1)5b/(4pr1A12r1 /r B). The constantsC and
C(a) which enter these relations are the effective actions
W15

1
2lndet(2m2n) on the unit diskD2 and on the unit

coneCa, respectively.
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In the same notations, the on shell one-loop effective
tion is

W̃1~b,y!5U~b,a51,y!1C. ~9.6!

A simple comparison of Eqs.~9.2!, ~9.4!, and~9.5! with Eq.
~9.6! shows that the relations

W̃1
CS~b,a51,y!5W̃1

BC~b,a51,y,h!

5W̃1
VC~b,a51,y,e!5W̃1~b,y! ~9.7!

take place@after neglecting unessential numerical consta
in Eqs.~9.4! and~9.5!#. In other words, the on-shell values
the one-loop effective actions calculated by conical singu
ity, blunt-cone, and volume cutoff methods coincide with
on shell one-loop effective actionW̃1(b,y). W̃1

CS is always
finite, while W̃1

BC and W̃1
VC are finite ~i.e., do not contain

either lnh or lne divergence! only on shell~for a51). The
only divergent on shell quantity is the brick-wall effecti
actionW̃1

BW .
The relation~9.3! can be interpreted in the following wa

Let us remind that the effective actionW1
CS has been com

puted by the conformal map onto the coneCa , @see Eq.
~6.3!#. So W1

CS is defined up to addition of the actio
W1@Ca#5C(a). Alternatively, one could use the map onto
coneCa,e with the sizee. The results of two computation
can be compared by using the difference betweenW1@Ca#
andW1@Ca,e#. This difference can be easily found becau
both cones are related by the trivial rescaling:

ds2~Ca!5S m

e D 2ds2~Ca,e!. ~9.8!

Then, Eq.~A9! gives

W1@Ca#5W1@Ca,e#1
1

12S 1a 1a D lne

m
. ~9.9!

It enables one to represent the result~9.3! as

W1
BW~b,a,y,e!5W1

CS~b,a,y!2W1@Ca,e#1W1
Cas~b,a,e!,

~9.10!

where

W1
Cas~b,a,e!52

1

2
ln

pa

ln~b/2pae!
~9.11!

is the contribution due to the Casimir effect. The deta
discussion of this term and its relation to the brick-w
boundary conditions is given in Appendix C.

B. Why the on shell and off-shell one-loop contributions
to the entropy are different

The equality~9.7! of all ~except brick-wall! off-shell ef-
fective actions and the on shell effective action does
guarantee that the same is true for the corresponding v
of entropy. Moreover, as we shall see, all the off-shell c
culations give the results for the entropy which differ fro
the on shell result. Before giving the concrete relations
tween these quantities, let us discuss why does it happe
ac-

nts
f
lar-
he

e

.

n
a
s

se

led
all

not
lues
al-
m
be-
n.

Our starting point in the off-shell calculations is the one-
loop actionW1

• which is the function of the parametersb,
r B , and r1 . In the ‘‘brick-wall’’ and volume cutoff ap-
proaches, it also depends on the additional parametere, and
on e and h in the blunt-cone method. The dependence on
these additional parameters is not important at the moment,
so we will not indicate it explicitly. The quantitiesb and
r B are external parameters fixing the problem andr1 is de-
termined on shell in terms of them by the condition

a~b,r B ,r1!5
b

4pr1A12r1 /r B
51. ~9.12!

Consider first cone-singularity, blunt cone, and volume cut-
off methods for which the effective actions, when taken on
shell ~9.12!, coincide with the thermodynamical action
W1(b,r B) given by Eqs.~3.16! and ~3.17!

W1
• ~b,r B ,r1!ua515W1~b,r B!. ~9.13!

Here the symbol • replaces CS, BC, and VC notations. The
thermodynamical entropyS1

TD is defined by Eq.~3.19!

S1
TD5b

]W1~b,r B!

]b U
r B

2W1~b,r B!, ~9.14!

while the off-shell entropyS1
• is defined by Eq.~4.1!

S1
•5b

]W1
• ~b,r B ,r1!

]b
U
r B ,r1

2W1
• ~b,r B ,r1!. ~9.15!

Note that in the calculation ofS1
• the parameterr1 is as-

sumed to be fixed. This results in the differenceDS• between
two entropies:

DS•5S1
TD2S1

•

5bS ]

]b
W1~b,r B!2

]

]b
W1

• ~b,r B ,r1! D U
a51

.

~9.16!

Together with the Eq.~9.13!, it gives

DS•5bS ]r1

]b

]W1
•

]r1
Ub,r BD

a51

~9.17!

which, obviously, is nonzero quantity. This shows why in the
general case the one-loop contribution to the black hole en-
tropy found by an off-shell procedure differs from the con-
tribution inferred in the thermodynamical computation,
based on the on-shell action.

C. Relations between off-shell and on-shell entropies

We obtain now explicit formulas relating different off-
shell entropies. As earlier, we assume that after the calcula-
tions of the entropy the limita51 is taken. The calculated
entropies are always understood as the function of the pa-
rametersb,r B characterizing the system. For simplicity, we
omit these arguments. Note also, that the effective actions
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contain an arbitrary constants, which we denoted asC and
C(a). It is evident that similar constants enter also the e
pressions for the entropies. We indicated these constants
plicitly earlier in the expressions for the entropies. They m
be important for the discussion of the questions connec
with the third law of black hole thermodynamics. But the
are not important for us now. For this reason, in order
simplify the expressions we simply omit them from now o
We also omit the terms which vanish when the addition
parameters~such ase and h) take their limiting value
(e50 andh50).

It is convenient to begin with the entropyS1
CS calculated

by the conical singularity method. It is obtained from th
effective actionW1

CSgiven by Eq.~9.2! with C(a51)50, or
what is equivalent fromU, given by Eq.~9.1!:

S1
CS5

1

12S 1y212 lny12ln
b

2pm D . ~9.18!

Let us denote

S1
T~e!5

1

6
ln

m

e
, S1

Cas~e!5
1

2
ln

p

ln
b

2pe

. ~9.19!

Then, the results of the previous sections can be summar
as

S1
BW5S1

CS1S1
T1S1

Cas, ~9.20!

S1
VC5S1

CS1S1
T , ~9.21!

S1
BC5S1

CS. ~9.22!

Thus, the blunt-cone and conical singularity methods gi
the same finite result for the entropy, while the brick-wa
and volume cutoff methods give expressions containi
(lne) divergence. The differenceS1

CasbetweenS1
BW andS1

VC

occurs because the different boundary conditions in th
methods are imposed. All the above off-shell expressions
the entropy differ from the one-loop contributionS1

TD to the
thermodynamical entropy given by Eq.~3.22!. The latter can
be presented as

S1
TD5S1

CS1DS, ~9.23!

where

DS[bS ]r1

]b

]W1
CS

]r1
U

b,r B
D

a51

5
1

48~223y!
~214126y228y2113y3!1

1

24
lny.

~9.24!

The relation~9.20! can be rewritten in a different form
which is more convenient for interpretation. Note that a
cording to Eqs.~5.16!, ~5.17!, and~5.21!,

S1
BW52 Tr@ r̂e

H~b!lnr̂e
H~b!#. ~9.25!
x-
ex-
ay
ted
y
to
n.
al

e
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ve
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c-

On the other hand,S1
T1S1

Cas can be identically rewritten as

S1
T1S1

Cas5Se
R~2pm!52 Tr@ r̂e

R~2pm!lnr̂e
R~2pm!#.

~9.26!

That is, this expression coincides with the entropy of a mas
less thermal radiation in the Rindler space between two m
rors located at the proper distancese andm from the horizon.
The temperature of the radiation measured at the distan
m from the horizon is 1/(2pm). Thus, we have

S1
CS52$Tr@ r̂e

H~b!lnr̂e
H~b!#2 Tr@ r̂e

R~2pm!lnr̂e
R~2pm!#%.

~9.27!

It is easy to verify that the same relation is valid also if th
inner mirrorlike boundary~at e) is absent provided the quan-
tities in the right-hand side are defined by using the volum
cutoff method. For both brick-wall and volume cutoff meth-
ods, each of the terms in the right-hand side of Eq.~9.27! is
divergent ase→0, while the difference remains finite in this
limit. If we formally define the density matricesr̂H(b) and
r̂R(2pm) on the black hole and Rindler backgrounds as th
limits

r̂H~b!5 lim
e→0

r̂e
H~b!, r̂R~2pm!5 lim

e→0
r̂e
R~2pm!,

~9.28!

then for both volume cutoff and brick-wall methods, we hav

S1
CS~b,a51,y!52$Tr@ r̂H~b!lnr̂H~b!#

2 Tr@ r̂R~2pm!lnr̂R~2pm!#%.

~9.29!

Using Eq.~9.23!, we finally get

S1
TD52$Tr@ r̂H~b!lnr̂H~b!#2 Tr@ r̂R~2pm!lnr̂R~2pm!#%

1DS. ~9.30!

This relation indicates that the one-loop correction to th
thermodynamical entropy can be obtained from th
statistical-mechanical black hole entropy by the following
procedure. First, one needs to subtract the Rindler entro
which removes the divergence, and then add a finite corre
tion nS. In the next section we show that the second term
DS coincides with the change of the classical Bekenstei
Hawking entropy due to the quantum deformation of th
background geometry.

It is worth mentioning that a similar subtraction procedur
naturally arises in the membrane paradigm@60#. Namely, in
order to obtain the correct expression for the flux of th
entropy onto a black hole, Thorne and Zurek@59,60# pro-
posed to subtract from the entropy, calculated by
statistical-mechanical method, the entropy of a thermal a
mosphere of the black hole. The later entropy close to th
horizon coincides withSRindler

SM . Equation~9.30! can be used
to prove this conjecture. However, it should be stressed th
Thorne and Zurek did not consider quantum corrections
the entropy discussed in the present paper. Equation~9.30!
not only explains how the volume infinities inSSM are sepa-
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rated, but also gives an exact dependence of the quan
corrections to the entropy on physical characteristics.

D. Entropy and back reaction effects

The thermodynamical entropy of a black hole with qua
tum one-loop corrections is

STD5SBH~r1!1S1
TD, ~9.31!

whereSBH(r1)5pr1
2 is the Bekenstein-Hawking entropy

As the result of quantum effects, a ‘‘real’’ solution (ḡ, r̄ ),
including quantum corrections, is different from the classi
Schwarzschild solution (g,r ) @61#. In particular, the value
r̄ 1 of the dilaton field at the horizon ofḡ differs from its
classical valuer1 . We demonstrate now that Eq.~9.31! can
be identically rewritten as

STD5p r̄ 1
2 1S1

CS. ~9.32!

A first step in the proof is to obtain an equation whi
determinesr̄1 . For given boundary conditions (b,r B), the
extremum of the Euclidean effective actionW defines a regu-
lar quantum solution. This solution can be obtained by so
ing the field equationsdW/dḡ5dW/d r̄50 and fixing an
arbitrary constant which enters the solution by the regula
condition on the horizon. This determinesr̄1 as a function of
(b,r B): r̄15 r̄1(b,r B). For any other choice of the constan
the solution has a conelike singularity. We call such a sin
lar solution aquantum singular instanton. It obeys local field
equations but does not provide a global extremum forW.
The quantum singular instanton is specified by (b,r B) and an
arbitrary parameter r̄1 . We write the solution as
@ ḡ( r̄1), r̄ ( r̄1)#. The effective actionW(b,r B , r̄1) calculated
on the quantum singular instanton is

W~b,r B , r̄1![W@b,r B ,ḡ~ r̄1!, r̄ ~ r̄1!#

5I @b,r B ,ḡ~ r̄1!, r̄ ~ r̄1!#

1W1
CS@b,r B ,ḡ~ r̄1!, r̄ ~ r̄1!#.

~9.33!

The condition of the global extremality ofW

]W~b,r B ,r1!

]r1
50 ~9.34!

determines the horizon radiusr̄15 r̄1(b,r B) for the regular
quantum instanton.

In the calculations we keep only terms up to the fi
order in \. For this reason we can replac
W1

CS@b,r B ,ḡ( r̄1), r̄ ( r̄1)# in the right-hand side of Eq.~9.33!
by its value calculated on the classical singular instan
W1

CS@b,r B ,g( r̄1),r ( r̄1)#. What is much less trivial, we ca
also replace@ ḡ( r̄1), r̄ ( r̄1)# in the classical actionI in Eq.
~9.33! by the solution@g( r̄1),r ( r̄1)# for a classical singular
instanton provided the value of the dilaton fieldr̄1 on the
horizon is preserved the same. To show this, consider
general variation of the classical actionI given by Eq.~3.1!.
For fixed r B andb, we have
tum

n-

.

cal

ch

lv-

rity

t,
gu-

rst
e

ton
n

the

I @b,r B ,ḡ, r̄ #5I @b,r B ,g,r #

1E F dI

dgab
U

gab

~ ḡab2gab!1
dI

dr
dr G

1r ,mn
mur5r1

dr1

22p~12a!r1dr11O~\2!. ~9.35!

We assume that the value of the dilaton field on the cone
singularity isr1 , and denote by 2p(12a) the correspond-
ing deficit angle which is defined by (g,r ) at r1 @58#. The
relation ~9.35! shows that when the valuer1 for g and ḡ is
the same, and (g,r ) is a solution of classical equations
(dI /dgab50, dI /dr50), the value of the classical action
calculated on (ḡ, r̄ ) differs from the classical value
I @b,r B ,g,r # only by terms of the orderO(\

2). That is why
we can replaceI @b,r B ,ḡ( r̄1), r̄ ( r̄1)# in Eq. ~9.33! by
I (b,r B ,r1), the value ofI calculated on the classical singu-
lar instanton. The latter can be easily found

I ~b,r B ,r1!5bE~r B ,r1!2pr1
2 ,

E~r B ,r1![r B@12~12r1 /r B!1/2#, ~9.36!

whereE is a quasilocal energy@7,53#.
The Eq. ~9.34! which defines the ‘‘position’’r̄1 of the

quantum horizon can be written as

]W1
CS~b,r B ,r1!

]r1
522p r̄1~ ā21!. ~9.37!

Here, a5a(b,r B ,r1)5b@4pr1A12r1 /r B#21, and ā is
the value of the classical off-shell parametera calculated for
r15 r̄1 . For the classical regular instantona51. It means
that up to the second order in\ we can write

2p r̄1~ ā21!52pr1S ]a

]r1
D

a51

Dr1 . ~9.38!

Here,Dr15 r̄12r1 is the change of the ‘‘position’’ of the
black hole horizon because of the quantum corrections. Us
ing the explicit expression fora, it is easy to show that

S ]a

]r1
D

a51

52Fb ]r1

]b G
a51

21

. ~9.39!

The latter relation allows one to write

2pr1Dr15bF]r1

]b

]W1
CS

]r1
G

a51

, ~9.40!

and hence using Eq.~9.24!, one gets

DS52pr1Dr1 . ~9.41!

Therefore, up to the termsO(\2), the quantityDS can be
represented as the differenceDS5SBH( r̄1)2SBH(r1). On
the other hand, taking into account Eq.~9.23!, we can write
the thermodynamical entropy given by Eq.~9.31! as the sum
STD5SBH(r1)1nS1S1

CS. These equalities prove the de-
sired relation~9.32!.
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X. SUMMARY AND CONCLUSIONS

Discuss now some lessons we have learned by compar
on shell results with the results of the different off-she
methods in black hole thermodynamics. First of all, dire
calculations demonstrate that the thermodynamical entro
of a black holeSTD determined by the response of the fre
energy to the change of the temperature, and the statistic
mechanical entropySSM, defined asSSM52 Tr( r̂Hlnr̂H) for
density matrixr̂H of black hole internal degrees of freedom
are different. The thermodynamical entropy, in addition t
the tree-level Bekenstein-Hawking partSBH5A/4, contains
also finite quantum one-loop correctionS1

TD . The latter can
be obtained from the on shell effective action. The statistica
mechanical entropySSM is defined as a one-loop quantity
and it requires an off-shell procedure for its calculation
SSM can be identified with the volume cutoff entropyS1

VC .
Then, it contains the divergence (lne) wheree is a proper-
distance cutoff of the volume integration, required to mak
this quantity finite. This leading logarithmical part ofSSM

also presents in the brick-wall model, but generally due
the Casimir effect,S1

BW has the additional divergence
(lnulneu).

The physical reason whySTD and SSM are different is
connected with a special property of a black hole as a th
modynamical system@12#. Namely, the internal degrees of
freedom of a black hole are defined as excitations propag
ing on the background geometry. This geometry is unique
determined by the mass parameter which, in the state of th
mal equilibrium, is a function of the external temperature
For this reason, to findS1

TD one must change the temperature
This results in the change of Hamiltonian, describing the
internal excitations. On the other hand, in the calculations
SSM the black hole mass and the Hamiltonian are to be fixe

We proved that the thermodynamical entropy of a blac
hole can be presented in the form

STD5SBH~ r̄1!1@SSM2SRindler
SM #. ~10.1!

SBH( r̄1)5p r̄1
2 is the Bekenstein-Hawking entropy, and

r̄1 is the ‘‘radius’’ of the horizon of a ‘‘quantum’’ black
hole. The term in the square brackets is the difference b
tween the statistical-mechanical entropies calculated for
black hole {SSM52 Tr@ r̂H(b)lnr̂H(b)#} and for a Rindler
space {SRindler

SM 52 Tr@ r̂R(2pm)lnr̂R(2pm)#}. This subtrac-
tion procedureautomatically removes all the divergence
from SSM and results in an invariant regularization
independent quantity.

We proved the relation~10.1! by explicit calculations in
2D case, but it seems to be of the general nature and it~or its
generalization! must be valid in the 4D case. The reason
that the on shell renormalized quantitySTD is always finite,
so that the subtraction terms in Eq.~10.1! will always be of
the form required for the complete cancellation of the vo
ume divergences ofSSM @12#. One of the possible ways to
derive in four dimensions the relation analogous to E
~10.1! is to use an optical metric, where the required subtra
tion terms can be calculated by using high-temperature e
pansion. For this reason, the coefficients, which enter t
subtraction terms with different order of singularity ine must
be connected with the Schwinger-DeWitt coefficients.
ing
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A remarkable property of the conical singularity method
is that ~at least in 2D case! it gives the finite result immedi-
ately:

S1
CS5SSM2SRindler

SM . ~10.2!

The mathematical reason whyS1
CS is finite while S1

VC con-
tains volume (lne) divergence is connected with the differ-
ence of the topologies of the manifolds used to calculate th
corresponding effective actions. ForS1

VC the standard mani-
fold has the topology of a cylinder~or a ring!, while in for
S1
CS the topology is ofD2, i.e., the same as the topology of
the Gibbons-Hawking instanton. The mathematical operatio
when one cuts a small disk of the radiuse, from the standard
unit diskD2 to transform it into a ring, can be interpreted as
the subtraction of an entanglement entropy@63,64,27,31,65#
SRindler
SM 52 Tr( r̂Rlnr̂R).
We stress once again that in our approach all the reno

malizations are to be done from the very beginning so tha
only observable finite coupling constants enter the result
We demonstrated that some of the off-shell methods requi
an additional cutoff parameter which we denoted bye. This
cutoff parameter is completely independent from the ultra
violet cutoff d, see Eqs.~3.9! and ~6.1!. Moreover, the pa-
rametere enters only some intermediate quantities and neve
appears in the final observable results. We demonstrated e
plicitly that quantum corrections to the physically observable
quantities can be always obtained by working only with on
shell quantities. As a result, for a black hole of a mass, muc
greater than the Planckian mass, the quantum corrections
observables are small and independent of the physics
Planckian scales. This differentiates on shell quantities from
the off-shell ones, such asSSM.

There remains one more general question to be clarifie
All the observables characterizing a black hole in a therma
equilibrium, or its slow transition from one equilibrium state
to another, can be found by using only on shell quantities
Why at all does one need to use off-shell methods in th
black hole thermodynamics? We have already seen that o
of the reasons is the desire to establish a relation betwe
statistical-mechanical and thermodynamical entropies. In th
sense, the off-shell methods can be considered as a use
tool for calculation and interpretation of the on shell quanti-
ties. But we believe that, in addition to this trivial reason,
there may exist another more deep one. The off-shell ap
proaches may also be relevant for description of nonequilib
rium processes in a system including a black hole. In thi
case quantum and thermal fluctuations of a thermodynamic
system can be described by introducing stochastic noise@66#,
which effectively takes a system off shell. For this reason
one may guess that such processes, for instance, as transit
to a thermal equilibrium of a black hole initially exited by
high energy explosion near its horizon, may require for thei
consideration some of the above-mentioned off-shell chara
teristics.
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APPENDIX A: CONFORMAL TRANSFORMATIONS
OF THE EFFECTIVE ACTION IN TWO DIMENSIONS

For completeness we derive in this Appendix the conf
mal transformations for the effective action

W1@g#5
1

2
ln det@2n#52

1

2E0
`ds

s
Tr~esn! ~A1!

defined on a 2D Euclidean manifoldMa with the boundary
]Ma and a pointxs whereMa has the conical singularity
with the deficit angle 2p(12a). We will follow the method
developed in@62# and use for this aim the dimensional reg
larization. Consider the effective actionW1 for the confor-
mally invariant operatorD5n2(d22)@4(d21)#21R in a
d-dimensional space. The divergent partW1

div of W1 can be
found from the asymptotic heat kernel expansion

Tr~esD!5
1

~4ps!d/2 (
n50,1/2,...

`

an
~d!sn. ~A2!

In two-dimensional case for the dimensional regularizatio

W1
div5

1

d22

a1
~d!

4p
, ~A3!

where for an arbitrarya @41,42#

a1
~d!5S 162

d22

4~d21! D EMa

R1
p

3 S 1a 2a D E
S

1
1

3E]Ma

k.

~A4!

In Eq. ~A4! the singular pointxs is replaced by a singula
surfaceS of the dimensiond22 and the integral of the
scalar curvatureR is taken over the regular part ofMa . k is
the second fundamental form of the spatial boundary]Ma
defined in terms of its normal ask5¹mnm .

The renormalized action is defined as the difference of
nonrenormalized~bare! actionW1

bare and its divergent part
W1

div

W15W1
bare2W1

div . ~A5!

Under conformal transformationg̃mn5e22sgmn of the met-
ric onMa , the renormalized action changes as@62#

W1~ g̃ !2W1~g!5
1

4p
lim
d→2

1

22d
@a1

~d!~ g̃ !2a1
~d!~g!#.

~A6!

Further, we will consider only those transformations whi
do not ‘‘squash’’ the conical singularity. Then, by makin
use of the relations

R̃5e2s$R1~d21!@2ns1~22d!s ,as ,a#%, ~A7!

k̃5es@k2~d21!s ,mn
m#, ~A8!

one gets, from Eq.~A6!,
r-

-

n

he

h
g

W~ g̃ !2W~g!5
1

24p F E
Ma

@Rs2~¹s!2#

1E
]Ma

~2ks13s ,mn
m!G

1
1

12S 1a 2a Ds~xs!. ~A9!

This is the desired conformal transformation of the effective
action wheres(xs) is the value of the conformal factor in the
point of conical singularity. If the manifold has a number of
conical singularities in pointsxs with different deficits
2p(12as), then the last term in the right-hand side of Eq.
~A9! must be replaced by the corresponding sum over al
xs . If the manifold does not have conical singularities the
last term in Eq.~A9! vanishes (a51). Equation~A9! can be
also represented in another equivalent form which sometime
is more convenient

W~ g̃ !2W~g!5
1

48pEMa

d2xs~g̃1/2R̃1g1/2R!

1
1

24pE]Ma

dxs~ h̃1/2k̃1h1/2k!

2
1

8pE]Ma

dx~ h̃1/2k̃2h1/2k!

1
1

12S 1a 2a Ds~xs!. ~A10!

Here,

h1/2k2h̃1/2k̃5h1/2na]as

and the conformal factors should be understood as a solu-
tion of the equation

22g1/2hs5g1/2R2g̃1/2R̃.

APPENDIX B: EFFECTIVE ACTION AND FREE ENERGY
OF A SCALAR FIELD IN TWO DIMENSIONS

Let us consider a conformal massless scalar fieldf on a
two-dimensional manifold. The two-dimensional metric is
supposed to be independent on the Euclidean time. It can b
represented in the form

ds25exp@2s~x!#$dt21dx2%, 0<t<b, x0<x<x1 .
~B1!

The conformal scalar fieldf satisfies the equation

nf5exp@22s~x!#H ]2

]t2
1

]2

]x2 J f50. ~B2!

For simplicity, we consider the problem with the Dirichlet
boundary conditionsf(x0)5f(x1)50.

Using the conformal transformation of the effective action
~see Appendix A!, we can reduce the problem of calculation
of the effective action on the manifold Eq.~B1! to a calcu-
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lation of the effective action on a cylinderQ with period in
Euclidean timeb and lengthL5x12x0. The one-loop effec-
tive action on a cylinderW1

Q(b,L) can be written in the form

W1
Q~b,L !5

1

2
ln det~2m2n !

52
1

2
z8~0!1

1

2
z~0!lnm2

52
1

2 F ]

]z(l
~m2l!2zG

z50

.

Here,m is an arbitrary parameter with a dimensionality o
length and the generalizedz functionz(z)5(l@m2l#2z rep-
resents the sum over all eigenvaluesl of the operator2n.
Although, the effective action is determined up to the resc
ing of the parameterm, all the physical observables are un
ambiguously defined. For the Dirichlet boundary conditio
the substitution of the eigenvalue
lmn5(2p/b)2n21(p/L)2m2 of the Laplace operator on the
cylinder leads to the relation

W1
Q~b,L !

52
1

2 H ]

]z(m51

`

(
n52`

` Fm2S 4p2

b2 n21
p2

L2
m2D G2zJ

z50

52
1

2H ]

]z )
m51

`

)
n52`

` S 2pm

b
nD 22z

3S 11
b2

4L2
m2

n2 D2zJ
z50

. ~B3!

Applying the formula

)
n51

` S 11
a2

n2D5
sinhpa

pa
~B4!

and representing other infinite sums and products in terms
the Riemannz function, we eventually have

W1
Q~b,L !5bF2

pb

24L
, ~B5!

where

bF5 (
n51

`

lnS 12expF2b
p

L
nG D . ~B6!

We demonstrate now thatF coincides with the thermody-
namical free energy of a gas of scalar particles in the volu
L. In statistical mechanics the free energyF of a quantum
system is defined by a relation

exp@2bF#5 Tr exp@2b:Ĥ:#. ~B7!

If we choose the basis functions to be eigenfunctions of t
HamiltonianĤ5A2]x

2, the free energy can be expressed
terms of a sum over all dynamical degrees of freedom
f

l-
-
s

of

e

he
n

bF5(
n

ln~12e2bvn!, ~B8!

whereb is an inverse temperature andvn are the energy
levels of the quantum system. Thus, we are to know only th
spectrum of the system to calculate the free energy. One c
easily solve the Eq.~B2! and find the energy levels of the
system

vn5
p

L
n, L5x12x0.

Note that the mode withn50 should be eliminated from the
summation in Eq.~B8!, since its amplitude is fixed by the
Dirichlet boundary conditions and, hence, it is not normaliz
able and is not a dynamical degree of freedom.~For the
Neumann boundary conditions zero modes will contribute t
the free energy.!

Thus, for the Dirichlet boundary conditions the free en-
ergyF reads

F5
1

b (
n51

`

lnS 12expF2b
p

L
nG D ,

which coincides with Eq.~B6!.
Now, let us calculateF in the high-temperature limit, i.e.,

when the length of the cylinderL is much larger than its
perimeterb. In this limit the distance between the levels is
less than temperaturep/L! 1/b and the sum overn can be
estimated using the Euler-McLourain formula

(
n51

`

f ~n!5E
0

`

dx f~x!2E
0

1

dx f~x!1
1

2
f ~1!1 (

k51

`

ckf
~k!~1!.

Here, the coefficientsck can be expressed in terms of Ber-
nouli numbers

ck5~21!k
Bk11

~k11!!

and the functionf (x) is supposed to decrease at infinity to-
gether with all its derivatives. Substituting here the function
f (x)5 ln@12exp(2sx)# and taking into account the relation

lnG~z!5~z2 1
2 !ln~z!2z1

1

2
ln~2p!

1 (
m51

`
B2m

~2m!~2m21!z2m21 ,

u argzu,p,

one can prove that

(
n51

`

ln~12exp@2sn# !52
p2

6s
2
1

2
lnF s

2pG1
1

24
s1o~s!.

~B9!

For the free energy it leads to a formula
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bF52
pL

6b
2
1

2
ln

b

2L
1

pb

24L
1oS b

L D , ~B10!

and hence the effective action reads

W1
Q52

pL

6b
2
1

2
ln

b

2L
1oS b

L D . ~B11!

It can be shown thato(b/L) is nonanalytical in its argument
and tends to zero extremely fast whenb<L.

Note that by constructionbF for a conformal fields is
conformally invariant, since the spectrum is conformally in
variant. This property distinguishes it from an Euclidean e
fective actionW1 which transforms inhomogeneously unde
the conformal transformations because of the conform
anomaly. Note that the renormalized effective actio
W1

Q(b,L) andbF differ only by the term linear inb @67,68#.

APPENDIX C: CASIMIR EFFECT AND FIELD
FLUCTUATIONS NEAR THE BRICK-WALL BOUNDARY

In this appendix we present a more detailed discussion
the field fluctuations on the boundary near the horizon a
their relation with the Casimir effect which inevitably arise
in the brick-wall approach. Instead of the black hole bac
ground, and consider the quantum field in the Rindler spa
at the inverse temperature 2pa measured at the point
x51, and putm51. This simplification is justified by the
fact that we are interested in the effects which happen ve
close to the horizon where the space is similar to a co
~6.3!.

Assume that the brick wall is at the pointx5e in coordi-
nates~6.3!. The brick-wall effective action in this case is the
action on the partKa,e of the coneCa , see Fig. 7.

Then, as follows from Eqs.~5.6!, ~5.7!, and ~9.9!, the
analogue of the Eq.~9.10! for the cone

W1
BW~a,e!5W1@Ka,e#

5W1@Ca#2W1@Ca,e#1W1
Cas~2pa,a,e!, ~C1!

W1
Cas~2pa,a,e!52

1

2
ln

pa

lne21 .

Our aim now is to understand how the presence of t
Casimir termW1

Cas(2pa,a,e) is related with the quantum
fluctuations near the pointx5e. This can be done by analyz-
ing the path integral representation for the partition functio
on Ca :

FIG. 7. Cones.
-
f-
r
al
n

of
d

-
ce

ry
ne

e

n

Z1@Ca#5e2W1@Ca#

5E @Df#e2I @f#

5E @Df#expS 2
1

2E f ,mf ,mD . ~C2!

Here, one can divide the variables into three groups

Z1@Ca#5E @Df1#@Dc#@Df2#e
2I @f#, ~C3!

wheref1 and f2 are the fields in the domainsx,e and
x.e, respectively, andc5f(x5e). In each of the regions
one can change the fields as

fk5fk81xk , ~C4!

nxk50, xk~x5e!5c, k51,2, x2~x51!50.
~C5!

The new variablesfk8 satisfy the Dirichlet conditions on the
boundaries of their domains. Using this fact and that th
fieldsxk are harmonic, one can represent the classical actio
in the way

I @f11f2#5I @f18#1I @f28#1W@c#, ~C6!

whereW@c#5I @x1#1I @x2# for x1(x5e)5x2(x5e)5c.
The partition function~C3! is represented now in the form
where contributions from the fieldsf1, f2, andx are com-
pletely factorized

Z1@Ca#5E @Df18#e2I @f18#E @Dc#e2*W@c#E @Df28#e2I @f28#

5Z@Ca,e#Z@Ka,e#E @Dc#e2*W@c#. ~C7!

The first multiplier in Eq.~C7! is the partition function on a
cone of the small radiuse, the second one is the partition
function on the spaceKa,e , which is determined by the
brick-wall actionW1

BW(a,e)

Z@Ka,e#5e2W1@Ka,e#5e2W1
BW

~a,e!. ~C8!

The left integral overc describes the quantum fluctua-
tions of the field in the pointx5e. Let us show that it repro-
duces explicitly the Casimir term in the effective action. In-
deed, Eqs.~C5! have the solutions

x1~x,t!5A 1

pa (
n51

` S cn
~1!cos

nt

a
1cn

~2!sin
nt

a D S xe D n/a,
~C9!

x2~x,t!5A 1

pa (
n51

` S cn
~1!cos

nt

a
1cn

~2!sin
nt

a D
3S e

xD
n/a 12x2n/a

12e2n/a
1

c0

A2pa
lnx/e, ~C10!
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wherecn
(k) ,c0 are the Fourier coefficients of the fieldc on

the boundary:

c~t!5A 1

pa (
n51

` S cn
~1!cos

nt

a
1cn

~2!sin
nt

a D1
c0

A2pa
~C11!

defined with respect to the orthonormal basis on the circ
0<t<2pa. This gives the action up to the terms ofO(e) in
the form

W@c#5I @x1#1I @x2#

5
1

a (
n51

`

@~cn
~1!!21~cn

~2!!2#1S 2ln1e D 21

c0
21O~e!.

~C12!

The integral overc has the Gaussian form and can be eval
ated exactly. The integration measure can be written up to
normalization numerical coefficient as

@Dc#5e1/2dc0)
n51

`

e1/2dcn
~1!)

n51

`

e1/2dcn
~1! , ~C13!

where the multipliere1/2 is the heritage of the definition
of the covariant measure which includes the factorg1/4

at x5e. Thus, the result of the integration over fieldsc
looks as
le

u-
a

E @Dc#e2*W@c#5NS e ln
1

e D 1/2expS (
n51

`

ln~ae!D
~C14!

(N is the numerical constant! which after regularization of
the infinite sum with the help of the Riemann zeta function
zR(z)

(
n51

`

5 lim
z→0

(
n51

`

n2z5zR~0!52
1

2

gives the Casimir term

E @Dc#e2*W@c#5NS lne21

a D 1/25NeW1
Cas

~a,e!.

~C15!

The Eqs.~C7! and ~C15! result in the formula

e2W1@Ca#5Z1@Ca,e#Z@Ka,e#e
W1
Cas

~a,e!

5exp$2~W@Ca,e#1W@Ka,e#2W1
Cas@a,e#!%

~C16!

which, obviously, reproduces the relation~C1! between the
brick-wall actionW1

BW and actionW1@Ca# on the cone,
which we obtained earlier by the conformal transformation.
.
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