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Black hole entropy: Off shell versus on shell
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Different methods of calculation of quantum corrections to the thermodynamical characteristics of a black
hole are compared. The general relation between on-shell and off-shell approaches is discussed. We consider
the simplified 2D model with the dilaton gravity and show in its framework that the observable thermody-
namical black hole entropy can be presented in the #8Hh= 71 2 +SSM— M Here,r, is the radius of
the horizon shifted because of the quantum back reaction eB&¥tjs the statistical-mechanical entropy,
determined ass®M= — Tr(p"Inp™) for the density matrixp™ of a black hole, andsanye, is the analogous
entropy in the Rindler spacgS0556-282(96)00516-4

PACS numbd(s): 04.70.Dy, 04.62+v

[. INTRODUCTION For this reason the thermodynamical entropy, in addition to
the classicaltree-leve) part S", acquires also a quantum
According to the thermodynamical analogy in black hoIecorrectionSID:
physics, the entropy of a black hole in the Einstein theory of
gravity is STP=gBH4+ 5P, 1.3

SBH:AH/(4|§), (1.1  To find S™ one must compare two equilibrium configura-
tions. That is why all the calculations which are required to
where A" is the area of a black hole horizon and determineSTD can be made by using the regular Gibbons-
| o= (AG/c®M2 is the Planck lengtt1—4]. In black hole Hawking instanton as the background metric. One usually
physics the Bekenstein-Hawking entrof§ plays basically refers to this type of calculations as to the shellmethod. .
the same role as in the usual thermodynamics. It can be _The fu_nc_iamental prqblem of blaCk hole thermodynam_lcs
determined by the response of the free energy of a syste' its statistical-mechanical foundation. The problem consists

L the following three parts{l) a definition of internal de-
fr?;gl/gltg?‘na black hole to the change of the temperature Ogrees of freedom of a black hol€) the calculation of the

In the Euclidean approadis—9] the free energf is di- statistical-mechanical entrof®" of a black hole defined as

SM_ _ ~H[noH ; ;
rectly related to the Euclidean action calculated for the regu];S a Tdr(p l.ntf(; Ey t%ougltln?( thhel dé/namgcal dAe_greeZ of
lar Euclidean solution of the vacuum Einstein equatitthe (rse):e OT bﬁsﬁ.” N thy el t?‘C gi ensi yﬂ:n It Ff[‘.nt. |
Gibbons-Hawking instantgn According to the first law of establisning € refation ~between - he statistical-

H SM H TD H
thermodynamics, the thermodynamical entropy of a bIacIfneChan'CaB and the ther'modyrjammfﬂ entropies.
hole ST° is defined by the relation In order to escape possible misleadings, let us note that

we use the name “statistical-mechanical entropy” in order to
stress that the quantitg*M is calculated according to the
standard statistical-mechanical rules. As for the density ma-
trix p, its form and properties depend on the concrete model.
whereT is the temperature of the system containing a blackn the present paper we restrict ourselves by considering the
hole. The free energ¥, in addition to the classicdtree- class of the models in which the internal degrees of freedom
level) contribution, includes quantufene-loop corrections.  of a black hole are identified with its quantum excitations.
This idea has different realizatiorisee, e.g., Refd.10,1]]

and references thergiand it has been widely discussed re-

dF=-S'PdT, (1.2
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statistical-mechanical entropy has been calculated for differ- It is well known that one-loop effective action which de-
ent black hole models. The main purpose of our paper is téines the free energy contains local ultraviolet divergences.
establish the relation between the results of these calculdn order to work with well-defined finite quantities it is nec-
tions and the observable thermodynamical black hole enessary to renormalize it. Usually, one assumes that the bare
tropy S'P. classical action contains the same local structures that arise

It should be stressed that the problem of relations betweeim the one-loop calculations. In the procedure of the renor-
S™ andS®Mis very nontrivial for black holes. The quantities malization one excludes the local one-loop divergences by a
S™® and SSM are equal for the usual thermodynamical sys-simple redefinition of coupling constants of the classical ac-
tems. Black holes possess a property which singles them otibn. In our approach we assume that this renormalization
of the other thermodynamical systems. Namely, in a state gfrocedure has been done from the very beginning. We use
thermal equilibrium a mass of a black hole is a universal renormalized observable quantities as parameters of on shell
function of a temperaturd@. But the mass uniquely deter- solutions. In this case the renormalized one-loop effective
mines the geometry of a black hole, and hence the interngiction is finite (at least on shell Quantum effects which
parameters of the Hamiltonian describing its quantum excichange this solution can be considered as small perturbations
tations. This property has two important consequen@gs: for black holes with mass much larger than the Planckian
S™ and S°M do not coincide for a black holgl2], and(ii)  mass. This also allows us to restrict ourselves by considering
calculation ofS°™ and its comparison witls'™ requireoff-  only those off-shell solutions which are close to the renor-
shell methods. The latter means that one needs to consid@nalized on-shell ongl7]. As a result of our analysis we find
the temperaturd and the mass of a black hofe as inde- out that all thermodynamical characteristics of a black hole
pendent parameters. The problem which arises is that whegxpressed in terms of observable parameters are finite and
T;&TBHE(Sﬂ-m)*l, there is no regular complete vacuum their definition does not require the knowledge of physics at
Euclidean solutions. For this reason it is necessary either tBlanckian scales.
consider the background metric which is not a solution of the The paper is organized as follows. In Sec. Il we remind
vacuum gravitational equations, or to exclude some region ofhe main features of the Euclidean approach and give the
spacetime near the horizon and to make a solution incorrgeneral definition of the thermodynamical entropy which is
plete. In both cases the calculation of the free energy meet¢sed throughout this paper. The description of a two-
problems. Moreover, the result may depend on the chose@imensional model is given in Sec. lll. This section also
concrete off-shell procedufd 3]. contains the derivation of the on shell free energy and the

In this paper we obtain the relation between different defithermodynamical entropy for this model. The general
nitions of the black hole entropy. We also discuss and comscheme of the off-shell methods is discussed in Sec. IV. The
pare different off-shell method$rick wall, conical singular-  Off-shell effective action, free energy, and statistical-
ity, blunt cone, and volume cutoffand their relations to the mechanical entropy are exactly calculated for four, most
on shell approach. We illustrate these relations for a simplicommon off-shell approaches: brick-waBec. \j, conical
fied two-dimensional model, where all the calculations carsingularity(Sec. VI, blunt-cone(Sec. VII), and volume cut-
be performed exactly. It is explicitly demonstrated that theoff (Sec. VIIl) methods. Section IX includes the comparison
thermodynamical entrop$'™ of a black hole differs from of the off-shell expressions for free energy and entropy, as
the statistical-mechanical entropy®M. Although, the Well as the relation between statistical-mechanical and ther-
statistical-mechanical interpretation of the tree-levelmodynamical entropies of a black hole. Section X contains
Bekenstein-Hawking entropy remains the problem for theconcluding remarks. Important results concerning conformal
models we are dealing with in the present paper, we can fintfansformations of the effective action in the presence of
the relations between one-loop correc®® andSM. One  conical singularities, derivation of the effective action on a
of the main results is the observation that in the considere@ylinder, and the role of the vacuum polarization effect in the
two-dimensional(2D) model the one-loop contributiog]®  brick-wall model, which are used in the main text, are col-
of a quantum field to the thermodynamical entropy can béected in appendices.
presented in the form

Il. EUCLIDEAN APPROACH
SIP=gM_gM__ 1A, (1.4 AND THERMODYNAMICAL ENTROPY

The starting point of the Euclidean approach to the black
Here, SoM . is the statistical-mechanical entropy calculatedhole thermodynamics is the partition functidg) and the
in the Rindler space, andS is an additional, finite correc- effective actioW(3) which, for a canonical ensemble in the
tion caused by the shift of the black hole horizon because opresence of black holes, are defined by the path integral
guantum effects. The entropy calculated using the brick-wall
and volume cutoff methods is directly related wa®". This
quantity is divergentin two-dimensional2D) casg as Irg,
where e is the proper distance to the horizon. On the other
hand, the entropy calculated using the conical singularity anéiere,[ ¢] is the Euclidean classical action and all the physi-
blunt-cone methods coincides with the differencecal variables¢, including the gravitational fieldy,,, are
SSM—g3M e It is finite because logarithmical divergence in assumed to be periodic or antiperiodic, depending on their
SSM is exactly canceled by the divergence of the Rindlerstatistics, in the Euclidean time with the periodB... As
entropy Sodier- usual, the class of metrics involved in EQ.1) is supposed

e WPh=7(p)= f [Dgle™ 't 2.1
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to be asymptotically flat. The paramei@y has the meaning For the Einstein theory such an instanton is described by the
of the inverse temperature measured at the spatial infinity. IBchwarzschild metric and depends only on one constant,
is also assumed that the integration meaglre ] is defined massm of a black hole. The condition of regularity of this

as the covariant measure. metric at the horizon implies tha@..= 8,=8mm.
The standard way to calculaW¥ is to use quasiclassical When considering quantum corrections it is worth keep-
approximation. Thus, itp is a stationary point of[ ¢], ing in mind that a system for the chosen boundary conditions
(periodicity in 7) necessarily consists of a black hole in ther-
ol 0 5  mal equilibrium with a surrounding thermal radiation which
5_¢ d):%_ ' 22 also contributes into observable thermodynamical quantities.

This contribution is infinite for the thermal bath of the infi-
nite size. Moreover, an equilibrium of a black hole with an
infinite bath is unstable. For this reason it is important from
[ o+ d]=1[ ol +1o[ ]+ -, (2.3  the very beginning to consider a black hole surrounded by a
° o boundary surfac® of a finite size[7—9]. We assume this

wherel , is a quadratic in fluctuation part of the linearized ~ surface cannot be penetrated by fields. This is provided by
action and the ellipsis in the right-hand side denotes théhe corresponding boundary conditions on it. For simplicity,

terms of the higher order ig. Using this relation, one gets B iS assumed to be spheridaf a radiusrg) and a hole to be
located in the center. For the Schwarzschild black hole, ther-

4] ~ A a4l mal stability is guaranteed ifs<3m. Finally, in such a for-
Z(B)=e % J [Dele2%=e 172, (B). (24  mulation of the problem the parameigris the inverse tem-
perature measured oB. Further, we suppose that all the

The result of the Gaussian integration oﬁe'm Eq.(2.4 can  necessary requirements of this kind are satisfied and we omit

be expressed in terms of the determinants of the corresponéeir discussion. _ _ _ _
ing wave operator®; for the different sping: Equation(2.6) contains the renormalized effective action

W calculated on a particular classical solution. This renor-
malized action itself is defined as a functional,

then one has the decomposition

Zy(B)=Zi[ o(B)]1=11 {del—u’Dj(d0)} "% (25
’ WL p]=1[ 6]+ Wil 4], 2.7
Operators D; are determined by the quadratic part
l,= %fdx\/ﬁngjcﬁ of the action and their explicit form de-
pends on the spip. For instance, for the conformally invari-
ant massless scalar field ind-dimensional space
Do=A—(d—2)[4(d—1)] 'R, where A=V, VH* is the —_ =
Laplace operator an® is the scalar curvature. A constant o¢ b=¢
u? in Eq. (2.5 is an arbitrary renormalization parameter
with the dimension of the length. It does not depend on thelescribes a modified field configuration which differs from a
field configurationg. Equation(2.5) enables one to represent classical solution by quantum correctiong:= ¢q+# 4.
the effective action in the one-loop approximation as the sunThe important observation is that, if one is interested in the
one-loop effects, the difference between the valued/ain
W(B)=1[do(B)]—INZy(B)=I[Po(B)]+Wi[ do(B)]. ¢y and ¢ turns out to be of the second order in the Planck
constant:

for an arbitrary field¢ with appropriately chosen boundary
conditions. The extremurg of this functional

SW
0 (2.9

The one-loop contributiof20] W[ ¢] to the effective ac- _ o 5
tion is ultraviolet divergent and, as usual, the classical action W(B) =Wl ¢o(B)]1=WL&(B)]+O(%7). (2.9
| is assumed to be chosen in such a way that the correspon

ing local divergences oW, can be removed by simple re- ﬁihis follows from Eq.(2.8), provided the quantum-corrected

definition of the coupling constants in From now on we and classical solutions obey the same boundary conditions.

: : . ._The thermodynamical entropgf a black holeS™ is de-

suppose that it has been done and that the classical action s Z
written in terms of renormalized coefficientsy is its extre- fined by the response of the free enefys) .:'8 lw(ﬂ ) to
mum, andW; is therenormalizedone-loop actiorj21]. The the change of the inverse temperatyiréor fixed ry:
ambiguity in the choice of the parameterin Eq. (2.5) cor- dF(B) d
responds to a freedom in the choice fisfite counterterms STD(,B)=,82—=( __1)\/\/(,3)' (2.10
which can be added to the action after renormalization. dg dg

To apply this general scheme to a black hole we assume
that it is nonrotating, uncharged, and that there is no sponta/e remind that the renormalized effective actidf(g) is
neous symmetry breaking, so that average values of all fieldg@lculated on shell, that is foB.=8mm. The thermody-
except the gravitational one vanish. Also, it is worth takinghamical entropys™ can be written as
the renormalized cosmological constant to be zero to provide
an asymptotically flat black hole solutiay of the (vacuum S™P=siP+siP. (2.11
gravitational equations. The solution represents a Gibbons-
Hawking instanton which is regular at the Euclidean horizonlt can be showri7,9] that
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S£D=(Bi—1)l[¢ (B)] (2.12
dg 0 '

coincides with the Bekenstein-Hawking entro§™ given
by Eq. (L.1), while

D, oy _ da
S;7(B) ﬁd,@ 1Wi[éo(B)] (2.13

describes the quantum correction to it. This correction con- /G- 1. Embedding diagram for a two-dimensional Gibbons-
tains also the entropy of the thermal radiation outside thé—|awk|ng m_stanton. R%;ularlty condition at the Euclidean horizon
black hole as its part. By its construction the thermodynami! ~ "+ reauiresB==py=8mm.

cal entropyS™ is well defined and finite. All the calculations
required to obtain this quantity can be perfornmd shell
that is, on a regular complete vacuum Euclidean solution o
the gravitational equations. The parameters of this solutiorf°

Since the 2D actioh is related with 4D action® by the
¥eduction procedure, the pair of fieldsyq, ¢o), where
=0 andy, is a 2D Schwarzschild metric

are expressed only in terms of the renormalized coupling d?=fdr2+fdr2, f=1-r,/r, (3.4)
constants.
is evidently the extremum of the functionlal The regularity
[ll. DESCRIPTION OF THE MODEL: condition atr=r , requirest to be periodic with the period
ON-SHELL RESULTS Bu=4mr, . The Gibbons-Hawking instanton, i.e., the regu-

lar complete Euclidean manifold with the metr{8.4), is
In four dimensions the calculation &° is a quite com- ¢y, 00 ir? Fig. 1. 8.4

plicated problem. To discuss the propertiesSﬁP and its Consider a regioM g of the Gibbons-Hawking instanton
relation toSM, it is instructive to consider a simplified two- ithin the external boundary s atr =rg (see Fig. 2 If the
dimensional model where the calculations can be done ®foundary conditions are fixed on the surfatg, and 8 is

plicitly. C_ertainly, _the explicit form_s of these quantities in e proper length of the line=rg, then the classical Euclid-
two and in four dimensions are different. Nevertheless, the,a action calculated for the regivs and expressed in

study of 2D model allows us to make definite conclusionsiayms of the boundary conditiong(rg) is
concerning the physically interesting case of a four-

di_mensional sp_acetime. To preserve the _maximal sim_ilarity I(,B,rB)=I[y0,<po]=37-rr2+—47rr+r5+ Brg, (3.5
with the four-dimensional case we consider a 2D dilaton
gravity described by the action wherer , is defined by the equation

1 =47r,(1-r /rg)? 3.6
':_Zf JPPR+2(Vr)2+2]\yd p=dmr.(1-r.1re) 3.6
M and B is the inverse temperature at=rg. In the limit

1 ) 1 rge—o, when g=4xr_ ., the classical action takes the
- EfaMzr (k_ko)dy+ Ef \/;(,D]MQD’M. (31) Simp'e form

The 2D metricy, dilaton fieldr, and a scalar fieldp are I(,8)=i 2 3.7)
dynamical variables of the problem. We denote Rythe 167

curvature ofy, and byk the extrinsic curvature afM?. This ) ) )

model is similar to the one which has been extensively stud- N accordance with the general discussion of Sec. II, the
ied [22] as an example of a renormalizable exactly solvablé®n€-l0op contribution to the effective action is

theory of two-dimensional dilaton gravity coupled to matter. . )

In the absence of the scalar fieyg this action can be ob- W1(B)= 3 In de(—u“A). (3.8
tained from the 4D Euclidean Einstein action

1 1
4)__ _— (4) 4y, (4) _ e (4) 3
I 167TfM4R Vgdx Swf,;le(K Ko) vhd®x,
(3.2

by its reduction to the spherically symmetric metrics of the
form

ds?= y,,dx@dX°+ r?dw?. (3.3

Here, yap, is @ 2D metricr is a scalar function on the two-
dimensional manifold, andw? is the line element on the FIG. 2. A regionMg of the Gibbons-Hawking instanton with

. 4 . .
unit sphere.K(()) is the standard subtraction term, and the external boundaryg atr=rg. This region is conformal to the
ko=K. 2D flat unit diskD2.
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Here, the renormalized determinant is taken for the region =W )
Mg of the 2D instantor{3.4). To make discussion more con- Wi(B.1e) =Wl B.Y(B.Ta)] (319
crete we assume that the fiejdobeys the Dirichlet bound- wherey=r, /rg and

ary condition at the mirrorlike bounda®/g surrounding the
black hole. The divergent part which has been removed from

~ 1 2
= —| — — _ _ 2
the action is Wi(B.Y)= 75 y +2Iny+17—-2y— 13y

) 1 Iné
W(lilv[MB]: _ %ﬁw \/;dZX_,_ EX[MB]v (3_9) — glnerC. (3.17)
B

The relations(3.16 and (3.17) require some explanations.
. (3.10 Eirst of all, f[he one-loop effective actiov,(8,rg), in addi-
tion to the inverse temperatuy@ at the boundary, also de-
pends on its “radius’rg. For giveng andrg, the gravita-
wheres is the parameter of the ultraviolet regularization andtional radiusr . is defined by the relatiofB.6). To simplify
x[Mg] is the Euler characteristic of the Gibbons-Hawkingthe expressions we use the dimensionless variable
instantonM g, which is the same as for a digkMg]=1.To  y=r, /rg instead ofrg. The relation(3.6) implies that this
remove the volume divergenee/y_, one must introduce in  dimensional variablg is the function ofg andr g defined by
the bare classical action a cosmological constantvhich  the implicit relation
we put after renormalization to be 1/2, see Eq(3.1). Re-
moving the other divergence in E(B.9) requires introduc- y(l—y)l’zzi. (3.18
tion of the additional term in Eq3.1), but because it is just 4mrg
a topological invariant it can be neglected. .
Using the conformal transformation, the one-loop effec- 1he one-loop contributions to the free eneifgy and to

. TD .
tive actionW; () can be found explicitly. Note that metric the thermodynamical entrop;~ are defined by the formu-

1
X[MB]=—U Rﬁd2x+2f kyvhdy
47 Mg B

(3.4) can be represented in the form las
r. ro\ 7t Fi(B.re)=B""Wy(B.rg),
dsz=<1—T dr?+ 1—7) dr’=e?°ds?,  (3.1)
dW1(B,rs)
SP=B 55| ~WiBre). (319
ds 2= u?(x2d7 2+ dx?). (3.12 s
Here, The derivative oW, can be expressed in terms of the partial
derivatives ofW;:
- T - ~ ~
T=o, OsT=2m WL(B.re) | IWi(BY)| | IWL(BY)| Iy
r—r, \12 B By o 1Pl
x=( - ) e~ 0=x<1, (3.13 (3.20
rB—I’+
where
and the conformal factos is defined as
ayl _2y(1-y) (3.21
1] [rg—r rg—r 2r ap|  B(2-3y)’ '
o(r)==|In| = +)+ ® +2In(—+) . (3.19 B
2 r r, m

The latter equality results from E@3.18. Using the rela-
In order to preserve the dimensionality, we introduce thetions (3.19-(3.21), we finally obtain
paramete with the dimension of length into the flat space

metric (3.12. The above conformal transformation 1 8
(3.42 S8 255557 )[——13y—28y2+13y3
Iy —-20 y y
Yur—Yur=€ " Yuy (3.19
1 1 8 17
is a map of the regioMg onto the flat 2D diskD? of the N leny+ Elnzqm B 4_8_C' (3.22

unit radius(measured in units oft), see Fig. 2. It will be

shown that the physical results do not depend on the particuFhis quantity is finite. The dimensionless consté@ntoes

lar choice ofu [23]. not depend on the parameters of the system and reflects the
For a conformal field the transformation law\of, under ~ ambiguity in the definition of the entropy. For further con-

this map can be obtained by an integration of a conformasideration this ambiguity is not important, so that this and

anomaly. The corresponding formulas are collected in Ap-ther similar constants can be omitted. For a large value of

pendix A. Denote byC the renormalized one-loop effective the radiusrg of the boundary (g>r .. or y<1), the leading

action for the unit diskD?2, Eq.(3.12), then using the relation term in S[° is (#/3)rgB~*. This leading term coincides

(A9), we get with the entropy of the one-dimensional thermal gas of mass-
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less scalar quanta. It should be noted that we always conside
the case whemng<<3/2r , , so that the limit discussed above
has only formal meaning. The quanti8{® is infinite when
rg=3r,. This singularity also results in the infinite heat
capacity aty=3/2. One can expect the same behavior of
these quantities in four-dimensional case.

IV. OFF-SHELL METHODS MB € Ka,e

In the above consideration we used the relati@mb) ] )
which can be rewritten aspB.=pgy, where B. FIG. 3. Conformal maps of the regiodg . of the Gibbons-

=B(1-r, /rB)flIZ denotes the inverse temperature on theHawking instanton onto the par, . of the coneC,, and of the

boundarySg as seen from infinity, and (@r , /rg)¥2is the .regionKMX onto the cylindeQ,, .. e'is the proper distancg of the
redshift factor,3,, is the inverse Hawking temperatufaiso ~ Inner boundang . of Mg . to the horizon. The parametey is the
measured at infinity The relation 8.,= B8y has evident dlstange fron®,; to the vertex_of the cone along the cone ge_nerator,
meaning of the equilibrium condition between the thermal@"d¢z is the length of the cylinder generatiroth measured in the
radiation and the black hole and it is this relation which is"MtS of#). The circumference length of the cylinder, as well as the
assumed when we are speaking about the on-shell quantitie%rcumference l.engt.h of of the external boundaiy of the cone,

In the next sections we consider different off-shell ap- easured in unitg. is 2ma.

proaches in which the conditiof..,= 8, is violated for the

background geometries. The one-loop contribution to the ef-Wi(B:Te .l .. ) =Wi(B,a(Bre,r+).y(r+ re), .. .).
fective action in these cases is the function of the three vari- (4.3
ablesp,rg,r.: Wi(B.,rg.ry, ...). We use theuperscript  For fixed values of , andrg, the quantityy=r . /rg is also

* to indicate that this quantity depends on the chosen offfixed, while Eq.(4.2) implies thata is proportional tog.
shell procedure. The ellipsis in the argument\df indicates  Thus, one has

that it may also depend on some additional parameters,

which are different for different off-shell procedures. These . &W‘l(,e,a,y, o)
parameters are not important now and will be specified later. S = 9B
In the general case, the off-shell entropy is defined by the s
response of the off-shell free enerdy=p W' on the (7\7V'(,3 ay, ...
change of the temperature, under the condition that the other «— aa i —-W;. (4.9

parameters which specify the systems) as well as the
black hole ¢ ) are fixed. According to this definition, the
one-loop off-shell entropy is

B.Y, ...

As eatrlier, it is assumed that after the calculations, one must
put =1 in the right-hand side of this relation. Then, the

IW corresponding on shell value &, depends only on the
S'1=,3—1 —W;. 4.2 boundary conditiong andrg. After these general remarks
B fgoly e consider concrete off-shell methods.

It is assumed that the on shell limit in E@.1) is taken at the V. BRICK-WALL MODEL

end of the computation. This means that which enters

S; is put equal to its on shell value, determined by solving

the Corresponding gravitationa' equations_ ) As the first exam_ple of the off-shell procedure we con-
It occurs that the explicit formulas fow;, and S, are  Sider the so-calledbrick-wall mode] proposed by 't Hooft

greatly simplified if, instead ofg andr,, the following [24 and discussed later in many subsequent papers
dimensionless variables are used [25,18,26-28,30,19 The basic idea of this method is to in-

troduce at some small proper distarcfom the black hole

r horizon an additional mirrorlike boundar;.. Denote by

y=y(rg,r,)= r—+ Mg . the regiop_ located betwe%.andx (see Fig. 3 To
B be more specific, assume, following 't Hooft, that the field

¢ obeys the Dirichlet condition on both boundarieg and

A. Effective action

B B 3 .. The starting point of the brick-wall model is the parti-
a=a(Brg,ry)=—=———9/#¥—_ (42 tion function Z8¥(B) of massless scalar field in the region
B [ . Mg . near the Schwarzschild black hole of the mass
Aarr 1-—
s InZZW(B)=— 3 In det — u2A). (5.1

The variablea is the off-shell parameteso that the condi- Here, 8 is the inverse temperature measured 3§,
tion that a system is on shell reads=1. The parametey is  “In det” is understood as renormalized quantity, afdis
the ratio of the values of the dilaton field on the externalthe Laplace operator for the scalar field in the reghg .
boundary2 g and on the horizon. We shall use the notation with the Dirichlet boundary conditions. Because of the pres-
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ence of the inner boundard; ., the region near the black a

hole horizon where the thermal gas cannot penetrate is com- WilKa e J=Wi[Qu e ]~ 75€ (5.7)
pletely excluded. For this reason the system is nonsingular

for any relation between the parametgtsand m, and the  while the transformatiori3.15 gives

brick-wall model can be used for an off-shell extension. To

distinguish the quantities calculated in this off-shell proce- Wl[MBYE]zwl[KMX]Jraf(y), (5.9
dure we use the abbreviation BW as the superscript. The

corresponding partition functiod® and actionWt" de- 1/ 2

pend, in addition tg3 andrg, on e and the value . of the fY)==73| ~ §+2Iny+ 2y+13y*-13|. (5.9
dilaton field on the horizon. Our purpose, now, is to find

WEY(B.rg 1 €). The final result is obtained by using the formu(&s)—(5.8).

Obviously, this problem can be reduced to the calculationThe effective actiorW?W(,B,rB .r, ,€), written as the func-
of the effective action for some “standard” 2D flat region. tion of (8,a,y,€), is

We choose a cylinder as such a regisee Fig. 3. _
Itis convenient to make the conformal transformation into - WEWY(g,rg,r, ,e)=WEWY(B,a(B,rg.r.),y(rg.,r),e,
two steps. (5.10
First, use the map Ed3.15 with o given by Eq.(3.14).

Under this transformation, the metric takes the form ~BW 1 2mae 1 Ta
Wi (B,ay,€)= Ir‘. —=In
_ 12 B 2 In(Bl27rae)
ds2=p2(x?d7 2+dx?), 0<7<27a, e=<x=<l1.
(5.2 a )
+ 33(15_ 2y—13y9)
The embedding diagram for this space is shown in Fig. 3. It
is a partk,, . of the coneC, between the surfacesg lo- ( 1 1
X 1-—+Iny|+o(
cated atx=1 and3, at €,. The value ofx=¢, is related 24a y ny | +odn—=(ple)).
with the proper distance as (5.11)
27701 For =1, i.e., on shell this action can be represented as the
(5.3
sum
. . ~ ~ 1 T
where the parametegsand « are defined in Eq(4.2). WW/BW -1 -W i
Second, mafK,, . onto a cylinderQ, . with the metric 1 (Ba=ly.e=Wi(BY) In(Bl2me)
2 2 2\ .
pA(d7 2+dZ%): +o(n"Y(Ble)) (5.12

dS 2= u?(x°d7 2+ dx®) =x*[p*(d7 *+dZ)], z=—INX.  of the thermodynamical actioW,(3,y) for the regionMg
(5.4 given by Eq.(3.17 and an additional term which arises be-
cause of the presence of the wall. The latter diverges loga-

The cylinder has the circumference lengthr@ and the rithmically in the limit e—0 [29].

length of its generator is,= —Ine, (in the u units) (see Fig.

3. B. Entropy
Thus, the effective actloNV W(B,rg.r, ,€) can be ob-

tained by conformal transformat|on provided one knows the The entropySBW for the brick-wall model is defined by

actionW;[Q, . ] for the “standard” cylinderQ,, .. It can  Eq. (4.1) using W2V, Written in terms of ,a,y,e),

be shown(see Appendix Bthat reads
Wi[Q, . ]=—In Tr e 27auf (5.5 ssY(B.ay e):i 2ins L —Iny+£—1
1L ¥ae, ' : 1 e 12« 2mae y
whereH is the Hamiltonian for the scalar massless field on N EI T +o(n~Y(Ble)
the interval (Oie,) with the Dirichlet boundary conditions 2 nln(,glzqme) o(in="(ple)).
at the ends. Using this fact we get, fe=>1 (see Appendix 51
B), (5.13

The on shell value 082"

i) (5.6 this expression.
Note that the renormalization parameterdoes not enter
Egs.(5.11) and (5.13, so that neither the brick-wall action
The scale parameter disappears from this expression be- W2W nor the entropys®" depends on it. It happens because
cause of the scale invariance of the action on the cylindefunder a constant conformal transformation, the effective ac-
The effective actioW,[K, . ] for the regionK, . obtained  tion acquires an addition proportional to the Euler character-
from W,[Q, . ] by conformal transformation has the form istic of the manifold. But the topology dl; . is the topol-

is obtained if one putsr=1 in
1 7o

1
WilQu e, ]=— 35 &= 5In—+0

z




2718

ogy of a cylinder and its Euler number is zero. Thus, the
effective action is invariant under the constant rescaling, and

it does not depend op. On the other hand, the Euler char-

acteristic of the complete regular instanton is the same as that
of the diskD?, and it does not vanish. As a result, the inte-

gral of the anomaly also does not vanish, andppears in

the thermodynamical action and entropy as a parameter of

the dimensional transmutation.
We show now that the brick-wall entrog$.13 coincides
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Zy

e
-

FIG. 4. Conformal map of a singular instantdh onto the

with the statistical-mechanical entropy and can be represtandard con€,

sented in the form

SSY(B.ay.€)=— Ti[pM(B)InpH(B)].  (5.14

Here,,”):'(ﬁ) is the thermal density matrix for the massless

gas in the regiorMg . near the black holeB being the
inverse temperature measure@at. In the 't Hooft’s brick-
wall model this thermal gas is identified with internal de-
grees of freedom of the black hole.

To prove Eq.(5.14 we obtain at first expressiofb.13
for SSWV in a slightly different way. Equation&.7) and(5.8)
show that

WEW(B,rg I €)= af(y)— +w1[Q“] (5.19

To get SV, we keep the variablesg, r. , and e fixed.
Under these conditiony, does not depend o, while « is
proportional toB. As a result, the first two terms in Eq.
(5.15 do not contribute int&F", so that

BW J 1 1 7a 1
S]_ = a£—1 Wl[Qa'EZ]:aez—i_ElnE_z_l—o(ez ).

(5.1

vanish on the boundary og#0), one must rescale
& — g“ exp(—og)é&* to getg2 1 at the boundary after the
conformal transformation. We have
e BHL= g BHT (5.18
whereﬂ exp(—og)B, H= exp(aB)H andL is the proper
length of the interval in the conformally related mett)rgy
e—20',y )
In particular for the conformal maps Eg$3.11) and
(3.14 which we used as the first step, E§.18 implies
pe(B)=pp (2Tpa). (5.19
Here,p! is the original black-hole density matrix, ap& is
a thermal density matrix in a Rindler space with the metric

2

X
ds 2= u?[x2d7 2+ dx?]= (ﬁ dT?+dX? (5.20

The inverse temperaturenzi @ in the Rindler space is mea-
sured at the point of the boundar=u, where the
grr=1. The parameteue, is the proper distance from the
inner boundary to the horizon, measured in the Rindler met-

It can be easily verified that this expression coincides withic. Note, that the proper distance is not conformal invariant.

Eg. (5.13. Note thatWy[Q, . ] is given by Eq.(5.5. The

guantity(1—8(4/98))In Tr e*"“z'L can be identically rewrit-
ten as— Tr{ p (B)Inp (B)], whereH | is the Hamiltonian on

the interval of the length, andp, (8) = poe™ #"'L. Using this
relation, we can present E¢p.16 in the form

S= = b 2mpa)inp, (2mpa)].  (5.17)
This relation explicitly demonstrates th&f" is the entropy
of the one-dimensional thermal gas on the intepal and
with the temperature (2ua) ~1. [The paramete is absent
in Eq. (5.16 for the reason explained aboye.

This result can be used to prove the form#iald) be-

cause the density matri&MEZ(ZTr,ua) coincides with the

black hole density matriia?(,B). Indeed, we used conformal
transformations which preserve the symme#rKilling vec-

Finally, by mapping Rindler space onto the flat ¢ttee cor-
responding transformation of the effective action from
Ka,e 10 Qa,c, is given by Eq(5.4)], one receives the identity
Phe 2THa) =Py (2mpa) (5.20
between the Rindler density matrix and that on the interval.

The statistical-mechanical formul.14 for S follows
from the identities5.17), (5.19, and(5.21).

VI. CONICAL SINGULARITY METHOD

Instead of excluding the-domain near the horizon, one
can work directly on the complete black hole geometry.
However, if B, differs from the Hawking value3y, the
spacetime is not anymore regular because of the presence of
the conical singularity with the angle deficit21— «) at the

tor) and do not affect the boundary conditions. Under thesdiorizon r=r, (fixed point of the Killing vector. Such a
conditions the Hamiltonian of the conformal massless field isspace has thé-like curvature located on the cone vertex. For
invariant, so that the density matrix is also invariant. Note,this reason it is not a solution of the vacuum Einstein equa-
however, that scales we used to define the temperature atidns. We call such a spacesagular instantorand denote it
distance may change. In order to define energy, temperaturt g see Fig. 4.

etc., we must fix the normalization of the Killing vector. For

the problem in question we chose the conditigl)g=1 at
the external boundaryg . If the conformal factowr does not

Itis possible to develop the one-loop calculations working
directly on the manifolds with this kind of singularities. We
refer to the corresponding approach as ¢baical singular-
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ity method[18,31-33,35—4p The difference between it and
guantum theory on the regular spaces is in the structure of
the ultraviolet divergencept1,33,43. Conical singularities
result in appearing, in the effective action, of additional di-
vergent terms concentrated on the horizon surface and their
renormalization requires new counterterms. The important
property, however, is that these counterterms turn out to be
of the order B..— By)2~ (1— a)? and hence, when taken on
shell, they contribute neither to the entropy, nor to the free
energy of the black holg32,34,19,3T.

In two dimensions, as follows from Eq6A2) and (A3),
the divergent part of the action on the singular instanton
Mg can be represented as D

. 1
[\ @y _ 2
WOV M= —SwéfMg\/yd X

FIG. 5. Blunt instanton and its conformal transformation onto a
unit disk D?.

. (6.1

né 1
- @ (11— 2
* 12 XIMg]+ 2a(1 @) D? denoted earlier a€: C(a=1)=C. The functionC(«)
does not depend op and results in a numerical addition to
1 the entropy. Its form is not important for our consideration.
a1 2 —
x[Mg]= 47T( fMng X+2LBkdy+47T(1 a)>' For the on shell limita=1, the cone singularity disap-

(6.2 pears, so that one has

where, as in Eq(3.9), § is the ultraviolet cutoff parameter, WES(B,a=1y)=Wi(y.B), (6.6
andR is the regular curvature. The quantigfMg] is the ~ ] ] ] )
Euler characteristic oM and it is identical to that of the WhereWa(y,8) is the on shell effective action given by Eq.
Gibbons-Hawking instanton[43]: x[Mg]l=x[Mg]=1. 3.17. cs - . ~ s
Thus, up to the terms (2 )2, the divergences on a regular 1N entropyS;~ is defined fromW;%(B,a.y) by Eaq.
instanton and those on a singular one coinitenpare Eqs. (4-4- The calculation gives
(3.9 and(6.1)] and the difference between them, being taken 1 /1 B
on shell, does not affect the entropy. As earlier, we assume s8S(B,a,y)= —(——1—|ny+2|n—) +C¥a),
that the renormalization has already been done and further 12« 2 pa
we use only renormalized quantities. (6.7
Let us calculate the off-shell effective actiah’$™> and
entropy ST by the conical singularity method.
As earlier, 8 is the inverse temperature obgz and c d
a=B.. /By is the off-shell parameter. We again use the con- CHa)= ( a5_1> C(a) 6.9
formal transformatior(3.11), but now it maps a singular in-
stanton onto the standard co@¢ with the unit(in the units  is an irrelevant constant at=1. Note that in the conical
of ) length of the generator singularity approach both the renormalized actid® and
the entropySS® are finite quantities.

where

ds?2=u?(x2d7 2+dx?), 0=<x<1, O0<r<2wa.

©3 VIl. BLUNT-CONE METHOD
Equations(3.11), (3.14), and (A9) enable one to relate the
effective actionW5™ to the action orC,. Written as earlier, Consider, as earlier, the singular instantdi§ shown in
in terms of variables g, «,y), this action takes the form Fig. 4 and a set of regular manifolds that modify its geom-
cs ~ s etry in the narrow vicinity of the sharp cone verteee Fig.
WiA(B,rg.r+)=WiX(B,a(B,rg,r+),y(rs,r)), 5). The Riemann curvature for such geometries is regular

(6.9 everywhere and it differs from the Riemann curvature on a
singular instanton only near the horizon. We call this geom-

\TVSS(B.a,y): _ i(2y+13y2— 15+ 4In B etry the “blunt instanton” and refer to this_off-shell exten-
48 2Tpo sion[32,43 as to theblunt-conemethod. In this approach we
1 B can avoid the problems connected with the formulation of
——(——1—Iny+ 2In——| +C(a). the quantization and renormalization procedures on mani-
24a\y 2mpa folds with infinite curvatures. The regularization of the cone

(6.5 singularity is supposed to be removed at the very end of

calculations.
Here,C(«) is the effective action for the unit cone which for  For simplicity of calculations we choose a special form of
a=1, coincides with the effective action on the unit disk the off-shell extension characterized by only two parameters:
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an off-shell parameteer=B../By and a new parametey  depend only orp. The normalization ofs is fixed by the
which describes the width of the rounded tip of the bluntrequirementsr(1)=In(8/27w) and7=r.
instanton. We choose the metric on a blunt instanton in the Integration of the conformal anomalgee Appendix A

form when applied to the metri&.2), gives the one-loop effective
82 action
dsz=(—) (p2d?+b%dp?), O0<r<27, O=p=<l1;
2 7.0) WEC— 1I B 1J'1d (a’ —b)?
178 2mu)  12)0 %P ab
1 p’+ an? L
= i a’
(1= p*+yp?)? ap®+ay’ -|= +>+c. (7.4
4b pm1 4

The boundary g of the region under consideration is lo-
cated afp=1, and its length i®. The parameter of the black _ )
hole mass enters, as earlier, through the dimensionless quafere,a’=da/dp and the constar€ is, as earlier, the effec-
tity y=r, /rg. The parameters that uniquely fixtdunt in-  tive act_lon for t_h_e unit diskD?. To derive thls_ formula, th_e
stantonareg, rg, 4, andz. Fora=1, the metricis iden- regularity condition &'/b)|,—o=1 of the metric at the hori-
tical to the metric of the Gibbons-Hawking instanton. zon has been used. For the mef(icl) of the blunt instan-
To calculate the renormalized one-loop effective actionton, one has
on the blunt instanton we map the latter onto a unit disk

D2. Consider, at first, an arbitrary static Euclidean 2D mani- 1 P2+ an?
fold with the line elements?® that is conformally related to a=p, b= > 55— 5, (7.5
P . (1—p“+yp9) ap ta
the unit disk with the elemerds 2: p p P K
ag=| L 2[a2d7-2+ b%dp?]=exp(20) w?[ x*d7 2+ dx?] o ztary’ P
2 P # ' 0=|np+—f dz > 5+1n ,
2] 2(az+ an®)(1-2+y2) 2T

(7.2

where 0< 7<2m, 0<7<2m, 0<p=<1, and Gsx=<1. Then,

) i and the blunt-cone effective actioh® reads
the metric coefficients,b, and the conformal factas,

a(p) jl b B WBC __\\/BC
=|ln——+ d —+In| —— , 7.3 1 (ﬁvrB!rJr!n)_Wl (Bva(IBIrB1r+)1y(rB!r+)!77)y
olp)=Ingy+ | dog+in| 3 (7.6
J
- 1 [ 81 (a-1) 1 e — 2
BC I _ | 2 212
Wl (B,a,y,n) 6|n 27T,Ul 24a (1+772_y772)2|n‘ 1+772 + 24 (1+ an Yan ) In 1+a7’2
1 a—1 1 1 1+an’—yan?
+ﬁln|y|[1— (1+7]2_y772)2] "‘ﬂ(l_w 2a— (1t 72—y 7
L ey 1-2(a—1y - 2O 2 7
~2ge(I YA 2a- 1’ g oyt g+ C (7.7

The parameterp in the blunt-cone method plays the role The metric(7.1) on shell (@=1) becomes the metric of the
similar to the cutoff parameter in the brick-wall method. Gibbons-Hawking instanton and the corresponding on shell
When the regularization parametgitends to zera;— 0, the  effective action reads

action becomes

\TVBC(B 1 ) 1| P +1{ 2+2I 2

T e i L v v IR VLI e

WBC SO 4 B PP T

LBy m==glng ot gel = oot Iy~ 2ay 132417+ C (7.9
—13y2+17|+C. :

2
—13ay?+2(a—1)Ina+ —t3at12

It is identical to the on shell actioﬁ/l(ﬂ,y) given by ex-
pression(3.17). The corresponding blunt-cone entropy re-

1
T (A —1)2In 2 2
+CH (a=1)%ny"+0(7). (7.8 mains finite in the limity=0 and reads

24a
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the statistical-mechanical entropy of a black hole in the ap-
proach[44] is restricted only to the modes, which are located
outside the fluctuation region of the horizon. This is equiva-
lent to the spatial cutoff in the volume integral for the effec-
tive action described above. The volume cutoff procedure
has been also used in many other papdbs-52. In works
[46,48—52 the black hole metric has been mapped onto an
optical (ultrastatig metric. The horizon then maps to infinity
and the proper volume of the optical space becomes infinite.
In order to deal with this divergence it is natural to restrict
the volume integration by a finite region. This approach en-
ables one to get a number of interesting results for the en-
tropy corrections even for the massive fields in spaces with
the dimension larger than twfb0,51 and for conformal
BC _ 1 1P fields with inf52

S24B,1Yy.00= = — —=Iny+ =Inz— — = —C. ields with nonzero spinf52].

™ Up to a certain extent the volume cutoff method re-
(7.10 sembles the brick-wall approach. However, they are certainly
different because the volume cutoff method does not require
any special boundary conditions &n . It is also nonsensi-
tive to the behavior of the quantum field in the region lying
closer thar® to the horizon.
Viil. METHOD OF THE VOLUME CUTOFF The calculation of the Lagrangiaf, on the off-shell

Finally we discuss here one more method of the off-shelplaCk hole solution can again be carrieq out with the help of
definition of the black hole effective actiow,. Note that the conformal tra_nsformatmn_ to the conical space. Using Eq.
W, can be represented as the volume integral over the back?9), One can write the relation
ground space of some Lagrange dengl{yx):

FIG

This result coincidegup to an unimportant constantith
the entropyS(fS found by the conical singularity method.

1
— A 20 -
L1=e “L4(C,) A

wlzf Jgdxc(x). (8.2)
X[Ro—(Vo)?+(2ko+30 ,n*)8(r,rg)] (8.9

The corresponding densitg,;(x) can be written in terms of betweenc,; and the Lagrangiai,(C,) on a unit coneC,

the diagonal elements of the heat kernel operator in the co-_,. . ) - ) .
ordinate representation valid in the region outside the horizon. Hei&r,rg) is the

invariant delta function which is included to reproduce the
1 (=ds surface terms on the external boundary in the action. The
Ly(X)=— EJ —(x|e%2|x), (8.2  factor o is given by Eq.(3.14. Note that the terms in Eq.
oS (A9), which are determined by the value of the conformal

parametefo on the cone apex do not contribute\l“b\l’C in
Eq. (8.4).

1 1 (=ds , To find £,(C,), one can use the Sommerfeld representa-
lezln de(—uzA)=—§f ?Tresf‘ A, (8.3 tion for the heat kernel ,(x,x')=<x|eS®|x’> of the

0 Laplace operator on the conical spdéed)

so that, for the action itself, one has the standard formula

Consider now a singular instanton, and calculétéx) i
for its regular pointg >r . . Denote by2,, a surface located K (XX, 7=7)=K(X,x", 7=7" )+ —

at a small proper distaneefrom the horizon, and restrict the 4ma
integration in Eq.(8.3 by the regionMg . located outside W o
3., see Fig. 6. As a result, the actidv, depends on a new X LCO< ﬂ) K(x,x", 7= 7" +w)dw

parametete. We call this off-shell procedure as thelume
cutoff method and denote the corresponding quantities with (8.5
the superscrip¥/C. o

The volume(or spatia) cutoff method arises naturally in relating it to the heat kernek(x,x",7—17') on a unit disk
the dynamical-interior approach to the black hole entropyD?. Here, the integration contolit lies in the complex plane
proposed in Ref[44]. In this approach the internal degrees and consists of two curves, going fromm— (7—7') i to
of freedom of a black hole are identified with the states of+ m— (7—7") *i% and intersecting the real axis between the
fields propagating in its interior in the close vicinity to the poles of the integrand-27«, 0, and 27ra. A derivation
horizon. Because of the quantum fluctuations of the horizonand discussion of this formula can be found %-57. The
the separation of the modes into exterf@alopagating out- Lagrange density on a cone can be easily calculated if one
side the horizonand internal(propagating inside the hori- substitutes Eq€8.5) and(8.3). The result has a simple form
zon) becomes impossible for modes located closer to the
horizon than the amplitude of its quantum fluctuations. For
this reason the summation of the modes which contribute to

1 1
L1(C,)=L1(D?)— 2477)(2(?—1). (8.6)
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Here,£,(D?) is the Lagrange density on the unit diBk. In
what follows we omitZ,(D?) which results in an irrelevant
constant iV, ©. The second term, vanishingat=1, arises
as the result of integration in E¢B.5). In the calculations the
integral overs is taken first and then the formula

i fcot(w/Za) 11 1
r sirfw/2 W=Bla?2

(8.7

8ma

is used.

Let WY[C,] be the effective action on a cor@, ob-
tained by the integration of E@8.6) till the pointx=¢,. As
earlier, €, is related with the invariant distaneeto the ho-
rizon by Eq.(5.3). This functional reads

WY C, 1= ! (a— %)me (8.9

Then, by using Eq98.6) and(5.3), one can write the com-
plete effective action in the volume cutoff method as

1
Wi (B.re.r €)= WVC[CQJ—%TU [Ro—(Vo)?]

+ JEB(2K0+ 3ayﬂn#)). (8.9

So eventually we have

WYC(B,rg,r s €)=WYS(B,a(B,r5.T1),Y(rg.l 1) 6),

WYC(B,a.y,€)

1 1 | M | 2Tpa 1I 1

T\ e\ Me T T2ty

@ 2 oly—2y— 132+ 17+ 8
+E §+ ny Yy 3y+ + HT
+0(e). (8.10

When taken on shell{=1), the divergence kof this func-
tional disappears and/\l’ccoincides with the actiofB.17) on
the regular space

WYS(B,a=1y,e)=W;(B,Y). (8.1
SVC

The entropy S;*(8,a,y,€), calculated from the action

(8.10, reads

2In—+2|ni

ny—1+ -
12a y=iry

(8.12

On sheIIS\l’C differs from the conical singularity entropy

S$S only by a singular term depending @n

SI°B,ay, €)=

SVCB,a=1y,6)=SSXB,a=1y)+ %mg. 8.13

The entropyS)© can be also written as

V. P. FROLOV, D. V. FURSAEV, AND A. I. ZELNIKOV

SYC(B,a,y, €)= i|n¢s (8.19

So, this quantity coincides with the entropy computed from
the actionW\l’C(Ca). The coincidence takes place because
the anomaly, which differentiatesVy“(8,a,y,€) from
V\\I/}Z:C(Ca), is proportional tog and does not contribute into
S/

Another observation is tha}© coincides with the ther-
mal entropy of the quantum gas in the volume of the size
|n6;l The volume cutoff entropy does not contain the term
Inlne~* which is present in the brick-wall entrof®;" since
the boundary condition on the quantum field %t is not
imposed, and the field can freely fluctuate on this boundary,
see Appendix C.

IX. OFF SHELL VERSUS ON SHELL
A. Off-shell and On-shell effective actions

In this section we discuss and compare the results of the
off-shell and on shell calculations of the thermodynamical
characteristics of a black hole. We begin by discussing the
obtained results for the effective action. It is convenient to
introduce the notation
=

U(B,ay)= ——In T

! 22| 17-2y—13y?
tag| Ty TRVt —2y—13y

@ b2 2+ 150 2ay—13ay?
+E g_ ny— + —czay— Yy

1
a+ Ina.

(a=1)? [ B
1oa |n{2— +

9.9

Then, the one-loop contributions to the effective action cal-
culated by different off-shell methods can be presented in the
form

WES(B.a.y)=U(B.a.y)+C(a), 9.2
Waw -y S P P
1 (ﬁra!yye)_ (ﬁya.Y) 12 (634 o n “
lI Ta 9.3
2 Mn(Bizmae)’ ©3
~ (a—1)? [ 7B
BC _
Wi (B,ay, ) =U(B,a,y)+ — —In Sman
a— 1I a—5 c, 0.
faa Tt 0.9
Ve 1\ €
WYH(B,ay,€)=U(B,ay)~ 15| a— —|In—. (9.5
al pm
Here, we again use the notationg=r,/rg and

a(B,rg,ry)=pl(4nr .J1—r /rg). The constant and
C(a) which enter these relations are the effective actions
W, = 3Indet(— x?A) on the unit diskD? and on the unit
coneC,, respectively.



54 BLACK HOLE ENTROPY: OFF SHELL VERSUS ON SHELL 2723
In the same notations, the on shell one-loop effective ac- Our starting point in the off-shell calculations is the one-
tion is loop actionW; which is the function of the parametefs
~ rg, andr, . In the “brick-wall” and volume cutoff ap-
Wi(B,y)=U(B,a=1y)+C. (9.6 proaches, it also depends on the additional paraneetend
A simple comparison of Eq€9.2), (9.4), and(9.5) with Eq. on € and 7 in the blunt—cone. methpd. The dependence on
- these additional parameters is not important at the moment,
(9.6) shows that the relations ) L , . L
so we will not indicate it explicitly. The quantitie and
WSS(B.a=1y)=WBS(B.a=1y, rg are external parameters fixing the problem andis de-
r1Ba=1y) 1 (Ba=ly.m) termined on shell in terms of them by the condition

=WYS(B,a=1y,e)=Wi(By) (9.7 ;

take placeafter neglecting unessential numerical constants a(Birg,ry)=——"F——==1 (9.12

in qu.(g.ig and(9.5g)J]. In o?her words, the on-shell values of At N1 /e

the one-loop effective actions calculated by conical singularcgonsider first cone-singularity, blunt cone, and volume cut-
ity, blunt-cone, and volume cutoff methods coincide with theoff methods for which the effective actions, when taken on
on shell one-loop effective actiowy(8,y). WSS is always  shell (9.12, coincide with the thermodynamical action
finite, while W€ and WY are finite (i.e., do not contain W,(,rg) given by Eqs(3.16 and(3.17)

either Iny or Ine divergence only on shell(for a=1). The

only divergent on shell quantity is the brick-wall effective Wi(B.re 1 )|a=1=Wi(B.T). (9.13
actionW?W.

The relation(9.3) can be interpreted in the following way.
Let us remind that the effective actioh$® has been com-
puted by the conformal map onto the co@e, [see Eq. AW, (B,rg)
(6.3]. So WS® is defined up to addition of the action SIDZBT
W,[C_,]=C(a). Alternatively, one could use the map onto a
coneC, . with the sizee. The results of two computations ) .. i
can be bompared by using the difference betw@&hC,,] while the off-shell entropys; is defined by Eq(4.1)
andW,[C, .]. This difference can be easily found because

Here the symbol ¢ replaces CS, BC, and VC notations. The
thermodynamical entrop,® is defined by Eq(3.19

—Wi(B.re), (9.14

's

F H . . an(ﬂ,rB 1r+)
both cones are related by theztrlwal rescaling: S=8 75 - —~W;(B.rg.r4). (9.15
B+
dsz(ca>=(ﬁ) d<(C,, 0. 98 | N |
€ ’ Note that in the calculation 08; the parameter . is as-

sumed to be fixed. This results in the differedc® between

Then, Eq.(A9) gives two entropies:

1/1 € .
WAC,J=Wi[C, ]+ 5| g +eafinz. (99 AS=S]°-S,
J J
It enables one to represent the regalB) as =,8(@W1(,8,r5)— @M(BJB,H))
a=1
W?W<B,a,y,e)=\N§S(ﬁ,a.y>—vvl[ca,e]+vv‘fa~°<ﬂ,cz,e>d (9.16
9.1
where Together with the Eq(9.13), it gives
ar . W3
1 Ta . + 1
a __* AS=B<—— , ) (9.17)
WitB.a.e) 2In In(B/2mae) (.13 ap e |Pref

is the contribution due to the Casimir effect. The detailedwhich, obviously, is nonzero quantity. This shows why in the

discussion of this term and its relation to the brick-wall general case the one-loop contribution to the black hole en-

boundary conditions is given in Appendix C. tropy found by an off-shell procedure differs from the con-
tribution inferred in the thermodynamical computation,

B. Why the on shell and off-shell one-loop contributions based on the on-shell action.

to the entropy are different

The equality(9.7) of all (except brick-wall off-shell ef- C. Relations between off-shell and on-shell entropies

fective actions and the on shell effective action does not We obtain now explicit formulas relating different off-
guarantee that the same is true for the corresponding valuskell entropies. As earlier, we assume that after the calcula-
of entropy. Moreover, as we shall see, all the off-shell caltions of the entropy the limite=1 is taken. The calculated
culations give the results for the entropy which differ from entropies are always understood as the function of the pa-
the on shell result. Before giving the concrete relations berametersB,rg characterizing the system. For simplicity, we
tween these quantities, let us discuss why does it happen. omit these arguments. Note also, that the effective actions
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contain an arbitrary constants, which we denotedCaand  On the other handSIJr S‘f""s can be identically rewritten as
C(a). It is evident that similar constants enter also the ex-
pressions for the entropies. We indicated these constants ex- S]+S=SX(27u)=— Tr[pR(2mu)InpR(27u)].
plicitly earlier in the expressions for the entropies. They may (9.26
be important for the discussion of the questions connected
with the third law of black hole thermodynamics. But they That is, this expression coincides with the entropy of a mass-
are not important for us now. For this reason, in order toess thermal radiation in the Rindler space between two mir-
simplify the expressions we simply omit them from now on. rors located at the proper distaneeand . from the horizon.
We also omit the terms which vanish when the additionalThe temperature of the radiation measured at the distance
parameters(such ase and 7) take their limiting value u from the horizon is 1/(zZru). Thus, we have
(e=0 andn=0). ) ) R R

It is convenient to begin with the entrogsf® calculated ~ ST-= —{TIAL(BINGE(B)]— Trpg(2mu)INpE(2mw) 1}
by the conical singularity method. It is obtained from the (9.27)
effective actioW5> given by Eq.(9.2) with C(a=1)=0, or

what is equivalent fronu, given by Eq.(9.1): It is easy to verify that the same relation is valid also if the

inner mirrorlike boundaryat €) is absent provided the quan-

1 B tities in the right-hand side are defined by using the volume
stzl—z ——1-Iny+ ZIHF . (9.18  cutoff method. For both brick-wall and volume cutoff meth-
y K ods, each of the terms in the right-hand side of @7 is
Let us denote divergent as— 0, while the difference remains finite in this

limit. If we formally define the density matricgs'() and
pR(27wr) on the black hole and Rindler backgrounds as the

1 1 T
Si(e)= s Si¥e)= §|n| B 919  limits
n_
2me pH(B)=limp(B), pR(2mu)=limpR(2mp),
e—0 e—0
Then, the results of the previous sections can be summarized (9.29
as
BW_ <GS T - oC then for both volume cutoff and brick-wall methods, we have
S;V=S7+ S+ Sr%, (9.20
STB.a=1y)=—{Tip"(B)INp"(B)]
SVe—gCst gl (9.21) !

— T pR(2mw)INpR(2mu)1}.
S?c: S(fs. (9.22 929

Thus, the blunt-cone and conical singularity methods giveysing Eq.(9.23, we finally get
the same finite result for the entropy, while the brick-wall
and volume cutoff methods give expressions containing sTP— _ 1 5H( 8)Inp" — T oR2m)INSR(2 4
(In¢) divergence. The differencg{* betweenS?"W and S}°© ' (TP (AYine™(B)] = THLp™(2mpu)inp ™ 2mas)}
occurs because the different boundary conditions in these +AS. (9.30
methods are imposed. All the above off-shell expressions for
the entropy differ from the 0ne-|00p Contributi@iD to the This relation indicates that the One-IOOp correction to the
thermodynamical entropy given by E@.22. The latter can  thermodynamical entropy can be obtained from the
be presented as statistical-mechanical black hole entropy by the following
procedure. First, one needs to subtract the Rindler entropy
SiP=ST5+AS, (9.23  which removes the divergence, and then add a finite correc-
tion AS. In the next section we show that the second term
where AS coincides with the change of the classical Bekenstein-
Hawking entropy due to the quantum deformation of the
background geometry.
It is worth mentioning that a similar subtraction procedure
Brel o1 naturally arises in the membrane paradigg]. Namely, in
1 order to obtain the correct expression for the flux of the
4+ 26y —28y?+ 13y3) + —Iny. entropy onto a black hole, Thorne and Zuf&9,60 pro-
24 posed to subtract from the entropy, calculated by a
(9.24 statistical-mechanical method, the entropy of a thermal at-
mosphere of the black hole. The later entropy close to the
The relation(9.20 can be rewritten in a different form horizon coincides wittSar ., Equation(9.30 can be used
which is more convenient for interpretation. Note that ac-to prove this conjecture. However, it should be stressed that
cording to Eqgs(5.16, (5.1, and(5.21), Thorne and Zurek did not consider quantum corrections to
R R the entropy discussed in the present paper. Equaid@0
SW=— Tr[pl(B)INpL(B)]. (929 not only explains how the volume infinities B*™ are sepa-

R E: IWES
—A\ 9p .

1
_48(2—3y)(_1
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rated, but also gives an exact dependence of the quantum [[B,rg,vy,r]=1[B,rg,7.r]

corrections to the entropy on physical characteristics.
dl

0Yab

ol
(Yab™ Yap) + 5 or

|
D. Entropy and back reaction effects Yab

The thermodynamical entropy of a black hole with quan-

. . +r n#._, or
tum one-loop corrections is e Iy r.ol+

STP=gBH(r ) +SIP, (9.31) —2m(1—a)r,ér,+0(h?). (9.35

We assume that the value of the dilaton field on the cone
where S®(r ,)=mr% is the Bekenstein-Hawking entropy. singularity isr , , and denote by 2(1— a) the correspond-
As the result of quantum effects, a “real” solutiory,f),  ing deficit angle which is defined byy(r) atr, [58]. The
including quantum corrections, is different from the classicale|ation (9.35 shows that when the value, for y and’y is
Schwarzschild solution,r) [61]. In particular, the value the same, and y,r) is a solution of classical equations
r . of the dilaton field at the horizon of differs from its  (81/8y,,=0, 61/6r=0), the value of the classical action
classical value ;. . We demonstrate now that E.31) can  calculated on 4,r) differs from the classical value

be identically rewritten as I[3,rg,7,r] only by terms of the orde®(%2). That is why
we can replacel[B,rg,y(r.),r(r.)] in Eq. (9.33 by
S™0=7r 2 + 555, (9.32  1(B.rg.r,), the value ofl calculated on the classical singu-

lar instanton. The latter can be easily found
A first step in the proof is to obtain an equation which

determines . . For given boundary conditions3(rg), the 1(B.rg.1)=BE(rg,r)—mrs,
extremum of the Euclidean effective actidhdefines a regu- y
lar quantum solution. This solution can be obtained by solv- E(rg.ry)=rgl1—(1-r,/rg)*?, (9.3

ing the field equationsW/8y=SW/ér=0 and fixing an
arbitrary constant which enters the solution by the regularit)yv
condition on the horizon. This determines as a function of
(B.rg): r+=r.(B,rg). For any other choice of the constant,
the solution has a conelike singularity. We call such a singu- 5Wfs(,8,ra ) o

lar solution aguantum singular instantorit obeys local field — = —-2ar (a—1). (9.37
equations but does not provide a global extremum\fér o+

The quantum singular instanton is specified Byr) and an Here, a=a(B,rg.r.)=pBl4mr . J1—1, Irg] L, and @ is

amary_para_lnjﬁterf:cJ, .t' We . Wh;\'/te the solultlo? N %S the value of the classical off-shell parametecalculated for
[¥(r.).r(r.)]. The effective actioW/(s,rg.r ) calculate r.=r, . For the classical regular instantan=1. It means

on the quantum singular instanton is that up to the second order inwe can write

hereE is a quasilocal energly7,53]. o
The Eq.(9.34 which defines the “position”r , of the
quantum horizon can be written as

W(Baerr_Jr)EW[BvrBim)vm)]
:I[BvrB!ﬁ)lﬁ)]

+WS Bre, y(r).r(ro)l. Here,Ar . =r, —r, is the change of the “position” of the
(9.33 black hole horizon because of the quantum corrections. Us-
' ing the explicit expression fot, it is easy to show that

Ar . (9.39

(9r+ a=1

- Ja
27Tr+(a—l)=27rr+<—

The condition of the global extremality & P 1
(_a) - _ B(?r_+ (9.39
&W(ﬁ,rB,r+) (?r+ a=1 aﬁ a:1. ‘
a—zo (9.39
Fs The latter relation allows one to write
determines the horizon radius =r (3,rg) for the regular ar, JWS
guantum instanton. 27 Ar =p W o , (9.40
In the calculations we keep only terms up to the first *la=1

order in 4. For this reason we can replace
WSS B,rg, ¥(r4).r(ry)] in the right-hand side of E49.33

by its value calculated on the classical singular instanton AS=2mr  Ar, . (9.4
WSS B,rg,y(ry),r(r;)]. What is much less trivial, we can

also replacd y(r-),r(r.)] in the classical action in Eq.  Therefore, up to the term®(#?), the quantityAS can be
(9.33 by the solutior y(r),r(r,)] for a classical singular represented as the differenaeS=SP"(r ) —SPH(r,). On
instanton provided the value of the dilaton figld on the the other hand, taking into account £§.23, we can write
horizon is preserved the same. To show this, consider th#he thermodynamical entropy given by E@.31) as the sum
general variation of the classical actibmiven by Eq.(3.1). S™P=gBM(r, )+ AS+ S‘fs. These equalities prove the de-
For fixedrg and B, we have sired relation(9.32.

and hence using Ed9.24), one gets
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X. SUMMARY AND CONCLUSIONS A remarkable property of the conical singularity method
. . is that(at least in 2D cagsit gives the finite result immedi-
Discuss now some lessons we have learned by Compa””&ew-

on shell results with the results of the different off-shell
methods in black hole thermodynamics. First of all, direct CS. <SM  SM

calculations demonstrate that the thermodynamical entropy S17=S5""~ Sgindier- (10.2
of a black holeS™ determined by the response of the free

energy to the change of the temperature, and the statisticathe mathematical reason wigf® is finite while S/ con-
mechanical entrop$>", defined ass*"'= — Tr(p"Inp") for  tains volume (Im) divergence is connected with the differ-
density matrixp" of black hole internal degrees of freedom, ence of the topologies of the manifolds used to calculate the
are different. The thermodynamical entropy, in addition tocorresponding effective actions. F8Y° the standard mani-
the tree-level Bekenstein-Hawking p@t"=A/4, contains {014 has the topology of a cylindepor a ring, while in for
also finite quantum one-loop correcti®®. The latter can  <CS the topology is ofD?, i.e., the same as the topology of
be obtained from the on shell effective action. The statisticalihe Gibhons-Hawking instanton. The mathematical operation
mechanical _entropySS"" is defined as a one-loop quantity, \yhen one cuts a small disk of the radigifrom the standard
agd it requires an off-shell procedure for its CaICUICat'O”'unit disk D? to transform it into a ring, can be interpreted as
S°" can be identified with the volume cutoff entroB{°.  the subtraction of an entanglement entrdpg,64,27,31,6%
Then, it contains the divergence gnwhere e is a proper- ngdlerz — Tr(pRInAR).
distance cutoff of the volume integration, required to make “\ye stress once again that in our approach all the renor-
this quantity finite. This leading logarithmical part 8" majizations are to be done from the very beginning so that
also presents in the brick-wall model, but generally due tgynjy opservable finite coupling constants enter the results.
the Casimir effect, S, has the additional divergence \ye demonstrated that some of the off-shell methods require
(In[né). an additional cutoff parameter which we denotedebyrhis

The physical reason whg™ and S are different is  cutoff parameter is completely independent from the ultra-
connected with a special property of a black hole as a thergjplet cutoff 5, see Eqgs(3.9 and (6.1). Moreover, the pa-
modynamical systeril2]. Namely, the internal degrees of rametere enters only some intermediate quantities and never
freedom of a black hole are defined as excitations propagagppears in the final observable results. We demonstrated ex-
ing on the background geometry. This geometry is uniquely|icitly that quantum corrections to the physically observable
determined by the mass parameter which, in the state of the&uantities can be always obtained by working only with on
mal equilibrium, is a function of the external temperature.she|| quantities. As a result, for a black hole of a mass, much
For this reason, to fin@]° one must change the temperature. greater than the Planckian mass, the quantum corrections to
This results in the change of Hamiltonian, describing thesebservables are small and independent of the physics at
internal excitations. On the other hand, in the calculations oPlanckian scales. This differentiates on shell quantities from
S°M the black hole mass and the Hamiltonian are to be fixedthe off-shell ones, such &M,

We proved that the thermodynamical entropy of a black There remains one more general question to be clarified.

hole can be presented in the form All the observables characterizing a black hole in a thermal
L equilibrium, or its slow transition from one equilibrium state
STP=SBH(r ) +[SM— M . (10.)  to another, can be found by using only on shell quantities.

Why at all does one need to use off-shell methods in the
SBH(r,)==r2 is the Bekenstein-Hawking entropy, and black hole thermodynamics? We have already seen that one
. is the “radius” of the horizon of a “quantum” black of the reasons is the desire to establish a relation between
hole. The term in the square brackets is the difference bestatistical-mechanical and thermodynamical entropies. In this
tween the statistical-mechanical entropies calculated for aense, the off-shell methods can be considered as a useful
black hole {S°M=— Tr{p"(B)Inp"(B)]} and for a Rindler tool for calculation and interpretation of the on shell quanti-
space ngmer: — T pR(27w)INpR@27w)]}. This subtrac-  ties. But we believe that, in addition to this trivial reason,
tion procedureautomatically removes all the divergences there may exist another more deep one. The off-shell ap-
from S and results in an invariant regularization- proaches may also be relevant for description of nonequilib-
independent quantity. rium processes in a system inclu<_jing a black hole. In this
We proved the relatiori10.1) by explicit calculations in ~ case quantum and thermal fluctuations of a thermodynamical

2D case, but it seems to be of the general nature afudits ~ System can be described by introducing stochastic 68
generalizationmust be valid in the 4D case. The reason isWhich effectively takes a system off shell. For this reason,
so that the subtraction terms in E4.0.1) will always be of t0 a thermal equilibrium of a black hole initially exited by
the form required for the complete cancellation of the vol-high energy explosion near its horizon, may require for their
ume divergences o85™ [12]. One of the possible ways to consideration some of the above-mentioned off-shell charac-
derive in four dimensions the relation analogous to Egqleristics.

(10.7) is to use an optical metric, where the required subtrac-

tion terms can t_)e calculated by usipg high—temperature ex- ACKNOWLEDGMENT
pansion. For this reason, the coefficients, which enter the
subtraction terms with different order of singularityeammust This work was supported by the Natural Sciences and

be connected with the Schwinger-DeWitt coefficients. Engineering Research Council of Canada.
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APPENDIX A: CONFORMAL TRANSFORMATIONS _ 1

OF THE EFFECTIVE ACTION IN TWO DIMENSIONS W(y)—W(y)= E[ jM [Ra’—(Va')z]

For completeness we derive in this Appendix the confor- ’
mal transformations for the effective action n f (2ko+ 30 ,n*)

v
M,
W[ y] 1| def —A] 1FdST(sA) (A1) 1
==Indef—-Al=—=| —Tr(e
Yi=3 2)o’s | == a|olx). (A9)

sz\illne:n(c)jnaa %?nguwﬁgzn /\ilnar;:;(;@h% Vz'ct)?“tsj 2.?1 ur&?:g This is the desired conformal transformation of the effective
@ P s @ g Y action wherer(X,) is the value of the conformal factor in the

\(’jvgcetlge:defi:%g;]‘ggr:g ﬁ-s(el f_o??thi\évziXllgrlfglljcivr:letzuzi(r)nne;r roed u- point of conical singularity. If the manifold has a number of
P U conical singularities in pointsxg with different deficits

larization. Consider the effective actioi; for the confor- 27(1— a.), then the last term in the right-hand side of Eq.

mally invariant operatoDzA.—(d—Z)[4((i1\|/— 1] "Rina (A9) must be replaced by the corresponding sum over all

d-dimensional space. Th_e divergent paf"” of V.Vl can be Xs. If the manifold does not have conical singularities the

found from the asymptotic heat kernel expansion last term in Eq(A9) vanishes ¢=1). Equation(A9) can be

- also represented in another equivalent form which sometimes

Tr(esP)= 1 , E aﬁf’)s”. (A2) iS more convenient
(4ms)™n=010...

1 ~
. . . : - W) -W(y)= 7= | dxoc(7*R+y"R
In two-dimensional case for the dimensional regularization (=W 4&Tf/v1a oy 7R

A 1 a(ld) 1 R L w12
W?-N:d—_ZE’ (A3) +247T aMadXO-(h k+h~%k)
where for an arbitraryr [41,47 - dx(h¥%k — hV2)
8m IM,
1 d—2 w1 1
(d_|=_ el Z 1/1
a6 4(d—1))f/\4 R* 3(“ “ L+ 3LM k. T o5l T a)o(Xs). (A10)
a @ 12\ o
(Ad)
Here,

In Eqg. (A4) the singular pointx, is replaced by a singular o

surface2 of the dimensiond—2 and the integral of the hY%k—hY%k=h"n%g o

scalar curvatur® is taken over the regular part 81, . k is

the second fundamental form of the spatial boundakt,  and the conformal factos should be understood as a solu-

defined in terms of its normal ds=V*n,, . tion of the equation

The renormalized action is defined as the difference of the U Yo~/
nonrenormalizedbare action Wkl’are and its divergent part =2y Uo=y"R-y"R.
wgv

1

APPENDIX B: EFFECTIVE ACTION AND FREE ENERGY
W, =Whare— wav, (A5) OF A SCALAR FIELD IN TWO DIMENSIONS

Let us consider a conformal massless scalar fildn a
two-dimensional manifold. The two-dimensional metric is
supposed to be independent on the Euclidean time. It can be
represented in the form

Under conformal transformatioﬁﬂfe‘z"yw of the met-
ric on M, the renormalized action changes[&g]

1
) — = lim——Tamy 5
M=) 4”12@22_0'[&11 (n-ar(v) ds?=exgd20(x){d7*+dx?}, 0<7<fB, Xo<X<X;.
Further, we will consider only those transformations WhichThe conformal scalar fielg satisfies the equation
do not “squash” the conical singularity. Then, by making 2 52

use of the relations Ap=exd — Zo(x)]( = +—

EN: ¢=0. (B2)

R=e*{R+(d—1)[2A0+(2=d)o ,0**1}, (A7)  For simplicity, we consider the problem with the Dirichlet
_ boundary conditiongb(xg) = ¢(x;)=0.
k=e’[k=(d=1)o ,n*], (A8) Using the conformal transformation of the effective action
(see Appendix A we can reduce the problem of calculation
one gets, from Eq(A6), of the effective action on the manifold E(B1) to a calcu-
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lation of the effective action on a cylind€} with period in ~
Euclidean time8 and length_ = x; — x,. The one-loop effec- BF= ; In(1—e™Fen), (B8)
tive action on a cyIinderQ(ﬂ,L) can be written in the form

1 where 8 is an inverse temperature ang, are the energy
W(l?(lg,L)z ~Inde( — u2A) levels of the quantum system. Thus, we are to know only the
2 spectrum of the system to calculate the free energy. One can
1 1 easily solve the Eq(B2) and find the energy levels of the
== 5{'(0)+ 5{(0)Inu? system

o
w”:fn’ L=X;—Xo-

=323ty
2| 9z% K

z=0
Note that the mode with=0 should be eliminated from the
summation in Eq(B8), since its amplitude is fixed by the

. Dirichlet boundary conditions and, hence, it is not normaliz-
resents the sum over all eigenvalue®f the operator— A. able and is not a dynamical degree of freeddfor the
Although, the effective action is determined up to the rescalNeumann boundary conditions zero modes will contribute to
ing of the parametep, all the physical observables are un- the free energy.

ambiguously defined. For the Dirichlet boundary conditions Thus, for the Dirichlet boundary conditions the free en-
the substitution of the eigenvalues ergy F réads

Amn= (2711 8)?n?+ (/L) ?m? of the Laplace operator on the
cylinder leads to the relation

Here, u is an arbitrary parameter with a dimensionality of
length and the generalizeédfunction(z)==,[ u?\] 2 rep-

7= 5% 1o s
=— nfl—exg —B8+—n|/,
WR(B.L) = AL
_ 1 ii i 2 4—772n2+ W_zmg N which coincides with Eq(B6).
2| dzp=h n 2 # B? L2 Now, let us calculateF in the high-temperature limit, i.e.,
2=%  when the length of the cylinder is much larger than its
1 9 = 2 —z perimeterB. In this limit the distance between the levels is
j22
=75 5z 1L 1 Tn less than temperature/L < 1/8 and the sum oven can be
m=1n=-e estimated using the Euler-McLourain formula
BZ mZ) Z]
X| 14— — . (B3) ~ w 1 1 ”
aLsn?) | D f(n)=f dxf(x)—J dxf) + = f(1)+ > ¢ f0(1).
n=1 0 0 2 k=1
Applying the formula . .
Here, the coefficients, can be expressed in terms of Ber-
o a2\ sinhra nouli numbers
1+ = B4
nl:[l n? ma . By+1
_ o _ c=(—1) EERY
and representing other infinite sums and products in terms of (k+1)!
the Riemanry function, we eventually have ) ) S
and the functiorf (x) is supposed to decrease at infinity to-
B gether with all its derivatives. Substituting here the function
W(B,L)=BF- TR (B5  f(x)=In[1—exp(=sX)] and taking into account the relation
where 1 1
In'(z)=(z—3)In(z)—z+ Eln(zw)
e ] 71- .
B]—':ngl Inj 1—exg —Bn||. (B6) Bom

t 2 G- DT
We demonstrate now thak coincides with the thermody-

namical free energy of a gas of scalar particles in the volume | arge| <,

L. In statistical mechanics the free energyof a quantum

system is defined by a relation one can prove that

2

_ _ _ a0 = 1

X~ BF]= Trexd - p:H:]. B7) > In(l—exp[—sn])=—g—iln[z +ﬁs+0(s).
=1

If we choose the basis functions to be eigenfunctions of the " (B9)

HamiltonianH =/ — &Xz, the free energy can be expressed in

terms of a sum over all dynamical degrees of freedom For the free energy it leads to a formula
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Zl[Cl){] = ein[Ca]

:j[D(ﬁ]exp(—%f ¢,M¢’“>- (C2

C
*€ Here, one can divide the variables into three groups
FIG. 7. Cones.
Zl[Ca]:J [D¢11[DY][Dprle '), (C3
pr—- LB T, B) (B10)
=———ZIng0—+ ——+o0| —|,
68 2 2L 24 L where ¢, and ¢, are the fields in the domains<e and
x> €, respectively, ands= ¢(x=¢€). In each of the regions
and hence the effective action reads one can change the fields as
L 1 B B b= brt+ Xk (CH
o_ T -+ P i k= Pk Xk
by 65 2In2L+o ik (B11)
Ax=0, xx(x=e)=¢, k=12, x(x=1)=0.
(CH

It can be shown that(B/L) is nonanalytical in its argument

and tends to zero extremely fast wh@rsL. : . . o
y A The new variablegp, satisfy the Dirichlet conditions on the

N h i f f | fields i . . . X .
ote that by constructio./ for a conformal fields is boundaries of their domains. Using this fact and that the

conformally invariant, since the spectrum is conformally in-f_ Id h _ he classical acti
variant. This property distinguishes it from an Euclidean ef-l1€lds x are harmonic, one can represent the classical action

fective actionW, which transforms inhomogeneously under in the way
the conformal transformations because of the conformal
anomaly. Note that the renormalized effective action
WS(B,L) and8F differ only by the term linear ir8 [67,68.

I[b1+ dol=1[ 1]+ [ o] + W 4], (C6)

where WL g]=1[x1]+1[x2] for xi(x=e€)=x2(x=¢€)=.
The partition function(C3) is represented now in the form

APPENDIX C: CASIMIR EFFECT AND FIELD where contributions from the field$,, ¢,, and y are com-
FLUCTUATIONS NEAR THE BRICK-WALL BOUNDARY pletely factorized

In this appendix we present a more detailed discussion of ) )
the field fluctuations on the boundary near the horizon antil[Ca]=f [D¢1]e"[‘f’1]f [Dap]e‘fm*”]f [Dgsle 142
their relation with the Casimir effect which inevitably arises
in the brick-wall approach. Instead of the black hole back-
ground, and consider the quantum field in the Rindler space :Z[Ca,e]Z[Ka,e]f [Dyle” MY, (C7)
at the inverse temperaturewr2 measured at the point
x=1, and putu=1. This simplification is justified by the The first multiplier in Eq.(C7) is the partition function on a
fact that we are interested in the effects which happen vergone of the small radius, the second one is the partition
close to the horizon where the space is similar to a congynction on the spac&, ., which is determined by the

(6.3. _ _ o ~ brick-wall actionWf%¥(a,e)
Assume that the brick wall is at the poixt € in coordi-
nates(6.3). The brick-wall effective action in this case is the Z[K ]:e—Wl[Kaye]:e—W?W(a,s) (C8)
action on the parK,, . of the coneC,,, see Fig. 7. we '
Then, as follows from Egs(5.6), (5.7), and (9.9), the The left integral overy describes the quantum fluctua-
analogue of the Eq(9.10 for the cone tions of the field in the poink= €. Let us show that it repro-
BW duces explicitly the Casimir term in the effective action. In-
Wi (a,e) =Wq[K, (] deed, Eqs(C5) have the solutions
p— —_ a o]
=Wy[C,]-W,[C, J+WiN27a,a,€), (C I Nt | (x|
xix,m)=\—2 | ycos—+yPsin—|| -]
1 mTah=1 o a €
WSS 2 e, a,€) = — —Inﬂ (C9
1 T 2 Ine b
. . 1 < nr nr
Our aim now is to understand how the presence of the Xa(X,7)= _2 wgl)cos—+ zpﬁf)sm—
Casimir termWS®(2ma,a,€) is related with the quantum Tan=1 @ @
fluctuations near the point= e. This can be done by analyz- e q _ y2nla
ing the path integral representation for the partition function X(f) e + Yo Inx/e, (C10)
onC,: X 1= 27a
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where g 4 are the Fourier coefficients of the field on
the boundary:

[1 & nr . nr o
_ E (1) (2)
l//(T)— T (lr/ln COSZ'i‘l,Un sm; + ,_27Ta
(C1y

V. P. FROLOV, D. V. FURSAEV, AND A. I. ZELNIKOV

1 1/2 %
f[Dd,]efW['//]:/\/(elnz) ex Zl |n(a€)>

(C19

(N is the numerical constantvhich after regularization of
the infinite sum with the help of the Riemann zeta function

{r(2)

defined with respect to the orthonormal basis on the circle

0<7<2ma. This gives the action up to the terms®@fe) in
the form

W é]=1x11+1x2]

1 -1
2In;) P2+0(e).

=S L
dn=1

(C12

oo

>

n=1

1

=lim X n~*={p(0)=- 5

z—0on=1

gives the Casimir term

j [Dme‘”‘“’]:A{

Ine™t

1/2 c
= NeWi o),
o

(C19y

The integral over/ has the Gaussian form and can be evalu-

ated exactly. The integration measure can be written up to
normalization numerical coefficient as

[Dy]=edyol] Py 1T Xy, (€13

where the multipliere? is the heritage of the definition
of the covariant measure which includes the factgt*

at x=e€. Thus, the result of the integration over fields

looks as

Fhe Eqs.(C7) and(C15 result in the formula

e WiCl=2,[C, JZ[K, Je" T
= eXp{_ (W[Ca,f] +W[Ka,e] _WfaTa! E])}
(C19

which, obviously, reproduces the relatio@l) between the
brick-wall action WYV and actionw,[C,] on the cone,
which we obtained earlier by the conformal transformation.
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