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Euclidean approach to the entropy for a scalar field in Rindler-like space-times
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The off-shell entropy for a massless scalar field iD-@imensional Rindler-like space-time is investigated
within the conical Euclidean approach in the manifalgx MN, C being the two-dimensional cone, making
use of the-function regularization. Because of the presence of conical singularities, it is shown that the
relation between thé function and the heat kernel is nontrivial and, as first pointed out by Cheeger, requires
a separation between small and large eigenvalues of the Laplace operator. As a consequence, in the massless
case, thenaive) nonexistence of the Mellin transform is bypassed by Cheeger’s analytical continuation of the
{ function on the manifold with conical singularities. Furthermore, the continuous spectrum leads to the
introduction of smeared traces. In general, it is pointed out that the presence of the divergences may depend on
the smearing function and they arise in removing the smearing cutoff. With a simple choice of the smearing
function, horizon divergences in the thermodynamical quantities are recovered and these are similar to the
divergences found by means of off-shell methods such as the brick-wall model, the optical conformal trans-
formation techniques, or the canonical path-integral metf®@556-282(196)05316-7

PACS numbds): 04.62:+v, 04.70.Dy

I. INTRODUCTION zon (the so-called brick-wall modgl
In a generic off-shell procedure, these divergences are not

As is well known there exist several methods for calcu-totally unexpected. In fact their physical origin may be de-
lating the semiclassical entrogiyee-level contributiopfora  scribed by the following simple considerations. The equiva-
stationary black holesee, for example[1]). In Einstein lence principle implies that a system in thermal equilibrium
theory, for a nonrotating four-dimensional black hole, all thehas a local Tolman temperature given by (x)
methods lead to the celebrated Bekenstein-Hawking classicat T/+/|doo(X)|, T being the temperature measured at the spa-
entropy 4rGM? [2—4]. The thermodynamical origin of this tial infinity. Thus, the asymptotic high-temperature expan-
guantity is well known and recently in a series of pagee,  sion for the free energy of a massless quantum gas on a
for example,[5] and references thergitthis fact has been D-dimensional static space-time may be written as
stressed; namely, the Bekenstein-Hawking entropy can be
defined by the response of the free energy of the black hole
to the change of the equilibriuitunruh-Hawking tempera- FT:TDJ |900(X)| P2V gp_1(X)]dxP L,
ture. This temperature depends on the mass of the black hole
and may be determined by requiring the smoothness of the
related Euclidean solutiof#]. This is an example of an on- where gp_;=defg;;} (i,j=1,... D—1). In the presence
shell computation. In the derivation of the above result, onef horizons, the integrand have nonsummable singularities
usually neglects quantum fluctuation effects. If one takesnd horizon divergences appear. As a consequence also the
guantum effects into account, one can show that the on-shedintropy is divergent. The nature of these divergences de-
one-loop contribution is finitésee, for example, Ref5)). pends on the zeros and the polesggf and g, respec-

The situation drastically changes if one tries to investigatdively. In general, for extreme black holes, whegg, has
the issue of the black-hole entropy within a statistical-higher-order zeros, the divergences are much more severe
mechanical approach, i.e., by counting the quantum states ¢fian the divergences in the nonextremal céss®, for ex-
the black hole. In this case, in order to evaluate the entropyample,[7]).
one is forced to work off shell, namely, at a temperature These considerations suggest the use of another off-shell
different from the Unruh-Hawking one. The first off-shell method, based on conformal transformation techniques,
computation of the black-hole entropy appeared in 't Hooft'swhich consists in mapping the original metric onto the opti-
seminal papef6], where the black hole degrees of freedomcal oneg,,,=9,,/9oo. (see Refs[8-10). Related methods
identified with those of a quantum gas of scalar particleghat lead to optical manifolds have been considered in Refs.
propagating outside, but very near the horizon at a tempergd11-13. The conformal optical transformation method has
ture 8~ 1. The statistical-mechanical quantities were found tobeen used in the case of fields in four-dimensional black hole
be divergent and regularized by Dirichlet boundary condi-space-time[14,15 and also for massive scalar fields in
tions imposed at a small distance from the black-hole horiD-dimensional Rindler-like space-timel6]. These are

space-times of the forRxX R* x MN, with the metric
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wherery, is a dimensional constarth, a constant factor and vV, being the volume of) andVp=BA2V\/2. As a result,
da, the spatial metric related to the smooth maniftl'. If  the naive Mellin transform of this heat-kernel trace does not
MN=RN, thenb=1, ry=1/a, a being the constant accel- exist or is zero if interpreted in the sense of distributions. If
eration, the manifold is noncompact and one has to deal jugf mass term is included, then the latter equation has to be
with the D-dimensional Rindler space-time. At"=S", one  multiplied by the factor exp¢tn?) and the global function
can show that one is dealing with a space-time that approximay be defined via the Mellin transforf6], obtaining in
mates, near the horizon and in the large mass limit, ahis way a well-defined quantity, apart from the volume di-
D-dimensional black holésee, for example[16]). In this  vergences associated with the noncompactness of the mani-
caseb=(D—3)/2 andry is the horizon radius depending on fold. The surprising thing is that, in contrast with the other
the mass of the black hole. methods mentioned above, such a partition function seems
In the case of canonical horizofthis means thagjo(X) not to have any horizon divergence. It has also a dependence
has simple zeros onjyand in order to treat finite-temperature on 8, which does not depend on the dimensions of the Rin-
effects, an alternative off-shell approach has been proposetler space one is considering and, besides, it vanishes in the
[17-21. It consists in performing the Wick rotation limit m—0. Of course, the contribution computed in this
Xo=—i7 and working in the Euclidean continuation of the way is only the finite part of the partition function, since
space-time, with the imaginary time compactified to an arbi-ordinary ultraviolet divergences are preséiormally one is
trary interval of lengthg and with the fields periodic i  dealing with a “zero-temperature” field theory on a non-
with period B, which is interpreted as the inverse tempera-trivial backgroundl and they have been accounted for by
ture. For an arbitrary choice ¢, such a static manifold has means of the-function regularization. If one makes use of
a conical-like singularity. As already mentioned, only in the another regularization, for example the proper-time regular-
absence of such a singularity there exist equilibrium stateization, it turns out that such ultraviolet divergences are not
with finite stress-energy tensor. This happens only forconfined to the vacuum sector as in the usual finite-
B=By, the Unruh-Hawking temperatufd]. Furthermore, temperature theory on ultrastatic space-times, but they ap-
the Bekenstein-Hawking entropy can be derived within thispear also in the nontrivial part of the free energy in such a

approach22,17). For the metric of our simplified model, Eq. way that they give a contribution to the entropy, even if it is
(1), one has evaluated at the Hawking temperatfe8—21]. In the limit
m—0 only the leading divergent term remains and this has
been interpreted as the analogy of horizon divergence.
27y . : . o .
Bu= ] ) In this paper, in order to try to elucidate this issue, we will
b present an off-shell Euclideaft+function regularization ap-
proach applicable directly in the massless case and we will
The situation looks quite different in the computation of Make the comparison between this Euclidean conical method

the quantum corrections to the entropy. In fact in this cas@nd the optical conformal transformation methdithe brick-
one is really forced to consider an arbitrgBy thus working ~ Wall method gives the same result as the Iatf€o avoid the
off shell again. This proposal seems highly nontrivial, sincefisk of creating confusion, other kinds of regularizations
only in an ultrastatic space-time the imaginary time formal-shall not be taken into account. Our main aim will be the
ism has been shown to be equivalent to the canonical formafonstruction of thel” function for a massless scalar field in
ism of the finite temperature quantum field theory. The us€gx M", starting from the local one, which can be evalu-
of the trace of the heat kernel plus standard proper-time regiated by using an analytical procedure suggested by Cheeger
larization on manifolds with conical singularities leads to al24]- As mentioned above, all global quantities, for example
free energy, which is ultraviolet divergent and with a depen{ree energy or entropy, which are related to the trace of some
dence on temperature different from the one expected for @Perator, require a smearing function in order to be defined.
D-dimensional space. In fact the leading term goesTs The horizon divergences appear in the smearing removal. It
independently on the dimensiof3]. Let us summarize this turns out that the change of the smearing prescription may
crucial issue, which seems to have been overlooked in th&odify the final result. However, we will show that the re-
recent papers. sults obtained in this way are compatible with the ones ob-
It is well known (see Sec. Nthat one-loop effects can be tained by using the optical conformal method, including the
described byz-function regularization. The function re-  correct dimensional behavior of the free energy gnwe
lated to a free massless scalar field otP can be obtained @lso would like to mention that the techniques presented in
by means of the Mellin transform ofK(t|—Ap) this paper may be useful in in_vestigating quantum fields in
= TrexptAp), Ap being the Laplace operator. However, in SPace-times with spatial conical ;mgulan(yee, for ex-
the noncompact manifold®=Czx MV, in order to give ~ample.[27,28 and references thergin _
meaning to the trace of the heat kernel, one has to use a 1he contents of the paper are the following. In Sec. I, the
smearing functionp. A simple choice is given by the prod- general formalism is summarlzed_ gnd the partition function,
uct of the characteristic functiog(Q) (QCRN, compact @S well as the other related quantities, are introduced. In Sec.

and a cutoff functiord(A — p) regularizing the infinite coni- !l the local £ function for a massless scalar field in a Rindler
cal volume. One haf4—27 space is constructed according to the Cheeger method and

the global(smeareg ¢ function is computed and then gener-

alized to any Rindler-like space-times. In Sec. IV the ther-
K(t]—Ag) ()= Vb N li2m B Vy modynamical quantities in these kind of spaces are derived
D (47t)P2 7 12 B 2w (4mt)V2, and their properties analyzed. The application to the four-
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dimensional black hole, in the large mass limit approxima- When the manifold is smooth and compact the spectrum
tion, is presented in Sec. V. Choosing a suitable smearing discrete and one has

function, horizon divergences of the first quantum correc-

tions to the free energy are recovered. The conclusions are _os

reported in Sec. VI. The paper ends with an Appendix de- gﬁ(S“-D):Ei AT

voted to the analytical extension of a series that frequently

appears in the formulas and that plays an important role iIXiZ being the eigenvalues df, . As a result, one can make

the Cheeger method. use of the relationship between tiunction and the heat-

kernel trace via the the Mellin transform and its inverse. For
II. GENERAL FORMALISM Res>D/2, one can write

To start with we recall the formalism we shall use in the 1 (=
following in order to discuss the finite temperature effects {g(s|Lp)= TrLpS= _f 57K 4(t[Lp)dt,  (5)
within this conical singularity approach. We may consider, I'(s)Jo
as a prototype of the quantum correcti@uantum degrees
of freedon), a scalar field on &-dimensional Rindler-like

space-time. Its related Euclidean metric reads Kg(tlLp)= > R6>D/2t73T(S)§B(S|LD)dS, (6)
2p2
ds?=—5—dr2+dp?+dod, x=(7.p,X), where K 4(t|Lp)= Trexp(~tLp) is the heat operator. The
H previous relations are valid also in the presence of zero

. o , , _ modes with the trivial replacement K4(t|Lp)
whe[er is the imaginary timep=0 the radial coordinate —K4(t|Lp) — P, Po being the projector onto the zero
andx the transverse coordinates. As explained in the Intromodes. We may call this the global approach. Moreover one
duction, finite temperature effects are assumed to arise whefay follow a local approach, starting from local quantities
7 is compactified 6= 7< g, B being the inverse of the tem- |ike the heat kernel and the related Mellin transform local
perature. For arbitrar the manifoldM® has the topology ¢ function ¢ 4(s;x|Lp). Then one may introduce an effective
of CsX My, Cg being the two-dimensional coner,p) Lagrangian density

eCyg, Xe My . From now on, we puty=1 andr—br.

The one-loop partition function depends grand is given 1 1
by L(x)= Egg(oix“-o)"' Egﬁ(O;X|LD)In,Uv21
1 btaining, in this wa
25=f d[ ¢ ]ex ‘zf $Lpogdx |, ® ° 8 Y.
1
where ¢ is a scalar density of weight 1/2, which obeys |nZ/3:§J [£3(0:X|Lp) +£5(0:X|Lp,0)Inu?]dVp. (7)

periodic boundary conditiong(0.x) = ¢(3,X) andLp is the
Laplace-like operator o€ zX My . In our case, it has the Normally the two approaches give the same results. In the
form presence of conical singularities and in the massless case, we
5 5 have seen that the global approach cannot be used, so we
Lp=—AptéRtm =—AgtLly=—Ag—AytER+m" shall make use of the local one. In the presence of conical
(4) singularities and in the noncompact casentinuous spec-
trum), some care has to be used in the implementation of the
relationship between heat kernel and logdunction. With
regard to this, we shall show in the next section that a sepa-
ration of lower eigenvalues from the higher ones, together
with a suitable analytic continuation, is necess&4|. Fur-
thermore the locaf function turns out to be a nonlocal sum-
mable function. For this reason one can take the distribu-
tional characters of the locaj function into account by
introducing a smearing in terms of a function with compact
support. In this way, in order to treat global quantities, one
has to deal with smeared trade].
Once the(smearell partition function is given by Eq.7),
we assume the validity of the usual thermodynamical rela-
InZg=— Lndelp= %5’5(0|LD)+ %§ﬁ(0|LD)|nM2, tions, thus the free energy can be computed by means of

HereAp, Ay, andAg are the Laplace-Beltrami operators on
MP, MN and Cj respectively ¢ is an arbitrary parameter,
m the mass an® the scalar curvature of the manifold, which
is assumed to be a constant.

In the one-loop or external field approximation the impor-
tance of theZ-function regularization as a powerful tool to
deal with the ambiguitietultraviolet divergencespresent in
the relativistic quantum field theory is well knowsee, for
example[29]). It permits us to give a meaning, in the sense
of analytic continuation, to the determinant of a differential
operator that, as a product of eigenvalues, is formally diver
gent. One hag30]

where 4(s|Lp) is the-function related td.p, , {4(0|Lp) its Eoo_ llnz __ {30lLp)  £4(0|Lp)
derivative with respect ts, andx? a renormalization scale. B B A 2B 2B
The analytically continued function is regular as=0 and

thus its derivative is well defined. and the entropy and the internal energy read

Inw?, (8
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S

All these quantities are evaluated off shell. However the only
admissible equilibrium thermal state is the one correspond- We are interested in the locdl function, so we choose
ing to the Unruh-Hawking temperatur@=pgy [in our F(Lp)=Lp°®and, using Eq(11), one formally has

model, see Eq2)]. Thus, strictly speaking, one has to make
the comparison of the different off-shell approaches only at

— 2(4 )—N/Z
P=Pr: {p(siX|Lp)= e

jwdkk’“*l
0

N
Ill. ¢&-FUNCTION REGULARIZATION IN A SPACE BF(E)
WITH CONICAL SINGULARITIES

As we mentioned in the Introduction, the evaluation of the X
partition function using thé-function regularization requires

fo (N2+K2) 7SI5(Ap)X dX

some care. Here we shall evaluate the kernel of¢tlienc- ©

tion and then we will give a meaning to the glolgalunction +2> j (N2+Kk?) 7832 (Ap)N dX |.

by means of smearing. As has been stressed by Chgzgler =1 Jo !

it is crucial to treat small and large eigenvalues separately. (12)

The spectral properties of the Laplace operator on the
cone are well known and in fact, a complete set of normal-
ized eigenfunctions fok ;= — A4 is easily found to be Recalling the asymptotic behavior of Bessel functions one
can easily see that both the integrations dvand\ can be
(I 27l performed in any term of the latter equatiorsifs restricted
P(7,p)= \/T—WG'V'TJW(?\P), n=—pg le (10 in the range

together with its complex conjugatelouble degeneration N+1 N+2+2y,

Here A2 (A=0) is the eigenvalue corresponding #oand T< Res<T.

¢*, while J, is the regular Bessel function. This choice of

the eigenfunctions correspond to a positive elliptic self-

adjoint operatolthe Friedrichs extensiof82,33). In fact one has
Now, using the standard separation of variables, it is easy

to get the spectrum and the eigenfunctions of the operator

Lp=—Az+Ly on the Rindler-like space-timeMP 2(4m)~ N2

* -1 ” 2 2\y—s12
=CB><MN, Ly being a Laplace-type operator omfy in- N) fo dk k" fo (A7+K%) ‘]V|()‘p))‘d)‘

cluding (eventually mass and scalar curvature coupling AT 2
term. Indicating byfa(i) and )\i the eigenvectors and the

eigenfunctions of Ly, respectively, one has¥(x) r N+1 r N

- - I . 25—D s=——|I\n-|s—5 +1
=y(7,p)f,(xX) and A“+\%, for the eigenvectors and the _ p

eigenfunctions ofLy. Thus, for the diagonal kernel of a ~2B(4m)NT(s) N
operatorF 4(Lp) one has Val| v+s— >

(13)

1 ©
FB(X|LD)=E§ fo F(AN2+22)J3(Ap)X dAr

To get the{ function, now one has to sum over As we
shall show in the Appendix, the series is convergent for
Res>N/2+ 1. This range does not overlap with the previous
one forv;=0 (I=0). This means that there are no values of
As it stands, such an expression is only formal, since the for which Eq.(12) is a finite quantity. The solution of this
series and the integral could not be convergent. convergence obstruction has been suggested by Cheeger
[24]. It simply consists in a separate treatment of the lower
A. A special case: massless scalar field in Rindler space and the higher eigenvalué this particular case,=0 and
L . . >0, 1=1). Only after the analytic continuation is per-
For the sake_of simplicity and for |IIu§trat|ve purposes, Ie?formed, one may define thefunction by summing the two
us start to consugler a massless scalar field on Euclidean R b tions obtained in this way. Of course, such a defini-
dler spaceCzx R°. We suppos@«l?l, bu'g a!l results on the_ tion of ¢ function has all the requested properties and coin-
pure cone N=0) can be obtained as limit cases. For thIScides with the usual one when the manifold is smooth.
casel.y=—Ay has a continuous spectru)n§=k2 and so the So, following Cheeger, in Eq12) we first isolate the
sum overa reduces to an integral ovére RN and its spec- term 1=0 and define [see Eq. (13)], for 1/2
tral data are well known: namely, +N/2< Res<1+N/2,

+2> FO+A2)22 (\p)NdN |- (1D)
I=1J0
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§<(S;X|LD)

p?s P T[s—(N+1)/2]'(1—s+N/2)
B(4m)NT (s) 27T (s—N/2)

p?s P T[s—(N+1)/2]G,,(s—N/2)
~ B(4m)NPL(s) '

NG

(14

Then we consider all the other terms, perform the integration

as in Eq.(13) and the summation oveée=1. In this second
case we have to restrict toHIN/2< Res<1+v,+N/2. The
result reads

2s—D
§>(S;X|LD)t:m

| [Is—(N+1)/2]Gy(s—N/2)

ar

(19

We have put

[

I'(yj—s+1
G,B(S):E M G,,=

=1 I'(y+s)

I'(1-s)
©2I(s)

the series being convergent for $2el. As we shall show in
the Appendix, the analytic continuation Gis(s) is a mero-
morphic function with only a simple pole a&=1. This

means that both Eq$14) and (15) can be analytically con-
tinued to the whole compleg plane and, by definition

{p(six|Lp)=Z-(s;X|Lp)+ ¢~ (s:X|Lp)
pZS—D N
Nl

where

T'(s—1/2)

Var

The properties 0G4, as well as of 5, will be studied in the
Appendix. An important property is thdt;, as well as
Gg, has only a simple pole at=1.

Note that in spite of the definitioflL6), in the use of the
inverse Mellin transform one has to considér and (-

I 5(s)= [Ga(s)—G2q(s)].

again separately and the original ranges of convergence. That

is
K- (t;x|Lp)

1

= t™°T(s){-(s;x|Lp)ds, (17)
271 ) 12+ Nj2< Res<1+N/2

K>(t;X|LD)

1

=— t7I'(s)¢~(s;X|Lp)ds, (18
271 J 14 N/2< Res<1+ g+ N2

2703
-(sx|L )=Lrts—1K (t;x|Lp)dt
<\ D F(S) 0 <\4H D ’
1+N< R <l-|—|\I 19
2tp=Resity 19
Lo (s;x|L )=Lrts—1K (t;x|Lp)dt
A YOI SRS
N
1+ 5< Res<1l+ v+ o (20
and, by definition,
Ka(t;x|Lp)=K_(t;x|Lp)+ K- (t;x|Lp)
_277 1 (A7) N2
B @m"2 " 2mip
N
X t=Sp2s7 Dy (s— —)ds.
fRes>l+N/2 P A 2
(21)

On the right-hand side of the latter equation we immediately
recognize the kerneék,.(t;x|Lp) and so the integral repre-
sents the differenc& s(t;x|Lp) — 27/ BK,,(t;X|Lp). Simi-

lar expressions are valid for all quantities. This can be seen
by observing that Eq11) can be written in the form

2

” 2 2
3 [21 JFOZENZa)

2
FZw(X“-D):EE

a

Fe(x|Lp)—

X[35,(0p) = I (N p) I\ dx].

The advantage is that the low eigenvalyg=0 is absent on
the right-hand side of this expression. As a result

2w
£B(S:XILD)—7§ZW(5;XILD)
—N2 o ©
:ﬂf dkkN*lE f ()\2+k2)7s
N % =1 Jo
F(E)

X[ 32 (\p)=IF(\p)IN dX.

Now the right-hand side of the latter equation is well defined

for 1+N/2< Res<1+ v+ N/2. After integration one has
2ar 2s—-D

{p(six|Lp)— ngﬁ(sﬁ(“-o): BAm) VT (s) I,B(S_ >

)

which is identical to the previous definition gffunction and
this means that, for this particular case, the Cheeger analyti-
cal procedure gives,.(s;x|Lp)=0 (note that formally
¢, is a divergent integral whateveris).
Heat kernel and local function are related by
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L 27 L . Uy lg(s— N2 (AP N—g2o7N)
gﬂ(S,X| D)_F€2ﬂ'(six| D) §3(3| D)(¢)_ (471_)N/2 F(S)(ZS_ N) g
1 (= 2m X {5(0|Lp)(¢)=0. (27)
=—— ts‘l[K t:X|Lp) — — K, (t;x|Lp) |dt, p
l"(s) fo ﬁ( | D) ﬁ 2 ( | D)
(22) B. The general case: scalar fields in Rindler-like spaces
Here we will give some results concerning the more gen-
20 eral caseMP=Czx MN, MM being an arbitrary smooth
Kﬁ(t:X|LD)—7K2W(t;X|LD) manifold without boundary. In such conditions all known
results concerning heat-kernel arddfunction for Ly on
1 s MN, which we suppose to be known, are applicable. In par-
= Rese1 4 let I'(s) ticular we note that the kernels are related by means of Mel-

lin transforms, the analogues of Ed$) and (6). Further-

2 more, the heat kernel has the usual asymptotic expansion

B

X[ Lp(s;X|Lp) = — Lon(siX|Lp) [ds. (23

KXl =2 AxLyt ™V,
Note that for@=2= the conical singularity disappears and r
the manifold become&P. Thus, {,, and K, are trivial.
Furthermore, by making use of E€1) and taking the ana- While the local{ function has the meromorphic structure
lytical properties ofl 4(s) discussed in the Appendix into (theorem of Seelgy

account, one gets the asymptotics of the heat kernel: namely,

. A (X|Ly) .
1 I'(s){(s;X|Ly) =2, ——— -+ the analytical part,
Ka(t:X|Lp) = ——p7+ Ex(p). (24) TSt
B (4t)P t (28)
whereE(p) is an exponentially small term i This local  the spectral coefficients, (x|Ly) being computable func-
asymptotics is in agreement with the results of Rg#l—  tions (for a review se¢34]). Here we suppose zero modes to
27]. be absent, but of course one can take them into account with

We conclude this section introducing the global quanti-simple modifications of the formulas.
ties. Strictly speaking, only the distributional trace has a Now let us try to derive the meromorphic structure of
mathematical meaning, since the logalunction above has CB(S;>Z|LD) on MP. To this aim we use the factorization
nonintegrable singularities in (see, for examplg31]). As a roperty of the heat kernel,
consequence one has to introduce a smearing by means of a
suitable functiong(p) with compact support not containing

the origin, thus defining Kg(tix|Lo) =K(t; 7plL g K(tx|Ly), (29

. in which the heat kernels of the Laplace-like operators on
§ﬁ(5||—o)(¢)=,3f dVNf #(p)Ls(siX|Lp)pdp. (25) MO, Cs, and MV, respectively, appear. By taking the Mel-
0 lin transform of Eq.(29) one usually gets the Dikii-Gelfand
representation for thé-function, which easily permits us to

For the smeared trace we get read off the meromorphic structure. However, as we have
A shown in the previous section, in the presence of conical
Vy  1a(s— N/2)p(2s—N) singularities we have to separate low and high eigenvalues in
{p(s|Lp) (@)= N2 . order to have a well defined Mellin transform. So we set
(4) I'(s)
. * §<<S'leD)=ijth*lKAt-rplL JK(t;X|Ly)dt
o= | o a(pr0. (26) X =1 ), imelLp) KX L)t
A . . . . . 1 (= -
¢ .be|ng an analytlcl f.u.nctlon since thg mtegral_ in ER5) {-(siX|Lp)= I“_f 571K (1 7,p|L g K (6 X|Ly)dlt,
exists for alls by definition. As a smearing function we may (s)Jo

simply choose¢(p)=0(A—p)b(p—e) (A>¢), which is
convergent to 1 in the limits\ —o and e—0. Thus, we where K<(t;T,p|L/3) and K>(t;7',p|LB) are related to the

have corresponding functions by mean of Eq917)—(20), but
with N=0 (pure coné Now we make use of the Mellin-
A AS—gS Parseval identity
P(8)=—
o 1
and for the smeared function fo fHg(t)dt 2 Ra:cf(Z)g(l z)dz (30
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wherec is in the common strip of analyticity of the Mellin
transformsf (z) andg(1— z). After some calculations paying
attention to the range of convergence we get

1
{(s;X|Lp)= TF(S)LOF(Z)&(Z; 7,p|Lp)T(s—2)
X {(s—z;x|Ly)dz, (31
1
{-(siX|Lp)= TT(S)L I'(2)¢-(z;7,p|LpT (s—2)

X {(s—z;x|Ly)dz (32

where3<cy,<1 and 1<c,;< Res— N/2. These are the Dikii-
Gelfand representations fdr. and . which are valid for

THE ENTROPY FOR . .. 2705

X|s+r— g) <A;S(25+2r—N)+f(s;A,s),
(36)

where  £,,(s|Lp)={(s—1|Ly)#(2)/[2(s—1)]  and
f(s;A,¢) is an analytic function irs going to 0 ass—0.

Now we may write down the meromorphic structure of
global ¢ function, which we can directly read off by looking
at Eq.(36) and recalling that 4(s) has only a simple pole at
s=1. The result reads

I'(s){p(s|Lp) ()

A (Ly [¢(2)+(ﬂ/277 1)¢(2$+2r—N)]
2(s+r—DJ/2)

-3

Res>1+ N/2. Since they are well defined in the same range

we can directly write the function as{={_+{- . Then, a
representation valid for Re>1+N/2 reads
o Us=1X|Ly) 1
Lo(sixIlo) =5 5= * 24i8T(9)
XJ p?* 2l 4(2)T (s—2)
Rez=cq
X {(s—z;x|Ly)dz, (33

where in Eq(31) we have shifted the contour integral on the .

right, taking into account that the integrand function has a{

simple pole az=1 [see Eq.(14)]. We incidentally observe

Taking the limit fors— 0 of the latter equation we easily get
£5(0|Lp)=0 for oddD, while, for evenD,

£p(0lLp) =7 B 2 Aol 6(2),

and this is just the integral of thB/2 coefficient in the
asymptotic expansion(35). It has to be noted that
{5(0|Lp) is linear in B (or vanishing and so theu depen-
dence in Eq.(8), which reflects the/-function ultraviolet
renormalization, does not contribute to the entropy, and this
s again in agreement with the conformal transformation
method.

that the first term on the right-hand side of the latter equation

is just (27/8) £5.(S;X|Lp). So the integral on the right rep-
resents {4(s;x|Lp) —(27/B){2,(S:x|Lp), in agreement

with the second point of view that we discussed in the pre-

vious section.
Now, in order to perform the integral, in E(B3) we shift
the contour on the right and using E@8) we obtain

P

>

r=0

. 1
BI'(s)

L(s—1:xX|Ly)

2p(s—1)

{p(sx|Lp)= A(XILy)1

x| s+r— g)p25+2r—D+O(p25+2P—D),

(34)

IV. STATISTICAL MECHANICS
IN RINDLER-LIKE SPACE-TIMES

Now, making use of the expression for tiidunction we
have derived in the previous section, E86), we can study
the statistical mechanics for scalar fields in a Rindler-like
space-time by means of E(). Taking the derivative of Eq.
(36) and the limits—0 we obtain

1 - N ~
Fo=—5552:(0lLo)~ IB;OAr(LN)IB(r—E)q’)(Zr—N)
4Olko) -, F(OiAe)
28 " 28

P being an arbitrary large integer. By means of this equatiorns usual, it is convenient to distinguish between odd and
and of inverse Mellin transform, one comes back to the locakven dimensional cases, respectively: i.e.,

heat-kernel asymptotic

iﬁ A/ (XL )t“—N’2~iK(t->Z|L )
Amtisy " N 4t AN
(35

Kg(t;x|Lp)~

By integrating Eq(34) on the manifold with the smeared
function ¢(p) = 0(A—p) 8(p—¢&) one has

Lp(S|Lp)(@)=Lon(s|Lp) + Ar(Ly)lg

o
I'(s)i=o

N—1/2

1 A (Llg(r=N/2) 1
Fﬁz_ﬁr:o (Nizf)sN—ﬁ 2B§2w(O|LD)
+0(A?), (37
e UST AN AvLy)lg0) A2
B™ 2B%&0  (N=2r)eN7 23 g?
55 (3+(0ILo) +O(AD). (39

- 2p
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The last termO(A?) contains also the dependence on the 1 A
scale parametet. In any case such a termis independenton  Se=1=gIn—~ D=2, S;oy=5—>5 D=4. (4D
B and does not give contributions to the entropy.

Some comments are in order. We observe that the fre¢nhe first reproduces the well-known two-dimensional result,
energy in the vicinity of the horizon has a number of diver-yhijle the latter is compatible with the same quantity calcu-
gences depending on the dimensibnand in the even di- |ated by other methods, the only difference being the numeri-
mensional case also a logarithmic divergence appears, preg| factor in the denominator.
portional to Ay, in agreement with results obtained by |n this paper we are mainly interested in entropy. How-
other method$16]. There is a finite part linear in the tem- ever, in the following we shall briefly discuss the renormal-
perature and proportional &, . Besides, the leading term jzation of the internal energy. We note that we have made
has the expectegg™® behavior. This is a nontrivial result use of an analytical regularization. We have at our disposal a
and it is a consequence of our local approach, which requiregnormalization prescription. In this approach it is quite natu-
the analytical continuation investigated in the Appendix. Inral to require the internal energy to be finiteanishing
fact, from Eqs.(A8) and(A9) we have when the conical singularity is absent, namely when

B=2m. This can be accomplished by making use of the

(—1)(D_1’2)§§(1—D) VN same statistical mechanical identities among the renormal-

«~ o, D=357..., | iti i =
/_77(47T)D/21-[(D+ 1)/2] NeN ized quantities and assumirifpr example,D =2)
1 A
R_ _ 2
~ '[(1-D)2J{r(1-D) VN D_d6 Usg=Up=Uamr=5,—In—[a"—1].

“ Jm(4)PP NeN
This prescription automatically gives
Here (g is the usual Riemand function anda=2#/3. Note

that here the equilibrium temperature corresponds ol . R=g zllné
Using Eq.(9) or the equivalent relation @« T 6 &
aF, Note thatU,,. depends on the horizon cutoff. The corre-
Se=—2m oo (39 sponding free energy reads
and Eqgs(37) and (38), one can compute the entropy in any FR:imﬁ[az_l]_ imﬁaz (42)
D-dimensional Rindler-like space-time. For the sake of sim- * 247 & 127 e '
plicity, here we shall deal with the four-dimensional case
only. One easily gets which is not vanishing foB=2. The same analysis can be
extended to the higher dimensional cases.
A(e?=1)(a®+11)  Aq(Lp)(a’—1) A? We conclude this section with few remarks. With regard
Fo=— 180(47)2%&2 487 In? to other off-shell computations of the entropy and free en-

ergy for a black hole, we recall that the horizon divergences
a ) can be obtained, for example, within the path integral ap-
= 4 624(0[La) +O(A?), (40 proach, making use of the high-temperature approximation
[8,13]. This gives the correct leading term u*, propor-
A=V, being the transverse area and finally, at the equiliptional to the optical volume and this result is in agreement
rium temperaturer=1: with our expression of the free energy in the four-
dimensional case. However, in this case there is also a dis-
A ALy A% 1 , ) agreement with the computations based on the other off-shell
Se=1"gg a2+ Tln?+§§zﬂ(0|l-4)+0(/\ ). methods, occurring in the? terms, and this leads to the
anomalous numerical coefficient in E@1) for the expres-

The results that we have obtained in this section are vali§on ©f the entropy.
for a scalar field in a general Rindler-like space-time. For a
massless scalar field in a Rindler space-tigig,(s|Lp), as V. D-DIMENSIONAL BLACK HOLE NEAR
well as all coefficientsA,(Ly), but Ay vanishes. Therefore, THE HORIZON AND IN THE LARGE MASS LIMIT

revi formulas r . . .
previous formulas reduce to Here we consider the case in which{®=C,;xSN. To

1,00) A 1 A justify this choice from a physical viewpoint, first of all we
A === ——In—(a?-1), D=2, show that, near the horizon and in the large black-hole mass,
2B e 247 & a (Euclidean D-dimensional black hole with vanishing cos-

mological constant may be approximated by a manifold of
_ 1P(=NR) vy D=3 this kind and so the statistical mechanics can be investigated
B 2B8(4m)VZNeNT T by using the formulas of previous sections.
We recall that the static metric describing a
which can be directly derived from Ed27). Finally, for = D-dimensional Schwarzschild black holee assuméd >3
D=2 andD=4 the entropies read, respectively, and vanishing cosmological constantad[35]

F,B:
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o 3 o

+r2dQp_,,
where we are using polar coordinatesdyeing the radial one , _ _ _
andd(Qp_, theD — 2-dimensional spherical unit metric. The where A=4sry, is the horizon area. Also in this case, we

dx3+

-1 A(e®—1)(a?+11) [ 1 (a®—1) A2
dr? Fo=— > ——a}|———In—
1804 m)“e 12 487 €

(44 , 2
- E£2ﬁ(O|L4)+O(A )!

horizon radius is given by may require that the internal energy has to be finite at the
Hawking temperature. This can be realized by adding the

27(P-32y G, UP-3) infinite constant-U, .. However, this prescription does not
ry= , modify the entropy. For a massless scalar field one has

(D-2)T[(D-1)/2] a’=—1/4 and so thdrenormalizedl entropy at the equilib-

. ] rium temperature a=1 (which means By=2nry/b
M being the mass of the black hole aB¢ the generalized —=gzMG) is

Newton constant. The associated Hawking temperature reads A LA 1
Bu=4mry/(D—3). From now on, we puty=1. _ A 2
To study the black hole near the horizon it is convenient Se-1" 5072~ 36MeZ T 2 brexe(0lLa) T O(A).
to redefine the radial Schwarzschild coordinaxgs: x,/b
andr=r(p) by means of the implicit relation

(bp2)1/(D3)

The appearance of the logarithmic horizon divergences
[38,15, which is absent in the massless Rindler case, should
be noted. Higher dimensional cases can be analyzed on the

1_r37D . . . .
same lines, without any difficulties.

r—1 dr 2
2 € P osT PTTr
VI. CONCLUSIONS

whereb=(D —3)/2. In the new set of coordinates we have | this paper the entropy for a massless scalar field in a

D-dimensional Rindler-like space-time has been investigated

4 — 1-r37P(p) dx’2+1_r3 °(p) , , by means of the off-shell conical Euclidean method based on
- b2 0 b2p? P a local Z-function regularization. The degrees of freedom of
5 the black hole have been assumed to be equivalent to those
+r(p)dQp_», (43)  of a massless scalar quantum field @px M, C; being
the two-dimensional cone. The periggl of the imaginary
and finally, near the horizon, compactified time has been interpreted as the inverse of the
temperature measured at infinity. One of the advantages of
ds?= _pZdX(’)Z.;. dp?+dQy, this approach is the determination of the unique equilibrium

temperature, the Unruh-Hawking temperature, by the re-
quirement of the absence of conical singularitigs=Q2 ).

IY%[ithin this approach, the Bekenstein-Hawking entropy can
also be obtained, but again without a statistical interpreta-

which is the metric of a Rindler-like spadgzx SV. As a
consequence we can use all results developed in previo
_sect|ons. In par'ucular,_ thé: function can be computed mak- tion. With regard to this issue, the formal partition function
ing use of Eﬂ.§33), since the{ function for the Laplace roja1ed 1o the determinant of a Laplace-like operator on
operator onS"™ is well known (see, for example},36,37). Cpx MN, evaluated off shell §#27), in order to permit
More simply, we can directly derive the free energy by usingihe computation of the entropy by means of statistical for-

Egs.(37) and(39). mulas, has been regularized according to théunction

For its physical interest now we shall investigate in moremethod. This has posed the mathematical problem of defin-
detail the cas® =4, a toy model for the four-dimensional ing properly the related function.

eternal black hole. For this case we have A suitable analytical procedure first suggested by Cheeger
has been used in order to implement the usual relationship

Z(—ad)k 1 between local function and heat kernel, as well as the cor-
F(z)g(z|L2)=22 K I'(z+k)Zy| 2z+ 2k—1;§), responding traces, for which a smearing function has been
k=0 ® introduced in order to define them. The so-called horizon

divergences of this entropy evaluated at the equilibrium tem-
where L,=—Ag+3+a® and {4(s;q) is the Hurwitz  perature, which are also present if one is dealing with other
¢-function. All the spectral coefficients may be evaluatedoff-shell techniques, are recovered with a natural choice of
from the above expression computing the residues at théhe smearing function. We have obtained agreement with
simple polez=1-r, (r=0,1,2...). As aresultAp,=1 and  other methods(the conformal transformation method, the

brick-wall model, and the canonical approactne only dif-

a2 ! ad¢y(2j—2r+1:1/2 ference being the numerical coeﬁicientg of the diverge_nces,
ALy =(-1) r—,—ZEO = =11 , even though the structural form of the divergent terms is the
= ' ' same.

Another by-product of our conical Euclidean approach
r=1. has been the dimensionally correct leading behavior of the
free energy inB3, a result that the global heat-kernel method
The free energy is given by E¢40) and reads completely misses. In the usual conical approach, the one we
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have called the global approach, one needs a mass as infraredAPPENDIX: PROPERTIES OF THE Gg(s) FUNCTION
cutoff and has to use proper-time regularization, namely an
ultraviolet regularization different from thé function. The
leading divergence survives in the linmi— 0, but one gets .
again apB behavior independent on the dimensions of the I'(y—s+1) 2m
manifold [21]. Furthermore, within this approach these “ul- GB(S):|:1 T(y+s) n=al, a(B)= B
traviolet” divergences are interpreted as horizon diver-
gences. As a result, even though the interpretation of the, . .
divergences is different, the conclusions are similar. With%’]hICh IS conyergent fqr Re>1. In fact, fory—c one has
regard to this issue, one should try to investigate the Iimitt € asymptotic expansion
m—0 and the infinite volume limit by startinggb initio, "
with a truncate cone and imposing suitable boundary condi- P(v=s+1) |, Y
tions. Then one should study the massless limit and the infi- T(vts) " ]240 ci(s)v==,
nite cone limit in order to better understand the existence of
an infrared phenomena. Our local approach has implicitly h _ i tabl ina the k
assumed the infinite cone limit. We stress again that the/ erec;(s) are easlly computable using the known expan-
Cheeger method permits us to study the massless case gio" ofT'(2), thatiis
rectly in the infinite cone case. . _

As far as the horizon divergences of the off-shell quanti- 2 —z+2Inz+B(2) szz“Z'
ties are concerned, we have little to add to the considerations ' (2~ Y\ —® . B(29)= ZO 2j(2j—-1)"
that have recently appeared in the literature; a detailed dis- =
cussion can be found in Rd5]. There it has been shown, . . . .
working with two-dimensional models, that all the observ- B; being t.he Bernoulli numbers. It it easy to see that since
ables related to a black hole at Hawking temperature can b€ function I'(v—s+1)/[T'(v+s)] for any s=-n/2
evaluated in terms of on-shell finite quantities and a subtractn=~1.0.1.2...) is effectively a polynomial of order
tion procedure between the on-shell and off-shell quantitieg” -+ Cj(—n/2) has to vanish for alj>(n+1)/2.
has been proposed, the divergences of the former being re- The first coefficients ready(s) =1,
moved by the related quantities in the Rindler space-time.

Another proposal to deal with such divergences, consisting ci(s)= s(s—1/2)(s—1)
()= =2 7

Here we make the analytic continuation of the function

in the implementation of the 't Hooft approach by means of 3 '
Pauli-Villars regularization, has been recently introduced in
Ref.[39] and it has been used in a two-dimensional model in S(s2— 1/4)(s2—1)(s— 6/5)

Ref.[40], where a comparison between the Frolov-Fursaev- co(s)=

Zelnikov schemd5] and the latter can be found. The ab-

sence of the on-shell entropy divergences has been also

claimed in Ref[41]. It has to be noted thaB4(s) is certainly analytic in the
We conclude with some remarks. The Rindler case coul@trip 1< Res<1l+w; and, as we shall see later, it has a

be the key example in order to better understand the horizogimple pole as=1 with residue equal to 1/ In order to

divergences. Here it is well established that the internal enmake the analytic continuation @ (s) we define

ergy must be finite(actually vanishing if and only if

B=pBy. As a consequence, the related entropy is divergent I'(v—s+1)

at the same equilibrium temperature. It has been shown that fa(v,s)= Trrs)

such statistical-mechanical entropy coincides with the en-

tropy of entanglement obtained from the density matrix de- ~C[n/2]+2(s),;(23+2[n/2]+3>,

scribing the vacuum state of the fie{dcalar or spingras

observed from one side of a boundary in Minkowski space

time [42,43,18,44,2]L

18 . (A1)

[n/2]+1

2 Cj(S) pl=25-2

i=o

where[n/2] represents the integer part 0f2. For Res>1

we have
However, the entropy of entanglement, although formally
divergent, might be operationally finifd5]. With regard to [n/2]+1
the black-hole case, the fluctuations of the horizéh as G.(s)= 1-25-2j¢ (g 25+ 2i—1
well as the quantum evaporati¢46] might provide again a o) ,Zo “ (SR =1

mechanism for the absence of the entropy divergences. Fi-
nally, we have to mention that recently several attempts to
clarify the microscopic origin of black-hole entropy have
appeared within the string theory, which seems, at the mo-
ment, a promising theory capable of offering a solution t0Nqyy, the right-hand side of the latter equation has meaning
this important issugsee, for example[47] and references for Res>—1—[n/2] and so we have obtained the analytic
therein. continuation we were looking for. The functidg(v,s) is in
general unknown, but it is vanishing for all
s=1/2,0,-1/2,—1,...,—n/2, since in this case the function

We would like to thank P. Menotti and P. Peirano for I'(v+1+n/2)/[T'(v—n/2)] is a polynomial. Then for
useful discussions. n=-1,0,1,2,3..., weobtain

+ D) fulw,9). (A2)
k=1
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[n/2]
Gu(—n/2)= 2, a1 3c(—n/2){r(2j—n—1)
j=0

+a" T AMe o 1(S) R

n
X|2s+2|=|+1 (A3)
2 _
s=-—n/2

Using Egs.(Al), (A2), and(A3) we have
ResG _F G4(0)= !l A4
€ ,3(5)|s=1—E: B )—1_2 = % (A4)
Gy(—1)= 3+10 11 A5

Recalling that {gr(0)=—-1/2 and {g(—2j)=0 for any
j N, from Eqg.(A3) we also get

1
Gp(—nl2)=— EC(n+1)/2(_”/2)

I'(1+n/2)

I—m, n=-1,1,35... .

(AB)

The latter expression has been derived from the identity

' (v+n/2+1) , (1, (3)\? ) n)z
—_— =V | = v0-—| = e | PE— | =
I'(v—nl2) 2 2 2]
valid for any oddn=-1,1,3,5... . Theidentity
G - TI'(l-y9)
2”(5)__T(s)’

also holds. From the latter equation and E&6) we have

Gu(—Nn/2)—G,,(—n/2)=0, n=-1135... .

2709

In the paper we frequently meet the function
I'(s—1/2)
N
which has a simple pole a=1. We have

1/ B
Red 5(s)[s-1=5(5 -1

I 5(s)= [Gp(s)—Gan(s)], (A7)

2 B
and by definitionl,.(s)=0. We also need the behavior of

| g with respect tg8 at s= —N/2. >From Eqgs.(46) and(50)
for evenN we immediately have

1/ B 2=
IB(O)Z—ZGB(0)=€ >,

T[—(N+1)/2]
N
T[=(N+1)/2)gp(~N-1)

J

| o(—N/2)= [Ga(—N/2)— Gy, (—N/2)]

aN+l’

N=0,2,4,..., (A8)
while for oddN, using Eq.(A2) we obtain

(_1)(N+l)/2 , ,
| o(—N/2)= Z\EF[(I\HB)/ZJ[GB(—NIZ)—Gzﬂ(—NIZ)]
N(—1><N+1>’2§&<—N—1>QN+1' N
2al[(N+3)/2]
=135... . (A9)

In the evaluation of the latter expansion, we have considered

only the first term on the right-hand side of E&2), since

the derivatives as=—N/2 of the functionsfy(vy,S) give

contributions of the ordet 2.
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