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Euclidean approach to the entropy for a scalar field in Rindler-like space-times

Sergio Zerbini,* Guido Cognola,† and Luciano Vanzo‡

Dipartimento di Fisica, Universita` di Trento and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, Ital
~Received 18 March 1996!

The off-shell entropy for a massless scalar field in aD-dimensional Rindler-like space-time is investigated
within the conical Euclidean approach in the manifoldCb3MN, Cb being the two-dimensional cone, making
use of thez-function regularization. Because of the presence of conical singularities, it is shown that the
relation between thez function and the heat kernel is nontrivial and, as first pointed out by Cheeger, requires
a separation between small and large eigenvalues of the Laplace operator. As a consequence, in the massles
case, the~naive! nonexistence of the Mellin transform is bypassed by Cheeger’s analytical continuation of the
z function on the manifold with conical singularities. Furthermore, the continuous spectrum leads to the
introduction of smeared traces. In general, it is pointed out that the presence of the divergences may depend on
the smearing function and they arise in removing the smearing cutoff. With a simple choice of the smearing
function, horizon divergences in the thermodynamical quantities are recovered and these are similar to the
divergences found by means of off-shell methods such as the brick-wall model, the optical conformal trans-
formation techniques, or the canonical path-integral method.@S0556-2821~96!05316-7#

PACS number~s!: 04.62.1v, 04.70.Dy
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I. INTRODUCTION

As is well known there exist several methods for calc
lating the semiclassical entropy~tree-level contribution! for a
stationary black hole~see, for example,@1#!. In Einstein
theory, for a nonrotating four-dimensional black hole, all th
methods lead to the celebrated Bekenstein-Hawking class
entropy 4pGM2 @2–4#. The thermodynamical origin of this
quantity is well known and recently in a series of papers~see,
for example,@5# and references therein! this fact has been
stressed; namely, the Bekenstein-Hawking entropy can
defined by the response of the free energy of the black h
to the change of the equilibrium~Unruh-Hawking! tempera-
ture. This temperature depends on the mass of the black h
and may be determined by requiring the smoothness of
related Euclidean solution@4#. This is an example of an on-
shell computation. In the derivation of the above result, o
usually neglects quantum fluctuation effects. If one tak
quantum effects into account, one can show that the on-s
one-loop contribution is finite~see, for example, Ref.@5#!.

The situation drastically changes if one tries to investiga
the issue of the black-hole entropy within a statistica
mechanical approach, i.e., by counting the quantum state
the black hole. In this case, in order to evaluate the entro
one is forced to work off shell, namely, at a temperatu
different from the Unruh-Hawking one. The first off-she
computation of the black-hole entropy appeared in ’t Hooft
seminal paper@6#, where the black hole degrees of freedo
identified with those of a quantum gas of scalar particl
propagating outside, but very near the horizon at a tempe
tureb21. The statistical-mechanical quantities were found
be divergent and regularized by Dirichlet boundary cond
tions imposed at a small distance from the black-hole ho
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zon ~the so-called brick-wall model!.
In a generic off-shell procedure, these divergences are n

totally unexpected. In fact their physical origin may be de
scribed by the following simple considerations. The equiva
lence principle implies that a system in thermal equilibrium
has a local Tolman temperature given byT(x)
5T/Aug00(x)u, T being the temperature measured at the spa
tial infinity. Thus, the asymptotic high-temperature expan
sion for the free energy of a massless quantum gas on
D-dimensional static space-time may be written as

FT.TDE ug00~xW !u2D/2AugD21~xW !udxD21,

where gD215det$gi j % ( i , j51, . . . ,D21). In the presence
of horizons, the integrand have nonsummable singularitie
and horizon divergences appear. As a consequence also
entropy is divergent. The nature of these divergences d
pends on the zeros and the poles ofg00 and gD21 respec-
tively. In general, for extreme black holes, whereg00 has
higher-order zeros, the divergences are much more seve
than the divergences in the nonextremal case~see, for ex-
ample,@7#!.

These considerations suggest the use of another off-sh
method, based on conformal transformation technique
which consists in mapping the original metric onto the opti
cal oneḡmn5gmn /g00, ~see Refs.@8–10#!. Related methods
that lead to optical manifolds have been considered in Ref
@11–13#. The conformal optical transformation method has
been used in the case of fields in four-dimensional black ho
space-time@14,15# and also for massive scalar fields in
D-dimensional Rindler-like space-times@16#. These are
space-times of the formR3R13MN, with the metric

ds252
b2r2

r H
2 dx0

21dr21dsN
2 , N5D22 , ~1!
2699 © 1996 The American Physical Society
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wherer H is a dimensional constant,b a constant factor and
dsN

2 the spatial metric related to the smooth manifoldMN. If
MN5RN, thenb51, r H51/a, a being the constant accel-
eration, the manifold is noncompact and one has to deal
with theD-dimensional Rindler space-time. IfMN5SN, one
can show that one is dealing with a space-time that appro
mates, near the horizon and in the large mass limit,
D-dimensional black hole~see, for example,@16#!. In this
caseb5(D23)/2 andr H is the horizon radius depending on
the mass of the black hole.

In the case of canonical horizons@this means thatg00(xW )
has simple zeros only# and in order to treat finite-temperatur
effects, an alternative off-shell approach has been propo
@17–21#. It consists in performing the Wick rotation
x052 i t and working in the Euclidean continuation of th
space-time, with the imaginary time compactified to an ar
trary interval of lengthb and with the fields periodic int
with periodb, which is interpreted as the inverse temper
ture. For an arbitrary choice ofb, such a static manifold has
a conical-like singularity. As already mentioned, only in th
absence of such a singularity there exist equilibrium sta
with finite stress-energy tensor. This happens only f
b5bH , the Unruh-Hawking temperature@4#. Furthermore,
the Bekenstein-Hawking entropy can be derived within th
approach@22,17#. For the metric of our simplified model, Eq
~1!, one has

bH5
2pr H
b

. ~2!

The situation looks quite different in the computation o
the quantum corrections to the entropy. In fact in this ca
one is really forced to consider an arbitraryb, thus working
off shell again. This proposal seems highly nontrivial, sin
only in an ultrastatic space-time the imaginary time forma
ism has been shown to be equivalent to the canonical form
ism of the finite temperature quantum field theory. The u
of the trace of the heat kernel plus standard proper-time re
larization on manifolds with conical singularities leads to
free energy, which is ultraviolet divergent and with a depe
dence on temperature different from the one expected fo
D-dimensional space. In fact the leading term goes asT2

independently on the dimensions@23#. Let us summarize this
crucial issue, which seems to have been overlooked in
recent papers.

It is well known ~see Sec. II! that one-loop effects can be
described byz-function regularization. Thez function re-
lated to a free massless scalar field onMD can be obtained
by means of the Mellin transform ofK(tu2DD)
5 Trexp(tDD), DD being the Laplace operator. However, i
the noncompact manifoldMD5Cb3MN, in order to give
meaning to the trace of the heat kernel, one has to us
smearing functionf. A simple choice is given by the prod-
uct of the characteristic functionx(V) (V,RN, compact!
and a cutoff functionu(L2r) regularizing the infinite coni-
cal volume. One has@24–27#

K~ tu2DD!~f!5
VD

~4pt !D/2
1

1

12S 2p
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VN being the volume ofV andVD5bL2VN/2. As a result,
the naive Mellin transform of this heat-kernel trace does no
exist or is zero if interpreted in the sense of distributions. If
a mass term is included, then the latter equation has to b
multiplied by the factor exp(2tm2) and the globalz function
may be defined via the Mellin transform@26#, obtaining in
this way a well-defined quantity, apart from the volume di-
vergences associated with the noncompactness of the man
fold. The surprising thing is that, in contrast with the other
methods mentioned above, such a partition function seem
not to have any horizon divergence. It has also a dependen
on b, which does not depend on the dimensions of the Rin
dler space one is considering and, besides, it vanishes in th
limit m→0. Of course, the contribution computed in this
way is only the finite part of the partition function, since
ordinary ultraviolet divergences are present~formally one is
dealing with a ‘‘zero-temperature’’ field theory on a non-
trivial background! and they have been accounted for by
means of thez-function regularization. If one makes use of
another regularization, for example the proper-time regular
ization, it turns out that such ultraviolet divergences are no
confined to the vacuum sector as in the usual finite-
temperature theory on ultrastatic space-times, but they ap
pear also in the nontrivial part of the free energy in such a
way that they give a contribution to the entropy, even if it is
evaluated at the Hawking temperature@18–21#. In the limit
m→0 only the leading divergent term remains and this has
been interpreted as the analogy of horizon divergence.

In this paper, in order to try to elucidate this issue, we will
present an off-shell Euclideanz-function regularization ap-
proach applicable directly in the massless case and we wi
make the comparison between this Euclidean conical metho
and the optical conformal transformation methods~the brick-
wall method gives the same result as the latter!. To avoid the
risk of creating confusion, other kinds of regularizations
shall not be taken into account. Our main aim will be the
construction of thez function for a massless scalar field in
Cb3MN, starting from the local one, which can be evalu-
ated by using an analytical procedure suggested by Cheeg
@24#. As mentioned above, all global quantities, for example
free energy or entropy, which are related to the trace of som
operator, require a smearing function in order to be defined
The horizon divergences appear in the smearing removal.
turns out that the change of the smearing prescription ma
modify the final result. However, we will show that the re-
sults obtained in this way are compatible with the ones ob
tained by using the optical conformal method, including the
correct dimensional behavior of the free energy onb. We
also would like to mention that the techniques presented in
this paper may be useful in investigating quantum fields in
space-times with spatial conical singularity~see, for ex-
ample,@27,28# and references therein!.

The contents of the paper are the following. In Sec. II, the
general formalism is summarized and the partition function
as well as the other related quantities, are introduced. In Se
III the local z function for a massless scalar field in a Rindler
space is constructed according to the Cheeger method an
the global~smeared! z function is computed and then gener-
alized to any Rindler-like space-times. In Sec. IV the ther-
modynamical quantities in these kind of spaces are derive
and their properties analyzed. The application to the four
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dimensional black hole, in the large mass limit approxim
tion, is presented in Sec. V. Choosing a suitable smea
function, horizon divergences of the first quantum corr
tions to the free energy are recovered. The conclusions
reported in Sec. VI. The paper ends with an Appendix
voted to the analytical extension of a series that freque
appears in the formulas and that plays an important role
the Cheeger method.

II. GENERAL FORMALISM

To start with we recall the formalism we shall use in t
following in order to discuss the finite temperature effe
within this conical singularity approach. We may consid
as a prototype of the quantum correction~quantum degrees
of freedom!, a scalar field on aD-dimensional Rindler-like
space-time. Its related Euclidean metric reads

ds25
b2r2

r H
2 dt21dr21dsN

2 , x5~t,r,xW !,

where t is the imaginary time,r>0 the radial coordinate
andxW the transverse coordinates. As explained in the In
duction, finite temperature effects are assumed to arise w
t is compactified 0<t<b, b being the inverse of the tem
perature. For arbitraryb the manifoldMD has the topology
of Cb3MN , Cb being the two-dimensional cone, (t,r)
PCb , xWPMN . From now on, we putr H51 andt→bt.

The one-loop partition function depends onb and is given
by

Zb5E d@f#expS 2
1

2E fLDfdDxD , ~3!

wheref is a scalar density of weight21/2, which obeys
periodic boundary conditionsf(0,xW )5f(b,xW ) andLD is the
Laplace-like operator onCb3MN . In our case, it has the
form

LD52DD1jR1m252Db1LN52Db2DN1jR1m2.
~4!

HereDD , DN , andDb are the Laplace-Beltrami operators o
MD,MN, andCb respectively,j is an arbitrary parameter
m the mass andR the scalar curvature of the manifold, whic
is assumed to be a constant.

In the one-loop or external field approximation the impo
tance of thez-function regularization as a powerful tool t
deal with the ambiguities~ultraviolet divergences! present in
the relativistic quantum field theory is well known~see, for
example,@29#!. It permits us to give a meaning, in the sen
of analytic continuation, to the determinant of a different
operator that, as a product of eigenvalues, is formally div
gent. One has@30#

lnZb52 1
2 ln detLD5 1

2 zb8 ~0uLD!1 1
2 zb~0uLD!lnm2,

wherezb(suLD) is thez-function related toLD , zb8 (0uLD) its
derivative with respect tos, andm2 a renormalization scale
The analytically continuedz function is regular ats50 and
thus its derivative is well defined.
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When the manifold is smooth and compact the spectrum
is discrete and one has

zb~suLD!5(
i

l i
22s ,

l i
2 being the eigenvalues ofLD . As a result, one can make

use of the relationship between thez function and the heat-
kernel trace via the the Mellin transform and its inverse. For
Res.D/2, one can write

zb~suLD!5 TrLD
2s5

1

G~s!
E
0

`

ts21Kb~ tuLD!dt, ~5!

Kb~ tuLD!5
1

2p i ERes.D/2
t2sG~s!zb~suLD!ds, ~6!

where Kb(tuLD)5 Trexp(2tLD) is the heat operator. The
previous relations are valid also in the presence of zero
modes with the trivial replacement Kb(tuLD)
→Kb(tuLD)2P0, P0 being the projector onto the zero
modes. We may call this the global approach. Moreover one
may follow a local approach, starting from local quantities
like the heat kernel and the related Mellin transform local
z functionzb(s;xuLD). Then one may introduce an effective
Lagrangian density

L~x!5
1

2
zb8 ~0;xuLD!1

1

2
zb~0;xuLD!lnm2,

obtaining, in this way,

lnZb5
1

2E @zb8 ~0;xuLD!1zb~0;xuLD,0!lnm2#dVD. ~7!

Normally the two approaches give the same results. In the
presence of conical singularities and in the massless case, we
have seen that the global approach cannot be used, so we
shall make use of the local one. In the presence of conical
singularities and in the noncompact case~continuous spec-
trum!, some care has to be used in the implementation of the
relationship between heat kernel and localz function. With
regard to this, we shall show in the next section that a sepa-
ration of lower eigenvalues from the higher ones, together
with a suitable analytic continuation, is necessary@24#. Fur-
thermore the localz function turns out to be a nonlocal sum-
mable function. For this reason one can take the distribu-
tional characters of the localz function into account by
introducing a smearing in terms of a function with compact
support. In this way, in order to treat global quantities, one
has to deal with smeared traces@31#.

Once the~smeared! partition function is given by Eq.~7!,
we assume the validity of the usual thermodynamical rela-
tions, thus the free energy can be computed by means of

Fb52
1

b
lnZb52

zb8 ~0uLD!

2b
2

zb~0uLD!

2b
lnm2, ~8!

and the entropy and the internal energy read
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Sb5b2]bFb , Ub5
Sb

b
1Fb . ~9!

All these quantities are evaluated off shell. However the o
admissible equilibrium thermal state is the one correspo
ing to the Unruh-Hawking temperatureb5bH @in our
model, see Eq.~2!#. Thus, strictly speaking, one has to mak
the comparison of the different off-shell approaches only
b5bH .

III. z-FUNCTION REGULARIZATION IN A SPACE
WITH CONICAL SINGULARITIES

As we mentioned in the Introduction, the evaluation of t
partition function using thez-function regularization requires
some care. Here we shall evaluate the kernel of thez func-
tion and then we will give a meaning to the globalz function
by means of smearing. As has been stressed by Cheeger@24#,
it is crucial to treat small and large eigenvalues separate

The spectral properties of the Laplace operator on
cone are well known and in fact, a complete set of norm
ized eigenfunctions forLb52Db is easily found to be

c~t,r!5
1

A2p
ein ltJn l

~lr!, n l5
2p l

b
, lPZ, ~10!

together with its complex conjugate~double degeneration!.
Here l2 (l>0) is the eigenvalue corresponding toc and
c* , while Jn is the regular Bessel function. This choice
the eigenfunctions correspond to a positive elliptic se
adjoint operator~the Friedrichs extension@32,33#!.

Now, using the standard separation of variables, it is e
to get the spectrum and the eigenfunctions of the oper
LD52Db1LN on the Rindler-like space-timeMD

5Cb3MN, LN being a Laplace-type operator onMN in-
cluding ~eventually! mass and scalar curvature couplin
term. Indicating byf a(xW ) and la

2 the eigenvectors and th
eigenfunctions of LN, respectively, one hasC(x)
5c(t,r) f a(xW ) and l21la

2 for the eigenvectors and th
eigenfunctions ofLD . Thus, for the diagonal kernel of a
operatorFb(LD) one has

Fb~xuLD!5
1

b(
a

F E
0

`

F~l21la
2 !J0

2~lr!l dl

12(
l51

` E
0

`

F~l21la
2 !Jn l

2 ~lr!ldlG . ~11!

As it stands, such an expression is only formal, since
series and the integral could not be convergent.

A. A special case: massless scalar field in Rindler space

For the sake of simplicity and for illustrative purposes,
us start to consider a massless scalar field on Euclidean
dler spaceCb3RN. We supposeN>1, but all results on the
pure cone (N50) can be obtained as limit cases. For th
caseLN52DN has a continuous spectrumlkW

2
5k2 and so the

sum overa reduces to an integral overkWPRN and its spec-
tral data are well known: namely,
nly
nd-

e
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f kW5
eik

W
•xW

~2p!N/2
, lkW

2
5k25kW•kW .

We are interested in the localz function, so we choose
F(LD)5LD

2s and, using Eq.~11!, one formally has

zb~s;xuLD!5
2~4p!2 N/2

bGSN2 D E
0

`

dk kN21

3F E
0

`

~l21k2!2sJ0
2~lr!l dl

12(
l51

` E
0

`

~l21k2!2sJn l

2 ~lr!l dlG .
~12!

Recalling the asymptotic behavior of Bessel functions on
can easily see that both the integrations overk andl can be
performed in any term of the latter equation ifs is restricted
in the range

N11

2
, Res,

N1212n l
2

.

In fact one has

2~4p!2 N/2

bGSN2 D E
0

`

dk kN21E
0

`

~l21k2!2sJn l

2 ~lr!l dl

5
r2s2D

2b~4p!N/2G~s!

GS s2
N11

2 DGXn l2S s2
N

2 D11C
ApGS n l1s2

N

2 D .

~13!

To get thez function, now one has to sum overl . As we
shall show in the Appendix, the series is convergent fo
Res.N/211. This range does not overlap with the previous
one forn l50 (l50). This means that there are no values o
s for which Eq.~12! is a finite quantity. The solution of this
convergence obstruction has been suggested by Chee
@24#. It simply consists in a separate treatment of the lowe
and the higher eigenvalues~in this particular casen050 and
n l.0, l>1). Only after the analytic continuation is per-
formed, one may define thez function by summing the two
contributions obtained in this way. Of course, such a defini
tion of z function has all the requested properties and coin
cides with the usual one when the manifold is smooth.

So, following Cheeger, in Eq.~12! we first isolate the
term l50 and define @see Eq. ~13!#, for 1/2
1N/2, Res,11N/2,
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z,~s;xuLD!

5
r2s2D

b~4p!N/2G~s!

G@s2~N11!/2#G~12s1N/2!

2ApG~s2N/2!

52
r2s2D

b~4p!N/2G~s!

G@s2~N11!/2#G2p~s2N/2!

Ap
.

~14!

Then we consider all the other terms, perform the integrat
as in Eq.~13! and the summation overl>1. In this second
case we have to restrict to 11N/2, Res,11n11N/2. The
result reads

z.~s;xuLD!t5
r2s2D

b~4p!N/2G~s!

3
G@s2~N11!/2#Gb~s2N/2!

Ap
. ~15!

We have put

Gb~s!5(
l51

`
G~n l2s11!

G~n l1s!
, G2p52

G~12s!

2G~s!
,

the series being convergent for Res.1. As we shall show in
the Appendix, the analytic continuation ofGb(s) is a mero-
morphic function with only a simple pole ats51. This
means that both Eqs.~14! and ~15! can be analytically con-
tinued to the whole complexs plane and, by definition

zb~s;xuLD!5z,~s;xuLD!1z.~s;xuLD!

5
r2s2D

b~4p!N/2G~s!
I bS s2

N

2 D , ~16!

where

I b~s!5
G~s21/2!

Ap
@Gb~s!2G2p~s!#.

The properties ofGb , as well as ofI b , will be studied in the
Appendix. An important property is thatI b , as well as
Gb , has only a simple pole ats51.

Note that in spite of the definition~16!, in the use of the
inverse Mellin transform one has to considerz, and z.

again separately and the original ranges of convergence. T
is

K,~ t;xuLD!

5
1

2p i E1/21N/2, Res,11N/2
t2sG~s!z,~s;xuLD!ds, ~17!

K.~ t;xuLD!

5
1

2p i E11N/2, Res,11n11N/2
t2sG~s!z.~s;xuLD!ds, ~18!
on

hat

z,~s;xuLD!5
1

G~s!
E
0

`

ts21K,~ t;xuLD!dt,

1

2
1
N

2
, Res,11

N

2
, ~19!

z.~s;xuLD!5
1

G~s!
E
0

`

ts21K.~ t;xuLD!dt,

11
N

2
, Res,11n11

N

2
, ~20!

and, by definition,

Kb~ t;xuLD![K,~ t;xuLD!1K.~ t;xuLD!

5
2p

b

1

~4pt !D/2
1

~4p!2N/2

2p ib

3E
Res.11N/2

t2sr2s2DI bS s2
N

2 Dds.
~21!

On the right-hand side of the latter equation we immediate
recognize the kernelK2p(t;xuLD) and so the integral repre-
sents the differenceKb(t;xuLD)22p/bK2p(t;xuLD). Simi-
lar expressions are valid for all quantities. This can be se
by observing that Eq.~11! can be written in the form

Fb~xuLD!2
2p

b
F2p~xuLD!5

2

b(
a

H (
l51

` E
0

`

F~l21l2a!

3@Jn l

2 ~lr!2Jl
2~lr!#l dlJ .

The advantage is that the low eigenvaluen050 is absent on
the right-hand side of this expression. As a result

zb~s;xuLD!2
2p

b
z2p~s;xuLD!

5
4~4p!2N/2

GSN2 D E
2`

`

dk kN21(
l51

` E
0

`

~l21k2!2s

3@Jn l

2 ~lr!2Jl
2~lr!#l dl.

Now the right-hand side of the latter equation is well define
for 11N/2, Res,11n11N/2. After integration one has

zb~s;xuLD!2
2p

b
z2p~s;xuLD!5

r2s2D

b~4p!N/2G~s!
I bS s2

N

2 D ,
which is identical to the previous definition ofz function and
this means that, for this particular case, the Cheeger analy
cal procedure givesz2p(s;xuLD)50 ~note that formally
z2p is a divergent integral whatevers is!.

Heat kernel and localz function are related by
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zb~s;xuLD!2
2p

b
z2p~s;xuLD!

5
1

G~s!
E
0

`

ts21FKb~ t;xuLD!2
2p

b
K2p~ t;xuLD!Gdt,

~22!

Kb~ t;xuLD!2
2p

b
K2p~ t;xuLD!

5
1

2p i ERes.11 N/2
t2sG~s!

3Fzb~s;xuLD!2
2p

b
z2p~s;xuLD!Gds. ~23!

Note that forb52p the conical singularity disappears an
the manifold becomesRD. Thus, z2p and K2p are trivial.
Furthermore, by making use of Eq.~21! and taking the ana-
lytical properties ofI b(s) discussed in the Appendix into
account, one gets the asymptotics of the heat kernel: nam

Kb~ t;xuLD!.
1

~4pt !D/2
1Et~r!. ~24!

whereEt(r) is an exponentially small term int. This local
asymptotics is in agreement with the results of Refs.@24–
27#.

We conclude this section introducing the global quan
ties. Strictly speaking, only the distributional trace has
mathematical meaning, since the localz function above has
nonintegrable singularities inr ~see, for example,@31#!. As a
consequence one has to introduce a smearing by means
suitable functionf(r) with compact support not containing
the origin, thus defining

zb~suLD!~f!5bE dVNE
0

`

f~r!zb~s;xuLD!r dr. ~25!

For the smeared trace we get

zb~suLD!~f!5
VN

~4p!N/2
I b~s2 N/2!f̂~2s2N!

G~s!
,

f̂~s!5E
0

`

rs21f~r!dr, ~26!

f̂ being an analytic function since the integral in Eq.~25!
exists for alls by definition. As a smearing function we ma
simply choosef(r)5u(L2r)u(r2«) (L.«), which is
convergent to 1 in the limitsL→` and «→0. Thus, we
have

f̂~s!5
Ls2«s

s

and for the smearedz function
ely,

i-
a

of a

zb~suLD!~f!5
VN

~4p!N/2
I b~s2N/2!~L2s2N2«2s2N!

G~s!~2s2N!
,

3zb~0uLD!~f!50. ~27!

B. The general case: scalar fields in Rindler-like spaces

Here we will give some results concerning the more ge
eral caseMD5Cb3MN, MN being an arbitrary smooth
manifold without boundary. In such conditions all know
results concerning heat-kernel andz function for LN on
MN, which we suppose to be known, are applicable. In pa
ticular we note that the kernels are related by means of M
lin transforms, the analogues of Eqs.~5! and ~6!. Further-
more, the heat kernel has the usual asymptotic expansion

K~ t;xW uLN!.(
r
Ar~xW uLN!t r2N/2,

while the local z function has the meromorphic structur
~theorem of Seeley!

G~s!z~s;xW uLN!5(
r

Ar~xW uLN!

s1r2N/2
1the analytical part,

~28!

the spectral coefficientsAr(xW uLN) being computable func-
tions ~for a review see@34#!. Here we suppose zero modes t
be absent, but of course one can take them into account w
simple modifications of the formulas.

Now let us try to derive the meromorphic structure o
zb(s;xW uLD) onMD. To this aim we use the factorization
property of the heat kernel,

Kb~ t;xuLD!5K~ t;t,ruLb!K~ t;xW uLN!, ~29!

in which the heat kernels of the Laplace-like operators
MD, Cb , andMN, respectively, appear. By taking the Mel
lin transform of Eq.~29! one usually gets the Dikii-Gelfand
representation for thez-function, which easily permits us to
read off the meromorphic structure. However, as we ha
shown in the previous section, in the presence of coni
singularities we have to separate low and high eigenvalue
order to have a well defined Mellin transform. So we set

z,~s;xuLD!5
1

G~s!
E
0

`

ts21K,~ t;t,ruLb!K~ t;xW uLN!dt,

z.~s;xuLD!5
1

G~s!
E
0

`

ts21K.~ t;t,ruLb!K~ t;xW uLN!dt,

whereK,(t;t,ruLb) and K.(t;t,ruLb) are related to the
correspondingz functions by mean of Eqs.~17!–~20!, but
with N50 ~pure cone!. Now we make use of the Mellin-
Parseval identity

E
0

`

f ~ t !g~ t !dt5
1

2p i ERez5c
f̂ ~z!ĝ~12z!dz, ~30!
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wherec is in the common strip of analyticity of the Mellin
transformsf̂ (z) andĝ(12z). After some calculations paying
attention to the range of convergence we get

z,~s;xuLD!5
1

2p iG~s!
E
c0

G~z!z,~z;t,ruLb!G~s2z!

3z~s2z;xuLN!dz, ~31!

z.~s;xuLD!5
1

2p iG~s!
E
c1

G~z!z.~z;t,ruLb!G~s2z!

3z~s2z;xuLN!dz, ~32!

where1
2,c0,1 and 1,c1, Res2N/2. These are the Dikii-

Gelfand representations forz, and z. which are valid for
Res.11N/2. Since they are well defined in the same ran
we can directly write thez function asz5z,1z. . Then, a
representation valid for Res.11N/2 reads

zb~s;xuLD!5
z~s21;xW uLN!

2b~s21!
1

1

2p ibG~s!

3E
Rez5c1

r2z22I b~z!G~s2z!

3z~s2z;xuLN!dz, ~33!

where in Eq.~31! we have shifted the contour integral on th
right, taking into account that the integrand function has
simple pole atz51 @see Eq.~14!#. We incidentally observe
that the first term on the right-hand side of the latter equati
is just (2p/b)z2p(s;xuLD). So the integral on the right rep-
resents zb(s;xuLD)2(2p/b)z2p(s;xuLD), in agreement
with the second point of view that we discussed in the pr
vious section.

Now, in order to perform the integral, in Eq.~33! we shift
the contour on the right and using Eq.~28! we obtain

zb~s;xuLD!5
z~s21;xW uLN!

2b~s21!
1

1

bG~s!(r50

P

Ar~xW uLN!I b

3S s1r2
N

2 D r2s12r2D1O~r2s12P2D!,

~34!

P being an arbitrary large integer. By means of this equati
and of inverse Mellin transform, one comes back to the loc
heat-kernel asymptotic

Kb~ t;xuLD!;
1

4pt(r50

`

Ar~xW uLN!tn2N/2;
1

4pt
K~ t;xW uLN!.

~35!

By integrating Eq.~34! on the manifold with the smeared
functionf(r)5u(L2r)u(r2«) one has

zb~suLD!~f!5z2p~suLD!1
1

G~s!(r50

P

Ar~LN!I b
ge

e
a

on

e-

on
al

3S s1r2
N

2 D f̂~2s12r2N!1 f ~s;L,«!,

~36!

where z2p(suLD)5z(s21uLN)f̂(2)/@2(s21)# and
f (s;L,«) is an analytic function ins going to 0 as«→0.
Now we may write down the meromorphic structure of

globalz function, which we can directly read off by looking
at Eq.~36! and recalling thatI b(s) has only a simple pole at
s51. The result reads

G~s!zb~suLD!~f!

;(
r50

`
Ar~LN!@f̂~2!1~b/2p21!f̂~2s12r2N!#

2~s1r2D/2!
.

Taking the limit fors→0 of the latter equation we easily get
zb(0uLD)50 for oddD, while, for evenD,

zb~0uLD!5
b

4p
AD/2~LN!f̂~2!,

and this is just the integral of theD/2 coefficient in the
asymptotic expansion~35!. It has to be noted that
zb(0uLD) is linear inb ~or vanishing! and so them depen-
dence in Eq.~8!, which reflects thez-function ultraviolet
renormalization, does not contribute to the entropy, and th
is again in agreement with the conformal transformation
method.

IV. STATISTICAL MECHANICS
IN RINDLER-LIKE SPACE-TIMES

Now, making use of the expression for thez function we
have derived in the previous section, Eq.~36!, we can study
the statistical mechanics for scalar fields in a Rindler-like
space-time by means of Eq.~8!. Taking the derivative of Eq.
~36! and the limits→0 we obtain

Fb52
1

2b
z2p8 ~0uLD!2

1

2b(
r50

`

Ar~LN!I bS r2
N

2 D f̂~2r2N!

2
zb~0uLD!

2b
lnm22

f ~0;L,«!

2b
.

As usual, it is convenient to distinguish between odd an
even dimensional cases, respectively: i.e.,

Fb52
1

2b (
r50

N21/2
Ar~LN!I b~r2N/2!

~N22r !«N22r 2
1

2b
z2p8 ~0uLD!

1O~L2!, ~37!

Fb52
1

2b (
r50

N/221
Ar~LN!I b~r2N/2!

~N22r !«N22r 2
AN/2~LN!I b~0!

2b
ln

L2

«2

2
1

2b
z2p8 ~0uLD!1O~L2!. ~38!
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The last termO(L2) contains also the dependence on th
scale parameterm. In any case such a term is independent
b and does not give contributions to the entropy.

Some comments are in order. We observe that the f
energy in the vicinity of the horizon has a number of dive
gences depending on the dimensionD and in the even di-
mensional case also a logarithmic divergence appears,
portional to AN/2 , in agreement with results obtained b
other methods@16#. There is a finite part linear in the tem
perature and proportional toz2p8 . Besides, the leading term
has the expectedb2D behavior. This is a nontrivial result
and it is a consequence of our local approach, which requ
the analytical continuation investigated in the Appendix.
fact, from Eqs.~A8! and ~A9! we have

Fa;2
~21!~D21/2!zR8 ~12D !

Ap~4p!D/2G@~D11!/2#

VN

N«N
aD, D53,5,7, . . . ,

Fa;2
G@~12D !/2#zR~12D !

Ap~4p!D/2
VN

N«N
aD, D54,6, . . . .

HerezR is the usual Riemannz function anda52p/b. Note
that here the equilibrium temperature corresponds toa51.

Using Eq.~9! or the equivalent relation

Sa522p
]Fa

]a
~39!

and Eqs.~37! and ~38!, one can compute the entropy in an
D-dimensional Rindler-like space-time. For the sake of sim
plicity, here we shall deal with the four-dimensional cas
only. One easily gets

Fa52
A~a221!~a2111!

180~4p!2«2
1
A1~L2!~a221!

48p
ln

L2

«2

2
a

4p
z2p8 ~0uL4!1O~L2!, ~40!

A5V2 being the transverse area and finally, at the equil
rium temperaturea51:

Sa515
A

60p«2
1
A1~L2!

12
ln

L2

«2
1
1

2
z2p8 ~0uL4!1O~L2!.

The results that we have obtained in this section are va
for a scalar field in a general Rindler-like space-time. For
massless scalar field in a Rindler space-time,z2p(suLD), as
well as all coefficientsAr(LN), but A0 vanishes. Therefore,
previous formulas reduce to

Fb52
I b~0!

2b
ln

L

«
52

1

24p
ln

L

«
~a221!, D52,

Fb52
I b~2N/2!

2b~4p!N/2
VN

N«N
, D>3,

which can be directly derived from Eq.~27!. Finally, for
D52 andD54 the entropies read, respectively,
e
on

ree
r-

pro-
y
-

ires
In

y
-
e

ib-

lid
a

Sa515
1

6
ln

L

«
D52, Sa515

A

60p«2
D54. ~41!

The first reproduces the well-known two-dimensional resul
while the latter is compatible with the same quantity calcu
lated by other methods, the only difference being the nume
cal factor in the denominator.

In this paper we are mainly interested in entropy. How
ever, in the following we shall briefly discuss the renormal
ization of the internal energy. We note that we have mad
use of an analytical regularization. We have at our disposa
renormalization prescription. In this approach it is quite natu
ral to require the internal energy to be finite~vanishing!
when the conical singularity is absent, namely whe
b52p. This can be accomplished by making use of th
same statistical mechanical identities among the renorm
ized quantities and assuming~for example,D52)

Ua
R5Ub2Ua515

1

24p
ln

L

«
@a221#.

This prescription automatically gives

Sa
R5Sa5

1

6
ln

L

«
.

Note thatU2p depends on the horizon cutoff. The corre
sponding free energy reads

Fa
R5

1

24p
ln

L

«
@a221#2

1

12p
ln

L

«
a2, ~42!

which is not vanishing forb52p. The same analysis can be
extended to the higher dimensional cases.

We conclude this section with few remarks. With regar
to other off-shell computations of the entropy and free en
ergy for a black hole, we recall that the horizon divergence
can be obtained, for example, within the path integral ap
proach, making use of the high-temperature approximatio
@8,13#. This gives the correct leading term ina4, propor-
tional to the optical volume and this result is in agreemen
with our expression of the free energy in the four
dimensional case. However, in this case there is also a d
agreement with the computations based on the other off-sh
methods, occurring in thea2 terms, and this leads to the
anomalous numerical coefficient in Eq.~41! for the expres-
sion of the entropy.

V. D-DIMENSIONAL BLACK HOLE NEAR
THE HORIZON AND IN THE LARGE MASS LIMIT

Here we consider the case in whichMD5Cb3SN. To
justify this choice from a physical viewpoint, first of all we
show that, near the horizon and in the large black-hole ma
a ~Euclidean! D-dimensional black hole with vanishing cos-
mological constant may be approximated by a manifold o
this kind and so the statistical mechanics can be investigat
by using the formulas of previous sections.

We recall that the static metric describing a
D-dimensional Schwarzschild black hole~we assumeD.3
and vanishing cosmological constant! read@35#
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ds252F12S r Hr D D23Gdx021F12S r Hr D D23G21

dr2

1r 2dVD22 ,

where we are using polar coordinates,r being the radial one
anddVD22 theD22-dimensional spherical unit metric. Th
horizon radius is given by

r H5F 2p~D23!/2MGD

~D22!G@~D21!/2#
G1/~D23!

,

M being the mass of the black hole andGD the generalized
Newton constant. The associated Hawking temperature r
bH54pr H /(D23). From now on, we putr H51.

To study the black hole near the horizon it is conveni
to redefine the radial Schwarzschild coordinatesx05x08/b
and r5r (r) by means of the implicit relation

S br2

2 D 1/~D23!

5er21expE dr

r D2321
, r2;

12r 32D

b2
,

whereb5(D23)/2. In the new set of coordinates we ha

ds252
12r 32D~r!

b2
dx08

21
12r 32D~r!

b2r2
dr2

1r 2~r!dVD22 , ~43!

and finally, near the horizon,

ds252r2dx08
21dr21dVN ,

which is the metric of a Rindler-like spaceCb3SN. As a
consequence we can use all results developed in pre
sections. In particular, thez function can be computed ma
ing use of Eq.~33!, since thez function for the Laplace
operator onSN is well known ~see, for example,@36,37#!.
More simply, we can directly derive the free energy by us
Eqs.~37! and ~38!.

For its physical interest now we shall investigate in m
detail the caseD54, a toy model for the four-dimension
eternal black hole. For this case we have

G~z!z~zuL2!52(
k50

`
~2a2!k

k!
G~z1k!zHS 2z12k21;

1

2D ,
where L252DS21

1
41a2 and zH(s;q) is the Hurwitz

z-function. All the spectral coefficients may be evalua
from the above expression computing the residues at
simple polesz512r , (r50,1,2, . . . ). As aresultA051 and

Ar~L2!5~21!rFa2rr ! 22(
j50

r21
a2 jzH~2 j22r11;1/2!

j ! ~r2 j21!! G ,
r>1.

The free energy is given by Eq.~40! and reads
e

eads

ent

e

ious
-

ing

re
l

ed
the

Fa52
A~a221!~a2111!

180~4p!2«2
1S 1122a2D ~a221!

48p
ln

L2

«2

2
a

4p
z2p8 ~0uL4!1O~L2!,

whereA54pr H
2 is the horizon area. Also in this case, we

may require that the internal energy has to be finite at th
Hawking temperature. This can be realized by adding th
infinite constant2U2p . However, this prescription does not
modify the entropy. For a massless scalar field one ha
a2521/4 and so the~renormalized! entropy at the equilib-
rium temperature a51 ~which means bH52pr H /b
58pMG) is

Sa515
A

60p«2
2

1

36
ln

L2

«2
1
1

2
zR23S2
8 ~0uL4!1O~L2!.

The appearance of the logarithmic horizon divergence
@38,15#, which is absent in the massless Rindler case, shou
be noted. Higher dimensional cases can be analyzed on t
same lines, without any difficulties.

VI. CONCLUSIONS

In this paper the entropy for a massless scalar field in
D-dimensional Rindler-like space-time has been investigate
by means of the off-shell conical Euclidean method based o
a localz-function regularization. The degrees of freedom o
the black hole have been assumed to be equivalent to tho
of a massless scalar quantum field onCb3MN, Cb being
the two-dimensional cone. The periodb of the imaginary
compactified time has been interpreted as the inverse of t
temperature measured at infinity. One of the advantages
this approach is the determination of the unique equilibrium
temperature, the Unruh-Hawking temperature, by the re
quirement of the absence of conical singularities (b52p).
Within this approach, the Bekenstein-Hawking entropy ca
also be obtained, but again without a statistical interpreta
tion. With regard to this issue, the formal partition function
related to the determinant of a Laplace-like operator o
Cb3MN, evaluated off shell (bÞ2p), in order to permit
the computation of the entropy by means of statistical for
mulas, has been regularized according to thez-function
method. This has posed the mathematical problem of defi
ing properly the relatedz function.

A suitable analytical procedure first suggested by Cheeg
has been used in order to implement the usual relationsh
between localz function and heat kernel, as well as the cor-
responding traces, for which a smearing function has bee
introduced in order to define them. The so-called horizo
divergences of this entropy evaluated at the equilibrium tem
perature, which are also present if one is dealing with othe
off-shell techniques, are recovered with a natural choice o
the smearing function. We have obtained agreement wi
other methods~the conformal transformation method, the
brick-wall model, and the canonical approach!, the only dif-
ference being the numerical coefficients of the divergence
even though the structural form of the divergent terms is th
same.

Another by-product of our conical Euclidean approach
has been the dimensionally correct leading behavior of th
free energy inb, a result that the global heat-kernel method
completely misses. In the usual conical approach, the one w
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have called the global approach, one needs a mass as inf
cutoff and has to use proper-time regularization, namely
ultraviolet regularization different from thez function. The
leading divergence survives in the limitm→0, but one gets
again ab behavior independent on the dimensions of t
manifold @21#. Furthermore, within this approach these ‘‘u
traviolet’’ divergences are interpreted as horizon dive
gences. As a result, even though the interpretation of
divergences is different, the conclusions are similar. W
regard to this issue, one should try to investigate the lim
m→0 and the infinite volume limit by starting,ab initio,
with a truncate cone and imposing suitable boundary con
tions. Then one should study the massless limit and the i
nite cone limit in order to better understand the existence
an infrared phenomena. Our local approach has implic
assumed the infinite cone limit. We stress again that
Cheeger method permits us to study the massless cas
rectly in the infinite cone case.

As far as the horizon divergences of the off-shell quan
ties are concerned, we have little to add to the considerat
that have recently appeared in the literature; a detailed
cussion can be found in Ref.@5#. There it has been shown
working with two-dimensional models, that all the obser
ables related to a black hole at Hawking temperature can
evaluated in terms of on-shell finite quantities and a subtr
tion procedure between the on-shell and off-shell quanti
has been proposed, the divergences of the former being
moved by the related quantities in the Rindler space-tim
Another proposal to deal with such divergences, consis
in the implementation of the ’t Hooft approach by means
Pauli-Villars regularization, has been recently introduced
Ref. @39# and it has been used in a two-dimensional mode
Ref. @40#, where a comparison between the Frolov-Fursa
Zelnikov scheme@5# and the latter can be found. The a
sence of the on-shell entropy divergences has been
claimed in Ref.@41#.

We conclude with some remarks. The Rindler case co
be the key example in order to better understand the hori
divergences. Here it is well established that the internal
ergy must be finite~actually vanishing! if and only if
b5bH . As a consequence, the related entropy is diverg
at the same equilibrium temperature. It has been shown
such statistical-mechanical entropy coincides with the
tropy of entanglement obtained from the density matrix d
scribing the vacuum state of the field~scalar or spinor! as
observed from one side of a boundary in Minkowski spa
time @42,43,18,44,21#.

However, the entropy of entanglement, although forma
divergent, might be operationally finite@45#. With regard to
the black-hole case, the fluctuations of the horizon@6# as
well as the quantum evaporation@46# might provide again a
mechanism for the absence of the entropy divergences.
nally, we have to mention that recently several attempts
clarify the microscopic origin of black-hole entropy hav
appeared within the string theory, which seems, at the m
ment, a promising theory capable of offering a solution
this important issue~see, for example,@47# and references
therein!.
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APPENDIX: PROPERTIES OF THE Gb„s… FUNCTION

Here we make the analytic continuation of the function

Gb~s!5(
l51

`
G~n l2s11!

G~n l1s!
, n l5a l , a~b!5

2p

b
,

which is convergent for Res.1. In fact, forn→` one has
the asymptotic expansion

G~n2s11!

G~n1s!
;n122s(

j50

`

cj~s!n22 j ,

wherecj (s) are easily computable using the known expa
sion ofG(z), that is

G~z!;A2p

z
e2z1z lnz1B~z!, B~z!5(

j50

`
B2 j z

122 j

2 j ~2 j21!
,

Bj being the Bernoulli numbers. It it easy to see that sin
the function G(n2s11)/@G(n1s)# for any s52n/2
(n521,0,1,2, . . . ) is effectively a polynomial of order
nn11, cj (2n/2) has to vanish for allj.(n11)/2.

The first coefficients readc0(s)51,

c1~s!5
s~s21/2!~s21!

3
,

c2~s!5
s~s221/4!~s221!~s26/5!

18
. ~A1!

It has to be noted thatGb(s) is certainly analytic in the
strip 1, Res,11n1 and, as we shall see later, it has
simple pole ats51 with residue equal to 1/2a. In order to
make the analytic continuation ofGb(s) we define

f n~n,s!5
G~n2s11!

G~n1s!
2 (

j50

@n/2#11

cj~s!n122s22 j

;c@n/2#12~s!n2~2s12@n/2#13!,

where@n/2# represents the integer part ofn/2. For Res.1
we have

Gb~s!5 (
j50

@n/2#11

a122s22 j cj~s!zR~2s12 j21!

1 (
k51

`

f n~nk ,s!. ~A2!

Now, the right-hand side of the latter equation has mean
for Res.212@n/2# and so we have obtained the analyti
continuation we were looking for. The functionf n(n,s) is in
general unknown, but it is vanishing for al
s51/2,0,21/2,21, . . . ,2n/2, since in this case the function
G(n111n/2)/@G(n2n/2)# is a polynomial. Then for
n521,0,1,2,3, . . . , weobtain
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Gb~2n/2!5 (
j50

@n/2#

an1122 j cj~2n/2!zR~2 j2n21!

1an2122@n/2#c@n/2#11~s!zR

3S 2s12Fn2G11D U
s52n/2

. ~A3!

Using Eqs.~A1!, ~A2!, and~A3! we have

ResGb~s!us515
b

4p
, Gb~0!5

1

12S 1a 2a D , ~A4!

Gb~21!5
1

120S a3110a2
11

a D . ~A5!

Recalling that zR(0)521/2 and zR(22 j )50 for any
jPN, from Eq. ~A3! we also get

Gb~2n/2!52
1

2
c~n11!/2~2n/2!

52
G~11n/2!

2G~2n/2!
, n521,1,3,5, . . . .

~A6!

The latter expression has been derived from the identity

G~n1n/211!

G~n2n/2!
5Fn22S 12D

2GFn22S 32D
2G•••Fn22S n2D

2G ,
valid for any oddn521,1,3,5, . . . . Theidentity

G2p~s!52
G~12s!

2G~s!
,

also holds. From the latter equation and Eq.~A6! we have

Gb~2n/2!2G2p~2n/2!50 , n521,1,3,5, . . . .
In the paper we frequently meet the function

I b~s!5
G~s21/2!

Ap
@Gb~s!2G2p~s!#, ~A7!

which has a simple pole ats51. We have

ResI b~s!us515
1

2 S b

2p
21D ,

I b~0!522Gb~0!5
1

6 S b

2p
2
2p

b D ,
and by definitionI 2p(s)50. We also need the behavior of
I b with respect tob at s52N/2. .From Eqs.~46! and~50!
for evenN we immediately have

I b~2N/2!5
G@2~N11!/2#

Ap
@Gb~2N/2!2G2p~2N/2!#

;
G@2~N11!/2#zR~2N21!

Ap
aN11,

N50,2,4,. . . , ~A8!

while for oddN, using Eq.~A2! we obtain

I b~2N/2!5
~21!~N11!/2

2ApG@~N13!/2#
@Gb8 ~2N/2!2G2p8 ~2N/2!#

;
~21!~N11!/2zR8 ~2N21!

2ApG@~N13!/2#
aN11, N

51,3,5, . . . . ~A9!

In the evaluation of the latter expansion, we have considere
only the first term on the right-hand side of Eq.~A2!, since
the derivatives ats52N/2 of the functionsf N(nk ,s) give
contributions of the ordera22.
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